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1 Introduction

In a very general sense, this thesis deals with quantum stochastic evolutions. One can say

that the theory of such evolutions is well developed, but actually there are many different

mathematical theories which were inspired by the questions, how quantum mechanical

systems evolve in time, some of them can be thought of as physical models, others are

difficult to find in nature, but turned out to have surprisingly fruitful applications inside

mathematics. The kind of “evolutions” we will study look quite different at first sight, but

they have in common a certain kind of stationarity. To formulate this similarity rigorously

we need to deal with category theory, specifically tensor categories ormonoidal categories.

The categorial objects which have the desired stationarity are called comonoidal systems.

The prototype of a stationary stochastic evolution is a classical Lévy process, which

consists of real valued random variables Xt, t ≥ 0, with the following properties:

(LP1) X0 ∼ δ0.

(LP2) The increments Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent for all

0 ≤ t0 < t1 < · · · < tn.

(LP3) The increments are stationary, that is (Xt −Xs) ∼ Xt−s for all s ≤ t.

Lévy processes play a fundamental role in probability theory, as they are the building

blocks of stochastic calculus. With the Brownian motion and the Poisson process as ex-

amples they are also highly important in physics. It is well known that a Lévy process can

be reconstructed from its convolution semigroup of 1-dimensional distributions. Given

any convolution semigroup of probability measures on R, one can construct a projective

system of probability spaces (Rn,Bn, µt1 ⊗ · · ·⊗µtn), which has a projective limit by the

Daniell-Kolmogoroff theorem. If Xt ∼ µt, the projective limit is stochastically equivalent

to the Lévy process (Xt)t∈R+ .
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1 Introduction

The key idea of quantum probability is as follows: First, express a probabilistic no-

tion in terms of a (commutative) algebra of functions on a probability space without

an explicit reference to the elements of the probability space. Then allow for general,

not necessarily commutative algebras. For example, L∞(Ω,F ,P) is a commutative von

Neumann algebra and Φ(f) := E(f) =
∫
fdP is a normal state. This led to the definition

of a von Neumann quantum probability space as a pair (A,Φ) with A a (not necessar-

ily commutative) von Neumann algebra and Φ a normal state. There are also other,

more algebraic, notions of quantum probability spaces. The most general one means

just an algebra with a linear functional. In fact, many interesting questions such as mo-

ments, cumulants, quantum stochastic independence, quantum Lévy processes, quantum

stochastic integration, et cetera can be discussed at this level. We will also adopt this

notion of a quantum probability space meaning simply a pair (A,Φ) with A an algebra

and Φ a linear functional. When we need additional structure, for example an involution

or a unit, we will explicitly say so and speak of ∗-algebraic quantum probability spaces,

unital quantum probability spaces, and so on.

The history of quantum Lévy processes starts with von Waldenfels’ work on light

emission and absorption, which he describes as a quantum stochastic process with sta-

tionary and independent multiplicative increments on a non-commutative version of the

coefficient algebra of the unitary group U(2) [vW84]. Later, Schürmann developed a

comprehensive theory of quantum Lévy processes on ∗-bialgebras [Sch93]. A ∗-bialgebra

is a unital ∗-algebra A together with a coassociative comultiplication ∆ : A → A ⊗ A

and a counit δ : A → C which are unital ∗-algebra homomorphisms. In a ∗-bialgebra the

convolution of linear functionals can be defined as ϕ1?ϕ2 := (ϕ1⊗ϕ2)◦∆. A convolution

semigroup on A is a family of linear functionals ϕt : A → C such that ϕs ? ϕt = ϕs+t

for all s, t ∈ R+ := [0,∞). Schürmann proves that quantum Lévy processes on A are

in 1-1-correspondence with continuous convolution semigroups of states on A. The con-

struction of a quantum Lévy process from a convolution semigroup is in a sense dual

to the classical construction mentioned above and involves inductive limits instead of

projective limits. Note that when the ϕt form a convolution semigroup, then ∆ can be

seen as a functional preserving homomorphism from (A, ϕs+t) to (A⊗A, ϕs⊗ϕt). By

iteration of ∆, we can define more general maps, which turn the family formed by the
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quantum probability spaces (A⊗n, ϕt1 ⊗ · · ·⊗ϕtn) into an inductive system. An ana-

logue of the Daniell-Kolmogoroff theorem for quantum probability spaces guarantees the

existence of an inductive limit. In case the ϕt form a continuous convolution semigroup

of states, the inductive limit can be interpreted as a quantum Lévy process in the sense of

[Sch93]. The sketched construction goes back to Accardi, Schürmann and von Waldenfels

[ASvW88]. Up to now, quantum Lévy processes are an active area of research. Schür-

mann’s theory of quantum Lévy processes on ∗-bialgebras can be applied in the study of

compact quantum groups in the sense of Woronowicz, since a compact quantum group

contains a dense sub-∗-bialgebra [Wor87, Wor98]. Schürmann and Skeide were able to

classify all quantum Lévy processes on Woronowicz’ SUq(2), thus establishing a Lévy-

Khintchine type result for a quantum group [SS98]. Recently, Franz, Kula, Lindsay and

Skeide proved similar theorems for SUq(N) and Uq(N) [FKLS14]. In the work of Lind-

say and Skalski [LS05, LS08, LS12] a rich topological theory of quantum Lévy processes

on C∗-bialgebras is developed, which can be used, for example, to study quantum Lévy

processes on locally compact quantum groups. All quantum Lévy processes mentioned

so far have independent increments with respect to the so-called tensor independence.

There are other generalizations of stochastic independence in the quantum world, for ex-

ample freeness or Boolean independence. These come from universal products, which are

prescriptions to calculate mixed moments of pairs of random variables, and modelled on

free products instead of tensor products. The reconstruction of processes that are Lévy

processes with respect to one of these independences from their convolution semigroups

works similar; see [BGS05] and [Vos13, Section2.2.2].

A tensor category (or monoidal category) is, roughly speaking, a category C with

an essentially associative multiplication � (of objects as well as of morphisms) and an

essentially neutral object E. We postpone a precise definition, in which we explain pre-

cisely what we mean by “essentially”, to Section 2.2. Instead, we provide the examples

that play a role in this thesis. The reader unfamiliar with tensor categories can simply

view the term as standing for any of the examples. The name comes from the usual

tensor product of linear algebra, which turns the category of complex vector spaces into

a tensor category. The tensor product is associative in the sense that there are canonical

isomorphisms (V1⊗V2)⊗V3
∼= V1⊗(V2⊗V3). These isomorphisms form a natural isomor-
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1 Introduction

phism in the sense of Section 2.1.1, that is they fulfill a certain compatibility condition

with the corresponding morphisms, here linear maps. The neutral object is the ground

field C viewed as a vector space over itself. Again, this means the existence of canonical

isomorphisms C ⊗ V ∼= V ∼= V ⊗ C, which form natural transformations. The tensor

product of two algebras A1,A2 is again an algebra with respect to the multiplication

(a1 ⊗ a2)(b1 ⊗ b2) := a1b1 ⊗ a2b2. The obtained tensor product of algebras turns the

category of algebras into a tensor category. The tensor product of unital algebras with

unit elements 11 and 12 respectively is again a unital algebra with unit element 11⊗ 12.

The unital algebras form a tensor category with respect to this product as well. Sim-

ilarly, one can construct tensor categories of coalgebras, bialgebras and Hopf algebras.

The tensor product of Hilbert spaces is another main example. The neutral object is the

one dimensional Hilbert space C. Examples quite different from the preceding ones are

the tensor categories of (quantum) probability spaces. The tensor product of classical

probability spaces (Ω1,F1, µ1), (Ω2,F2, µ2) is defined as (Ω1×Ω2,F1⊗F2, µ1⊗µ2) and

we get a tensor category. Tensor categories of quantum probability spaces are closely re-

lated to quantum stochastic independence. In contrast to classical probability, there are

different notions of independence in quantum probability and, correspondingly, different

structures of a tensor category. Recall that the free product A1 t A2 of two algebras Ai
is determined by the universal property, that there are embeddings ιi : Ai → A1 t A2

and for any algebra Â and algebra homomorphisms fi : Ai → Â there exists a unique

algebra homomorphism f1 t f2 : A1 tA2 → Â with (f1 t f2) ◦ ιi = fi, or in other words,

the free product is the coproduct in the category of algebras. Of most interest are such

tensor products on the category of quantum probability spaces for which the algebra of

the product space as well as the product of morphisms are given by the free product.

Five such products are well known in quantum probability: The tensor product, the free

product (of quantum probability spaces), the Boolean product, the monotone and the

anti-monotone product. In this case, the neutral object is always the zero algebra with

zero functional. Of course it is possible to construct other tensor products of quantum

probability spaces. But under mild assumptions one can show that these are always quo-

tients of tensor products build on the free product of algebras. The categorial aspects of

independence have been worked out by Franz [Fra06]. They also led him to the definition
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of independence in a purely categorial framework; see Section 2.2.1.

In Chapter 2, we introduce the abstract notion of a comonoidal system; see Defi-

nition 2.3.1. Let (C,�, E) be a tensor category (or simply one of the examples of the

preceding paragraph) and S a monoid. A comonoidal system consists of objects (At)t∈S

with embeddings of As+t into As � At that iterate coassociatively. The monoid S is

usually N0 (discrete case) or R+ (continuous-time case). But sometimes other examples

play a role, too. We consider the continuous-time case. Let Jt be the system of all finite

subsets of (0, t). Then Jt is a directed set with respect to the subset relation. For I ∈ Jt,

I = {t1, . . . , tn} with t1 < t2 < · · · < tn we put AI := At1 � At2−t1 � · · ·� At−tn . Then

the (AI)I∈Jt naturally form an inductive system. If the inductive limit At exists for every

t, the obtained family (At)t∈R+ is again a comonoidal system referred to as generated

system. Often, the generated system plays an important role. In the category of Hilbert

spaces, one arrives at the famous Arveson systems, see below. In the case of quantum

probability spaces, one can use the construction to build a quantum Lévy process from

a convolution semigroup, see [ASvW88] for an early example. This involves taking a

second inductive limit of the At over R+. The main aims of the chapter are

I To provide a general concept of stationarity encompassing ordinary convolution

semigroups as well as the structures appearing in the following chapters, addi-

tive deformations, subproduct systems, and convolution semigroups for other non-

commutative independences.

I To perform the typical inductive limit constructions at this general level.

I Find general conditions for the monoids which can be used instead of R+.

I Find general categorial conditions on the tensor category C for the inductive limits

to have good properties known from the examples of Arveson systems and Lévy

processes.

Let C be an inductively complete tensor category, that is all inductive systems possess

inductive limits. Then we find the following results:

I If S is a unique factorization (uf-) monoid (see Definition 2.3.5), we can perform the

first inductive limit (At)t∈S 7→ (At)t∈S and (At)t∈S is again a comonoidal system;

5



1 Introduction

see Theorem 2.3.14

I If the tensor product preserves inductive limits, then Ast ∼= As�At; see Theo-

rem 2.3.16.

I Suppose the uf-monoid S is abelian and has no nontrivial invertible elements. Fur-

thermore, assume that C is equipped with compatible inclusions ι1, ι2 (see Sec-

tion 2.3.4) and that the tensor product � perserves inductive limits. Then the sec-

ond inductive limit yields an abstract Lévy process in the sense of Definition 2.3.22;

see Theorem 2.3.23.

Chapter 3 deals with additive deformations. Sections 3.2 and 3.3 are based on [Ger11].

Section 3.4 contains generalizations of results obtained in [Ger11] and [Wir02] to braided

additive deformations and is based on [GKL12] (joint work with Stefan Kietzmann and

Stephanie Lachs). Let B be a bialgebra with multiplication µ, unit element 1, comulti-

plication ∆ and counit δ. In [Wir02], Wirth defined an additive deformation of B as a

family of linear maps µt : B ⊗ B → B, such that the following four conditions hold:

(AD1) The map µ0 coincides with the multiplication µ of B.

(AD2) (B, µt,1) is a unital algebra for all t ≥ 0.

(AD3) δ ◦ µt : B → C is pointwise continuous.

(AD4) For all s, t ≥ 0 it holds that

∆ ◦ µs+t = (µs ⊗ µt) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗∆) (1.0.1)

where τ : B ⊗ B → B ⊗ B is the flip.

The tensor product A1 ⊗ A2 of unital algebras A1,A2 is again a unital algebra with

multiplication

m⊗ := (m1 ⊗m2) ◦ (id⊗ τ ⊗ id)

m1,m2 the multiplication maps of A1,A2. Therefore, writing Bt := (B, µt, 1) for short,

equation (1.0.1) is equivalent to
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(AD4’) For all s, t ≥ 0, ∆s,t : Bs+t → Bs ⊗ Bt, ∆s,t = ∆ is an algebra homomorphism.

In other words, (Bt)t∈R+ is a comonoidal system in the category of unital algebras with

all embeddings equal to the comultiplication.

A Hochschild 2-cocycle (or simply: cocycle) is a linear functional L : B⊗B → C such

that

δ(a)L(b⊗ c)− L(ab⊗ c) + L(a⊗ bc)− L(a⊗ b)δ(c) = 0

for all a, b, c ∈ B. A cocycle is called normalized if L(1 ⊗ 1) = 0 and commuting if

L ? µ = µ ? L, where ? denotes the usual convolution on the ∗-bialgebra B⊗B. A

cocycle L is called coboundary if there exists a linear functional ψ : B → C such that

L(a⊗b) = δ(a)ψ(b)−ψ(ab)+ψ(a)δ(b). Wirth’s theorem states that additive deformations

of a fixed bialgebra B are in 1-1 correspondence with normalized, commuting cocycles

via the equations

L =
d

dt
δ ◦ µt

∣∣∣∣
t=0

, µt = µ ? etL?

[Wir02]; see Theorem 3.2.2. There is an analogous theorem for ∗-bialgebras. One can ask,

which deformations are generated by a coboundary. The answer was found in [Ger09]

under the assumption that L is the coboundary of a commuting functional ψ, that is

ψ ? id = id ? ψ; see also Theorem 3.2.5. An additive deformation is generated by the

coboundary of a commuting functional if and only if there exists a semigroup of linear

maps Φt : B → B which are algebra isomomorphisms Φt : Bs → Bs+t for all s ≥ 0 and

which fulfill some additional property.

It was shown in [Ger09] that one can construct quantum Lévy processes on additive

deformations of ∗-bialgebras. Any convolution semigroup of states ϕt : Bt → C defines

a comonoidal system of unital ∗-algebraic quantum probability spaces (Bt, ϕt)t∈R+ with

respect to ∆s,t = ∆ the comultiplication of B. We know that ∆ is an algebra homo-

morphism and the needed compatibility with the ϕt is exactly the semigroup property

ϕs+t = ϕs ?ϕt = (ϕs⊗ϕt)◦∆. Thus, the construction of a corresponding quantum Lévy

process is now a special case of the theory developed in Chapter 2. Another point is, how

to get hold of convolution semigroups of states. To this end, Wirth proved a Schoenberg
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1 Introduction

correspondence for additive deformations, which characterizes continuous convolution

semigroups of states by their generators.

A key example comes from the algebra of the quantum harmonic oscillator, which

is generated by two mutually adjoint elements x, x∗ subject to the relation [x, x∗] =

xx∗−x∗x = 1; see the introduction of Chapter 3 for details. One would also like to treat

the Fermi harmonic oscillator, where the relation between x and x∗ is xx∗ + x∗x = 1.

This only works by using braided algebras.

The aims of the chapter are:

I To improve the cohomological theory behind additive deformations

I To study additive deformations of Hopf algebras

I To generalize the theory to braided ∗-bialgebras.

We find the following results:

I By introducing the needed chain complexes to deal with the different cases (bial-

gebras and ∗-bialgebras) as subcomplexes of the standard Hochschild complex, we

can reduce the calculations for the proof of Theorem 3.2.5 to a minimum.

I If B is a Hopf algebra we show that the identity map viewed as linear map from the

coalgebra B to the algebra Bt has a convolution inverse St for every t and present

an explicit formula, Theorem 3.3.10. In Theorem 3.3.12 we prove under an extra

condition on the generator L that every additive deformation of B is equivalent to

a deformation with constant antipodes. The equivalent generator can be explicitly

calculated. The imposed condition is automatically fulfilled if B is cocommutative

(see Lemma 3.3.13).

I We generalize Wirth’s theorem on the generator of an additive deformation to

the braided case, Theorem 3.4.7. We prove a general form of the Schoenberg

correspondence, thus characterizing the generators of convolution semigroups of

states on braided additive deformations, Theorem 3.4.14.

Chapter 4 deals with subproduct systems. Those parts of Chapter 4 that deal with

the discrete case are based on joint work with Michael Skeide [GS14b]. A product system
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of Hilbert spaces is, roughly speaking, a family of Hilbert spaces Ht indexed by a monoid

S with associative identifications

Hs ⊗Ht = Hs+t. (1.0.2)

The interest in product systems mainly comes from quantum dynamics. Arveson [Arv89]

gave the first formal definition of a product system (including also some technical condi-

tions) of Hilbert spaces. He showed how to construct such Arveson systems from so-called

normal E0–semigroups (semigroups of normal unital endomorphisms) over S = R+ on

B(H). Bhat [Bha96] generalized this to normal Markov semigroups (semigroups of nor-

mal unital completely positive (CP-) maps) on B(H), by dilating the Markov semigroup

in a unique minimal way to an E0–semigroup and computing the Arveson system of

the latter. Product systems of correspondences (that is, Hilbert bimodules) occur first

in Bhat and Skeide [BS00]. They constructed directly from a Markov semigroup on a

unital C∗-algebra or a von Neumann algebra B a product system of correspondences

over B, and used it to construct the minimal dilation. Muhly and Solel [MS02] con-

structed from a Markov semigroup on a von Neumann algebra B a product system over

the commutant of B. This product system turned out to be the commutant (see Skeide

[Ske03, Ske09, Ske08]) of the product system constructed in [BS00].

In all these applications, the construction of a product system starts with a subproduct

system (Shalit and Solel [SS09], and Bhat and Mukherjee [BM10]), where the condition

(1.0.2) is weakened to

Hs ⊗Ht ⊃ Hs+t. (1.0.3)

A subproduct system is nothing but a comonoidal system in the category of Hilbert

spaces. The inductive limits Ht of Ht1 ⊗ · · ·⊗Htn with t1 + · · · + tn = t using (1.0.3)

are the generated comonoidal system in the sense of Chapter 2. It is always a product

system, that is Hs+t ∼= Hs⊗Ht. The construction for S = R+ is described in detail

by Bhat and Mukherjee [BM10] and their formulation actually generalizes without a

problem to the general setting in Section 2.3.3.

The classification of product systems is a difficult subject. Product systems can
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1 Introduction

roughly be distinguished into three types by their so-called units, that is sections ω =

(ωt)t∈R+ with ωs⊗ωt = ωs+t under the identification Hs ⊗Ht = Hs+t. The linear spans

Ut := span{ωt | ω is a unit of (Ht)t∈R+} form a subproduct system. The product system

is type I if it is generated by the Ut, it is type III if Ut = {0} for all t > 0 and it is

type II if it is neither type I nor type III, that is if there exists a nontrivial unit, but

the units do not generate the system. The simplest examples of Arveson systems are the

Fock-systems. The symmetric Fock space or Bose Fock space over a Hilbert space H is

the direct sum over all symmetric tensor powers of H, Γ(H) :=
⊕

n∈N0
H⊗s n. There is a

natural unitary isomorphism Γ(H1 ⊕H2) ∼= Γ(H1)⊗Γ(H2). In particular, for the Fock

spaces Γ
Ä
L2
Ä
[0, t),K

ää
over the square integrable functions with values in some Hilbert

space K, one has the canonical unitary isomorphisms

Γ
(
L2
Ä
[0, s+ t),K

ä) ∼= Γ
(
L2
Ä
[0, s),K

ä
⊕ L2

Ä
[s, s+ t),K

ä)
∼= Γ

(
L2
Ä
[0, s),K

ä)
⊗Γ

(
L2
Ä
[s, s+ t),K

ä) ∼= Γ
(
L2
Ä
[0, s),K

ä)
⊗Γ

(
L2
Ä
[0, t),K

ä)
with composition us,t : Γ

Ä
L2
Ä
[0, s+t),K

ää
→ Γ

Ä
L2
Ä
[0, s),K

ää
⊗Γ

Ä
L2
Ä
[0, t),K

ää
. With

respect to the identifications given by the us,t, the Γ
Ä
L2
Ä
[0, t),K

ää
form a Type I Arve-

son system, the Fock system over K. It can be shown that every type I Arveson system is

actually Fock. In principle, product systems of this type are known since Streater [Str69],

Araki [Ara70], Guichardet [Gui72], or Parthasarathy and Schmidt [PS72]. Though more

difficult to construct, there are many Arveson systems of type II and III; see, for in-

stance, Tsirelson [Tsi00a, Tsi00b], Liebscher [Lie09], Powers [Pow04], Bhat and Srinivasan

[RBS05], and Izumi and Srinivasan [IS08].

There is a 1-1 correspondence between units of a subproduct system und units of

its generated product system; see [BM10, Theorem 10]. In view of this, the terminol-

ogy of types can also be used for subproduct system. Since there are much more sub-

product systems than product systems, a classification of all subproduct systems up to

isomorphism is hopeless. In the 2009 Oberwolfach Mini-Workshop on “Product Systems

and Independence in Quantum Dynamics” [BFS09], Bhat suggested to try to classify at

least the finite-dimensional subproduct systems and the product systems they generate.

Finite-dimensional subproduct systems occurred in several ways. For instance, every

10



CP-semigroup on the n× n–matrices Mn gives rise to its finite-dimensional subproduct

system of Arveson-Stinespring correspondences; see Shalit and Solel [SS09]. Moreover,

every subproduct system (finite-dimensional or not) arises in this way from a normal CP-

semigroup on B(H); see again [SS09]. Other examples arise from homogeneous relations

on polynomials in several variables; see Davidson, Ramsey and Shalit [DRS11]. Also a

subclass of interacting Fock spaces gives rise to finite-dimensional subproduct systems

and further generalizes the notion of subproduct system; see Gerhold and Skeide [GS14a].

Tsirelson has determined the structure of two-dimensional discrete subproduct systems

[Tsi09a] and of two-dimensional continuous time subproduct systems [Tsi09b] and the

product systems they generate. He exploits that subproduct systems also may be viewed

as graded algebras; see Remark 2.3.3 and Section 4.2.1.

It is obvious that the fibrewise dimension of a subproduct system is submultiplicative

in the sense that dimHs+t ≤ dimHs dimHt for all s, t ∈ S. Shalit and Solel [SS09] posed

an interesting question: Is there a discrete subproduct system with dimHn = dn for all

n for every submultiplicative sequence? We can show that the answer is “no”, and ask

instead, what are the sequences that arise as dimension sequences of discrete subproduct

systems. Of course, similar questions make sense for other types of comonoidal systems.

We will basically deal with two types, subproduct systems and Cartesian systems (see

Definition 4.1.1), over the three monoids N0,Q+ and R+.

Our main results are:

I The dimension sequences of discrete subproduct systems are the same as the car-

dinality sequences of discrete Cartesian systems and the same as the complexity

sequences of factorial languages; see Corollary 4.2.9. The proof uses a classical

theorem about graded algebras. Complexity sequences of factorial languages are

well studied by combinatorialists.

I We present a simple necessary and sufficient condition, (4.2.1), for a function to

be the dimension function of a rational time subproduct system or a rational time

Cartesian system; see Theorem 4.2.15.

I The same condition characterizes the dimension functions of continuous-time Carte-

sian systems; see Theorem 4.2.18. For continuous time subproduct systems we have

11



1 Introduction

to impose a continuity condition to show that the condition is necessary; see The-

orem 4.2.19. It is left open, if the continuity condition is indeed needed.

The last chapter is based on [GL14] with Stephanie Lachs. As mentioned earlier, inde-

pendence in quantum probability is often modelled by so-called universal products, which

are basically tensor product structures on the category of algebraic quantum probability

spaces such that the “algebra part” is simply the free product. It is customary to denote

a universal product as a product of linear functionals, thus writing ϕ1 �ϕ2 instead of

(A1, ϕ1) �(A2, ϕ2). For any universal product, a rich quantum probabilistic theory can

be developed, including independence, Lévy processes, central limit theorems, et cetera.

Very successfull examples are Voiculescu’s freeness and the Boolean independence. A

universal product is called commutative if ϕ1 �ϕ2 = ϕ2 �ϕ1 holds under the canonical

identification of A1 tA2 with A2 tA1. Commutative universal products were classified

by Speicher [Spe97], and Ben Ghorbal and Schürmann [BGS02]. Without commutativity

in general, but still assuming commutativity on elements of length 2 in the free product,

the classification is due to Muraki [Mur03]. Giving up on this restricted commutativity

also, Lachs found a new family of universal products, the (r, s)-products, depending on

two complex parameters r and s, which coincides with the Boolean product for r = s = 1.

These complete the classification of universal products except for degenerate cases; see

[Lac14] and [GL14].

In the study of quantum Lévy processes, GNS-construction plays a crucial role, es-

pecially the question, how to calculate the GNS-construction for product functionals.

Since the (r, s)-products do not preserve positivity, the usual GNS-construction can not

be used.

The aims of this chapter are:

I Find a generalization of the GNS-construction for arbitrary, that is not necessarily

positive, linear functionals on algebras.

I Calculate the GNS-construction for (r, s)-product functionals in terms of the GNS-

construction for the factors.

