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Fock space and exponential vectors

The symmetric Fock space over a Hilbert space H is

Γ(H) :=
⊕
n∈N0

H⊗sn,

where H⊗sn = span{x⊗n : x ∈ H} ⊂ H⊗n (n ≥ 1) and H⊗s0 = CΩ.

The exponential vector to x ∈ H is e(x) :=
∑

n∈N0
x⊗n
√

n!
.

Easy: The exponential vectors form a total subset of Γ(H).

Indeed,
(

d
dλ

)n∣∣∣∣
λ=0

e(λx) =
√

n!x⊗n.

In applications it is useful to find subsets S ⊂ H such that e(S) is
still total.
For instance, by continuity of x 7→ e(x), any dense subspace of H
is enough. (Or von Neumann for H = C.)
We can do much better:



Parthasarathy and Sunder 1998 (-12)
Denote by FI ⊂ L2(R+) the set of (meas., L2) indicator functions.

Theorem ([PS98])
The set e(FI) is total in Γ(L2(R+)).

Note:
I If II ∈ FI, then λII ∈ FI iff II = 0 or λ = 0.
I By continuity, it is enough to take only step functions.

Proof by [PS98] (≤ 1986).
By reduction to the martingale convergence theorem and some not
so easy estimates. �

Proof by Bhat [Bha01] (≤ 1998).
Applying his results on minimality of Evans-Hudson dilation
obtained via quantum stochastic calculus to a cleverly chosen
Markov semigroup on M2. �



My proof [Ske00] (1999)
(Inspired very much by Arveson [Arv89, Proposition 6.3].)
Essentially:
I For 0 ≤ κ ≤ 1, we get II⋃n

k=1[
k−1

n , k−1
n + κn ]

→ κII[0,1], weakly.

I So, e
(
II⋃n

k=1[
k−1

n , k−1
n + κn ]

)
→ e(κII[0,1]), weakly.

Indeed, we have 〈e(x), e(y)〉 = e〈x,y〉. So:
I

∥∥∥e(II⋃n
k=1[

k−1
n , k−1

n + κn ]

)∥∥∥ ≤ √e { check only with e(x).
I Weak convergence in L2 lifts to weak convergence in Γ.

I For subspaces of Hilbert space, weak closure=norm closure.
I Appropriate generalization of approximation of e(κII[0,1]) gives

approximation of all step functions with values in [0, 1].
({ ready to do redo proof by differentiation.) �

The last step is easy but cumbersome to be written down.
Better: Product systems!

Corollary (MS [Ske00]). 0 ∈ S a total subset of K { exponential
vectors to S–valued stepfunctions are total in Γ(L2(R+,K)).



Fock space as product system
Recall that Γ(H) ⊗ Γ(G) � Γ(H ⊕ G) via e(x) ⊗ e(y) 7→ e(x + y).
Then

Γt := Γ(L2([0, t],K)) ( ⊂ Γ(L2(R+,K)) ).

give product system us,t : Γs ⊗ Γt → Γs+t with (associative) product
XsYt := us,t (Xs ⊗ Yt )

e(xs)e(yt ) = e(Stxs + yt ).

With this,

e

(
II⋃n

k=1[
k−1

n , k−1
n + κn ]

)
=

(
e(0 · II[0, 1−κn ])e(1 · II[0, κn ])

)n

−−−−−−→
weakly

e

(
(κ · 1 + (1 − κ) · 0)II[0,1]

)
Much better:

Theorem (Very special case of Liebscher-MS [LS08])(
(κ2e(k2 · II[0, 1

n ]
) + κ1e(k1 · II[0, 1

n ]
)
)n
−−−−→

norm
e

(
(κ1k1 + κ2k2)II[0,1]

)
for all κi ∈ C with κ1 + κ2 = 1.



Applications
Many application around quantum stochastic calculus.
Our applications:
I The realization of a QLP obtained by Schürmann [Sch93] by

resolving a QSDE (starting from a minimal Schürmann triple
for the generator), is cyclic.
Idea: Take some vectors from the process, apply some
Trotter-like procedure and get a total set of exponential
vectors.
(Weakly. Unpublished from 2002; see Franz [Fra06] (2003).)

I Reverse this procedure to get a realization of an arbitrary QLP
out of Trotter products of exponential vectors.
Idea: A new version of product system valued L2–QLPs.
(Strongly. MS 2014; yet unpublished.)
Can be viewed as a special case of:

I Schürmann-MS-Volkwardt [SSV10]: Transformations of QLP.

I would have liked to explain in detail ....



Thank you!
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M. Schürmann, White noise on bialgebras, Lect. Notes Math.,
no. 1544, Springer, 1993.

M. Skeide, Indicator functions of intervals are totalizing in the
symmetric Fock space Γ(L2(R+)), Trends in contemporary
infinite dimensional analysis and quantum probability
(L. Accardi, H.-H. Kuo, N. Obata, K. Saito, Si Si, and L. Streit,
eds.), Natural and Mathematical Sciences Series, vol. 3,
Istituto Italiano di Cultura (ISEAS), Kyoto, 2000, Volume in
honour of Takeyuki Hida, (Rome, Volterra-Preprint 1999/0395),
pp. 421–424.



Bibliography III
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