Quantum Turing machines Hiddensee meeting on BSS machines and computability

André Nies

August 15, 2016

August 15, 2016 1 / 13

Kolmogorov complexity

We survey attempts to introduce an analog of Kolmogorov complexity in the setting of quantum computation. Here is a brief reminder of classical Kolmogorov complexity.

- Fix a universal system of descriptions; say, a universal Turing machine M taking as input bit strings σ.
- ► The Kolmogorov complexity of a finite mathematical object x (e.g. a string) is the length of a shortest description, i.e. min{|σ|: M(σ) = x}

Probabilistic computation

- ▶ A computation of a probabilistic TM can be seen as an infinite list of columns. The entries in the columns are labeled with possible configurations of a classic TM; all entries are in [0, 1], with sum of columns 1, and almost all are zero. Column 0: the input configuration has probability 1.
- ▶ The transition function is give by a stochastic matrix (entries are probabilities, each row sums to 1) which specifies the distribution in the next column via a function $\delta: Q \times \Sigma \to \tilde{\mathbb{R}}^{Q \times \Sigma \times \{L,R\}}$ ($\tilde{\mathbb{R}}$ = polytime computable reals)

Comparison of probabilistic computation and quantum computation

Taken from paper by Bernstein/Vazirani (1997)

• Computation of a QTM: the *t*-th column is now a vector $(\alpha_1, \alpha_2 \dots,)$ in $\bigoplus_{\mathbb{N}} \mathbb{C}$ (almost all entries zero) with Euclidean length 1. Upon measurement, at stage *t* obtain the probability $\alpha_i \bar{\alpha}_i$ for the configuration *i*.

 $\tilde{\mathbb{C}}$ is the field of polytime computable complex numbers.

- ▶ Given sets Q states, Σ alphabet, $q_0, q_f \in Q$ initial/halting state
- ▶ Define configurations as usual, e.g. $01q_3110\sqcup$
- ▶ Transition function has the form

 $\delta \colon Q \times \Sigma \to \tilde{\mathbb{C}}^{\Sigma \times Q \times \{L,R\}}.$

- ▶ S is Hilbert space generated by the configurations as an orthonormal base (i.e. a version of ℓ_2).
- ► $U_M : S \to S$ defined in the canonical way (see below) is called time evolution operator.
- restriction on δ (they call it well-formed) ensures that U_M is unitary. This is proved in the appendix of the paper from basic stuff in Hilbert space theory.

Defining the time evolution operator U_M

We're given $\delta \colon Q \times \Sigma \to \tilde{\mathbb{C}}^{\Sigma \times Q \times \{L,R\}}$.

- Given configuration c let c_1, \ldots, c_n be the configs that can follow it.
- Define $U_M(|c\rangle) = |\sum_i \alpha_i\rangle$, where $c \to c_i$ via an entry q, s, q', s', X in the format of a usual Turing table, and $\delta(q, s)(q', s', X) = \alpha_i$.

In the probabilistic case, do the same thing, now making convex combinations of the configurations.

Wellformedness

In Lemma 5.3 B/V give three conditions that are necessary and sufficient to ensure that U_M is unitary. Let u, v range over $Q \times \Sigma$

- $\sum |\delta(u)|^2 = 1$ (length at base vectors is 1)
- for $u \neq v$ we have $\delta(u) \cdot \delta(v) = 0$ (orthogonality)

Halting

- It might be that halting configuration could be reached at different steps in superpositions of configurations
- one says that a QTM M halts at stage t if at t all configs with positive probability are in state q_f , and before, none is.
- ▶ also ask "well behaved": things such as that the head is in the leftmost position
- ► then the "output" is a probability distribution over various output words

Quantum Kolmogorov complexity

There are lots of alternative approaches, all from about the time 2000-2008 (nothing after?)

- Berthiaume, van Dam, La Plante 2000: use approach based on QTM of Bernstein/Vazirani
- ▶ Vitanyi 2002- also in the 2008 edition of his book
- Gacs 2001: avoids machines altogether rather tries a quantum version of Levin's universal semimeasure. This supposedly combines the advantages of the two approaches above
- Müller 2007 thesis (Berlin): compares the various machine-based approaches, then settles for Berthiaume, except that strings can have indeterminate length.
- Rogers, Nagarajan, Vedral 2008 defines the "second quantized Kolmogorov complexity". Different bounds on K(xx).
 We go for Berthiaume et al.

Fidelity $F(\rho, \tau)$

This is a way to measure the closeness of two states.

- For pure states (i.e., unit vectors in \mathcal{H}_d it is $|\langle \rho, \tau \rangle|$. This is $|\cos \theta|$ where θ is the angle between ρ and τ .
- for mixed states (positive semidefinite self adjoint operators of trace 1, also called density matrices) it is the maximum fidelity of a pair of "purifications". Explicit formula is

$$F(\rho,\tau) = tr\sqrt{\sqrt{\rho}\cdot\tau\cdot\sqrt{\rho}}.$$

• Clearly $0 \le F(\rho, \tau) \le 1$. The quantity $D(\rho, \tau) = 1 - F(\rho, \tau)$ is like a distance, except we only have the weak triangle inequality $D(\rho, \nu) \le 2(D(\rho, \tau) + D(\tau, \nu))$ (see Berthiaume Lemma 2 in section 3.6).

Definition of quantum QC_M^f according to Berthiaume et al.

The length of a qbit string X, denoted by $\ell(X)$, is the dimension of the smallest Hilbert space (with standard base) that X is in. For a QTM M, by M(X, Y) (double input) one means that input tape is initialised to, say, $|0^{\ell(X)}1XY\$0^{\infty}\rangle$. Same for multiple. The general definition for a QTM M and fidelity bound f:

 $QC^f_M(X) = \min\{\ell(P) \colon \forall k \, F(X, M(P, 1^k)) \ge f(k)\}.$

Various options are considered for f:

- Perfect: f = 1
- fixed 1ϵ (constant fidelity)
- ▶ then they settle for f(k) = 1 1/k because they can prove an invariance theorem in this case. Call this version $QC_M^{\uparrow 1}(X)$.

Universal QTM according to Bernstein/Vazirani

In Thm. 4 they cite B/V. Use $M^T(X)$ for the result of U_M on X after T steps (which is a state)

Theorem (Universal QTM with fidelity)

There is a universal QTM \mathbb{U} (with finite classical description) such that: for any QTM M with finite classical description \overline{M} , and any pure state X,

 $\forall k \forall T \left[F(\mathbb{U}(\bar{M}, X, 1^k, T), M^T(X)) \geq 1 - 1/k \right].$

Invariance

Looking at the Bernstein/Vazirani proof for the existence of universal QTM they obtain the following (they may need to modify \mathbb{U} a bit).

Theorem

For each quantum TM M there is c_M such that $QC_{\mathbb{U}}^{\uparrow 1}(X) \leq QC_M^{\uparrow 1}(X) + c_M.$

Write QC for $QC_{\mathbb{U}}^{\uparrow 1}$.

Properties of QC

- ▶ $QC(x) \leq^+ C(x)$ for any classical string x. It is open whether the converse holds.
- Something on bounding QC(xx) in terms of QC(x).
- some result saying that lots of strings are incompressible. (This appears to be clearer in Vitanyi's version.)