Our results are:

12



I A general GNS-construction is presented in Section 5.2.2. The main difference to

the usual construction is that instead of one representation, we get a pair consisting

of two compatible representations. There was another approach to this question

by Wilhelm [Wil08]. In Section 5.2.4 we prove that the two constructions are

equivalent.

I The general form of the GNS-construction of the (r, s)-product functional is given

as a quotient of a direct sum; see Theorem 5.2.13. It depends heavily on the

parameters r and s. Even the dimension of the representation spaces can change.

We present examples where the dimension is greater than in the Boolean case as

well as examples where it is smaller than in the Boolean case.
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2 Comonoidal Systems and Abstract

Lévy-Processes

Suppose (µt)t∈R+ is a convolution semigroup of probability measures on the real line.

Let us sketch, how to construct a Lévy process Xt : Ω → R with marginal distributions

PXt = µt. First, for all finite subsets J = {t1 < t2 < · · · < tn} ⊂ R+ define probability

measures µJ := µt1 ⊗ µt2−t1 ⊗ · · · ⊗ µtn−tn−1 on RJ . Then show that these are coherent

in the sense that

µI = µJ ◦ (pJI )−1

for all I ⊂ J and pJI : RJ → RI the canonical projection. In this situation the probability

spaces (RJ ,B(RJ), µJ) with the projections (pJI ) form a projective system. Now, the

Daniell-Kolmogoroff theorem guarantees the existence of a projective limit, which is a

probability space (Ω,F ,P) with projections pJ : Ω→ RJ such that µJ = P◦ (pJ)−1. The

random variable Xt := p{t} has distribution µt and it is not difficult to prove that the

Xt have independent and stationary increments Xs −Xt ∼ µs−t.

A similar construction allows to associate quantum Lévy processes with convolution

semigroups of states on ∗-bialgebras. The formulation of quantum probability is dual to

that of classical probability, so inductive limits appear instead of projective limits. Due

to the fact that there are different notions of independence in quantum probability on

the one hand and the interactions between quantum probability and operator algebras

on the other hand, there are many different theorems of the same kind (construction

of Lévy processes for other notions of independence) or similar kind (for example the

construction of product systems from subproduct systems). The main aim of this section

is to give a unified approach to these different situations. To this end we introduce the
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2.1 Basic Notions of Category Theory

language of tensor categories and the concept of comonoidal systems, which generalizes

that of convolution semigroups.

2.1 Basic Notions of Category Theory

The main point of this section is to fix notations and recall basic facts about inductive

limits. We also give a list of those categories which appear as examples for the following

sections.

2.1.1 Categories, Functors, Natural Transformations

A category C consists of

I a class of objects Obj(C)

I a set of morphisms Mor(A,B) for each two objects A,B

I an identity morphism idA ∈ Mor(A,A) for each object A

I a composition map (f, g) 7→ f ◦ g : Mor(B,C)×Mor(A,B)→ Mor(A,C) for each

three objects A,B,C

such that, where defined, the composition is associative and the identity morphisms act

neutrally under composition. We will frequently write A ∈ C instead of A ∈ Obj(C) and

f : A→ B instead of f ∈ Mor(A,B). A morphism f : A→ B is called a monomorphism

if it is left cancellative, that is if f ◦ g1 = f ◦ g2 implies g1 = g2. It is called an

epimorphism if it is right cancellative, that is if g1 ◦f = g2 ◦f implies g1 = g2. It is called

an isomorphism if it is invertible, that is if there exists a (necessarily unique) morphism

f−1 : B → A with f ◦ f−1 = idB and f−1 ◦ f = idA. Clearly, every isomorphism is both,

a monomorphism and an epimorphism, but the converse does not hold in all categories.

We sometimes write f : A ∼= B to indicate that f is an isomorphism. A category D

is called a subcategory of C if all objects and morphisms of D are objects respectively

morphisms of C and the identity morphisms and composition maps agree. A subcategory

is called full if every morphism of C between objects of D is also a morphism of D. For
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2 Comonoidal Systems and Abstract Lévy-Processes

every subclass of objects there is a unique full subcategory with exactly these objects,

called the full subcategory with the specified class of objects.

Equalities between morphisms will frequently be expressed in terms of commutative

diagrams. A diagram is a directed graph with object-labeled vertices and morphism-

labeled edges. We say that a diagram commutes if the composition of morphisms along

any two directed paths with the same source and the same target vertex yield the same

result. We will usually not explicitly write the inverse of an isomorphism with an extra

edge, but it shall be included when we say that the diagram commutes.

We will now introduce categories which are of particular importance throughout this

thesis. When two categories have the same objects, but different sets of morphisms,

we will usually indicate this by a suggestive superscript which describes the type of

morphisms.

Sets Define a category Set whose objects are all sets and whose morphisms between two

sets A and B are the mappings from A to B. The composition is the usual composition

of maps. The identity map on a set A serves as an identity morphism idA : A → A.

Since the composition of two injective maps is again injective and all identity maps are

injective, we can define a subcategory Setinj with the same objects as Set but only the

injective maps as morphisms. Similarly we define Setsurj and Setbij as the categories

with objects all sets and morphisms all surjections respectively all bijections.

We can also restrict the class of objects. We define FinSet to be the full subcategory

of Set with finite sets as objects.

Vector Spaces The category Vect has as objects all (complex) vector spaces and as

morphisms all linear maps. Like for sets, we define subcategories Vectinj , Vectsurj

and Vectbij consisting of all vector spaces as objects, but only injective, surjective and

bijective linear maps as morphisms respectively. We also define FinVect to be the full

subcategory of Vect whose objects are the finite-dimensional vector spaces.

Hilbert Spaces The category Hilb has as objects all Hilbert spaces and as morphisms

all bounded linear maps. We mainly consider the subcategory Hilbisom with the same

objects, but only isometries as morphisms. Other interesting subcategories areHilbcoisom
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2.1 Basic Notions of Category Theory

and Hilbpisom whose morphisms are the coisometries and the partial isometries re-

spectively. Also, FinHilb denotes the full subcategory of Hilb formed by the finite-

dimensional Hilbert spaces.

Algebras By Alg we denote the category of all (associative, complex) algebras with

algebra homomorphisms as morphisms. We use the same superscripts as for sets and

vector spaces when we restrict to injective, surjective or bijective morphisms. The sub-

category of unital algebras with unital algebra homomorphisms as morphisms is denoted

by Alg1. Similarly we define the categories ∗-Alg and ∗-Alg1 with objects all (unital)

∗-algebras and morphisms all (unital) ∗-algebra homomorphisms.

Algebraic Quantum Probability Spaces A pair (A, ϕ) consisting of an algebra A and a

linear functional ϕ : A → C is called an (algebraic) quantum probability space. A quantum

probability space is called unital if A is unital and ϕ(1) = 1, it is called commutative if

A is commutative. A ∗-algebraic quantum probability space consists of a ∗-algebra A and

a positive linear functional ϕ. The algebraic quantum probability spaces form a category

AlgQ where the morphisms are the functional preserving algebra homomorphisms, that

is a morphism from (A1, ϕ1) to (A2, ϕ2) is an algebra homomorphisms f : A1 → A2

with ϕ2 ◦ f = ϕ1. By AlgQ1 we denote the subcategory formed by unital quantum

probability spaces and unital functional preserving homomorphisms as morphisms. Of

course, there are also categories ∗-AlgQ and ∗-AlgQ1 of (unital) ∗-algebraic quantum

probability spaces.

Given two categories C and D, a functor F is a prescription which assigns to each

object A ∈ C an object F(A) ∈ D and to each morphism f : A → B in C a morphism

F(f) : F(A)→ F(B) such that F(idA) = idF(A) for all A ∈ C and F(g◦f) = F(g)◦F(f)

for all f : A→ B, g : B → C with A,B,C ∈ C. We write F : C → D to indicate that F

is a functor from C to D. Given two functors F : C → D and G : D → E , the composition

G ◦ F can be defined in the obvious way and is a functor from C to E .

The Cartesian product C×D of two categories C and D consists of ordered pairs (A,B)

with A ∈ C, B ∈ D as objects and ordered pairs (f, g) with f : A → A′, g : B → B′ as

morphisms from (A,B) to (A′, B′). This becomes a category with idA,B := (idA, idB)
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2 Comonoidal Systems and Abstract Lévy-Processes

and entrywise composition. The projections on the first respectively second component

for objects and morphisms yield functors P1 : C × D → C, P2 : C × D → D. A functor

defined on a Cartesian product category is sometimes referred to as a bifunctor.

For two functors F ,G : C → D between the same categories, a natural transformation

is a family α = (αA : F(A)→ G(A))A∈C of morphisms such that the diagram

F(A)
αA //

F(f)

��

G(A)

G(f)

��
F(B)

αB // G(B)

commutes for every morphism f : A → B in C. A natural transformation is usually

denoted by α : F ⇒ G. Where it is convenient we simply write α : F(A) → G(A)

instead of αA also for the single morphism. A natural transformation is called a natural

isomorphism if all αA are isomorphisms.

2.1.2 Inductive Limits

In category theory there are the general concepts of limits and colimits. Since in our

applications only inductive limits play a role, we restrict to this special case. The general

case can for example be found in the book of Adámek, Herrlich and Strecker [AHS04].

A partially ordered set I is called directed if any two Elements of I possess a common

upper bound, that is if for all α, β ∈ I there exists γ ∈ I with γ ≥ α, β.

2.1.1 Definition. Let C be a category. An inductive system consists of

I a family of objects (Aα)α∈I indexed by a directed set I

I a family of morphisms (fαβ : Aα → Aβ)α≤β

such that

1. fαα = idAα for all α ∈ I

2. fβγ ◦ fαβ = fαγ for all α ≤ β ≤ γ

An object A together with morphisms fα : Aα → A for α ∈ I is called inductive limit of

the inductive system ((Aα)α∈I , (f
α
β )α≤β) if
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2.1 Basic Notions of Category Theory

1. fα = fβ ◦ fαβ for all α ≤ β

2. whenever gα = gβ ◦fαβ holds for a family of morphisms gα : Aα → B to some common

object B, there exists a unique morphism g : A → B such that g ◦ fα = gα for all

α ∈ I. This is referred to as the universal property of the inductive limit.

2.1.2 Example. The vector spaces (Cn)n∈N form an inductive system with respect

to the linear maps fmn : Cm → Cn, (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0) . Let l0 :=

{(xn)n∈N | xn = 0 except for finitly many n} ⊂ CN denote the vector space consist-

ing of terminating sequences. Then l0 together with the linear maps fn : Cn → l0,

(x1, . . . , xn) 7→ (x1, . . . , xn, 0, 0, . . .) is an inductive limit.

If an inductive limit exists, it is essentially unique. More precisely, if (A, (fα)α∈I)

and (B, (gα)α∈I) are two inductive limits of the same inductive system (Aα)α∈I , then

the uniquely determined morphisms f : A → B with f ◦ fα = gα and g : B → A with

g ◦ gα = fα are mutually inverse isomorphisms.

In general, inductive limits may or may not exist. The inductive system of Exam-

ple 2.1.2 has an inductive limit in Vect but the same inductive system viewed as an

inductive system in FinVect has no inductive limit. We call a category in which all

inductive systems have inductive limits inductively complete. For example, the cate-

gories Set, Hilbisom, Alg and AlgQ are inductively complete; see [Bou04, § 7.5] for

Set, [Bou89, § 10.3] for Alg, and [Vos13] or [Lac14] for AlgQ; see also [AHS04, Chapter

12] for general arguments showing that Set, Hilbisom and Alg even fulfill the stronger

property of cocompleteness .

A subset J of a directed set I is called cofinal if for every α ∈ I there exists a β ∈ J

with β ≥ α.

2.1.3 Example. For any fixed α0 ∈ I the set {β | β ≥ α0} is cofinal. Indeed, since I is

directed, there is a β ≥ α, α0 for all α ∈ I.

Clearly, if ((Aα)α∈I , (f
α
β )α≤β,α,β∈I) is an inductive system and J ⊂ I cofinal, then

also ((Aα)α∈J , (f
α
β )α≤β,α,β∈J) is an inductive system. It is known that the inductive

limits are canonically isomorphic if they exist. We will need the following generalization

of this.
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2 Comonoidal Systems and Abstract Lévy-Processes

Let (Aα)α∈I be an inductive system with inductive limit (A, (fα)α∈I), K a directed

set and Jk ⊂ I for each k ∈ K such that

I Jk is directed for all k ∈ K

I Jk ⊂ Jk′ for all k ≤ k′

I J =
⋃
k∈K Jk cofinal in I.

Suppose the inductive systems (Aα)α∈Jk have inductive limits (Ak, (fα(k))α∈Jk). It holds

that fα = fβ ◦ fαβ for all α ≤ β ∈ Jk, since Jk ⊂ I. Similarly, for k ≤ k′ it holds

that fα(k′) = fβ(k′) ◦ f
α
β for all α ≤ β ∈ Jk, since Jk ⊂ Jk′ . By the universal property

of the inductive limit Ak there are unique morphisms fkk′ : Ak → Ak′ for k ≤ k′ and

fk : Ak → A such that the diagrams

Aα A Aα Ak′

Ak Ak

fα

fα
(k)

fα
(k′)

fα
(k)

fk fk
k′

commute for all α ∈ Jk.

2.1.4 Theorem. In the described situation ((Ak)k∈K , (fkk′)k≤k′) is an inductive system

with inductive limit (A, (fk)k∈K).

Proof. The diagrams

Aα A Aα Ak′′

Ak Ak′ Ak Ak′

fα

fα
(k)

fα
(k′)

fα
(k′′)

fα
(k)

fα
(k′)

fk
k′

fk
′

fk
k′

fk
′

k′′

commute, which implies fk = fk
′ ◦ fkk′ and fkk′′ = fk

′
k′′ ◦ fkk′ for all k ≤ k′ ≤ k′′. Now

suppose there are gk : Ak → B with gk = gk
′◦fkk′ for all k ≤ k′. We put gα := gk◦fβ(k)◦f

α
β

for β ∈ Jk, α ≤ β. Since J =
⋃
k∈K Jk is cofinal in I, we can find such k and β for every

α. One can check that the gα do not depend on the choice and fulfill gα = gα
′ ◦ fαα′ for
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2.2 Tensor Categories

all α ≤ α′. This yields a morphism g : A → B which makes

Ak B

Aβ A

Aα

gk

fk

fβ

fβ
(k)

g

fαβ fα

commute. On the other hand, any morphism which makes the upper right triangle

commute, automatically makes the whole diagram commute and will therefore equal

g.

2.1.5 Corollary. Let (Aα)α∈I be an inductive system with inductive limit (A, (fα)α∈I),

J ⊂ I cofinal. Then (Aα)α∈J is an inductive system with inductive limit (A, (fα)α∈J).

Proof. This is a special case of the previous theorem with |K| = 1, since the inductive

system over the one point set K does not add anything.

2.2 Tensor Categories

A tensor category is a category C together with a bifunctor � : C × C → C which

I is associative under a natural isomorphism with components

αA,B,C : A� (B � C)
∼=−→ (A�B)� C

called associativity constraint,

I has a unit object E ∈ Obj(C) acting as left and right identity under natural iso-

morphisms with components

lA : E �A
∼=−→ A, rA : A� E

∼=−→ A

called left unit constraint and right unit constraint respectively
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2 Comonoidal Systems and Abstract Lévy-Processes

such that the diagrams

(A�B)� (C �D)
αA�B,C,D

))
A�

Ä
B � (C �D)

äαA,B,C�D

55

idA�αB,C,D
��

Ä
(A�B)� C

ä
�D

A�
Ä
(B � C)�D

ä αA,B�C,D //
Ä
A� (B � C)

ä
�D

αA,B,C�idD

OO

A� (E � C)
αA,E,C //

idA�lC ''

(A� E)� C

rA�idCww
A� C

commute for all A,B,C,D ∈ Obj(C). If the natural transformations α, l and r are all

identities, we say the tensor category is strict.

The compatiblity conditions are called the pentagon and the triangle axioms. It is

shown by Mac Lane [ML98, VII.2] that these imply commutativity of all diagrams which

only contain α, l and r. This is called coherence.

Even for non-strict tensor categories, we will frequently suppress the associativity and

unit constraints in the notation and write (C,�, E), or even (C,�) or C. In the examples

we treat, α, l and r are always canonical.

2.2.1 Categorial Independence

In order to unify the different notions of independence in quantum probability, Franz

came up with a definition of independence in a tensor-categorial framework [Fra06, Sec-

tion 3]. Recall that Pi : C × C → C for i ∈ {1, 2} denotes the projection functor onto the

first respectively second component.

2.2.1 Definition. Let (C,�) be a tensor category. A natural transformation ι1 : P1 ⇒ �

is called left inclusion and a natural transformations ι2 : P2 ⇒ � is called right inclusion.

A tensor category together with a right and a left inclusion is referred to as inclusive

tensor category or tensor category with inclusions.

In more detail, inclusions for a tensor category are two collections of morphisms
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2.2 Tensor Categories

ιiB1,B2
: Bi → B1�B2 for B1, B2 ∈ C, i ∈ {1, 2} such that

A1

f1
��

ι1 // A1�A2

f1 � f2
��

A2

f2
��

ι2oo

B1
ι1 // B1�B2 B2

ι2oo

commutes for all fi : Ai → Bi, i ∈ {1, 2}.

2.2.2 Definition. Let (C,�, ι1, ι2) be a tensor category with inclusions. Two morphisms

j1, j2 : Bi → A are independent if there exists a morphism h : B1 � B2 → A such that

the diagram

A

B1

j1

66

ι1 // B1�B2

h

OO

B2

j2

hh

ι2oo

commutes. Such a morphism h is called independence morphism for j1 and j2.

2.2.3 Example. We begin with a trivial example. The direct sum of vector spaces V1

and V2 has the following property: Given any two linear maps fi : Vi →W to some third

vector space W, there exists a unique linear map h : V1 ⊕ V2 → W with h(vi) = fi(vi)

for all vi ∈ Vi, namely h = f1 + f2 (here we identify Vi with the corresponding subspace

of V1⊕V2). In particular, in the tensor category (Vect,⊕) with the canonical inclusions

Vi ↪→ V1 ⊕ V2, all pairs of linear maps into a common vector space are independent.

In the tensor category (Alg,t) with t the free product of algebras (see Section 5.1)

the situation is similar. With respect to the canonical inclusions Ai ↪→ A1tA2, any pair

of algebra homomorphisms ji : Ai → B to a common algebra B is independent.

In the two mentioned cases the tensor product coincides with the so-called “coproduct”

in the category; see [Fra06] or [McL92]. Coproducts exist in many categories. But

we should not take the coproduct as tensor product if we are looking for interesting

independences.

2.2.4 Example. Independence in quantum probability is usually implemented by a

universal product , which is a prescription � that assigns to two linear functionals on

algebras A1,A2 a new linear functional ϕ1 �ϕ2 on the free product A1tA2 such that the
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2 Comonoidal Systems and Abstract Lévy-Processes

bifunctor ((A1,Φ1), (A2,Φ2)) 7→ (A1tA2,Φ1�A2) turns the category AlgQ of quantum

probability spaces into a tensor category with the canonical embeddings Ai ↪→ A1 t A2

as inclusions (see Chapter 5 and in particular Definition 5.1.1). An example is the tensor

product of linear functionals defined by

Φ1 ⊗ Φ2(a1 · · · an) = Φ1

Ñ
→∏

ai∈A1

ai

é
Φ2

Ñ
→∏

ai∈A2

ai

é
,

where
→∏

denotes the product of the algebra elements in the same order as they ap-

pear in a1 · · · an. In this case categorial independence reproduces the notion of tensor-

independence. If � is the free product , we get freeness.

Although Definition 2.2.2 was motivated by quantum probability, it encompasses also

non-stochastic notions of independence, as the following examples show.

2.2.5 Example (Linear Independence). Consider the category Vectinj of vector spaces

with injective linear maps. The direct sum turns this into a tensor category with inclu-

sions with respect to the canonical embeddings Vi ↪→ V1⊕V2. Two injections fi : Vi →W

are independent if and only if they have linearly independent ranges. The only choice for

the independence morphism is the linear map h := f1+f2 : V1⊕V2 →W . If h is injective,

then f1(v1) + f2(v2) = 0 implies f1(v1) = f2(v2) = 0, so the ranges are linearly indepen-

dent. On the other hand, if the ranges are linearly independent and h(v1 ⊕ v2) = 0, we

can conclude that fi(vi) = 0 for i ∈ {1, 2}. Since f1 and f2 are injections, it follows that

v1 = 0 and v2 = 0, so h is injective.

2.2.6 Example (Orthogonality). Similar to the previous example, (Hilbisom,⊕) is a

tensor category with the canonical embeddings as inclusions. Two isometries vi : Hi → G

are independent if and only if they have orthogonal ranges. Indeed, the only choice for

the independence morphism is the linear map h = v1 + v2. This is an isometry if and

only if

0 =
¨
v1(x1) + v2(x2), v1(x1) + v2(x2)

∂
−
¨
x1 ⊕ x2, x1 ⊕ x2

∂
=
¨
v1(x1), v2(x2)

∂
+
¨
v2(x2), v1(x1)

∂
= 2 Re

¨
v1(x1), v2(x2)

∂
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2.2 Tensor Categories

for all x1 ∈ H1, x2 ∈ H2, which is clearly equivalent to v1(H1) ⊥ v2(H2).

In the previous examples the independence morphism h is always uniquely determined

if it exists. The next example shows that this is not the case in general.

2.2.7 Example. Consider the category Vect with tensor product

V1 � V2 := V1 ⊕ V2 ⊕ V1 ⊗ V2.

and the canonical inclusions Vi ↪→ V1 � V2 which identify Vi with the summand Vi in

V1 ⊕ V2. Any two linear maps fi : Vi → W are independent, but the independence

morphism is not uniquely determined. Indeed, for an arbitrary linear map f : V1⊗V2 →

W , the linear map h = f1 + f2 + f is an independence morphism for f1 and f2.

2.2.2 Cotensor Functors

Given tensor categories (C,�) and (C′,�′) with unit objects, associativity and unit con-

straints E,α, l, r and E′, α′, l′, r′ respectively, a cotensor functor is a triple (F , δ,∆)

consisting of

I a functor F : C → C′

I a morphism δ : F(E)→ E′

I a natural transformation ∆ : F(· � ·)⇒ F(·)�′ F(·)

such that the diagrams

F
Ä
A� (B � C)

ä F(αA,B,C)
//

∆A,B�C

��

F
Ä
(A�B)� C

ä
∆A�B,C

��
F(A)�′ F(B � C)

idF(A)�
′∆B,C

��

F(A�B)�′ F(C)

∆A,B�′idF(C)

��
F(A)�′

Ä
F(B)�′ F(C)

ä α′F(A),F(B),F(C) //
Ä
F(A)�′ F(B)

ä
�′ F(C)

(2.2.1)
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2 Comonoidal Systems and Abstract Lévy-Processes

F(B � E)
∆B,E //

F(rB)

��

F(B)�′ F(E)

idF(B)�
′δ

��
F(B) F(B)�′ E′

r′F(B)oo

(2.2.2)

F(E �B)
∆E,B //

F(lB)

��

F(E)�′ F(B)

δ�′idF(B)

��
F(B) E′ �′ F(B)

l′F(B)oo

(2.2.3)

commute for all A,B,C ∈ Obj(C). A cotensor functor is called strong if ∆ is a natural

isomorphism and δ is an isomorphism.

2.2.8 Theorem. Let F : C → C′ and F ′ : C′ → C′′ be cotensor functors with coproduct

morphisms ∆A,B,∆
′
A′,B′ and counit morphisms δ, δ′. Then F ′ ◦ F is a cotensor functor

with coproduct morphisms ∆′F(A),F(B) ◦ F
′(∆A,B) and counit morphism δ′ ◦ F ′(δ).

This is well known and can be shown by writing down the involved diagrams and

check that they commute; see [Lac14] for an explicit proof.

Similarly, a tensor functor is a functor F : C → C′ together with a natural trans-

formation µ : F(·)�′F(·) ⇒ F(·� ·) and a morphism 1 : E′ → F(E) such that the

diagrams one obtains from (2.2.1) -(2.2.3) by reversing the arrows and replacing ∆ and

δ with µ and 1 commute.

2.3 Comonoidal Systems

A monoid is a semigroup with a unit element. We identify a monoid S with the strict

tensor category whose objects are the elements of S with only the identity morphisms

and the tensor product given by the multiplication of S.

2.3.1 Definition. Let S be a monoid and (C,�) a tensor category. A monoidal system

over S in C is a tensor functor from S to C. A comonoidal system over S in C is a

cotensor functor from S to C. A comonoidal system is called full if the cotensor functor
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2.3 Comonoidal Systems

is strong. A monoidal system (respectively comonoidal system) over the trivial monoid

{e} is simply called a monoid in C (respectively comonoid in C).

Since there are only identity morphisms in S, any functor defined on S acts trivially

on morphisms, so it is determined by the object assignment and can be identified with

the family (As)s∈S where As denotes the value of the functor at s ∈ S. Thus, a monoidal

system over S in C is the same as a family of objects (As)s∈S together with product

morphisms µs,t : As�At → Ast and a unit morphism u : E → Ae such that the natural

associativity and unit properties

Ar �As�At Ars�At E�As As As�E

Ar �Ast Arst Ae�As As As�Ae

µr,s � idt

idr �µs,t µrs,t u� id

l−1
As

r−1
As

id id�u

µr,st µe,s µs,e

are fulfilled. In particular, a monoid in Set is just a usual monoid. Similarly, a

comonoidal system over S in C is a family of objects (As)s∈S together with coproduct

morphisms ∆s,t : Ast → As�At and a counit morphism δ : Ae → E such that coasso-

ciativity and the counit properties

Arst Ars�At Ae�As As As�Ae

Ar �Ast Ar �As�At E�As As As�E

∆rs,t

∆r,st ∆r,s � idt δ� id

∆e,s ∆s,e

id id� δ

idr �∆s,t lAs rAs

hold. The composition of two cotensor functors is again a cotensor functor in the sense

of Theorem 2.2.8. This immediately implies that a cotensor functor (F ,D, d) maps a

comonoidal system (As)s∈S with coproduct morphisms ∆s,t and counit morphism δ to a

comonoidal systems (F(As))s∈S with coproduct morphisms DAs,At ◦ F(∆s,t) and counit

morphism d ◦ F(δ). The analogous statements hold for monoidal systems.

In the following, we concentrate on comonoidal systems, because they are more im-

portant in the subsequent chapters. Most results have an obvious corresponding result

for monoidal systems.

2.3.2 Theorem. Let U ⊂ S be a submonoid. If (As)s∈S is a comonoidal system with
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2 Comonoidal Systems and Abstract Lévy-Processes

coproduct morphisms (∆s,t)s,t∈S and counit morphism δ, then (As)s∈U is a comonoidal

system with coproduct morphisms (∆s,t)s,t∈U and counit morphism δ.

Proof. The inclusion U ↪→ S is a monoid homomorphism, hence it is a cotensor functor

with respect to the identity natural transformation and identity morphism. The theorem

now follows from Theorem 2.2.8.

2.3.1 The Main Examples

In this section we list all kinds of monoidal and comonoidal systems which will play a

role later on.

Sets Monoids in (Set,×) are just ordinary monoids. Consider the tensor category

(Setinj ,×) with the unit object E. Note that E is necessarily a one point set. For

reasons that will become aparent later, we like to assume E = {Λ} is the set which

contains the empty tuple Λ = (). If (As)s∈S is a comonoidal system, injectivity of the

counit morphism δ : Ae → E implies that Ae is either empty, or also a one point set.

A comonoidal system (As)s∈S with Ae = {Λ} is called a Cartesian system. Cartesian

systems over N0,Q+ and R+ appear a lot throughout Chapter 4.

Vector Spaces Monoids in (Vect,⊗) are unital algebras, comonoids are coalgebras.

Let (At)t∈S be a monoidal system in (Vect,⊗). Then A :=
⊕

t∈SAt is an S-graded

algebra with respect to the multiplication given by

ab := µs,t(a⊗ b)

for elements a ∈ As, b ∈ At. If we consider (Vectsurj ,⊗), a monoidal system over

N0 yields a standard graded algebra, that is an N0-graded algebra A =
⊕

n∈N0
An with

A0 = C1 and AmAn = Am+n. Indeed, the two conditions are exactly the surjectivity of

the unit morphism 1 : C→ A0 and the product morphisms µm,n : Am⊗An → Am+n.

Hilbert Spaces Comonoidal systems in (Hilbisom,⊗) with He = C and δ = idC are

called subproduct systems. Subproduct systems over N0,Q+ and R+ are the main subjects

of Chapter 4. Full subproduct systems are called product systems. Actually, defining
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2.3 Comonoidal Systems

subproduct systems as monoidal systems in (Hilbcoisom,⊗) gives an equivalent definition.

More precisely ((Hs)s∈S, (∆s,t)s,t∈S, δ) is a comonoidal system in (Hilbisom,⊗) if and

only if ((Hs)s∈S, (∆
∗
s,t)s,t∈S, δ

∗) is a monoidal system in (Hilbcoisom,⊗).

2.3.3 Remark. The forgetful functor F : (FinHilbcoisom,⊗)→ (FinVectsurj) is easily

seen to be a tensor functor. Tensor functors map monoidal systems to monoidal systems

(just as cotensor functors do with comonoidal systems). So it follows from the previous

paragraph that (F(Hn))n∈N0 yields a standard graded algebra if (Hn)n∈N0 is a subproduct

system.

Algebras Comonoids in (Alg1,⊗) are called bialgebras, those in ∗-Alg1 are referred

to as ∗-bialgebras. Comonoids in (Alg,t) are called dual semigroups. The additive

deformations of Chapter 3 provide examples of comonoidal systems in (Alg1,⊗) and

(∗-Alg1,⊗).

Algebraic Quantum Probability Spaces The tensor categories of quantum probabil-

ity spaces which will appear are (AlgQ1,⊗) and (AlgQ,�) for a universal product

�. The main interest lies in comonoidal systems coming from convolution semigroups.

We explain this for (AlgQ1,⊗). Suppose B is a bialgebra with comultiplication ∆

and (ϕt)t∈R+ a convolution semigroup, that is ϕs ? ϕt := (ϕs⊗ϕt) ◦ ∆ = ϕs+t for

all s, t ∈ R+ and ϕ0 = δ (confer Section 3.1). Then ∆ may be viewed as a mor-

phism ∆s,t : (B, ϕs+t) → (B⊗B, ϕs⊗ϕt) and the counit δ : B → C as a morphism

δ : (B, δ) → (C, idC). Coassociativity and the counit property are trivially fulfilled, so

((B, ϕt)t∈R+ , (∆s,t)s,t∈R+ , δ) is a comonoidal system.

2.3.2 Cancellative Monoids

A monoid S is called cancellative if ab = ac implies b = c and ba = ca implies b = c for

all a ∈ S. Note that left invertibility, right invertibility and invertibility are all equivalent

for elements of a cancellative monoid S. Indeed, suppose ab = e with e ∈ S the unit

element. This implies baba = bea = bae. Since S is cancellative it follows that ba = e

and hence a = b−1.
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2 Comonoidal Systems and Abstract Lévy-Processes

Denote by S∗ the set of all tuples (s1, . . . , sn) over S of arbitrary length n ∈ N0. The

concatenation of tuples is written in this section as

(s1, . . . , sn) ^ (t1, . . . , tm) := (s1, . . . , sn, t1, . . . , tm)

to clearly distinguish it from the monoid multiplication. The set of all invertible elements

or units is denoted by U(S).

A tuple (s1, . . . , sn) ∈ S∗ is called a factorization of t ∈ S if t = s1 · · · sn with si ∈

S \ U(S). The empty tuple is the unique factorization of e. The set of all factorizations

of t is denoted by Ft. A factorization σ ∈ Ft is said to be a refinement of a factorization

(t1, . . . , tn) ∈ Ft if σ = τ1 ^ · · · ^ τn for some τk ∈ Ftk . We write σ ≥ τ if σ is a

refinement of τ . This defines a partial order on Ft.

2.3.4 Proposition. Let S be a cancellative monoid. If τ1 ^ · · ·^ τn = τ ′1 ^ · · ·^ τ ′n

with τk, τ ′k ∈ Ftk , then τk = τ ′k for all k.

Proof. For n = 0 or n = 1 there is nothing to prove. Suppose τ1 ^ · · · ^ τn =

τ ′1 ^ · · · ^ τ ′n = (s1, . . . , s`) with τn = (sk, . . . , s`), τ
′
n = (sk′ , . . . , s`) ∈ Ftn . We have

sk · · · s` = sk′ · · · s`. Suppose k < k′. Since S is cancellative, this implies sk · · · sk′−1 = e

and thus sk is invertible which contradicts τn ∈ Ft. So k ≥ k′. Analogously, we get k′ ≥ k

which shows k = k′ and thus τn = τ ′n. Now the proposition follows by induction.

2.3.5 Definition. A cancellative monoid S is called a unique factorization monoid or uf-

monoid for short if any two factorizations of the same element have a common refinement.

Equivalently, a uf-monoid is a cancellative monoid such that Ft is a directed set with

respect to refinement for every t ∈ S. The term uf-monoid is used by Johnson [Joh71]

for this kind of monoids. In the paper he gives different characterizations of uf-monoids

and presents constructions to find uf-monoids. The examples we will use later on are

only N0, Q+ and R+, but it seems that uf-monoids provide the most general setting in

which we can study the inductive limit constructions of the following sections.

2.3.6 Definition. A positive monoid is a cancellative monoid S with a partial order

such that
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2.3 Comonoidal Systems

1. e ≤ s for all s ∈ S

2. s ≤ t implies sr ≤ tr and rs ≤ rt for all r ∈ S.

Johnson requires a positive monoid to be linearly ordered. The next two propositions

do not require a linear ordering, so we omit this condition.

2.3.7 Proposition. Let (S,≤) be a positive monoid. Then U(S) = {e}.

Proof. Suppose s ∈ U(S). By the first condition, we have e ≤ s and e ≤ s−1. By the

second condition, e ≤ s−1 implies s ≤ ss−1 = e. Together this yields s = e.

2.3.8 Proposition. A positive monoid (S,≤) is directed.

Proof. From e ≤ s it follows that t ≤ st and from e ≤ t it follows that s ≤ st. So st is a

common upper bound for s and t.

Let S be a cancellative abelian monoid with U(S) = {0}. Put s ≤ t if t = s + r for

some r ∈ S. Since S is cancellative, r is uniquely determined. So for s ≤ t we can define

t− s to be the unique r with t = s+ r. Then it holds that:

2.3.9 Proposition. (S,≤) is a positive monoid.

Proof. The relation ≤ is obviously reflexive and transitive. If s = t + r and t = s + r′,

we have s = s + r′ + r and t = t + r + r′, which implies r′ + r = 0. By U(S) = {0} it

follows that r = r′ = 0, thus s = t. Hence, ≤ is a partial order on S. The properties 1

and 2 of Definition 2.3.6 are obviously fulfilled.

2.3.10 Proposition. Let S be an abelian uf-monoid with U(S) = {0}. Then ≤ is a

linear order.

Proof. Let s, t ∈ S. Since s + t = t + s, the unique factorization property tells us that

there are r1, . . . , rn ∈ S\{0} with r1 +· · ·+rk = s, rk+1 +· · ·+rn = t and r1 +· · ·+r` = t,

r`+1 + · · ·+ rn = s. Now, k ≤ ` implies s ≤ t and ` ≤ k implies t ≤ s.
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2 Comonoidal Systems and Abstract Lévy-Processes

2.3.3 First Inductive Limit: The Generated Full Comonoidal System

Let ((As)s∈S, (∆s,t)s,t∈S, δ) be a comonoidal system over a cancellative monoid S in a

tensor category (C,�) with unit object E. For a tuple σ = (s1, . . . , sn) ∈ Ft put Aσ :=

As1 � · · ·�Asn for n ≥ 1 and A() := E. Define ∆σ : At → Aσ recursively by

∆() := δ

∆(t) := idt

∆(s1,...,sn+1) := (∆(s1,...,sn)� idsn+1) ◦∆(s1···sn,sn+1).

Let τ = (t1, . . . , tn) ∈ Ft and σ ≥ τ . Since S is cancellative, we can use Proposition 2.3.4

to write σ = τ1 ^ · · ·^ τn for uniquely determined τk ∈ Ftk . With this notation we put

∆τ
σ := ∆τ1 � · · ·�∆τn : Aτ → Aσ

for all τ ≤ σ ∈ Ft.

2.3.11 Lemma. It holds that ∆σ
ρ ◦∆τ

σ = ∆τ
ρ for all τ ≤ σ ≤ ρ ∈ Ft for every cancellative

monoid.

Proof. The proof of Bhat and Mukherjee for the case S = R+ [BM10, Lemma 4] works

without a change for general cancellative monoids.

2.3.12 Corollary. Let S be a uf-monoid and ((As)s∈S, (∆s,t)s,t∈S, δ) a comonoidal system

in a tensor category C. Then for every t ∈ S,
Ä
(Aτ )τ∈Ft , (∆

τ
σ)σ≥τ∈Ft

ä
is an inductive

system.

Proof. By Definition 2.3.5 of a uf-monoid, Ft is directed. The first condition of an

inductive system, ∆τ
τ = idτ , is obvious. The second condition, ∆σ

ρ ◦ ∆τ
σ = ∆τ

ρ for all

τ ≤ σ ≤ ρ ∈ Ft, is the statement of Lemma 2.3.11.

Suppose the inductive systems (Aτ )τ∈Ft have inductive limits At with morphisms

Dτ : Aτ → At. For τ ∈ Ft denote by Fτ the set of all refinements of τ . Then Fτ is a

cofinal subset of Ft, see Example 2.1.3. Denote by Aτ the inductive limit. Then there is

a canonical isomorphism At ∼= Aτ because of Corollary 2.1.5.
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2.3.13 Lemma. The diagram

Aσ �Aτ As�At

Aσ′ �Aτ ′

Dσ �Dτ

∆σ
σ′ �∆τ

τ ′
Dσ
′
�Dτ

′

commutes for all σ′ ≥ σ ∈ Fs, τ ′ ≥ τ ∈ Ft.

Proof. By functoriality of �, we have

(Dσ′ �Dτ ′) ◦ (∆σ
σ′ �∆τ

τ ′) = (Dσ′ ◦∆σ
σ′)�(Dτ ′ ◦∆τ

τ ′) = Dσ �Dτ .

So, by the universal property of the inductive limit, there are unique morphisms‹∆s,t : Ast → As�At such that

Aσ �Aτ As�At

Ast ∼= A(s,t)

Dσ �Dτ

Dσ^τ

∆̃s,t

commutes for every σ ∈ Fs, τ ∈ Ft.

2.3.14 Theorem. The At form a comonoidal system with respect to the coproduct mor-

phisms ‹∆s,t and the counit morphism idE.

Proof. First note that Ae = E, since Fe = {()} and A() = E. The counit property is

trivially fulfilled. In the diagram

Arst

Ar �Ast Aρ�Aσ �Aτ Ars�At

Ar �As�At

∆̃ ∆̃

id� ∆̃

Dρ^σ^τ

Dρ^σ �DτDρ �Dσ^τ

Dρ �Dσ �Dτ
∆̃� id
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2 Comonoidal Systems and Abstract Lévy-Processes

the four corners commute by the definition of ‹∆ and this proves coassociativity.

Define Dt : At → At by Dt := D(t) for t 6= e and De := δ.

2.3.15 Theorem. The morphisms (Dt)t∈S form a morphism of comonoidal systems,

that is ‹∆s,t ◦Dst = (Ds�Dt) ◦∆s,t and idE ◦De = δ.

Proof. The counit is respected by definition of De. In the diagram

Ast As�At

Ast ∼= A(s,t) As�At

∆s,t

D(st)

D(s,t)
D(s) �D(t)

∆̃s,t

the lower right commutes by definition of ‹∆ and the upper left becauseAst is the inductive

limit. So the outside square commutes, which finishes the proof.

Let F : C → D be a functor. Then any inductive system
Ä
(Aα)α, (f

α
β )α≤β

ä
in C

is mapped to an inductive system
Ä
(F(Aα))α, (F(fαβ ))α≤β

ä
in D. We say that F pre-

serves inductive limits if for every inductive limit
Ä
A, (fα)α

ä
of an inductive systemÄ

(Aα)α, (f
α
β )α≤β

ä
it holds that

Ä
F(A), (F(fα))α

ä
is an inductive limit of the inductive

system
Ä
(F(Aα))α, (F(fαβ ))α≤β

ä
.

2.3.16 Theorem. If the tensor product preserves inductive limits, the morphisms ‹∆s,t

are all isomorphisms. In other words (At)t∈S is a full comonoidal system.

Proof. The tensor product is a bifunctor � : C×C → C. Inductive systems in C×C are in

bijection with pairs of inductive systems in C and an inductive limit in C × C is a pair of

inductive limits for the inductive systems in C. If � preserves inductive limits, As�At
is an inductive limit of the inductive system formed by (Aσ �Aτ )σ∈Fs,τ∈Ft with respect

to the maps Dσ �Dτ . Since ‹∆s,t makes the diagram

Aσ �Aτ As�At

Ast ∼= A(s,t)

Dσ �Dτ

Dσ^τ

∆̃s,t
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commute, it is the canonical isomorphism between the two inductive limits.

All tensor categories we are interested in have tensor products which do preserve

inductive limits. The following example illustrates that this is not true in general.

2.3.17 Example. Consider the category Vect with the tensor product given by

V1�V2 :=


V1 ⊕ V2 if one of the two is finite-dimensional

V1 ⊕ V2 ⊕W if both are infinite-dimensional

for some fixed vector spaceW . This is a tensor category with unit object {0} and even has

inclusions. Consider the inductive system (Cn)n∈N with morphisms fmn (x1, . . . , xm) :=

(x1, . . . , xm, 0, . . . , 0) with inductive limit l0; see Example 2.1.2. Then the inductive limit

of the inductive system (Cm ⊕ Cn)m,n∈N is l0 ⊕ l0 and has a countable basis. But if W

has no countable basis, then also the tensor product l0� l0 = l0⊕ l0⊕W of the seperate

inductive limits has no countable basis, so there cannot be an isomorphism. In fact, even

if we put W = C the tensor product defined above does not preserve inductive limits,

but one would have to argue more carefully to prove this.

2.3.4 Compatible Inclusions

We can define independence of two morphisms in any tensor category with inclusions.

But to get a good (associative) notion for more than two morphisms, we need a certain

compatiblity between the inclusions and the structure of the tensor category. This is

necessary in order to deal with Lévy processes in the categorial setting. As it turns out,

the condition we need is equivalent to the unit object E being an initial object and ι1, ι2

being related to the unit constraints l and r in a nice way.

Let C be a tensor category with inclusions ι1, ι2. The inclusions are called compatible

if ι1A,E = r−1
A , ι2E,A = l−1

A and the diagram

E E�A

A�E A

ι1E,A

ι2A,E lA

rA

(2.3.1)
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commutes for all A ∈ C

2.3.18 Theorem. In a tensor category (C,�, E) with inclusions ι1, ι2, the following are

equivalent:

(i) The inclusions are compatible.

(ii) There exists a natural transformation 1 : E ⇒ idC such that 1E = idE,

ι1A,B = (idA�1B) ◦ r−1
A and ι2A,B = (1A� idB) ◦ l−1

B for all A,B ∈ C.

Furthermore, 1 is uniquely determined, if it exists.

Proof. If 1 exists, ι1E,A = (idE �1A) ◦ r−1
E implies id�1A = ι1E,A ◦ rE and thus 1A =

lA ◦ ι1E,A ◦ rE ◦ l
−1
E , so 1 is uniquely determined.

Suppose ι1, ι2 are compatible. Then define 1A := lA ◦ ι1E,A = rA ◦ ι2A,E . From

ι1E,E = r−1
E we get 1E = idE . In the diagram

A A�B

A�(B�E)

A�E

ι1

ι1

r−1=ι1

id� r

id� ι2

id� 1B

the upper triangle and the left triangle commute by the naturality of ι1. The right

triangle commutes by definition of 1B. Together this yields that the outside triangle

commutes, hence ι1A,B = (id�1B) ◦ r−1
A . Analogously, one shows ι2A,B = (1A� id) ◦ l−1

B .

Now assume (ii) holds. Then ι1A,E = (id�1E) ◦ r−1
A = r−1

A and in the same way we

get ι2E,A = l−1
A . In particular ι1E,E = r−1

E = l−1
E = ι2E,E . Considering the diagram

E E�E

A E�A

ι2=ι1

ι1
1 id�1

ι2=l−1
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2.3 Comonoidal Systems

the outside square commutes by naturality of ι2. The upper right triangle commutes

by naturality of ι1. So the lower left triangle commutes and we find lA ◦ ι1E,A = 1A.

Analogously, we get rA ◦ ι2A,E = 1A, which finishes the proof.

Note that naturality of 1 just means that f ◦1A = 1B for all f : A→ B. In particular

for f : E → B this yields f = f ◦ 1E = 1B. So E is an initial object in C, that is for

every object B ∈ C there is a unique morphism from E to B, namely 1B. Of course,

given any tensor category such that E is initial, we can define compatible inclusions by

the equations in (ii).

Compatible inclusions also respect the associativity constraint. For example it holds

that:

2.3.19 Theorem. For compatible inclusions ι1, ι2 the diagrams

A�B B B�C C B�C

(A�B)�C A�(B�C) (A�B)�C A�(B�C)

ι1

ι1ι2

ι2

ι2

ι2 ι2

α α

commute.

Proof. Since by Theorem 2.3.18 we have ι1 = (id�1) ◦ r−1 and ι2 = (1⊗ id) ◦ l−1, the

first diagram can be found on the outside border of

A�B E�B B B�E B�C

(A�B)�E (E�B)�E E�(B�E) E�(B�C)

(A�B)�C A�(B�C)

r−1

1� id

r−1

r−1l−1 id�1

l−1 l−1

id� 1

(1� id)� id

(1� id)�1

α

1�(id�1)

id�(id� 1)

1� id

α

The upper squares commute due to the naturality of r−1, coherence of C and the nat-

urality of l−1. The square in the lower line commutes due to the naturality of α. The

remaining triangles commute because of the functoriality of �. We conclude that the

outside commutes. Commutativity of the second diagram in the theorem can be shown

similarly.
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2 Comonoidal Systems and Abstract Lévy-Processes

The two diagrams of the theorem above are the only compatibilities we need in the

next section. But it is probably possible to formulate and prove a coherence theorem for

tensor categories with compatible inclusions, similar to [ML98, VII.2].

2.3.20 Remark. As Stephanie Lachs observed, commutativity of (2.3.1) is equivalent

to the somehow more natural condition that ι2� id = α ◦ (id� ι1). This can be read

from the diagram

E E�A

E�E (E�A)�E

E�(A�E)

A�E A

l−1=r−1

ι1

ι2

r−1

l

ι1 � id

id� ι2
α

l−1

r

in which the outside square is (2.3.1) and the inside triangle is a special case of ι2� id =

α ◦ (id� ι1). All other areas commute, the upper and the left side due to the naturality

of l−1 and r−1 respectively, the lower right due to coherence. So commutativity of the

inside and the outside are equivalent.

2.3.5 Second Inductive Limit: Lévy-Processes

Let At be a full comonoidal system over a cancellative abelian monoid S with coproduct

isomorphisms ‹∆s,t in a tensor category with compatible inclusions ι1, ι2. Without loss of

generality assume that Ae = E and that the counit morphism is δ = idE .

For s ≤ t define ist : As → At as the composition

As As�At−s At.ι1 ∆̃−1

2.3.21 Theorem. ((At)t∈S, (i
s
t )s≤t) is an inductive system.
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2.3 Comonoidal Systems

Proof. In the diagram

Ar Ar �As−r As

Ar Ar �As−r �At−s As�At−s

Ar Ar �At−r At

id

ι1

id� ι1 ι1

∆̃−1

ι1

id

ι1

id� ∆̃−1

∆̃−1 � id

∆̃−1

ι1 ∆̃−1

the lower right corner commutes by coassociativity of ‹∆ and the other three corners

commute by the naturality of ι1. We suppressed the associativity constraint and identi-

fied Ar �(As−r �At−s) with (Ar �As−r)�At−s, which leads to the two interpretations

idAr � ι
1
As−r,At−s and ι1Ar �As−t,At−s of the arrow Ar �As−r → Ar �As−r �At−s.

For the rest of this section, we fix an abelian uf-monoid S with U(S) = {0} and an

inductively complete tensor category C with compatible inclusions ι1, ι2, whose tensor

product � perserves inductive limits.

2.3.22 Definition. Let (At)t∈S be a comonoidal system in C. An abstract Lévy-process

on (At)t∈S is a collection of morphisms js,t : At−s → B for s ≤ t to some common object

B ∈ C such that

1. jt,t = 1B ◦ δ

2. js1,t1 , . . . , jsn,tn are independent if s1 ≤ t1 ≤ s2 ≤ · · · ≤ sn ≤ tn

3. jr,s,t ◦∆s−r,t−s = jr,s for some independence morphism jr,s,t of jr,s and js,t.

Given only the comonoidal system
Ä
(At)t∈S, (∆s,t)s,t∈S

ä
one can construct a canonical

abstract Lévy-process. Since S is a uf-monoid and � preserves inductive limits, (At)t∈S

generates a full comonoidal system
Ä
(At)t∈S, ‹∆ä by Theorem 2.3.16. Denote by Dt :

At → At the canonical morphisms. Let
Ä
A, (it : At → A)t∈S

ä
the inductive limit of

(At)t∈S. Define js,t : At−s → A as the composition

At−s At−s As�At−s At A.Dt−s ι2 ∆̃−1 it
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2 Comonoidal Systems and Abstract Lévy-Processes

2.3.23 Theorem. The js,t form an abstract Lévy process.

Proof. We construct the independence morphism jr,s,t for jr,s and js,t and show that

jr,s,t ◦∆s−r,t−s = jr,t. Define jr,s,t as the composition

As−r �At−s As−r �At−s Ar �As−r �At−s At A.Ds−r �Dt−s ι2 ∆̃−1 it

Now, the diagram

At−s At−s As�At−s At

As−r �At−s As−r �At−s Ar �As−r �At−s At A

As−r As−r Ar �As−r As

Dt−s

ι2

ι2

ι2

∆̃−1

∆̃
it

id

Ds−r �Dt−s ι2 ∆̃−1 it

Ds−r

ι1

ι2

ι1

∆̃−1

ι1 ist
is

commutes: The leftmost squares commute due to naturality of ι1 and ι2. The next

squares commute by Theorem 2.3.19. The upper right square commutes by coassociativ-

ity of ‹∆. The triangles commute by definition of the inductive limit. It remains to show

commutativity of the lower right square. In a bit more detail, this is

Ar �As−r �At−s As�At−s At

Ar �As−r As

∆̃−1 � id ∆̃

∆̃−1

ι1 ι1
ist

which commutes by naturality of ι1 and the definition of ist . This shows that jr,s,t is an

independence morphism. Next we consider

At−r At−r Ar �At−r At

As−r �At−s As−r �At−s Ar �As−r �At−s At A

Dt−r

∆s−r,t−s

ι2

∆̃

∆̃−1

id� ∆̃
it

id

Ds−r �Dt−s ι2 ∆̃−1 it

in which the first square commutes because the Dt form a morphism of comonoidal

systems by Theorem 2.3.15, the second square commutes due to naturality of ι2, and the
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2.3 Comonoidal Systems

last square and the triangle commute trivially. So the outside commutes, thus establishing

jr,s,t ◦∆s−r,t−s = jr,t.

The general construction of an independence morphism for jt1,t2 , . . . , jtn,tn+1 works

similar to that for jr,s and js,t.

There is also a direct way from the comonoidal system (At)t∈S to the Lévy process.

Put F := {σ = (s1, . . . , sn) | n ∈ N0, sk ∈ S \ {0}} =
⋃
s∈S Fs and define σ ≥ τ =

(t1, . . . , tn) if there exist τ1, . . . , τn, τn+1 with σ = τ1 ^ · · · ^ τn ^ τn+1, τk ∈ Ftk for

k ∈ {1, . . . , n} and τn+1 ∈ F. One shows that F is directed analogously to Ft. Then

define an inductive system (Aσ)σ∈F with respect to the morphisms iτσ : Aτ → Aσ defined

as the composition

Aτ Aτ1 � · · ·�Aτn Aτ1 � · · ·�Aτn �Aτn+1 = Aσ
∆τ
τ1^···^τn ι1

for σ = τ1 ^ · · ·^ τn ^ τn+1 ≥ τ .

2.3.24 Theorem. The inductive limits of (Aσ)σ∈F and (At)t∈S are canonically isomor-

phic.

Proof. This is exactly the situation of Theorem 2.1.4.
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3 Additive Deformations

The material presented in Sections 3.2 and 3.3 is taken from [Ger11], Section 3.4 is from

[GKL12] with Stefan Kietzmann and Stephanie Lachs. Only minor changes have been

made, mainly to avoid redundance, unify notations, or emphasize connections to other

parts of this thesis.

The quantum harmonic oscillator is usually described in terms of the ∗-algebra A

generated by a, a∗ and a unit 1 with the relation [a, a∗] = 1. One wants to define a

comultiplication on the generators by

∆(a) = a⊗1 + 1⊗ a, ∆(a∗) = a∗⊗1 + 1⊗ a∗,

but this cannot be extended as an algebra homomorphism from A to A⊗A since the

relation is not respected. As a possible solution to this problem, one can define At as

the algebra with the same generators as A but under relation [a, a∗]t = t1 for t ∈ R.

Then it is easily checked that ∆ can be extended to an algebra homomorphism from A

to As⊗At whenever s+ t = 1. One observes that all At are defined on the same vector

space andA0 is just the polynomial ∗-bialgebra in two commuting adjoint indeterminates.

This way to look at the quantum harmonic oscillator is already mentioned by Majid in

[Maj95, p. 71], where he just calls this a “bialgebra like structure”. Wirth gave a rigorous

meaning to this phrase with the definition of additive deformations of bialgebras and

∗-bialgebras in [Wir02], see Definition 3.2.1. The terminology is slightly misleading: An

additive deformation of a bialgebra is a deformation of the algebra structure of B which

is compatible with the comultiplication in a certain way. But the deformed algebras

Bt themselves are not bialgebras. Additive deformations are comonoidal systems in

the category of unital (∗)-algebras, see Section 2.3.1, Algebras. This special class of

comonoidal systems is quite tractable and contains a lot of interesting examples.
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3.1 Convolution

Wirth developed a description of additive deformations in terms of infinitesimal gen-

erators. Furthermore he was able to prove a Schoenberg correspondence for additive

deformations, which characterizes the continuous convolution semigroups of states on

additive deformations by a condition on the generator. This was the starting point for

the construction of quantum Lévy processes on additive deformations in [Sch05] and

[Ger09]. The relationship between quantum Lévy processes and convolution semigroups

in this case also follows from our general considerations in Chapter 2.

In Section 3.2 we will review Wirth’s results and investigate the underlying cohomo-

logical theory. Most of the material of this section is already contained in my Diploma

thesis [Ger09], but we will need it in the sequel and present it in a more systematic way,

now also including the description of the cochain complex for the ∗-case which is new.

In Section 3.3, we show that an additive deformation of a Hopf algebra automatically

fulfills a compatibility with the antipode and find a natural decomposition of additive de-

formations of cocommutative Hopf algebras. Finally, Section 3.4 transfers the generator

calculus, the result on compatibility with the antipode, and the Schoenberg correspon-

dence to the braided case. This is necessary to treat, for example, the fermionic harmonic

oscillator in the framework of additive deformations in Section 3.4.5.

3.1 Convolution

The following conventions and definitions will be used throughout this chapter. The

algebraic dual of a vector space V is denoted V ′ := {ϕ : V → C | ϕ linear}. The tensor

product ⊗ is the usual tensor product of vector spaces. If V is a vector space, for n ≥ 1

we write V⊗n := V ⊗ · · · ⊗ V for the n-fold tensor product of V with itself and for n = 0

we put V⊗0 := C. For two vector spaces V and W, we denote by τ the flip from V ⊗W

to W⊗V given on simple tensors by τ(v⊗w) = w⊗ v.

A bialgebra (B, µ,1,∆, δ) is a complex unital associative algebra (B, µ,1) for which

the mappings ∆ : B → B⊗B and δ : B → C are algebra homomorphisms and satisfy coas-

sociativity and counit property respectively. In other words, a bialgebra is a comonoid in

Alg1 and, similarly, a ∗-bialgebra is a comonoid in ∗-Alg1, see Section 2.3.1, Algebras.
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3 Additive Deformations

A Hopf algebra is a bialgebra with an antipode, that is a linear mapping S : B → B with

µ ◦ (id⊗ S) ◦∆ = 1δ = µ ◦ (S ⊗ id) ◦∆.

A Hopf ∗-algebra is a Hopf algebra which also is a ∗-bialgebra. For details on Hopf

algebras and bialgebras see for example [Swe69] or [Abe80], for Hopf ∗-algebras [KS97].

We use Sweedler’s notation, writing ∆a =
∑n
k=0 a

(1)
k ⊗ a

(2)
k =: a(1) ⊗ a(2) and the

notations µ(n) : B⊗n → B, ∆(n) : B → B⊗n

µ(0)(λ) = λ1, ∆(0) = δ,

µ(n+1) = µ ◦
Ä
id⊗ µ(n)

ä
, ∆(n+1) =

Ä
id⊗∆(n)

ä
◦∆.

The Sweedler notation for this is

∆(n)a = a(1) ⊗ · · · ⊗ a(n).

With B also each B⊗n is a bialgebra in the natural way. We frequently use the

comultiplication on B ⊗ B, denoted by Λ, which is defined by

Λ(a⊗ b) = a(1) ⊗ b(1) ⊗ a(2) ⊗ b(2),

that is Λ = (id⊗τ ⊗ id)◦ (∆⊗∆). The counit of B⊗B is just δ⊗δ. If B is a ∗-bialgebra,

an involution on B⊗n is given by (a1⊗ · · ·⊗ an)∗ = a∗1⊗ · · ·⊗ a∗n.

If (C,∆, δ) is a coalgebra and (A, µ,1) is a unital algebra, we define the convolution

product for linear mappings R,S : C → A by

R ? S := µ ◦ (R⊗ S) ◦∆.

This turns the space of linear maps from C to A into a unital algebra with unit 1δ. In

our context C and A are usually tensor powers of the same bialgebra B.

A pointwise continuous convolution semigroup is a family (ϕt)t≥0 of linear functionals

ϕt : B → C such that

I ϕs ? ϕt = ϕs+t
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3.2 Additive Deformations of Bialgebras

I ϕt(b)
t→0−−→ δ(b) for all b ∈ B.

It follows from the fundamental theorem for coalgebras that for a pointwise continuous

convolution semigroup there exists a generator ψ, which is the pointwise limit

ψ(b) =
dϕt(b)

dt

∣∣∣∣∣
t=0

= lim
t→0

ϕt(b)− δ(b)
t

and for which we have

ϕt = etψ? :=
∞∑
n=0

(tψ)?n,

also as a pointwise limit. Confer [ASvW88, Section 4] for details.

3.2 Additive Deformations of Bialgebras

Deformations of algebras are closely related to cohomology, as Gerstenhaber showed in his

papers [Ger63, Ger64]. Suppose that A is an algebra and (µt)t∈R+ a family of associative

multiplications on A which can in any sense be written in the form

µt(a⊗ b) = µ(a⊗ b) + tF (a⊗ b) +O(t2)

where µ0 = µ is the original multiplication of the algebra. Writing down the associativity

condition for µt and comparing the terms of first order yields that

µ
Ä
F (a⊗ b)⊗ c

ä
+ F

Ä
µ(a⊗ b)⊗ c

ä
= µ

Ä
a⊗ F (b⊗ c)

ä
+ F

Ä
a⊗ µ(b⊗ c)

ä
and after rearranging

aF (b⊗ c)− F (ab⊗ c) + F (a⊗ bc)− F (a⊗ b)c = 0,

so the infinitesimal deformation F is a cocycle in the Hochschild cohomology associated

with the A-bimodule structure on A given by multiplication.

3.2.1 Definition. An additive deformation of the bialgebra B is a family (µt)t∈R+ of
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3 Additive Deformations

mappings µt : B ⊗ B → B such that

1. (B, µt,1) is a unital algebra for each t ∈ R+

2. µ0 = µ

3. ∆ ◦ µs+t = (µs ⊗ µt) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗∆)

4. the mapping t 7→ δ ◦ µt is pointwise continuous, that is δ ◦ µt
t→0−−→ δ ◦ µ = δ ⊗ δ

pointwise

5. if B is a ∗-bialgebra and (B, µt, 1, ∗) is a unital ∗-algebra for each t ∈ R+, we call the

deformation an additive deformation of a ∗-bialgebra.

This definition implies that

(δ ◦ µs) ? (δ ◦ µt) = (δ ⊗ δ) ◦ (µs ⊗ µt) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗∆)

= (δ ⊗ δ) ◦∆ ◦ µs+t = δ ◦ µs+t,

hence (δ ◦ µt)t∈R+ is a pointwise continuous convolution semigroup of linear functionals

on the coalgebra B ⊗ B. As such it has a generator, which we will usually denote by L.

The following theorem of Wirth was first proven in [Wir02], see also [Ger09]. We give a

full proof of its generalization to the braided case in Section 3.4.

3.2.2 Theorem. Let (µt)t∈R+ be an additive deformation of the bialgebra B. Then

L = d(δ◦µt)
dt

∣∣∣
t=0

exists pointwise and for a, b, c ∈ B, t ∈ R+ the following statements hold:

1. µt = µ ? etL?

2. µ ? L = L ? µ ’L is commuting’

3. L(1⊗ 1) = 0 ’L is normalized’

4. δ(a)L(b⊗ c)− L(ab⊗ c) + L(a⊗ bc)− L(a⊗ b)δ(c) = 0.

’L is a cocycle’.

If (µt)t∈R+ is a ∗-bialgebra deformation, then additionally

5. L(b⊗ c) = L(c∗ ⊗ b∗) ’L is hermitian’.
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3.2 Additive Deformations of Bialgebras

Conversely, if L : B ⊗ B → C is a linear mapping, which fulfills conditions 2,3 and 4

(in case of ∗-bialgebra also 5), than the first equation defines an additive deformation on

B.

In this section we wish to introduce a cochain complex such that the generators of

additive deformations are exactly the 2-cocycles. Once the complex is established the

question is, what kind of deformations are generated by coboundaries. It is shown, that

those deformations are of the form

µt = Φt ◦ µ ◦
Ä
Φ−1
t ⊗ Φ−1

t

ä
,

where the Φt constitute a pointwise continuous one parameter group of invertible linear

operators on B that commute in the sense that

(Φt ⊗ id) ◦∆ = (id⊗ Φt) ◦∆.

When the generator of the additive deformation is the coboundary of ψ : B → C, then

Φt = (id⊗ e−tψ? ) ◦∆ is the one parameter group of operators.

3.2.1 Subcohomologies of the Hochschild Cohomology

A cochain complex consists of a sequence of vector spaces C = (Cn)n∈N and linear

mappings ∂n : Cn → Cn+1 such that ∂n+1 ◦ ∂n = 0 for all n ∈ N. The elements

of Zn(C) = kern ∂n are called (n-)cocycles, the elements of Bn(C) = im ∂n−1 are called

(n-)coboundaries and the vector space Hn(C) = Zn(C)/Bn(C) is called n-th cohomology.

A sequence D = (Dn)n∈N is called subcomplex if Dn ⊆ Cn and ∂nDn ⊆ Dn+1 for all n.

Then
Ä
(Dn)n∈N, (∂n|Dn)n∈N

ä
is again a cochain complex and we have:

1. The cocycles of D are exactly the cocycles of C, belonging to D, that is

Zn(D) = Zn(C) ∩Dn.

47



3 Additive Deformations

2. Each coboundary of D is a coboundary of C, that is

Bn(D) ⊆ Bn(C) ∩Dn.

3. Equality holds in 2, if and only if the mapping

Hn(D)→ Hn(C), f +Bn(D) 7→ f +Bn(C)

is an injection.

4. If D,E are subcomplexes, then (Dn ∩ En)n∈N is a subcomplex.

Points 1,2 and 4 are obvious, while 3 follows from the observation, that the kernel of the

given mapping is exactly Bn(C) ∩Dn.

For an algebra A and an A-bimodule M we define

Cn := Lin
Ä
A⊗n,M

ä
=
¶
f : A⊗n →M | f linear

©
.

One can show, that together with the coboundary operator

∂nf(a1, . . . , an+a) := a1.f(a2, . . . , an+1) +
n∑
i=1

(−1)i f(a1, . . . , aiai+1, . . . , an+1)

+ (−1)n+1 f(a1, . . . , an).an+1

the Cn form a cochain complex, the so-called Hochschild complex, see for example [Ger63].

Especially for A = B a bialgebra and M = C the B-bimodule given by a.λ.b = δ(a)λδ(b)

for λ ∈ C and a, b ∈ B we have

∂nf(a1, . . . , an+a) := δ(a1)f(a2, . . . , an+1) +
n∑
i=1

(−1)i f(a1, . . . , aiai+1, . . . , an+1)

+ (−1)n+1 f(a1, . . . , an)δ(an+1). (3.2.1)

48



3.2 Additive Deformations of Bialgebras

The generators of additive deformations are normalized commuting cocycles, so it is

natural to define

C(N)
n =

¶
f ∈ Cn | f(1⊗n) = 0

©
,

C(C)
n =

¶
f ∈ Cn | f ? µ(n) = µ(n) ? f

©
.

If B is a ∗-bialgebra the generators are also hermitian. We define for f ∈ Cn

f̃(a1 ⊗ · · · ⊗ an) := f(a∗n ⊗ · · · ⊗ a∗1)

and set

C(H)
n =


ß
f ∈ Cn

∣∣∣∣ f̃ = f

™
,

∣∣∣∣∣ if
⌈n

2

⌉
odd, that is n = 1, 2, 5, 6, . . .ß

f ∈ Cn
∣∣∣∣ f̃ = −f

™
, if

⌈n
2

⌉
even, that is n = 0, 3, 4, 7, 8, . . .

3.2.3 Proposition. C(N)
n , C(C)

n and C(H)
n are subcomplexes of Cn.

Proof. We only need to show that ∂C(∗)
n ⊆ C(∗)

n+1 for ∗ = N,C,H.

N: Let f ∈ C(N)
n . Then

∂f(1⊗(n+1)) = δ(1)f(1⊗n) +
n∑
i=1

(−1)i f(1⊗n) + (−1)n+1 f(1⊗n)δ(1) = 0

proves ∂f ∈ C(N)
n+1.

C: For f ∈ C(C)
n we get

∂f ? µ(n+1)

=

(
δ ⊗ f +

n∑
k=1

(−1)kf ◦ (idk−1 ⊗ µ⊗ idn−k) + (−1)n+1f ⊗ δ
)
? µ(n+1).

Next we show, that each summand commutes with µ under convolution:
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(δ ⊗ f) ? µ(n+1)(a1 ⊗ · · · ⊗ an+1)

= δ
(
a

(1)
1

)
f
(
a

(1)
2 ⊗ · · · ⊗ a

(1)
n+1

)
a

(2)
1 . . . a

(2)
n+1

= a1f
(
a

(1)
2 ⊗ · · · ⊗ a

(1)
n+1

)
a

(2)
2 . . . a

(2)
n+1

= a1f
(
a

(2)
2 ⊗ · · · ⊗ a

(2)
n+1

)
a

(1)
2 . . . a

(1)
n+1 (as f ? µ(n) = µ(n) ? f)

= a
(1)
1 . . . a

(1)
n+1δ

(
a

(2)
1

)
f
(
a

(2)
2 ⊗ · · · ⊗ a

(2)
n+1

)
= µ(n+1) ? (δ ⊗ f)(a1 ⊗ · · · ⊗ an+1).

Analogously, we see that (f⊗δ)?µ(n+1) = µ(n+1) ? (f⊗δ). For the remaining summands

we calculateÄ
f ◦ (idk−1 ⊗ µ⊗ idn−k)

ä
? µ(n+1)(a1 ⊗ · · · ⊗ an+1)

= f
(
a

(1)
1 ⊗ · · · ⊗ (a

(1)
k a

(1)
k+1)⊗ · · · ⊗ a(1)

n+1

)
a

(2)
1 . . . a

(2)
k a

(2)
k+1 . . . a

(2)
n+1

= f
(
a

(1)
1 ⊗ · · · ⊗ (akak+1)(1) ⊗ · · · ⊗ a(1)

n+1

)
a

(2)
1 . . . (akak+1)(2) . . . a

(2)
n+1

(as ∆ is an algebra homomorphism)

= f
(
a

(2)
1 ⊗ · · · ⊗ (akak+1)(2) ⊗ · · · ⊗ a(2)

n+1

)
a

(1)
1 . . . (akak+1)(1) . . . a

(1)
n+1

(as f ? µ(n) = µ(n) ? f)

= µ(n+1) ?
Ä
f ◦ (idk−1 ⊗ µ⊗ idn−k)

ä
(a1 ⊗ · · · ⊗ an+1).

All in all, we conclude ∂f ? µ(n+1) = µ(n+1) ? ∂f , hence ∂f ∈ C(C)
n+1.

H: Let f̃ = ±f . For n odd we get›∂f(a1, . . . , an+1) = ∂f(a∗n+1, . . . , a
∗
1)

= δ(a∗n+1)f(a∗n, . . . , a
∗
1) +

n∑
i=1

(−1)n+1−i f(a∗n+1, . . . , a
∗
i+1a

∗
i , . . . , a

∗
1)

+f(a∗n+1, . . . , a
∗
2)δ(a∗1)
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= δ(a1)f̃(a2, . . . , an+1) +
n∑
i=1

(−1)i f̃(a1, . . . , aiai+1, . . . , an+1)

+ f̃(a1, . . . , an)δ(an+1)

= ±∂f(a1, . . . , an+1)

and for n even we calculate›∂f(a1, . . . , an+1) = ∂f(a∗n+1, . . . , a
∗
1)

= δ(a∗n+1)f(a∗n, . . . , a
∗
1)

+
n∑
i=1

(−1)n+1−i f(a∗n+1, . . . , a
∗
i+1a

∗
i , . . . , a

∗
1)− f(a∗n+1, . . . , a

∗
2)δ(a∗1)

= −δ(a1)f̃(a2, . . . , an+1)

−
n∑
i=1

(−1)i f̃(a1, . . . , aiai+1, . . . , an+1) + f̃(a1, . . . , an)δ(an+1)

= ∓∂f(a1, . . . , an+1).

So we see that f ∈ C(H)
n implies ∂f ∈ C(H)

n+1.

Since the intersection of subcomplexes is again a subcomplex we have

3.2.4 Corollary. C(NC)
n := C

(N)
n ∩ C(C)

n and C
(NCH)
n := C

(NC)
n ∩ C(H)

n are cochain

complexes with the coboundary operator (3.2.1).

3.2.2 Characterization of the Trivial Deformations

For an additive deformation of the bialgebra B the generator L of the convolution semi-

group (δ ◦ µt)t∈R+ is an element of Z(NC)
2 and conversely if L ∈ Z(NC)

2 we can define an

additive deformation via µt := µ ? etL? . In the case of a ∗-bialgebra the generators are

exactly the elements of Z(NCH)
2 . We wish to answer the question, which deformations are

generated by the coboundaries, that is the elements of B(NC)
2 or B(NCH)

2 respectively.

3.2.5 Theorem. Let B be a bialgebra, L ∈ B(NC)
2 , L = ∂ψ with ψ ∈ C(NC)

1 and put

Φt = id?e−tψ? and µt = µ?etL? . Then (Φt)t∈R+ is a semigroup of linear automorphisms of
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3 Additive Deformations

B. Furthermore, the Φt are unital algebra isomorphisms Φt : (B, µ)→ (B, µt), for which

(Φt ⊗ id) ◦∆ = (id⊗ Φt) ◦∆ for all t ∈ R+ (3.2.2)

and (δ◦Φt)t∈R+ is a pointwise continuous convolution semigroup. If B is a ∗-bialgebra and

L ∈ B(NCH)
2 , then we can choose ψ ∈ C(NCH)

1 and the Φt are ∗-algebra isomorphisms.

Conversely, if (Φt)t∈R+ is semigroup of invertible linear mappings Φt : B → B such

that (δ ◦ Φt)t∈R+ pointwise continuous, (3.2.2) holds and Φt(1) = 1 for all t ∈ R+, then

µt := Φt ◦ µ ◦
Ä
Φ−1
t ⊗ Φ−1

t

ä
defines an additive deformation of B with generator L ∈ B

(NC)
2 . If B is a ∗-algebra

and the Φt are hermitian, then we get an additive deformation of a ∗-bialgebra and

L ∈ B(NCH)
2 .

We postpone the proof a bit. When B is a bialgebra and ϕ : B → C a linear functional

on B we define

Rϕ : B → B, Rϕ := id ? ϕ = (id⊗ ϕ) ◦∆.

3.2.6 Lemma. For ϕ,ψ ∈ B′ the following hold:

(i) Rϕ ◦Rψ = Rϕ?ψ

(ii) δ ◦Rϕ = ϕ

(iii) Rδ⊗ϕ = id⊗Rϕ

(iv) Rϕ⊗δ = Rϕ ⊗ id

(v) µ ◦Rϕ◦µ = Rϕ ◦ µ

Note that the last three equations are between linear maps defined on the bialgebra B⊗B.

Proof. This is all straightforward to verify.

Proof of Theorem 3.2.5. Let B be a bialgebra and L = ∂ψ ∈ B(NC)
2 a coboundary with

ψ ∈ C(NC)
1 . We write ϕt := e−tψ? and note that this is a pointwise continuous convolution
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3.2 Additive Deformations of Bialgebras

semigroup and the ϕt are commuting (that is ϕt ? id = id ? ϕt) since ψ is. Then the

mappings Φt = Rϕt yield a semigroup of linear operators on B with δ◦Φt = ϕt and we only

need to show that they are unital algebra isomorphisms. It is obvious, that Φt(1) = 1,

since ψ(1) = 0, and Φt◦Φ−t = id, so Φt is invertible. We have to prove that Φt : (B, µ)→

(B, µt) is an algebra homomorphism, that is µt = µ ? etL? = Φt ◦ µ ◦
Ä
Φ−1
t ⊗ Φ−1

t

ä
. Using

that δ ⊗ ψ, ψ ◦ µ and ψ ⊗ δ commute under convolution, we find

etL? = et∂ψ? = e
t(δ⊗ψ−ψ◦µ+ψ⊗δ)
? = e−tψ◦µ? ? etδ⊗ψ? ? etψ⊗δ?

= (ϕt ◦ µ) ? (δ ⊗ ϕ−t) ? (ϕ−t ⊗ δ).

From this we conclude

µt = µ ? etL? =
Ä
µ⊗ et∂ψ?

ä
◦ Λ = µ ◦RetL? = µ ◦R(ϕt◦µ)?(δ⊗ϕ−t)?(ϕ−t⊗δ)

= µ ◦Rϕt◦µ ◦
(
id⊗Rϕ−t

)
◦
(
Rϕ−t ⊗ id

)
= Rϕt ◦ µ ◦

(
Rϕ−t ⊗Rϕ−t

)
= Φt ◦ µ ◦

Ä
Φ−1
t ⊗ Φ−1

t

ä
.

It is clear that the Φt are ∗-homomorphisms in the ∗-bialgebra case.

Now let (Φt)t∈R+ be semigroup of invertible linear mappings with Φt(1) = 1 and

(Φt ⊗ id) ◦∆ = (id ⊗ Φt) ◦∆ such that (ϕt)t∈R+ , ϕt := δ ◦ Φt, is pointwise continuous.

We observe that

1. The family (ϕt)t∈R+ is a pointwise continuous convolution semigroup with generator

ψ ∈ C(NC)
1 . Indeed,

ϕs ? ϕt =
Ä
(δ ◦ Φs)⊗ (δ ◦ Φt)

ä
◦∆ = (δ ⊗ δ) ◦ (Φs ⊗ id) ◦ (id⊗ Φt) ◦∆

= (δ ⊗ δ) ◦ (Φs ⊗ id) ◦ (Φt ⊗ id) ◦∆

= (δ ⊗ δ) ◦ (Φs+t ⊗ id) ◦∆ = ϕs+t

and ψ(1) = 0, ψ ? id = id ? ψ follow from ϕt(1) = 1 and ϕt ? id = id ? ϕt via

differentiation.
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3 Additive Deformations

2. It holds that Φt = Rϕt for all t. This is shown by the simple calculation

Rϕt =
Ä
id⊗ (δ ◦ Φt)

ä
◦∆ = (id⊗ δ) ◦ (id⊗ Φt) ◦∆

= (id⊗ δ) ◦ (Φt ⊗ id) ◦∆ = Φt.

So the first part of the theorem tells us, that L = ∂ψ ∈ B(NC)
2 is the generator of an

additive deformation, for which µt = Φt ◦ µ ◦
Ä
Φ−1
t ⊗ Φ−1

t

ä
. If B is a ∗-bialgebra and

all the Φt are hermitian, then so are all the ϕt = δ ◦ Φt and via differentiation also ψ.

This shows ψ ∈ C(NCH)
1 and thus L = ∂ψ ∈ B(NCH)

2 . So the deformation is an additive

deformation of a ∗-bialgebra.

3.2.7 Remark. Let L ∈ B2, that is L = ∂ψ for an arbitrary linear functional ψ. Because

of L(1⊗1) = δ(1)ψ(1) − ψ(1) + ψ(1)δ(1) = ψ(1), L ∈ C
(N)
2 implies ψ ∈ C

(N)
1 and

therefore B(N)
2 = B2 ∩C(N)

2 . If L is hermitian, 1
2(ψ+ ψ̃) is a hermitian linear functional,

whose coboundary is also L. This showsB(H)
2 = B2∩C(H)

2 . But it is not clear under which

circumstances B(C)
2 = B2 ∩C(C)

2 holds, that is if there are 2-coboundaries that commute

but are not coboundaries of a commuting linear functional. This possible difference is

actually the main reason why we need the altered cochain complex to get a good notion

of trivial deformations.

3.3 Additive Deformations of Hopf Algebras

Deforming the multiplication of a bialgebra B also gives a deformed convolution product

?t for linear maps from B to B

A ?t B := µt ◦ (A⊗B) ◦∆,

where (µt)t∈R is a deformation of the multiplication map µ of B. Recall that B is a Hopf

algebra if the identity map on B has a convolution inverse S, called antipode. We ask,

whether there are also deformed antipodes St which fulfill

µt ◦ (St ⊗ id) ◦∆ = µt ◦ (id⊗ St) ◦∆ = 1δ, (3.3.1)
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3.3 Additive Deformations of Hopf Algebras

that is whether the identity map also has an inverse with respect to the deformed con-

volution ?t. An additive deformation which admits deformed antipodes is called a Hopf

deformation in this section. In a Hopf algebra, the antipode S is an algebra antihomo-

morphism and a coalgebra antihomomorphism, that is

S ◦ µ = µ ◦ (S ⊗ S) ◦ τ,

∆ ◦ S = τ ◦ (S ⊗ S) ◦∆.

Similar properties hold for the deformed antipodes St of a Hopf deformation. We can

prove (Theorem 3.3.4)

St ◦ µ−t = µt ◦ τ ◦ (St ⊗ St), (3.3.2)

∆ ◦ St+r = (St ⊗ Sr) ◦ τ ◦∆. (3.3.3)

Applying δ ⊗ δ to (3.3.3) we get

δ ◦ St+r =
Ä
(δ ◦ St)⊗ (δ ◦ Sr)

ä
◦ τ ◦∆ =

Ä
(δ ◦ Sr)⊗ (δ ◦ St)

ä
◦∆,

that is δ ◦ St is a convolution semigroup with respect to ? = (· ⊗ ·) ◦∆. So one would

like to prove that this semigroup has a generator, such that the St are of the form

St = S ? e−tσ? . (3.3.4)

To get a hint how to find σ, we assume for the moment that δ ◦ St is differentiable in 0

and define

σ := − d

dt
δ ◦ St

∣∣∣∣
t=0

.

Then we can apply δ to (3.3.1) and differentiate to get

L ◦ (S ⊗ id) ◦∆− σ = L ◦ (id⊗ S) ◦∆− σ = 0
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3 Additive Deformations

or after rearranging

σ = L ◦ (S ⊗ id) ◦∆ = L ◦ (id⊗ S) ◦∆. (3.3.5)

In fact, we will prove that every additive deformation of a Hopf algebra is a Hopf de-

formation and (3.3.4) and (3.3.5) give a formula for the deformed antipodes; see Theo-

rem 3.3.10.

In two special cases the structure can even be better understood. In the case of a

trivial deformation it is easy to see that

St = Φt ◦ S ◦ Φt

is another way to find the deformed antipodes. Differentiating this equation also gives a

second formula for the generator

σ = ψ + ψ ◦ S.

If the bialgebra B is cocommutative, we show that every additive deformation splits in a

trivial part and a part with constant antipodes. Applying δ to (3.3.2) and differentiating

yields

−σ ◦ µ− L = L ◦ (S ⊗ S) ◦ τ − σ ⊗ δ − δ ⊗ σ

or after rearranging

L+ L ◦ (S ⊗ S) ◦ τ = δ ⊗ σ − σ ◦ µ+ σ ⊗ δ = ∂σ.

So L can be written as

L =
1

2
∂σ︸ ︷︷ ︸

:=L1

+
1

2

Ä
L− L ◦ (S ⊗ S) ◦ τ

ä
︸ ︷︷ ︸

:=L2

.

If B is cocommutative, the second part corresponds to constant antipodes, see Theo-

rem 3.3.12 and Lemma 3.3.13.
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3.3 Additive Deformations of Hopf Algebras

3.3.1 Existence of Deformed Antipodes

We start with extending an additive deformation from the half line to the line.

3.3.1 Lemma. Let B be a bialgebra and L the generator of an additive deformation.

Then we can define µt := etL? ? µ for all t ∈ R (that is not only for t ≥ 0). Furthermore,

∆ : Bs+t → Bs ⊗ Bt is an algebra homomorphism for all s, t ∈ R.

Proof. It follows from Theorem 3.2.2 that −L is the generator of an additive deformation,

so for t < 0 the definition of µt yields a multiplication on B. We calculate

∆ ◦ µs+t = ∆ ◦
(
µ⊗ e(s+t)L

?

)
◦ Λ =

(
(∆ ◦ µ)⊗ e(s+t)L

?

)
◦ Λ

=
Ä
µ⊗ µ⊗ esL? ⊗ etL?

ä
◦ Λ(4)

=
Ä
µ⊗ esL? ⊗ µ⊗ etL?

ä
◦ Λ(4)

=
(Ä
µ ? esL?

ä
⊗
Ä
µ ? etL?

ä)
◦ Λ

= (µs ⊗ µt) ◦ Λ

for all s, t ∈ R.

From now on we always view an additive deformation as a family of multiplications

indexed by all real numbers.

3.3.2 Definition. An additive deformation is called a Hopf deformation if for all t ∈ R

there exists a linear mapping St : B → B such that

µt ◦ (St ⊗ id) ◦∆ = µt ◦ (id⊗ St) ◦∆ = 1δ. (3.3.6)

The St are referred to as deformed antipodes.

For t = 0 the above defintion of course implies that B is a Hopf algebra with antipode

S = S0.

3.3.3 Remark. Many proofs in this section follow a common path. To show an identity

a = b, we find an element c and a convolution product � such that a � c = c � b = δ where
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3 Additive Deformations

δ is the neutral element for �. Then we can conclude

a = a � δ = a � c � b = δ � b = b.

This is the usual argument to prove that an element in a semigroup is invertible if and

only if it has a left and a right inverse.

3.3.4 Theorem. Let (µt)t∈R be a Hopf deformation of B. Then the deformed antipodes

St are uniquely determined by (3.3.6). Furthermore, the following statements hold:

(i) St(1) = 1

(ii) St ◦ µ−t = µt ◦ (St ⊗ St) ◦ τ

(iii) ∆ ◦ St+r = (St ⊗ Sr) ◦ τ ◦∆

(iv) If B is cocommutative, that is ∆ = τ ◦ ∆, then St is invertible for all t ∈ R and

(St)
−1 = S−t.

Proof. (Uniqueness) : By (3.3.6), St is the two-sided convolution inverse of the identity

map on B with respect to ?t.

(i): Follows from 1 = µt ◦ (St ⊗ id) ◦∆(1) = St(1).

(ii): We prove that both sides are convolution inverses of µt with respect to ?t. For the

left hand side we calculate

(St ◦ µ−t) ?t µt = µt ◦ (St ⊗ id) ◦ (µ−t ⊗ µt) ◦ Λ

= µt ◦ (St ⊗ id) ◦∆ ◦ µ = 1δ ◦ µ = 1δ ⊗ δ,

and for the right hand side we get

µt ?t
Ä
µt ◦ (St ⊗ St) ◦ τ

ä
(a⊗ b)

= µt ◦ (µt ⊗ µt) ◦
(
id2 ⊗

Ä
(St ⊗ St) ◦ τ

ä)
◦ Λ (a⊗ b)

= µ
(4)
t

(
a(1) ⊗ b(1) ⊗ St

Ä
b(2)

ä
⊗ St

Ä
a(2)

ä)
= δ(b)µt

(
a(1) ⊗ St

Ä
a(1)

ä)
= δ(a)δ(b)1.
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(iii): For linear maps A,B from the coalgebra (B,∆) to the algebra (Bt ⊗ Br) we have

a convolution � defined as

A �B = (µt ⊗ µr) ◦ (id⊗ τ ⊗ id) ◦ (A⊗B) ◦∆.

We show that both sides of (iii) are inverses of ∆ with respect to �. For the left hand

side we get

(∆ ◦ St+r) �∆ = (µt ⊗ µr) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗∆) ◦ (St+r ⊗ id) ◦∆

= ∆ ◦ µt+r ◦ (St+r ⊗ id) ◦∆ = ∆(1)δ = 1⊗ 1δ,

and for the right hand side

∆ �
Ä
(St ⊗ Sr) ◦ τ ◦∆

ä
(a)

= (µt ⊗ µr) ◦ (id⊗ τ ⊗ id) ◦ (id2 ⊗ St ⊗ Sr) ◦ (id2 ⊗ τ) ◦∆(4)(a)

= (µt ⊗ µr)
Ä
a(1) ⊗ St(a(4))⊗ a(2) ⊗ Sr(a(3))

ä
= µt

Ä
a(1) ⊗ St(a(2))

ä
⊗ 1 = δ(a)1⊗ 1.

(iv): Suppose ∆ = τ ◦∆. We prove St ◦S−t = id by showing that St ◦S−t is convolution

inverse to St. Therefore we calculate

(St ◦ S−t) ?t St = µt ◦ (St ⊗ St) ◦ (S−t ⊗ id) ◦∆

= St ◦ µ−t ◦ τ ◦ (S−t ⊗ id) ◦∆

= St ◦ µ−t ◦ (id⊗ S−t) ◦ τ ◦∆ = δSt(1) = 1δ.

Since St is invertible with respect to ?t, the left inverse St ◦ S−t is automatically a two

sided inverse. Thus St ◦ S−t = id.

The Deformed Antipodes for Trivial Deformations We start with showing the exis-

tence of deformed antipodes for all trivial deformations. We find simple descriptions of

the deformed antipodes. From these descriptions we can easily read, when the deformed
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antipodes of a trivial deformation are constant.

3.3.5 Theorem. Let B be a Hopf algebra and (µt)t∈R a trivial deformation with µt =

Φt ◦ µ ◦ (Φ−1
t ⊗ Φ−1

t ) and Φt = id ? e−tψ? for a commuting, normalized linear functional

ψ. Then (µt)t∈R is a Hopf deformation with deformed antipodes

St = Φt ◦ S ◦ Φt = S ? e
−t(ψ◦S+ψ)
?

for all t ∈ R.

Proof. For St = Φt ◦ S ◦ Φt we calculate

µt ◦ (St ⊗ id) ◦∆ = Φt ◦ µ ◦ (Φ−1
t ⊗ Φ−1

t ) ◦
Ä
(Φt ◦ S ◦ Φt)⊗ id

ä
◦∆

= Φt ◦ µ ◦ (S ◦ Φt ⊗ Φ−1
t ) ◦∆

= Φt ◦ µ ◦ (S ⊗ Φ−1
t ) ◦ (Φt ⊗ id) ◦∆

= Φt ◦ µ ◦ (S ⊗ Φ−1
t ) ◦ (id⊗ Φt) ◦∆

= Φt ◦ µ ◦ (S ⊗ id) ◦∆

= Φt(1)δ = 1δ

which proves that St is a left inverse of the identity on B with respect to ?t. In the same

way one proves that St is a right inverse.

Now we consider the case St = S ? e
−t(ψ◦S+ψ)
? . We first recall that ψ is commuting

and L = ∂ψ is the generator of the additive deformation. Next we observe that

(ψ ◦ S) ? S = (ψ ⊗ id) ◦ (S ⊗ S) ◦∆

= (ψ ⊗ id) ◦ τ ◦∆ ◦ S

= (ψ ⊗ id) ◦∆ ◦ S

= (id⊗ ψ) ◦ (S ⊗ S) ◦∆ = S ? (ψ ◦ S).

With this in mind we calculate

µt ◦ (St ⊗ id) ◦∆ (a) = (µ⊗ etL? ) ◦ Λ
(
e−tψ?

Ä
S(a(1))

ä
e−tψ? (a(2)) · S(a(3))⊗ a(4)

)
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= e−tψ?

Ä
S(a(1))

ä
e−tψ? (a(2))e

tL
?

Ä
S(a(3))⊗ a(4)

ä
1

= δ(a)1,

since

etL? (S(a(1))⊗ a(2))

= etδ⊗ψ? (S(a(1))⊗ a(2))e
−tψ◦µ
? (S(a(3))⊗ a(4))e

tψ⊗δ
? (S(a(5))⊗ a(6))

= etψ? (a(1))e
tψ
? (S(a(2))).

Again, the proof that St is also a right inverse is similar.

An alternative way to prove the second equality in the theorem is to write Φt =

(e−tψ? ⊗ id) ◦ ∆ in St = Φt ◦ S ◦ Φt and make use of the fact that S, ψ and ψ ◦ S all

commute with each other under convolution.

It is still possible that the deformed antipodes are constant. We have

3.3.6 Theorem. Let (St)t∈R be the deformed antipodes of a trivial deformation with

µt = Φt ◦ µ ◦ (Φ−1
t ⊗ Φ−1

t ). Then St = S for all t ∈ R if and only if

Φt ◦ S = S ◦ Φ−t.

for all t ∈ R.

Proof. This follow directly from St = Φt ◦ S ◦ Φt and Φ−1
t = Φ−t.

The Deformed Antipodes in the General Case We want to show that every additive

deformation of a Hopf algebra is a Hopf deformation and give a formula for the deformed

antipodes. Let B be a Hopf algebra and L the generator of an additive deformation

(µt)t∈R.

3.3.7 Lemma. We have

L ◦ (S ⊗ id) ◦∆ = L ◦ (id⊗ S) ◦∆.
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3 Additive Deformations

Proof. From ∂L = 0 it follows easily that L(a⊗ 1) = L(1⊗ a) = 0 for all a ∈ B. Hence,

0 = ∂L
Ä
a(1) ⊗ S(a(2))⊗ a(3)

ä
= δ(a(1))L

Ä
S(a(2))⊗ a(3)

ä
− L

Ä
a(1)S(a(2))⊗ a(3)

ä
+ L

Ä
a(1) ⊗ S(a(2))a(3)

ä
− L

Ä
a(1) ⊗ S(a(2))

ä
δ(a(3))

= L
Ä
S(a(1))⊗ a(2)

ä
− L

Ä
a(1) ⊗ S(a(2))

ä
.

We define

σ := L ◦ (id⊗ S) ◦∆ = L ◦ (S ⊗ id) ◦∆. (3.3.7)

We freely choose between the two possibilities to write σ, but Lemma 3.3.7 will only

be essential in the proofs of Theorem 3.3.12 and Lemma 3.3.13 in Section 3.3.2.

3.3.8 Lemma. The linear functional σ defined by (3.3.7) is commuting, that is

(σ ⊗ id) ◦∆ = (id⊗ σ) ◦∆.

Proof. Since L is commuting, we have

L(a(1) ⊗ S(a(2))) = L
Ä
a(1) ⊗ S(a(4))

ä
a(2)S(a(3)) = (L ? µ)

Ä
a(1) ⊗ S(a(2))

ä
= (µ ? L)

Ä
a(1) ⊗ S(a(2))

ä
= L

Ä
a(2) ⊗ S(a(3))

ä
a(1)S(a(4))

= a(1)L
Ä
a(2) ⊗ S(a(3))

ä
S(a(4)).

This helps us to see

(σ ⊗ id) ◦∆(a) = σ(a(1))a(2) =
Ä
L ◦ (id⊗ S) ◦∆

ä
(a(1)) a(2)

= L
Ä
a(1) ⊗ S(a(2))

ä
a(3)

= a(1)L
Ä
a(2) ⊗ S(a(3))

ä
S(a(4))a(5)
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= a(1)L
Ä
a(2) ⊗ S(a(3))

ä
= (id⊗ σ) ◦∆(a).

3.3.9 Lemma. The following equations hold:

(i) L?n ◦ (id⊗ S) ◦∆ = σ?n

(ii) etL? ◦ (id⊗ S) ◦∆ = etσ? .

Proof. We prove (i) by induction over n. For n = 0, 1 the proposition is clear. Using

that σ commutes by Lemma 3.3.8, we calculate

L?n+1
Ä
a(1) ⊗ S(a(2))

ä
= L ? L?n

Ä
a(1) ⊗ S(a(2))

ä
= L

Ä
a(1) ⊗ S(a(4))

ä
L?n

Ä
a(2) ⊗ S(a(3))

ä
= L

Ä
a(1) ⊗ S(a(3))

ä
σ?n(a(2))

= L
Ä
a(1)σ

?n(a(2))⊗ S(a(3))
ä

= L
Ä
σ?n(a(1))a(2) ⊗ S(a(3))

ä
= σ?n(a(1))σ(a(2)) = σ?n+1(a).

The equation (ii) follows easily from (i) by

etL? ◦ (id⊗ S) ◦∆ =
∞∑
n=0

tn

n!
L?n ◦ (id⊗ S) ◦∆ =

∞∑
n=0

tn

n!
σ?n = etσ? .

3.3.10 Theorem. Every additive deformation of a Hopf algebra is a Hopf deformation.

The deformed antipodes are given by the formula

St = S ? e−tσ?

with σ defined by (3.3.7).
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3 Additive Deformations

Proof. Making use Lemma 3.3.9, we calculate

µt ◦ (id⊗ St) ◦∆(a) = etL? ? µ
Ä
a(1) ⊗ S(a(2))

ä
e−tσ? (a(3))

= etL?
Ä
a(1) ⊗ S(a(4))

ä
a(2)S(a(3))e

−tσ
? (a(5))

= etL?
Ä
a(1) ⊗ S(a(2))

ä
e−tσ? (a(3))1

= etσ? (a(1))e
−tσ
? (a(2))1 = δ(a)1,

so St is a left inverse of the identity map with respect to ?t. In the same manner one can

show that St is a right inverse.

3.3.2 Constant Antipodes in the Cocommutative Case

We will show in this section that an additive deformation of a cocommutative Hopf

algebra always splits into a trivial part and a part with constant antipodes. Let σ be the

linear functional defined by (3.3.7).

3.3.11 Lemma. We have ∂σ = L+ L ◦ (S ⊗ S) ◦ τ.

Proof. From

0 = ∂L
Ä
S(b(1))⊗ S(a(1))⊗ a(2)b(2)

ä
= δ(b(1))L

Ä
S(a(1))⊗ a(2)b(2)

ä
− L

Ä
S(b(1))S(a(1))⊗ a(2)b(2)

ä
+ L

Ä
S(b(1))⊗ S(a(1))a(2)b(2)

ä
− L

Ä
S(b(1))⊗ S(a(1))

ä
δ(a(2)b(2))

= L
Ä
S(a(1))⊗ a(2)b

ä
− L

Ä
S(b(1))S(a(1))⊗ a(2)b(2)

ä
+ δ(a)L

Ä
S(b(1))⊗ b(2)

ä
− L

Ä
S(b)⊗ S(a)

ä
we conclude

δ(a)L
Ä
S(b(1))⊗ b(2)

ä
− L

Ä
S(b(1))S(a(1))⊗ a(2)b(2)

ä
= L

Ä
S(b)⊗ S(a)

ä
− L

Ä
S(a(1))⊗ a(2)b

ä
. (3.3.8)
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From

0 = ∂L
Ä
S(a(1))⊗ a(2) ⊗ b

ä
= δ(a(1))L(a(2) ⊗ b)− L

Ä
S(a(1))a(2) ⊗ b

ä
+ L

Ä
S(a(1))⊗ a(2)b

ä
− L

Ä
S(a(1))⊗ a(2)

ä
δ(b)

= L(a⊗ b)− δ(a)L(1⊗ b)

+ L
Ä
S(a(1))⊗ a(2)b

ä
− L

Ä
S(a(1))⊗ a(2)

ä
δ(b)

we conclude

−L
Ä
S(a(1))⊗ a(2)b

ä
+ L

Ä
S(a(1))⊗ a(2)

ä
δ(b) = L(a⊗ b), (3.3.9)

since L(1⊗ b) = 0. Using the (3.3.8) and (3.3.9), we calculate

∂σ(a⊗ b) = δ(a)σ(b)− σ(ab) + σ(a)δ(b)

= δ(a)L
Ä
S(b(1))⊗ b(2)

ä
− L

Ä
S(a(1)b(1))⊗ a(2)b(2)

ä
+ L

Ä
S(a(1))⊗ a(2)

ä
δ(b)

= δ(a)L
Ä
S(b(1))⊗ b(2)

ä
− L

Ä
S(b(1))S(a(1))⊗ a(2)b(2)

ä
+ L

Ä
S(a(1))⊗ a(2)

ä
δ(b)

= L
Ä
S(b)⊗ S(a)

ä
− L

Ä
S(a(1))⊗ a(2)b

ä
+ L

Ä
S(a(1))⊗ a(2)

ä
δ(b)

= L
Ä
S(b)⊗ S(a)

ä
+ L(a⊗ b).

3.3.12 Theorem. Let B be a Hopf algebra and L the generator of an additive deforma-

tion. Furthermore assume σ = σ ◦ S. Then

L̃ = L− 1

2
∂σ

is the generator of a Hopf deformation (µ̃t)t∈R, which has constant antipodes, that is

µ̃t ◦ (S ⊗ id) ◦∆ = 1δ = µ̃t ◦ (id⊗ S) ◦∆ for all t ∈ R.

65



3 Additive Deformations

Proof. We can write

L =
1

2

Ä
L+ L ◦ (S ⊗ S) ◦ τ

ä
︸ ︷︷ ︸

:=L1

+
1

2

Ä
L− L ◦ (S ⊗ S) ◦ τ

ä
︸ ︷︷ ︸

:=L2

Then we have L1 = ∂ σ2 and σ2 := L2 ◦ (S ⊗ id) ◦∆ = 0, since

L ◦ (S ⊗ S) ◦ τ ◦ (S ⊗ id) ◦∆ = L ◦ (id⊗ S) ◦ (S ⊗ S) ◦ τ ◦∆

= L ◦ (S ⊗ id) ◦∆ ◦ S

= σ ◦ S = σ,

where we made essential use of Lemma 3.3.7.

3.3.13 Lemma. If B is cocommutative, we have σ = σ◦S for every additive deformation.

Proof. With the use Lemma 3.3.7 we calculate

σ ◦ S = L ◦ (S ⊗ id) ◦∆ ◦ S = L ◦ (S ⊗ id) ◦ (S ⊗ S) ◦ τ ◦∆

= L ◦ (S2 ⊗ S) ◦ τ ◦∆ = L ◦ (id⊗ S) ◦∆ = σ.

So when deforming a cocommutative Hopf algebra one can always find an equivalent

deformation such that St = S for all t ∈ R.

3.3.3 Examples

We will use Theorem 3.3.12 to decompose additive deformations in several examples. For

the first example we need some preparatory results. Let B be a bialgebra. An element

a ∈ B is called primitive, if

∆(a) = a⊗1 + 1⊗ a.

It follows directly that δ(a) = 0 for every primitive element a.
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3.3.14 Proposition. Let B be a bialgebra with additive deformation µt = µ ? etL? and

a, b ∈ B. If a and b are primitive, we have

µt(a⊗ b) = ab+ tL(a⊗ b)1.

Proof. First let us calculate the coproduct,

Λ(a⊗ b) = (id⊗ τ ⊗ id)
Ä
∆(a)⊗∆(b)

ä
= (id⊗ τ ⊗ id)

Ä
(a⊗1 + 1⊗ a)⊗(b⊗1 + 1⊗ b)

ä
= (id⊗ τ ⊗ id)(a⊗1⊗ b⊗1 + a⊗1⊗1⊗ b+ 1⊗ a⊗ b⊗1 + 1⊗ a⊗1⊗ b)

= a⊗ b⊗1⊗1 + a⊗1⊗1⊗ b+ 1⊗ τ(a⊗ b)⊗1 + 1⊗1⊗ a⊗ b.

Since L(1⊗ c) = L(c⊗1) = 0 for all c ∈ B and δ(b) = δ(a) = 0, we get

etL? (a⊗ b) =

Ç
δ⊗ δ + tL+

t2

2
L ? L+ · · ·

å
(a⊗ b) = tL(a⊗ b)

etL? (a⊗1) = etL? (1⊗ b) = 0

etL? (1⊗1) = (δ⊗ δ)(1⊗1) = 1.

It follows that

µt(a⊗ b) = (µ ? etL? ) (a⊗ b) = ab+ tL(a⊗ b)1.

Let L be an abelian Lie algebra, that is [a, b] = 0 for all a, b ∈ L. Consider the

universal enveloping Hopf algebra U(L), that is the symmetric tensor algebra over L

with the unique comultiplication such that all elements of L are primitive. This is indeed

a Hopf algebra with antipode given by S(a) := −a on elements of L. In the case where

L is of finite dimension n this is just the polynomial Hopf algebra in n commuting

indeterminates.

3.3.15 Proposition. For two additive deformations µ(1)
t , µ

(2)
t of U(L) with generators

L1, L2 the following statements are equivalent:
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(i) L1−L2 is a coboundary that is the two deformations differ by a trivial deformation

(ii) µ
(1)
t (a⊗ b− b⊗ a) = µ

(2)
t (a⊗ b− b⊗ a) for all a, b ∈ L, t ∈ R

(iii) L1(a⊗ b− b⊗ a) = L2(a⊗ b− b⊗ a) for all a, b ∈ L, t ∈ R

Proof. For any additive deformation of U(L) we have

µt(a⊗ b) = ab+ tL(a⊗ b)1

by Proposition 3.3.14. This implies the equivalence of (ii) and (iii).

To prove that (i) is equivalent to (iii), it suffices to show that L is a coboundary if

and only if L(a⊗ b− b⊗ a) = 0 for all a, b ∈ L. Indeed, we can put L = L1 −L2. So let

L = ∂ψ be a coboundary. Since the counit vanishes on elements of L and L is abelian,

we conclude

L(a⊗ b− b⊗ a) = −ψ(ab− ba) = 0.

Now let L(a ⊗ b − b ⊗ a) = 0 for all a, b ∈ L. Choose a basis of L and introduce any

ordering on this bases. Then define

ψ(a1 · · · an) :=


L(a1 · · · an−1 ⊗ an) for n ≥ 2 and a1 ≤ . . . ≤ an

0 otherwise.

We write L̃ = L + ∂ψ and µ̃t = µ ? etL̃? . Now an easy induction on n shows that

µ̃
(n)
t (a1 ⊗ · · · ⊗ an) = a1 · · · an for a1 ≤ · · · ≤ an. But from the equivalence of (ii)

and (iii) we know that µ̃t is commutative so we get µ̃t = µ for all t ∈ R. Finally,

L̃ = L+ ∂ψ = 0 shows that L is a coboundary.

3.3.16 Example. In this example we realize the algebra of the quantum harmonic

oscillator as the essentially only non-trivial additive deformation of the Hopf ∗-algebra

of polynomials in adjoint commuting variables C [x, x∗] with comultiplication and counit
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defined via

∆(xε) = xε ⊗ 1 + 1⊗ xε and δ(xε) = 0,

where ε ∈ {1, ∗}.

It follows from Proposition 3.3.15 that a deformation of C [x, x∗] is determined up to

a trivial deformation by the value of L(x⊗ x∗ − x∗ ⊗ y) = µ1(x⊗ x∗ − x∗ ⊗ x). In case

of a ∗-deformation L must be hermitian, so this is a real number. Choosing different

constants here corresponds to a rescaling of the deformation parameter t. We assume

L(x⊗x∗−x∗⊗x) = 1. There is also a canonical representative for the cohomology class of

the generator for which the antipodes are constant. Choosing L(x⊗x∗) = −L(x∗⊗x) = 1
2

yields σ = 0.

One gets a well defined ∗-algebra isomorphism from the algebra generated by a, a†

and 1 with the relation aa† − a†a = 1 to the deformation of the polynomial algebra

(C [x, x∗] , µ1) by setting Φ(a) = x and Φ(a†) = x∗. In this sense the quantum harmonic

oscillator algebra is the only non-trivial additive deformation of the polynomial algebra

in two commuting adjoint variables.

In the next three examples we take as Hopf algebra the group algebra CG over a

group G with comultiplication given by ∆g = g ⊗ g for elements of G. We identify

linear functionals on (CG)⊗ k with functions on Gk in the obvious way. If (µt)t∈R is an

additive deformation of CG with generator L : G×G→ C, the deformed multiplication

on groupelements g1, g2 ∈ G is given by µt(g1 ⊗ g2) = etL(g1,g2)g1g2.

3.3.17 Example. We saw that in the cocommutative case it is possible to split an

additive deformation into a trivial part and a part that corresponds to constant antipodes.

But it is still possible that the part with constant antipodes is trivial, as this example

shows. Consider the function L : Z× Z→ C defined by

L(m,n) = m2n+mn2.

The function L is a coboundary, since L = ∂ψ for ψ(k) = −1
3k

3. We also see that

L(0, 0) = 0 and L is commuting, so L ∈ B(NC). Therefore it generates a trivial deforma-
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tion. In the following, group elements inside CZ are denoted by (k) to avoid confusion

with the complex number k. The deformation generated by L is non-constant, since

µ1

Ä
(1)⊗ (1)

ä
= eL(1,1)(2) = e2(2) 6= (2) = µ((1)⊗ (1)).

Since σ(k) = L(k,−k) = −k3 + k3 = 0 for all k ∈ Z, the antipodes are constant. We can

calculate the isomorphisms Φt for the trivial deformation and get

Φt((k)) = e−tψ(k)(k) = etk
3
(k).

The second way for calculating the St yields

St(k) = Φt ◦ S ◦ Φt(k) = e−tk
3
Φt(−k) = e−tk

3
etk

3
(−k) = (−k).

So this is a situation, where we have S ◦ Φt = Φ−t ◦ S, compare Theorem 3.3.6.

3.3.18 Example. On Zd every d× d-matrix A with complex entries defines a 2-cocycle

L via

L(k, l) := kAlt

for k, l ∈ Zd, since the functions ((k1, . . . , kd), (l1, . . . , ld)) 7→ kilj define cocycles for i, j =

1, . . . , d, as is easily checked. These cocycles are of course normalized and commuting,

so they are generators of additive deformations on a cocommutative Hopf algebra. L

is hermitian if and only if A is hermitian. We want to apply Theorem 3.3.12, so we

calculate

σ(k) = L(k,−k) = −kAkt

and

∂
σ

2
(k, l) =

1

2

Ä
−kAkt + (k + l)A(k + l)t − lAlt

ä
=

1

2

Ä
kAlt + lAkt

ä
= k

A+At

2
lt
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which gives

L̃(k, l) =

Å
L− 1

2
∂σ

ã
(k, l) = k

A−At

2
lt.

So every such cocycle is equivalent to one which comes from an antisymmetric matrix.

3.3.19 Example. Let G be a group. then CG can be turned into a Hopf ∗-algebra in a

natural way by extending the map ∗ : g 7→ g−1 antilinearly to the whole of CG. On the

group elements the involution ∗ coincides with the antipode S. Now let L be a generator

of an additive ∗-deformation, that is L is a normalized hermitian 2-cocycle. Then

∂
σ

2
(g, h) =

Ä
L+ L ◦ (S ⊗ S) ◦ τ

ä
(g, h)

=
1

2

Ä
L(g, h) + L(h∗, g∗)

ä
=

1

2

Ä
L(g, h) + L(g, h)

ä
= ReL(g, h)

and, consequently,

L̃(g, h) = L− 1

2
∂σ(g, h) = ImL(g, h).

So one has to consider only the case where L is purely imaginary on the group elements.

3.4 Additive Deformations of Braided Hopf Algebras

In [Ger09] quantum Lévy processes on additive deformations of ∗-bialgebras were con-

structed and for the additive deformation on C [x, x∗] (discussed in the beginning of this

chapter) this resulted in a pair of operator processes fulfilling canonical commutation

relations.

If one wants to mimic the constructions on C [x, x∗] for the algebra with two adjoint

anti-commuting generators, there is the problem that this is not a ∗-bialgebra, but a

graded ∗-bialgebra (see for example [Sch93]). In this section we generalize the definition

of an additive deformation even to the case of a braided bialgebra in the sense of [Maj95,

Definition 9.4.5] (respectively [FS99] for ∗-bialgebras). However, we do not work with

braided tensor categories, but it is sufficient in our context to define braided vector spaces

as in [Ufe04], because we are concerned only with tensor powers of the same vector space.
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For more clarity we use a graphic calculus, in the literature known as “braid diagrams”.

We show how the generator calculus and the Schoenberg correspondence of [Wir02]

can be carried over to braided ∗-bialgebras (see Section 3.4.2 respectively 3.4.4). Whereas

most results can be proved along the lines of [Wir02] for the bialgebra case, the diagram-

matic approach gives more insight into the structure of these proofs and things get more

involved in the ∗-bialgebra case, where we use the definition of a braided ∗-bialgebra of

[FS99]. Our version of the Schoenberg correspondence (Theorem 3.4.14) generalizes and

unifies two older versions:

I In [FSS03] there are no additive deformations allowed.

I In [Wir02] additive deformations are considered, but no braidings.

The existence of deformed antipodes, which was established for the non-braided case in

Section 3.3.1, also remains true, as we show in Section 3.4.3.

3.4.1 Braided Structures and Braid Diagrams

A braided vector space is a pair (V, β) consisting of a vector space V and a braiding β ∈

Aut(V ⊗V ), that is a linear automorphism of V ⊗V which satisfies the braid equation

(β⊗ id) ◦ (id⊗β) ◦ (β⊗ id) = (id⊗β) ◦ (β⊗ id) ◦ (id⊗β).

For reasons of clarity and comprehensibility, we use well known braid diagrams (see for

example [Maj95, p. 430 f.]) to express coherences with braidings. In this notation the

braid equation above can be visualized by

=

In our case we do not assume that the braiding fulfills the symmetry condition β2 =

idV ⊗V . So we distinguish them by under and over crossing like the figure explains:

β = β−1 =
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Other morphisms will be represented as nodes with the corresponding number of input

and ouput strings. For the multiplication µ : A⊗A → A and the unit 1 : K→ A on an

algebra A respectively for the comultiplication ∆ : C → C ⊗C and the counit δ : C → K

on a coalgebra C we use the shorthand notations:

µ = · 1 = ◦ ∆ = · δ = ◦

One defines βm,n : V ⊗m⊗V ⊗n → V ⊗n⊗V ⊗m for every braiding β ∈ Aut(V ⊗V )

inductively by

β0,0 := idC, β1,m+1 := (idV ⊗β1,m) ◦ (β⊗ idV ⊗m),

β1,0 = β0,1 := idV , βn+1,m := (βn,m⊗ idV ) ◦ (idV ⊗n ⊗β1,m).

The braiding βm,n can be illustrated by the figure

βm,n =

...

...

...

...︸︷︷︸
n

︸︷︷︸
m

m︷︸︸︷ n︷︸︸︷

Note that (β−1)n,m is its inverse.

Crucial properties for linear maps on braided vector spaces (V, β) are the following.

A linear map f : V ⊗m → V ⊗n is called β-invariant , if

(f ⊗ id) ◦ β1,m = β1,n ◦ (id⊗ f)

and accordingly β−1-invariant if

(id⊗ f) ◦ βm,1 = βn,1 ◦ (f ⊗ id).

In case f fulfils both invariance conditions, we refer to f as β-compatible.

3.4.1 Remark. One can easily see that the tensor product and the composition of β-
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invariant (respectively β−1-invariant and β-compatible) linear maps is again β-invariant

(respectively β−1-invariant and β-compatible). For a β-invariant linear map f : V ⊗m →

V ⊗n and a β−1-invariant linear map g : V ⊗ k → V ⊗ l, we get

(f ⊗ g) ◦ βk,m = βl,n ◦ (g⊗ f).

As an example for a (trivial) braiding we get the flip-operator τ(v⊗w) = w⊗ v. Obvi-

ously, all linear maps are τ -compatible.

To switch between two braided vector spaces (V1, β1) and (V2, β2), we use the notion

of a braided morphism. A linear map f : V1 → V2 will be called braided morphism, if

(f ⊗ f) ◦ β1 = β2 ◦ (f ⊗ f).

Expressed by braid diagrams, this equation looks like

f f
= f f

A braided algebra (A, µ,1, β) is a unital associative algebra (A, µ,1) and a braided vector

space (A, β), such that µ and 1 are β-compatible, that is

(µ⊗ id) ◦ β1,2 = β ◦ (id⊗µ), (id⊗µ) ◦ β2,1 = β ◦ (µ⊗ id),

(1⊗ id) = β ◦ (id⊗ 1), (id⊗1) = β ◦ (1⊗ id).

We can visualize these four conditions by

·
=

·

·
=

·
◦ =

◦ ◦ =
◦

We define M1 := µ and Mn for n ≥ 2 inductively via

Mn := (µ⊗Mn−1) ◦
Ä
id⊗βn−1,1⊗ id⊗(n−1)

ä
.
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Then
Ä
A⊗n,Mn, 1⊗n, βn,n

ä
becomes a braided algebra. In particular,Ä

A⊗A,M, 1⊗1, β2,2

ä
is a braided algebra, whereby M := M2 = (µ⊗µ) ◦ (id⊗β⊗ id). Note that the usual

multiplication map on A⊗A has changed: We get the braiding β instead of the flip

operator τ .

Dually, a braided coalgebra (C,∆, δ, β) is a coalgebra (C,∆, δ) and a braided vector

space (C, β), such that ∆ and δ are β-compatible, that is

(∆⊗ id) ◦ β = β1,2 ◦ (id⊗∆), (id⊗∆) ◦ β = β2,1 ◦ (∆⊗ id),

(δ⊗ id) ◦ β = (id⊗ δ), (id⊗ δ) ◦ β = (δ⊗ id).

The corresponding diagrams are:

·
=

·

·
=

·
◦=◦ ◦=◦

Analogous to the multiplication map in the algebra case, we define Λ1 := ∆ and for

n ≥ 2 inductively by

Λn :=
Ä
id⊗β1,n−1⊗ id⊗(n−1)

ä
◦ (∆⊗Λn−1).

Then
Ä
C⊗n,Λn, δ⊗n, βn,n

ä
becomes a braided coalgebra. In particular,Ä

C ⊗C,Λ, δ⊗ δ, β2,2

ä
is a braided coalgebra, whereby Λ := Λ2 = (id⊗β⊗ id) ◦ (∆⊗∆).

3.4.2 Remark. Given a braided algebra A and a braided coalgebra C, it can be easily

shown that the opposite algebra Aop := (A, µ ◦ β,1, β) is a braided algebra and the

coopposite coalgebra Ccop := (C, β ◦∆, δ, β) is also a braided coalgebra. The algebra A is

said to be commutative, if µ = µ ◦ β and the coalgebra C is referred to as cocommutative

in case β ◦∆ = ∆.
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A braided bialgebra (B,∆, δ, µ,1, β) is a braided algebra (B, µ,1, β) and a braided

coalgebra (B,∆, δ, β), such that δ, ∆ are braided algebra homomorphisms, that is

∆ ◦ µ = (µ⊗µ) ◦ (id⊗β⊗ id) ◦ (∆⊗∆) (3.4.1)

δ ◦ µ = δ⊗ δ

is fulfilled. Equation (3.4.1) is called braided bialgebra condition and differs from the

usual bialgebra condition. In the used graphical calculus the picture

·

·
=
· ·

· ·

represents this equation.

A homomorphism f : (B1, β1)→ (B2, β2) of braided bialgebras is defined as a homo-

morphism of algebras and coalgebras such that (f ⊗ f) ◦ β1 = β2 ◦ (f ⊗ f).

If B is a braided bialgebra, B⊗n is a coalgebra and B⊗m is an algebra for all n,m ∈ N.

It follows directly from Remark 3.4.1 that the convolution R?T of compatible linear maps

R, T : B⊗n → B⊗m is compatible.

A braided bialgebra H is called braided Hopf algebra if it is also a Hopf algebra.

Graphically, the antipode condition is expressed by

·

·
S =

◦
◦

=
·

·
S

3.4.3 Remark. For a braided Hopf algebra (H,∆, δ, µ,1, S, β), similar to the nonbraided

case, the following properties are fulfilled.

I The antipode S is uniquely determined if it exists.

I S is a braided algebra and coalgebra anti-homomorphism, that is

S ◦ µ = µ ◦ β ◦ (S⊗S), S ◦ 1 = 1, ∆ ◦ S = β ◦ (S⊗S) ◦∆, δ ◦ S = δ
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are satisfied. The first equation follows from the fact that both sides of this equation

are convolution inverses of µ. The third equation follows analogously to the first.

The second and fourth equation can be shown as in the non-braided case.

I S is β-compatible, which can be visualized by

S
= S

S
= S

I If in addition H is commutative as an algebra or cocommutative as a coalgebra,

then S2 = id holds. If H is cocommutative, that is β ◦∆ = ∆, the diagrams

=

◦

◦
·

·

=

◦

◦

·

·

S

=

·

··

·
S

S
=

·

··

·
S S

S
= S

S
S

··

· ·

=

··

··

S

S

S

=

· ·

· ·

S

S

S

=

S

S

show S2 = id. The proof in the commutative situation is analogous.

I It can be easily seen that the braiding β is determined by the formula

β = (µ⊗µ) ◦
Ä
S⊗(∆ ◦ µ)⊗S

ä
◦ (∆⊗∆).

Now we want to define involutions on braided algebraic structures. We follow the

definition of an involutive braided bialgebra or braided ∗-bialgebra given by Franz, Schott,

and Schürmann (see [FSS03] or [Fra06], Section 3.8), which differs from that given by

Majid in [Maj95, Proposition 10.3.2].

A braided ∗-bialgebra (B,∆, δ, µ,1, β, ∗) is a braided bialgebra (B,∆, δ, µ,1, β) with

an anti-linear map ∗ : B → B such that (B, µ,1, ∗) is a ∗-algebra and there exists an

involution ∗B⊗B on B⊗B for which the canonical embeddings B → B⊗B ← B and ∆

are ∗-algebra homomorphisms.

3.4.4 Remark. From the definition above we get the following properties concerning
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braided ∗-bialgebras:

I If the canonical embeddings a 7→ a⊗1 and a 7→ 1⊗ a are ∗-algebra homomor-

phisms, we have (a⊗1)∗ = a∗⊗1 and (1⊗ a)∗ = 1⊗ a∗. Since the involution on

B⊗B shall be an anti-algebra homomorphism, we get

(a⊗ b)∗ =
Ä
(a⊗1)(1⊗ b)

ä∗
= (1⊗ b)∗(a⊗1)∗ = (1⊗ b∗)(a∗⊗1)

= (µ⊗µ) ◦ (id⊗β⊗ id)(1⊗ b∗⊗ a∗⊗1)

= β(b∗⊗ a∗) = β ◦ (∗⊗∗) ◦ τ(a⊗ b).

(Note that we used the β-compatible multiplication M = (µ⊗µ) ◦ (id⊗β⊗ id) on

B⊗B instead of the usual one.) It follows that the involution on B⊗B is given by

∗B⊗B = β ◦ (∗⊗∗) ◦ τ,

where τ is the usual flip operator τ(a⊗ b) = b⊗ a.

I Summarizing, we get an equivalent definition for braided ∗-bialgebras: A braided

∗-bialgebra B is a braided bialgebra B with an involution ∗, such that

(∗B⊗B)2 =
Ä
β ◦ (∗⊗∗) ◦ τ

ä2
= idB⊗B.

The involution ∗ is, in general, not β-compatible, but fulfills

β ◦ (∗⊗∗) ◦ τ = (∗⊗∗) ◦ τ ◦ β−1.

This condition contains the flip operator and the braiding. To avoid confusion, we

did not use braid diagrams in calculation with ∗.

I Note that the multiplication µ and the comultiplication ∆ fulfill

∗ ◦ µ = µ ◦ (∗⊗∗) ◦ τ, ∆ ◦ ∗ = ∗B⊗B ◦∆.

Now we want to show a central but not obvious property of hermitian bilinear func-
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tionals on a braided coalgebra. We call a bilinear functional K : C ⊗C → C on a braided

coalgebra C hermitian if K(a∗⊗ b∗) = K(b⊗ a) for all a, b ∈ C. Note that this condition

differs from K
Ä
(a⊗ b)∗B⊗B

ä
= K(a⊗ b).

3.4.5 Proposition. Suppose we have two hermitian, bilinear functionals K,L on a

braided ∗-coalgebra (C,∆, δ, β). If K is β-invariant or L is β−1-invariant, the convo-

lution K ? L is hermitian, too.

Proof. That K and L are hermitian means K = K ◦ (∗⊗∗) ◦ τ and L = L ◦ (∗⊗∗) ◦ τ .

We calculate

(K ? L) ◦ (∗⊗∗) ◦ τ

= (K ⊗L) ◦ Λ ◦ (∗⊗∗) ◦ τ

= (K ⊗L) ◦ (∗⊗∗⊗∗⊗∗) ◦ (τ ⊗ τ) ◦ (id⊗β⊗ id) ◦ (∆⊗∆) ◦ (∗⊗∗) ◦ τ

= (K ⊗L) ◦ (∗⊗∗⊗∗⊗∗) ◦ (τ ⊗ τ) ◦ (id⊗β⊗ id)

◦ (β⊗β) ◦ (∗⊗∗⊗∗⊗∗) ◦ (τ ⊗ τ) ◦ (∆⊗∆) ◦ τ

= (K ⊗L) ◦ (∗⊗∗⊗∗⊗∗) ◦ (τ ⊗ τ) ◦ (id⊗β⊗ id)

◦ (∗⊗∗⊗∗⊗∗) ◦ (τ ⊗ τ) ◦ (β−1⊗β−1) ◦ τ2,2 ◦ (∆⊗∆)

= (K ⊗L) ◦ (∗⊗∗⊗∗⊗∗) ◦ (τ ⊗ τ) ◦ (id⊗β⊗ id)

◦ (∗⊗∗⊗∗⊗∗) ◦ (τ ⊗ τ) ◦ τ2,2 ◦ (β−1⊗β−1) ◦ (∆⊗∆)

= (K ⊗L) ◦ (∗⊗∗⊗∗⊗∗) ◦ (τ ⊗ τ) ◦ (id⊗β⊗ id)

◦ (∗⊗∗⊗∗⊗∗) ◦ (id⊗ τ ⊗ id) ◦ τ(14) ◦ (β−1⊗β−1) ◦ (∆⊗∆)

= (K ⊗L) ◦ (τ ⊗ τ) ◦ (∗⊗∗⊗∗⊗∗) ◦ (∗⊗∗⊗∗⊗∗) ◦ (id⊗ τ ⊗ id)

◦ (id⊗β−1⊗ id) ◦ τ(14) ◦ (β−1⊗β−1) ◦ (∆⊗∆)

= (K ⊗L) ◦ (τ ⊗ τ) ◦ (id⊗ τ ⊗ id) ◦ τ(14)

◦ (id⊗β−1⊗ id) ◦ (β−1⊗β−1) ◦ (∆⊗∆)

= (K ⊗L) ◦ τ2,2 ◦ β−1
2,2 ◦ Λ

= (L⊗K) ◦ β−1
2,2 ◦ Λ = (K ⊗L) ◦ Λ = K ? L,

wherein τ(14) is defined by a⊗ b⊗ c⊗ d 7→ d⊗ b⊗ c⊗ a. We used the β-invariance of K
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(respectively β−1-invariance of L) twice at the last step.

It follows directly from Proposition 3.4.5 that for a hermitian and β-compatible bilin-

ear functional L : C ⊗C → C the convolution exponential etL? is also hermitian for every

t ∈ R. We will need this in the following section.

3.4.2 Generator Calculus

Let (B,∆, δ, µ,1, β) be a braided bialgebra. Then we call a family (µt)t∈R of β-compatible

maps µt : B⊗B → B an additive deformation if

I µ0 = µ,

I Bt = (B, µt, 1, β) is a braided unital algebra for all t ∈ R,

I ∆ ◦ µt+s = (µt⊗µs) ◦ (id⊗β⊗ id) ◦ (∆⊗∆) for all t, s ∈ R,

I δ ◦ µt −−→
t→0

δ ◦ µ0 = δ⊗ δ pointwise.

Assume B is a braided ∗-bialgebra. Then we call (µt)t∈R an additive ∗-deformation if in

addition

I µt(a
∗⊗ b∗) = µt(b⊗ a)∗ for all t ∈ R,

that is ∗ ◦ µt = µt ◦ (∗⊗∗) ◦ τ .

3.4.6 Remark. The third condition states that the comultiplication ∆ is a ∗-algebra

homomorphism from Bs+t into Bs⊗Bt, as the comultiplication on the bialgebra B⊗B is

defined by Λ = (id⊗β⊗ id) ◦ (∆⊗∆).

3.4.7 Theorem. Suppose that B is a braided bialgebra and (µt)t∈R an additive deforma-

tion. Then

L =
d

dt
δ ◦ µt

∣∣∣∣
t=0
≡ lim

t→0+

1

t
(δ ◦ µt − δ⊗ δ)

exists pointwise and defines a β-compatible, commuting, normalized 2-cocycle which ful-

fills

µt = µ ? etL? . (3.4.2)
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If B is even a braided ∗-bialgebra and (µt)t∈R an additive ∗-deformation, then we have

additionally

L(a⊗ b) = L(b∗⊗ a∗). (3.4.3)

Conversely, for every β-compatible, commuting, normalized 2-cocycle L : B⊗B → C

on a braided bialgebra B, equation (3.4.2) defines an additive deformation. If B is a

braided ∗-bialgebra and L satisfies additionally (3.4.3), then (3.4.2) defines an additive

∗-deformation.

Proof. (in the non-braided case due to Wirth, see [Wir02]) Let (µt)t∈R be an additive

deformation. It follows that

(δ ◦ µs) ? (δ ◦ µt) = (δ⊗ δ) ◦ (µs⊗µt) ◦ Λ = (δ⊗ δ) ◦∆ ◦ µs+t = δ ◦ µs+t.

Thus (δ ◦ µt)t∈R is a continuous convolution semigroup, which implies that there exists

a generator L = limt→0
1
t (µt − δ⊗ δ) with δ ◦ µt = etL? . Moreover,

µ ? (δ ◦ µt) =
Ä
µ⊗(δ ◦ µt)

ä
◦ Λ = (id⊗ δ) ◦ (µ⊗µt) ◦ Λ = (id⊗ δ) ◦∆ ◦ µt = µt.

Analogously, (δ ◦ µt) ? µ = µt holds. The differentiation of

etL? ? µ = µ ? etL? , µt(1⊗1) = 1, µt ◦ (µt⊗ id) = µt ◦ (id⊗µt),

the β-compatibility of µt and ∗ ◦ µt = µt ◦ (∗⊗∗) ◦ τ (in the ∗-case) at t = 0 gives the

claimed properties of L.

Conversely, assume L : B⊗B → C is a β-compatible, commuting, normalized 2-

cocycle. We want to show the associativity of µt := µ?etL? . Obviously, the multiplication

µt is β-compatible due to Remark 3.4.1. First we show thatÄ
etL? ◦ (id⊗µ)

ä
? (δ⊗ etL? ) =

Ä
etL? ◦ (µ⊗ id)

ä
? (etL? ⊗ δ). (3.4.4)

Since (id⊗µ) is a coalgebra homomorphism, etL? ◦ (id⊗µ) = e
tL◦(id⊗µ)
? . From (δ⊗K1)?

(δ⊗K2) = δ⊗(K1 ? K2) we conclude that δ⊗ etL? = etδ⊗L? . It is easy to see that
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L ◦ (id⊗µ) and δ⊗L commute under convolution, so we haveÄ
etL? ◦ (id⊗µ)

ä
?
Ä
δ⊗ etL?

ä
=
Ä
e
tL◦(id⊗µ)
?

ä
?
Ä
etδ⊗L?

ä
= e

t(L◦(id⊗µ)+δ⊗L)
? .

Analogously, it holds thatÄ
etL? ◦ (µ⊗ id)

ä
?
Ä
etL? ⊗ δ

ä
= e

t(L◦(µ⊗ id)+L⊗ δ)
?

and (3.4.4) follows from the cocycle property δ⊗L−L◦(µ⊗ id)+L◦(id⊗µ)−L⊗ δ = 0.

Now we calculate µt ◦ (id⊗µt) with braid diagrams, where • means etL? . We get

· · ·

·

·

·

•

•

=

·

·

·

·

·

·

·

·

•

•
=

· ·

·

·

·

···

·

◦

•
•

The last diagram is equal to µ(3) ?
Ä
etL? ◦ (id⊗µ)

ä
?
Ä
δ⊗ etL?

ä
. In the same manner, we

get µt ◦ (µt⊗ id) = µ(3) ?
Ä
etL? ◦ (µ⊗ id)

ä
?
Ä
etL? ⊗ δ

ä
. So associativity of µt follows from

(3.4.4). We also have

µt(1⊗1) = µ ? etL? (1⊗1) = e
tL(1⊗ 1)
? µ(1⊗1) = 1

for all t ∈ R and, obviously, µ0 = µ is fulfilled. Now we prove that ∆ : Bt+s → Bt⊗Bs
is an algebra homomorphism

(µt⊗µs) ◦ Λ = (etL? ⊗µ⊗µ⊗ esL? ) ◦ Λ(4)

= (etL? ⊗µ⊗µ⊗ esL? ) ◦ (id⊗ id⊗Λ⊗ id⊗ id) ◦ Λ(3)

= ∆ ◦ (etL? ⊗µ⊗ esL? ) ◦ Λ(3)

= ∆ ◦ (µ⊗ etL? ⊗ esL? ) ◦ Λ(3)

= ∆ ◦ (µ⊗ e
(t+s)L
? ) ◦ Λ = ∆ ◦ µ(t+s).
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At last we need the implication: If L is hermitian, then Bt becomes a ∗-algebra, that is

µt(a⊗ b) = µt(b
∗⊗ a∗)∗:

∗ ◦µt ◦ (∗⊗∗) ◦ τ

= ∗ ◦ (µ ? etL? ) ◦ (∗⊗∗) ◦ τ

= ∗ ◦ (µ⊗ etL? ) ◦ (id⊗β⊗ id) ◦ (∆⊗∆) ◦ (∗⊗∗) ◦ τ

= (µ⊗ etL? ) ◦ (∗⊗∗⊗∗⊗∗) ◦ (τ ⊗ τ) ◦ (id⊗β⊗ id) ◦ (∆⊗∆) ◦ (∗⊗∗) ◦ τ

This last expression is the same as line three in the proof of Proposition 3.4.5 with K

replaced by µ and L replaced by etL? . The same manipulations can be performed and we

arrive at Ä
µ⊗ etL?

ä
◦ τ2,2 ◦ β−1

2,2 ◦ Λ =
Ä
etL? ⊗µ

ä
◦ β−1

2,2 ◦ Λ =
Ä
µ⊗ etL?

ä
◦ Λ = µt,

using the β−1-invariance of L.

3.4.8 Remark. A cohomological description in the sense of Section 3.2.1 is possible.

Put

C(β)
n {f : B⊗n → C | f is β-compatible}.

Then ∂C(β)
n ⊂ C

(β)
n+1 by Remark 3.4.1, so the C(β)

n form a subcomplex of the Hochschild

complex. We define CCNβ
n := CCN

n ∩ Cβn and CCNHβ
n := CCNH

n ∩ Cβn to obtain cochain

complexes such that the generators of additive deformations of braided (∗)-bialgebras are

exactly the 2-cocycles. The characterization of trivial deformations works analogously

to Section 3.2.2. The only change is that the appearing linear maps are required to be

β-compatible.

3.4.3 Hopf-Deformations

In this section, we want to show the existence of deformed antipodes on braided Hopf

(∗-)algebras and explore their properties. The use of Sweedler notation is heavily reduced

due to the braiding. Thus, the proofs are sometimes a bit more complicated than the
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proofs of the corresponding statements for the non-braided case in Section 3.3.

Let
Ä
H,∆, δ, µ,1, S, β, (∗)

ä
be a braided Hopf (∗-)algebra. If we have an additive

deformation (µt)t∈R with generator L, the equation

L ◦ (id⊗S) ◦∆ = L ◦ (S⊗ id) ◦∆ (3.4.5)

holds because of

0 = ∂L
Ä
a(1)⊗S(a(2))⊗ a(3)

ä
= L

Ä
S(a(1))⊗ a(2)

ä
− L(1⊗ a)︸ ︷︷ ︸

=0

+L(a⊗1)︸ ︷︷ ︸
=0

−L
Ä
a(1)⊗S(a(2))

ä
just as in the non-braided case, see Lemma 3.3.7.

3.4.9 Lemma. Let K be a β-invariant linear functional on H⊗H and define K̃ :=

K ◦ (S⊗ id) ◦∆. Then K ? µ = µ ? K implies K̃ ? id = id ? K̃.

Proof. First we use ∆ ◦ S = β ◦ (S⊗S) ◦∆ in order to get

Λ ◦ (S⊗ id) ◦∆ = (id⊗β⊗ id) ◦ (∆⊗∆) ◦ (S⊗ id) ◦∆

= (id⊗β⊗ id) ◦ (β⊗ id⊗ id) ◦ (S⊗S⊗ id⊗ id) ◦∆(4)

= (β1,2⊗ id) ◦ (S⊗S⊗ id⊗ id) ◦∆(4).

This allows us to calculate

(K ? µ) ◦ (S⊗ id) ◦∆ = (K ⊗µ) ◦ (β1,2⊗ id) ◦ (S⊗S⊗ id⊗ id) ◦∆(4)

= µ ◦ (S⊗ K̃ ⊗ id) ◦∆(3)

using β-invariance of K. Next we get

(µ ? K) ◦ (S⊗ id) ◦∆ = (µ⊗K) ◦ (β1,2⊗ id) ◦ (S⊗S⊗ id⊗ id) ◦∆(4)

= (id⊗K) ◦ (β⊗ id) ◦ (id⊗µ⊗ id) ◦ (S⊗S⊗ id⊗ id) ◦∆(4)

= (id⊗K) ◦ (β⊗ id) ◦ (S⊗1⊗ id) ◦∆ = 1 ◦ K̃
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using β-invariance of µ and 1 as well as the antipode equation. Combining these two

equations, it follows from K ? µ = µ ? K that

1 ◦ K̃ = (µ ? K) ◦ (S⊗ id) ◦∆ = (K ? µ) ◦ (S⊗ id) ◦∆ = µ ◦ (S⊗ K̃ ⊗ id) ◦∆(3),

or in Sweedler notation (suppressing the unit)

K̃(a) = S(a(1))K̃(a(2))a(3).

We conclude that

(id ? K̃)(a) = a(1)K̃(a(2)) = a(1)

Ä
S(a(2))K̃(a(3))a(4)

ä
= K̃(a(1))a(2) = (K̃ ? id)(a)

for all a ∈ H.

3.4.10 Corollary. The family Ft := etL? ◦ (S⊗ id) ◦∆ is a continuous convolution semi-

group and

etL? ◦ (S⊗ id) ◦∆ = etL? ◦ (id⊗S) ◦∆ = etσ?

with σ := L ◦ (S⊗ id) ◦∆.

Proof. The continuous convolution semigroup etL? fulfills etL? ? µ = µ ? etL? . Because of

Lemma 3.4.9, we have Ft ? id = id ? Ft. So we get

Ft ? Fs = (Ft⊗Fs) ◦∆ = etL? ◦ (S⊗ id⊗Fs) ◦∆(3) = etL? ◦ (S⊗Fs⊗ id) ◦∆(3)

= etL? ◦ (id⊗ esL? ⊗ id) ◦ (S⊗S⊗ id⊗ id) ◦∆(4)

= etL? ◦ (id⊗ esL? ⊗ id) ◦ (β−1⊗ id⊗ id) ◦ (∆⊗∆) ◦ (S⊗ id) ◦∆

= etL? ◦ (esL? ⊗ id⊗ id) ◦ (β1,2⊗ id) ◦ (β−1⊗ id⊗ id) ◦ (∆⊗∆) ◦ (S⊗ id) ◦∆

= etL? ◦ (esL? ⊗ id⊗ id) ◦ (id⊗β⊗ id) ◦ (∆⊗∆) ◦ (S⊗ id) ◦∆

= (esL? ⊗ etL? ) ◦ Λ ◦ (S⊗ id) ◦∆

= e
(t+s)L
? ◦ (S⊗ id) ◦∆ = Ft+s.
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3 Additive Deformations

The continuity of Ft follows from the continuity of etL? and differentiating gives us the

generator σ = L ◦ (S⊗ id) ◦∆.

Analogously, one concludes that the linear functionals etL? ◦ (id⊗S) ◦∆ constitute a

continuous convolution semigroup with generator L ◦ (id⊗S) ◦∆. But this equals σ due

to (3.4.5).

3.4.11 Theorem. Every additive deformation on a braided Hopf algebra provides a fam-

ily of deformed antipodes (St)t∈R with

St = S ? e−tσ? ,

where σ = L ◦ (id⊗S) ◦∆.

Proof. For Ft = etL? ◦ (id⊗S) ◦∆, we get

µt ◦
Ä
id⊗(S ? F−t)

ä
◦∆

= (etL? ⊗µ) ◦ Λ ◦ (id⊗S⊗F−t) ◦∆(3)

= (etL? ⊗µ) ◦ (id⊗β⊗ id) ◦ (∆⊗∆) ◦ (id⊗S⊗F−t) ◦∆(3)

= (etL? ⊗µ) ◦ (id⊗β⊗ id) ◦ (id⊗ id⊗β) ◦ (id⊗ id⊗S⊗S⊗F−t) ◦∆(5)

= (etL? ⊗ id) ◦ (id⊗β) ◦ (id⊗ 1⊗ id) ◦ (id⊗S⊗F−t) ◦∆(3)

= (etL? ⊗1) ◦ (id⊗S⊗F−t) ◦∆(3)

= 1 ◦ (Ft⊗F−t) ◦∆ = 1δ.

3.4.12 Theorem. Let (µt)t∈R be an additive deformation of a braided Hopf algebra with

generator L. Then the deformed antipodes St have the properties

(i) St(1) = 1,

(ii) St ◦ µ−t = µt ◦ (St⊗St) ◦ β,

(iii) ∆ ◦ St+r = (St⊗Sr) ◦ β ◦∆,

(iv) if B is commutative or cocommutative, we get St ◦ S−t = id and
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3.4 Additive Deformations of Braided Hopf Algebras

(v) if we have a braided Hopf ∗-algebra, S−t ◦ ∗ ◦ St ◦ ∗ = id is fulfilled.

Proof. The proof of (i) to (iv) is quite similar to the proof of Theorem 3.3.4 for the non-

braided case. For convenience of the reader we rewrite the main calculation for the proof

of (ii) avoiding Sweedler notation. Following the proof of Theorem 3.3.4, at one point we

have to show that µt ?t (µt ◦ (St⊗St) ◦β) = 1δ⊗ δ. Using (id⊗β) ◦ (β⊗ id) ◦ (id⊗∆) =

β1,2 ◦ (id⊗∆) = (∆⊗ id) ◦ β, we calculate

µt ?t (µt ◦ (St⊗St) ◦ β)

= µ
(4)
t ◦

(
id2⊗

Ä
(St⊗St) ◦ β

ä)
◦ (id⊗β⊗ id) ◦ (∆⊗∆)

= µ
(3)
t ◦ (id⊗µt⊗ id) ◦ (id⊗ id⊗St⊗St) ◦ (id⊗∆⊗ id) ◦ (id⊗β) ◦ (∆⊗ id)

= µ
(3)
t ◦ (id⊗1⊗ id) ◦ (id⊗St) ◦ (id⊗ δ⊗ id) ◦ (id⊗β) ◦ (∆⊗ id)

= µt ◦ (id⊗St) ◦∆ ◦ (id⊗ δ)

= 1δ⊗ δ.

The corresponding calculation for (iii) works similar, making use of (id⊗µr) ◦ (β⊗ id) ◦

(id⊗β) = (id⊗µr) ◦ β2,1 = β ◦ (µr ⊗ id).

For (v) we calculate

µ−t ◦
Ä
S−t⊗(S−t ◦ ∗ ◦ St ◦ ∗)

ä
◦∆

= µt ◦ (S−t⊗S−t) ◦ (∗⊗∗) ◦ (id⊗St) ◦ (∗⊗∗) ◦∆

= S−t ◦ µt ◦ β−1 ◦ (∗⊗∗) ◦ (id⊗St) ◦ (∗⊗∗) ◦∆

= S−t ◦ µt ◦ (∗⊗∗) ◦ τ ◦ β ◦ τ ◦ (id⊗St) ◦ (∗⊗∗) ◦∆

= S−t ◦ ∗ ◦ µt ◦ (id⊗St) ◦ β ◦ τ ◦ (∗⊗∗) ◦∆

= S−t ◦ ∗ ◦ µt ◦ (id⊗St) ◦∆ ◦ ∗

= S−t(1)(∗ ◦ δ ◦ ∗) = 1δ,

which shows that S−t ◦ ∗ ◦ St ◦ ∗ is inverse to S−t with respect to the convolution ?−t.

Hence, S−t ◦ ∗ ◦ St ◦ ∗ = id.
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3 Additive Deformations

3.4.4 Schoenberg Correspondence on Braided ∗-Bialgebras

A Schoenberg correspondence is a 1-1 correspondence between positive semigroups and

conditionally positive generators. The original version is for matrices and Schürmann

transferred this to a result for coalgebras.

3.4.13 Theorem (Special case of [Sch85, Theorem 4.2]). Let K be a hermitian bilinear

form on a ∗-coalgebra C. Then the following two statements are equivalent:

(i) etK? (c∗⊗ c) ≥ 0 for all c ∈ C, t ∈ R+,

(ii) K(c∗⊗ c) ≥ 0 for all c ∈ ker δ (K is conditionally positive).

In this section we prove the following theorem, which generalizes the version of Wirth

for additive deformations [Wir02, Theorem 2.1.11] as well as the version of Franz, Schott

and Schürmann for braided ∗-bialgebras [FSS03, Theorem 2.1].

A linear functional ϕ : A → C defined on a unital ∗-algebra A is called a state if

ϕ(1) = 1 and ϕ(a∗a) ≥ 0 for all a ∈ A. A linear functional ψ : B → C defined on a

∗-bialgebra B is called L-conditionally positive for a 2-cocycle L if (ψ ◦µ+L)(b∗⊗ b) ≥ 0

for all b ∈ ker δ.

3.4.14 Theorem (Schoenberg correspondence for braided additive deformations). Let

B be a braided ∗-bialgebra with an additive deformation (µt)t∈R and let ψ : B → C

be a hermitian, β-invariant linear functional with ψ(1) = 0. Then the following two

statements are equivalent:

(i) ϕt := etψ? is a state on Bt for all t ≥ 0,

(ii) ψ is L-conditionally positive.

Proof of (i)⇒ (ii). The function t 7→ ϕt ◦ µt (c∗⊗ c) is positive for t ≥ 0. For c ∈ ker δ

this function vanishes at 0, since

ϕ0 ◦ µ0 (c∗⊗ c) = (δ⊗ δ)(c∗⊗ c) = |δ(c)|2 = 0.

So the derivative d
dt

Ä
ϕt ◦ µt(b∗⊗ b)

ä∣∣∣
t=0

= (ψ ◦ µ + L)(b∗⊗ b) must be positive in this

case.
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3.4 Additive Deformations of Braided Hopf Algebras

The aim of the remainder of this short section is to prove the converse implication.

For a vector space V turn the set V := {v : v ∈ V } into a vector space by defining

v + λw := v + λw.

Now let (C,∆, δ) be a β-braided ∗-coalgebra. Then ∗ can be interpreted as a linear

map from C to C and from C to C. Recall that ∗B⊗B = (∗⊗∗) ◦ τ ◦ β−1. We define

a⊗ b := a⊗ b and set

∆ := (∗⊗∗) ◦ τ ◦ β−1 ◦∆ ◦ ∗, that is ∆(c) = ∆(c),

δ := δ ◦ ∗, that is δ(c) = δ(c),

β := (∗⊗∗) ◦ τ ◦ β−1 ◦ (∗⊗∗) ◦ τ, that is β(a⊗ b) = β(a⊗ b).

Then
Ä
C,∆, δ

ä
is a β-braided ∗-coalgebra and

Ä
C ⊗C, (id⊗ τ ⊗ id) ◦ (∆⊗∆), δ⊗ δ

ä
is a

usual ∗-coalgebra, that is a τ2,2-braided ∗-coalgebra.

We call a linear map C ⊗C → C bilinear form on C and a linear map C ⊗C → C

sesquilinear form on C. For a bilinear form K we define the corresponding sesquilinear

form K̃ := K ◦ (∗⊗ id). This is a bijection of bilinear forms and sesquilinear forms on C.

3.4.15 Lemma. Let ? be the convolution of bilinear forms with respect to the comultipli-

cation Λ = (id⊗β⊗ id) ◦ (∆⊗∆) on C ⊗C and let ~ be the convolution of sesquilinear

forms with respect to the comultiplication (id⊗ τ ⊗ id) ◦ (∆⊗∆) on C ⊗C. For two bi-

linear forms M and K on the β-braided ∗-coalgebra C the following is fulfilled. If M is

β-invariant, we have ·�M ?K = M̃ ~ K̃.

Proof.·�M ?K = (M ?K) ◦ (∗⊗ id)

= (M ⊗K) ◦ (id⊗β⊗ id) ◦ (∆⊗∆) ◦ (∗⊗ id)

= (M ⊗K) ◦ (id⊗β⊗ id) ◦ (β⊗ id⊗ id) ◦ (∗⊗∗⊗ id⊗ id) ◦ (τ ⊗ id⊗ id) ◦ (∆⊗∆)

= K ◦ (id⊗M ⊗ id) ◦ (∗⊗∗⊗ id⊗ id) ◦ (τ ⊗ id⊗ id) ◦ (∆⊗∆)

= (M ⊗K) ◦ (id⊗ τ ⊗ id) ◦ (τ ⊗ id⊗ id) ◦ (∗⊗∗⊗ id⊗ id) ◦ (τ ⊗ id⊗ id) ◦ (∆⊗∆)
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3 Additive Deformations

= (M ⊗K) ◦ (∗⊗ id⊗∗⊗ id) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗∆)

= M̃ ~ K̃.

With this lemma we get for a β-invariant bilinear form K on C

etK? (c∗⊗ c) = etK̃~ (c⊗ c)

so the following is now a direct consequence of Theorem 3.4.13.

3.4.16 Lemma. Let K be a β-invariant, hermitian bilinear form on a the β braided

∗-coalgebra C. Then the following two statements are equivalent:

(i) etK? (c∗⊗ c) ≥ 0 for all c ∈ C, t ∈ R+,

(ii) K(c∗⊗ c) ≥ 0 for all c ∈ ker δ.

With this we are able to prove the Schoenberg correspondence.

Proof of Theorem 3.4.14, (ii)⇒ (i). Let L be the generator of the additive deformation

(µt)t∈R and define K := ψ ◦ µ + L, which is a hermitian, conditionally positive bilinear

form on the β-braided ∗-bialgebra B. With the previous lemma we conclude

0 ≤ etK? (c∗⊗ c) = etψ◦µ+tL
? (c∗⊗ c) = etψ◦µ? ? etL? (c∗⊗ c) = etψ? ◦ (µ ? etL? )(c∗⊗ c)

= ϕt ◦ µt(c∗⊗ c),

since (ψ◦µ)?L = ψ◦(L?µ) = ψ◦(µ?L) = L?(ψ◦µ) and µ is a coalgebra homomorphism.

From ψ(1) = 0 it follows directly that etψ? (1) = etψ(1) = e0 = 1, since ∆(1) =

1⊗1.

3.4.5 The Fermi Harmonic Oscillator

We will need the corresponding result to 3.3.14, which determines additive deformations

on primiteve elements.
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3.4 Additive Deformations of Braided Hopf Algebras

3.4.17 Proposition. Let B be a β-braided bialgebra with additive deformation µt =

µ ? etL? and a, b ∈ B. If a and b are primitive, we have

µt(a⊗ b) = ab+ tL(a⊗ b)1.

Proof. The same as the proof of 3.3.14 for the unbraided case with τ replaced by β. This

works, because 1 is β-compatible.

Consider the polynomial algebra B̃ := C〈x, x∗〉 in two non-commuting adjoint inde-

terminates. For a monomial M we define the grade g(M) as the degree of the monomial

M . Then

β(M ⊗N) := (−1)g(M)g(N)N ⊗M

for monomials M,N defines a braiding on B̃, which is a symmetry, that is β2 = id⊗ id.

So β-invariance of a map is equivalent to β−1-invariance. It is easily checked that the

multiplication is β-invariant. B̃ is turned into a β-braided Hopf ∗-bialgebra by defining

comultiplication, counit and antipode on the generators as

∆
Ä
x(∗)

ä
= x(∗)⊗1 + 1⊗x(∗), δ

Ä
x(∗)

ä
= 0, S(x(∗)) = −x(∗)

and extending them as algebra homomorphisms, respectively anti-homomorphism in the

case of S. The ideal I generated by elements of the form xx∗+x∗x is a coideal. One has

to show δ(I) = 0, which is obvious, and ∆(I) ⊂ I ⊗ B̃ + B̃ ⊗ I. Therefore we calculate

∆(xx∗) = ∆(x)∆(x∗) = xx∗⊗1 + x⊗x∗ + β(x⊗x∗) + 1⊗xx∗

= xx∗⊗1 + x⊗x∗ − x∗⊗x+ 1⊗xx∗

and analogously ∆(x∗x) = x∗x⊗1 + x∗⊗x − x⊗x∗ + 1⊗x∗x. Combining these two

equations, we get

∆(xx∗ + x∗x) = (xx∗ + x∗x)⊗1 + 1⊗(xx∗ + x∗x) ∈ I ⊗ B̃ + B̃ ⊗ I.
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3 Additive Deformations

Furthermore, we have β(I ⊗ B̃ + B̃ ⊗ I) ⊂ I ⊗ B̃ + B̃ ⊗ I, so B := B̃/I is also a braided

Hopf ∗-algebra. A hermitian 2-cocycle on B is given by L(x∗⊗x) = 1 and L(M ⊗N) = 0

for all other monomials. We want to show that it is commuting and β-compatible. We

use the following general proposition.

3.4.18 Proposition. Let B be a braided bialgebra and β be a symmetry, that is β ◦ β =

id⊗ id. Then β ◦∆(a) = ∆(a) and β ◦∆(b) = ∆(b) implies that β ◦∆(ab) = ∆(ab). In

particular, B is cocommutative if B is generated by primitive elements.

Proof. Assume β ◦∆(a) = ∆(a) and β ◦∆(b) = ∆(b). Then we calculate

β ◦∆ ◦ µ(a⊗ b)

= β ◦ (µ⊗µ) ◦ (id⊗β⊗ id) ◦ (∆⊗∆)(a⊗ b)

= (µ⊗µ) ◦ (id⊗β⊗ id) ◦ (β⊗β) ◦ (id⊗β⊗ id)︸ ︷︷ ︸
β2,2

◦(id⊗β⊗ id) ◦ (∆⊗∆)(a⊗ b)

= (µ⊗µ) ◦ (id⊗β⊗ id) ◦ (β⊗β)(∆(a)⊗∆(b))

= (µ⊗µ) ◦ (id⊗β⊗ id) ◦ (∆⊗∆)(a⊗ b)

= ∆ ◦ µ(a⊗ b).

The second statement is a direct consequence of the first, since for a primitive element

a ∈ B

β ◦∆(a) = β(a⊗1 + 1⊗ a) = 1⊗ a+ a⊗1 = ∆(a)

and finite products of generators span B.

In our example β is a symmetry and B is generated by primitive elements, so B is

cocommutative. Then also B⊗B is cocommutative, as

β2,2 ◦ Λ = (id⊗β⊗ id) ◦ (β⊗β) ◦ (id⊗β2⊗ id) ◦ (∆⊗∆) = Λ.
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Hence, L ? µ = µ ? L is fulfilled. To see that L is β-invariant, we only need to calculate

(L⊗ id) ◦ (id⊗β) ◦ (β⊗ id)(M ⊗x∗⊗x) = (−1)2g(M)M

= M = (id⊗L)(M ⊗x∗⊗x)

for all monomials M , as L vanishes for other terms. L is obviously hermitian. We have

now completed showing that L is the generator of an additive ∗-deformation.

We calculate µt = (µ⊗ etL? ) ◦ Λ. First, we know from Proposition 3.4.17 that

µt(x
∗⊗x) = µ(x∗⊗x) + tL(x∗⊗x)1 = −xx∗ + t1 = −µt(x⊗x∗) + t1, (3.4.6)

since x and x∗ are primitive. Next, notice that µt(M ⊗N) and µ(M ⊗N) = MN can

only differ, when M contains a factor x∗ and N contains a factor x. With these two

facts we know µt, because of associativity. Let M = xm1(x∗)m2 and N = xn1(x∗)n2 with

m1,m2, n1, n2 ∈ N be two monomials. Write m = m1 +m2 and n = n1 + n2. Then

µt(M ⊗N) = µt ◦
Ä
µ(m)⊗µ(n)

ä Ä
(x⊗m1 ⊗(x∗)⊗m2)⊗(x⊗n1 ⊗(x∗)⊗n2)

ä
= µt ◦

(
µ

(m)
t ⊗µ(n)

t

) Ä
(x⊗m1 ⊗(x∗)⊗m2)⊗(x⊗n1 ⊗(x∗)⊗n2)

ä
= µ

(m+n)
t

Ä
x⊗m1 ⊗(x∗)⊗m2 ⊗x⊗n1 ⊗(x∗)⊗n2

ä
.

Now one can use (3.4.6) to calculate this. The ∗-algebra Bt = (B, µt) is isomorphic to

the ∗-algebra At generated by a, a∗ and 1 with the relation aa∗ + a∗a = t1. The map

a 7→ x, a∗ 7→ x∗ can be extended as an algebra homomorphism ‹Φt : C 〈a, a∗〉 → Bt. Since

the relation is respected, that is‹Φt(aa
∗ + a∗a) = µt(x⊗x∗ + x∗⊗x) = t = ‹Φt(t1),

we get an algebra homomorphism Φt : At → Bt. It is clear from our considerations on

µt that this is an isomorphism as it maps the vector space basis
¶
ak(a∗)l | k, l ∈ N

©
of

At to the vector space basis
¶
xk(x∗)l | k, l ∈ N

©
of Bt.

Since 0 is a hermitian, L-conditionally positive linear functional vanishing at 1, the

exponential et0? = δ is a state on every Bt. Note that this is less trivial than it seems at
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a first glance because for example δ
Ä
µt(x

∗⊗x)
ä

= δ(−xx∗ + t1) = t.

For every q 6= 0 there is a unique braiding βq on the algebra C 〈x, x∗〉 of two non-

commuting, adjoint indeterminates such that

I C 〈x, x∗〉 is a βq-braided ∗-algebra

I βq is defined on the generators in the following way:

βq(x⊗x) = q x⊗x βq(x⊗x∗) = q x∗⊗x

βq(x
∗⊗x) = q−1 x⊗x∗ βq(x

∗⊗x∗) = q−1 x∗⊗x∗

These equations determine βq on all pairs of monomials due to the compatibility of the

unit and the multiplication. There exists a compatible Hopf ∗-algebra structure such that

∆(x(∗)) = x(∗)⊗1+1⊗x(∗) and the ideal Iq generated by elements of the form xx∗−qx∗x

is a coideal with βq(I ⊗ B̃ + B̃ ⊗ I) ⊂ I ⊗ B̃ + B̃ ⊗ I. Dividing by this biideal yields a

βq-braided Hopf ∗-algebra Bq with two q-commuting, primitive, adjoint generators. Note

that for q = −1 the previous example is obtained. But for q 6= ±1 a multiplication µt on

Bq such that

µt(x⊗x∗ − qx∗⊗x) = t1

cannot be βq-compatible, as it would follow that

(µt⊗ id) ◦ (id⊗βq) ◦ (βq ⊗ id)︸ ︷︷ ︸
(βq)1,2

Ä
x⊗(x⊗x∗ − q x∗⊗x)

ä
= q2 t1⊗x,

but

βq ◦ (id⊗µt)
Ä
x⊗(x⊗x∗ − q x∗⊗x)

ä
= t1⊗x.

So this can only work for the considered cases q = ±1. Still, our version of the Schoenberg

correspondence applies to the braided Hopf ∗-algebras (B̃, βq) and (Bq, βq).

94



4 Dimension of Subproduct Systems

Most of the material in this chapter is taken from [GS14b] which is joint work with

Michael Skeide. The results in Section 4.2.2 for rational-time systems and Section 4.2.3

for continuous-time systems are not yet published.

We can think of a subproduct system as a family of Hilbert spaces (Ht)t∈S indexed

by some (abelian) monoid S with Hs+t ⊂ Hs⊗Ht for all s, t ∈ S. The precise definition

coincides with that of a comonoidal system over S in the tensor category of Hilbert spaces

with isometries as morphisms; see Section 2.3.1, Hilbert Spaces, or Definition 4.2.1. A

subproduct system is a product system ifHs+t fills the whole ofHs⊗Ht or more precisely

if it is full as a comonoidal system. Shalit and Solel study subproduct systems over Nn
0

in order to deal with the dilation problem for commuting CP0-semigroups. Bhat and

Mukherjee study subproduct systems over R+ (under the name of inclusion systems) as

a tool for the construction and analysis of amalgamated products of product systems.

Since the classification of product and subproduct systems is extremely difficult, we

adress a somewhat simpler question. Which possibilities are there for the dimension

function t 7→ dimHt of a product or subproduct system (Ht)t∈S. We will treat the

monoids S = N0 (discrete), S = Q+ (rational time), and S = R+ (continuous time). An

obvious necessary condition is submultiplicativity , that is dimHs+t ≤ dimHs dimHt for all

s, t ∈ S. Shalit and Solel explicitly raised the question whether for every submultiplicative

sequence there exists a discrete subproduct system with dimensions given by the sequence

in [SS09].

Before we come to subproduct systems themselves, we treat the somewhat sim-

pler case of Cartesian systems, which are comonoidal systems in the tensor category

(Setinj ,×) of sets with injections as morphisms and the Cartesian product as tensor

product. We exhibit a special kind of discrete Cartesian systems called word systems,
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4 Dimension of Subproduct Systems

and show that each Cartesian system is isomorphic to a word system. For word systems

the question of all possible cardinality sequences has quite some history, which we lay out

in 4.1.2. In 4.1.3 we prove some results which might be new, or at least we could not find

them in the literature. The problem is that the literature is vast and the terminology

far from unique. It seems many results in this area have been reproved several times.

Still we expect that especially the results which explicitly use the notion of Cartesian

systems are either new or get a much simpler proof by using our approach. The detailed

study of Cartesian systems proves useful, as we show in Section 4.2.1 that the dimen-

sion sequences of discrete subproduct systems coincide with the cardinality sequences

of Cartesian systems (and give some other characterizations). The difficult step of the

proof turned out to be a classical result on graded algebras, see Remark 4.2.6. A simple

conclusion is that not every submultiplicative sequence appears as dimension sequence of

a subproduct system, but of course the result tells us much more than this. We apply the

results for discrete systems in the study of rational-time and continuous-time systems.

For rational-time subproduct (and Cartesian) systems we present a simple characteriza-

tion of the dimension functions via the inequality (4.2.1), see Corollary 4.2.9. The same

inequality yields a characterization of the cardinality functions of continuous-time Carte-

sian systems (Theorem 4.2.18), but we do not know this for continuous-time subproduct

systems yet. At least, we get a necessary condition for the dimension function if the

subproduct system fulfills a mild continuity condition, see Theorem 4.2.19.

4.1 Cartesian Systems

We already gave a definition of Cartesian systems as comonoidal systems in (Setinj ,×),

see Section 2.3.1. But for convenience of the reader who is unfamiliar with category

theory, as well as to fix our standard notation for Cartesian systems in this chapter, we

repeat the definition in a more direct language.

4.1.1 Definition. A Cartesian system (over S) is a family X> = (Xt)t∈S of sets Xt

with X0 = {Λ} a one point set and with injections

is,t : Xs+t −→ Xs ×Xt

96



4.1 Cartesian Systems

such that the diagrams

Xr+s+t Xr+s ×Xt Xs

Xr ×Xs+t Xr ×Xs ×Xt X0 ×Xs Xs Xs ×X0

ir+s,t

ir,s+t ir,s×idt
i0,s is,0

ids

idr×is,t ∼= ∼=

commute. A family Y > = (Yt)t∈S of subsets Yt ⊂ Xt is a Cartesian subsystem of X> if

is,t(Ys+t) ⊂ Ys × Yt, where, as customary, we identify Ys × Yt ⊂ Xs ×Xt.

The aim of this section is to characterize sequences (dn)n∈N0 for which there exists

a Cartesian system X> with #Xn = dn for all n ∈ N0. Therefore we will present a

certain standard form of a Cartesian system named word systems. Those are Cartesian

systems for which there is a set A such that Xn ⊂ An and the injection im,n is simply the

restriction of the canonical identification Am+n ∼= Am×An to Xm+n. In this case the set

L :=
⋃
n∈N0

Xn is a factorial language, that is a subset of A∗ which is closed under taking

subwords or factors. Of course, one can recover the word system from the language L as

Xn = L∩An, so factorial languages and word systems are 1-1. The sequence (#Xn)n∈N0

is known as complexity of the factorial language. We show that every Cartesian system

is isomorphic to a word system. Hence all results about the complexities of factorial

languages translate to cardinality sequences of Cartesian systems. We list some known

results and prove some new results. The most relevant for the other parts of this chapter

is Theorem 4.1.9, [BB05, Theorem 8] of Balogh and Bollobás.

4.1.1 Discrete Cartesian Systems, Word Systems and Factorial Languages

Let us fix a set A, called alphabet. We refer to the elements of A as letters, the tuples

in A∗ =
⋃
n∈N0

An are called words and the subsets of A∗ are called languages. The

concatenation product of words turns A∗ into a monoid with the empty word Λ = () as

neutral element. In this section, we simply write

(a1, . . . , an)(b1, . . . , bm) := (a1, . . . , an, b1, . . . , bm),
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4 Dimension of Subproduct Systems

for the concatenation, omitting the symbol ^ which was used in Chapter 2. The length

of a word is |(a1, . . . , an)| := n. The complexity of a language L ⊂ A∗ is the sequence

(#(L ∩An))n∈N0 .

4.1.2 Proposition. Let A be an alphabet. Then the following statements hold:

(i) Every word w in A`1+···+`k factors uniquely as w = w1 · · ·wk with wi ∈ A`i .

(ii) Suppose Xi ⊂ A`i . Then w ∈ X1 · · ·Xk ⊂ A`1+···+`k if and only if wi ∈ Xi for all

i = 1, . . . , k.

Proof. This proposition is a simple consequence of the fact that A`1 × · · · ×A`k may be

identified with An by sending (w1, . . . , wk) to w1 · · ·wk, and of the fact that an element

s in a product S1 × · · · × Sk is a unique tuple (s1, . . . , sk).

4.1.3 Example. Choose an alphabet A. By Proposition 4.1.2(i), the restriction of the

concatenation product to Am × An is an invertible map onto Am+n. Define im,n to be

the inverse of this map. Then A× := (An)n∈N0 with the maps im,n is a Cartesian system,

the full word system over A.

4.1.4 Definition. Let A be an alphabet. A word system over A is a Cartesian subsystem

of the full word system over A.

4.1.5 Theorem. Every discrete Cartesian system X> = (Xn)n∈N0 is isomorphic to a

word system over X1.

Proof. The fastest way is to use Theorem 2.3.15. The full Cartesian system generated

by X> is clearly (Xn
1 )n∈N0 . The images of the canonical maps Dn : Xn → Xn

1 form the

desired word system.

We say a word y is a subword of w if there are words x, z ∈ A∗ with w = xyz. One

may check that the relation defined by y being a subword of x, is a partial order. Note

that some authors call this a factor, while using the term “subword” for a more general

concept.
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4.1 Cartesian Systems

4.1.6 Definition. A language L ⊂ A∗ is called factorial if it is closed with respect to

taking subwords, that is if

xyz ∈ L⇒ y ∈ L

for all x, y, z ∈ A∗.

4.1.7 Proposition. Put Xn := L ∩ An. L is factorial if Xn+1 ⊂ AXn ∩ XnA for all

n ∈ N0.

Proof. By repeated application of the inclusion, we obtain Xm+n+k ⊂ AmXnA
k. So, by

Proposition 4.1.2(ii), if xyz ∈ Xm+n+k ⊂ AmXnA
k with x ∈ Am, y ∈ An, z ∈ Ak, then

y ∈ Xn.

Obviously, the converse is true, too.

4.1.8 Theorem. Let A be an alphabet. For a family (Xn)n∈N0 of subsets Xn ⊂ An the

following conditions are equivalent.

(i) (Xn)n∈N0 is a word system over A.

(ii) L :=
⋃
n∈N0

Xn is a factorial language over A.

Proof. If w ∈ X> and w = xy, then x and y are subwords. So, (ii)⇒(i) is immediate.

Conversely, suppose Xm+n ⊂ XmXn for all m,n ∈ N0. This means, in particular,

that Xn+1 ⊂ X1Xn ∩ XnX1 ⊂ AXn ∩ XnA. By Proposition 4.1.7, L is factorial. This

shows (i)⇒(ii).

Frequently, we will identify a word system X> with the corresponding factorial lan-

guage L =
⋃
n∈N0

Xn. In particular, we will write A∗ \X> instead of A∗ \ L.

4.1.2 Complexity of Factorial Languages: Known Results

We started with the question, what are the possible cardinality sequences of discrete

Cartesian systems. As we have seen, all Cartesian systems are isomorphic to word sys-

tems and word systems are in 1-1 correspondence with factorial languages. Complexity

of factorial languages is a well studied area, correspondingly there is a long list of known
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4 Dimension of Subproduct Systems

results. Additionally, there are different names and equivalent descriptions, still multi-

plying the number of applicable results. Unfortunately, the publications dealing with

this structure frequently seem not to interact. (We hope it may be forgiven that we add

a further name. The term “word system” is inspired from the analogy with subproduct

systems.) Thus, it is quite difficult to get a an idea about the real status of the theory.

In this section we intend to give an overview over important known results. It should be

clear that this cannot be exhaustive. But we hope we can at least provide a small guide

pointing into interesting directions. We cite sources where the interested reader can find

more information.

It seems that it is easier to get estimates for the complexity when restricting to the

subclass of factorial languages Lw consisting of all (finite) subwords of a single (usually)

infinite word w. (These languages are particularly relevant for comupter science.) The

complexity of Lw is usually referred to as subword complexity of w. As early as 1938,

Morse and Hedlund [MH38] provided a necessary condition for that a sequence occurs

as subword complexity: Let Xw
n := Lw ∩An. Then, either #Xw

n+1 > #Xw
n for all n ∈ N

or #Xw
n is eventually constant. Ferenczi [Fer99, Section 3] provides several results on

subword complexities. For instance, if for some α > 0 it holds that #Xw
n ≤ αn for all

n ∈ N, then there exists a C > 0 such that #Xw
n+1 −#Xw

n ≤ Cα3 for all n.

The following result of Balogh and Bollobás on general factorial languages, which is

related to Morse and Hedlund’s theorem, will prove very useful later on. We prefer to

formulate the results in this section for the corresponding word systems. For a ∈ R, we

write dae := min {n ∈ Z | n ≥ a} and bac := max {n ∈ Z | n ≤ a}.

4.1.9 Theorem ([BB05, Theorem 8]). Let X> be a word system. Suppose d := #Xk ≤ k

for some k ∈ N. Then (#Xn)n∈N is bounded. Furthermore,

#Xm ≤
°
d+ 1

2

§ õ
d+ 1

2

û
(4.1.1)

for all m ≥ k + d.

The bound in the above theorem is best possible, even if one restricts to word systems

over a two-letter alphabet, see [BB05, Theorem 7]. We present Cartesian systems for

which equality holds in (4.1.1). These Cartesian systems have the advantage that the
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4.1 Cartesian Systems

construction can be generalized to rational-time and continuous-time Cartesian systems

without any difficulties.

4.1.10 Lemma. Let X := N×N and ι : X → X ×X defined by ι(i, j) :=
Ä
(i, 1), (1, j)

ä
.

Then ι is injective and satisfies

(ι× id) ◦ ι = (id× ι) ◦ ι. (4.1.2)

Proof. Injectivity is obvious. The direct calculation

(ι× id)
Ä
(i, 1)(1, j)

ä
=
Ä
(i, 1), (1, 1), (1, j)

ä
= (id× ι)

Ä
(i, 1)(1, j)

ä
proves (4.1.2).

As an obivious conclusion we have:

4.1.11 Corollary. Let Xn := X and im,n := ι for all m,n 6= 0. Furthermore put

X0 := {Λ} and im,n canonical for m = 0 or n = 0. Then this defines a discrete Cartesian

system X>.

4.1.12 Example. For a natural number k ∈ N, we denote by [k] the set {1, . . . , k}. Let

m,n ∈ N and I ⊂ N. Put

Xk :=



Ä
[m]× {1}

ä
∪
Ä
{1} × [n]

ä
for k ∈ I

[m]× [n] for k ∈ N \ I

{Λ} for k = 0.

Then for every (i, j) ∈ [m]×[n] one has ι(i, j) =
Ä
(i, 1), (1, j)

ä
∈
Ä
[m]×{1}

ä
×
Ä
{1}×[n]

ä
,

hence the Xk form a Cartesian subsystem X> ⊂ X>. The dimension sequence is given

by

#Xk =


m+ n− 1 for k ∈ I

mn for k ∈ N \ I

1 for k = 0.
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4 Dimension of Subproduct Systems

If we let d ∈ N0 and put m :=
†
d+1

2

£
, n :=

ö
d+1

2

ù
, it follows that m+ n = d+ 1 and

#Xk =


d for k ∈ I†
d+1

2

£ ö
d+1

2

ù
for k ∈ N \ I

1 for k = 0.

This shows that (4.1.1) in Theorem 4.1.9 gives indeed the best possible bound.

Reduced sets of excluded words. A word system can be described by indicating which

words do not occur as subwords. The following results are well known (see for example

[CMR98]), but we prefer to give independent proofs, first, to illustrate how arguments

work and, second, to be self-contained in the following section. They also promise to be

relevant in analyzing the structure of associated graph C∗–algebras.

4.1.13 Observation. Let E ⊂ A∗ be any set of words. Then the sets

Xn(E) := {w ∈ An | w has no subword from E}

form a word system. Indeed, if w does not contain a subword from E and y is a subword

of w, then, by transitivity, also y cannot contain a subword from E.

Reflexivity means that every word is a subword of itself. From this it immediately

follows that E and X>(E) are disjoint.

4.1.14 Observation. Every word system X> can be obtained as X> = X>(E). Indeed,

take E := A∗\X>, the set of all words in A∗ that do not belong toX>. A word belongs to

the word system X> if and only if all its subwords belong to X>. Equivalently, x ∈ X>

if and only if none of its subwords is in A∗ \X>, that is, X> = X>(A∗ \X>).

E = A∗ \ X> is, clearly, the maximal choice. We now show that there is a unique

minimal choice.

4.1.15 Definition. A subset E ⊂ A∗ \{Λ} is called reduced (or antifactorial) if no word

of E is a proper subword of another word of E.
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4.1 Cartesian Systems

Note that E = A∗ \X> is reduced if and only if it is empty, that is, if X> is the full

word system over A. (Indeed, suppose that E is reduced. If A = ∅, so that A∗ = {Λ},

then a reduced subset E of A, by definition, is empty. And if A is nonempty, then every

word x is a proper subword of another word y. If y ∈ X>, then x ∈ X>, because X> is

a word system. If y /∈ X>, that is, if y ∈ E, then x /∈ E, that is, x ∈ X>, because E is

reduced. So, every word x is in X>, that is, X> = A∗. The other direction is obvious.)

4.1.16 Proposition. Let E be reduced and X>(E) = X>(E′). Then E ⊂ E′.

Proof. We conclude indirectly. Suppose w ∈ E \ E′. Since w ∈ E, w does not belong to

X>(E) = X>(E′). Therefore, w contains a subword y ∈ E′. Since w /∈ E′, y is a proper

subword of w. Since E is reduced, y and all subwords of y are not in E. Therefore,

y ∈ X>(E). But, y ∈ E′, so y /∈ X>(E′) = X>(E). Contradiction!

This proposition shows that if there is a reduced set R such that X>(R) = X>, then

R =
⋂
X>(E)=X> E. In particular, R is unique. The following theorem settles existence

by giving an explicit formula for R. The unique reduced set R generating X> as X>(R)

is also called the antidictionary of X>.

4.1.17 Theorem. For every word system X> over A,

R :=
⋃
n≥1

Rn, Rn := (Xn−1A ∩AXn−1) \Xn

is the unique reduced set of words such that X> = X>(R).

Proof. A word w = (a1, . . . , an) is in Xn−1A ∩ AXn−1 if and only if the two subwords

wn̂ = (a1, . . . , an−1) and w
1̂

= (a2, . . . , an) are in Xn−1. Now, each proper subword y of

w is a subword of wn̂ or a subword of w
1̂
. Since X> is a word system, y ∈ X>. In other

words, w = (a1, . . . , an) is in Xn−1A ∩AXn−1 if and only if each of its proper subwords

is in X>.

In order to illustrate some different techniques, we continue in two versions.

Version 1: Since all proper subwords of w ∈ Rn are in X>, these subwords are not in

R. Therefore, R is reduced.
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To show X> ⊂ X>(R) take any w /∈ X>(R). Then w has a subword r ∈ R. Since R

and X> are disjoint, r is not in X>. Hence, the word w containing r is not in the word

system X>.

For the other inclusion, we show Xn(R) ⊂ Xn by induction on n. Since a reduced set

may not contain the empty word, X0 = {Λ} = X0(R). Now let n ≥ 1 and suppose

Xn−1(R) ⊂ Xn−1. Let w = (a1, . . . , an) ∈ Xn(R). As X>(R) is a word system, the two

subwords wn̂ and w
1̂
of w belong to Xn−1(R). By assumption, Xn−1(R) is a subset of

Xn−1. In other words, w ∈ (Xn−1A) ∩ (AXn−1). Since R and X>(R) are disjoint, w is

not an element of Rn. Since Rn = ((Xn−1A) ∩ (AXn−1)) \Xn, this implies w ∈ Xn, so

Xn(R) ⊂ Xn for all n. In conclusion, X>(R) ⊂ X>.

Version 2: Given any E ⊂ A∗ we may obtain the unique reduced Ered such that

X>(Ered) = X>(E) by replacing En := E ∩An with

Eredn :=
¶
w ∈ En | w has no subword from Ek, k = 1, . . . , n− 1

©
.

(We omit the proof.) So, for our word system X>, appealing to Observation 4.1.14, put

E := A∗ \X>. We find

Eredn =
¶
w ∈ An \Xn | w has no subword from Ak \Xk, k = 1, . . . , n− 1

©
=
¶
w ∈ An \Xn | all proper subwords of w are in X>

©
=
¶
w ∈ An \Xn | w ∈ Xn−1A ∩AXn−1

©
.

So, Eredn = Rn.

The second proof also illustrates the feature of exclusion sets with only one word as

atoms, and further exploitation of the problem’s inductive structure will be demonstrated

in Theorem 4.1.18. For simplicity assume X1 = A. To understand the reduced set R of

a given word system X> over X1, for R2 simply take all words of length 2 that do not

occur in X>. Then to get R3 from X>(R2) take all words of length 3 that do not occur

in X>. Then proceed with X>(R2 ∪R3) and words of length 4 to get R4, and so forth.
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In general, we have

X>(E ∪ E′) = X>(E) ∩X>(E′).

So, not only do we get X>(R2 ∪ · · · ∪Rn) = X>(R2) ∩ · · · ∩X>(Rn), but

X> =
⋂
r∈R

X>
Ä
{r}

ä
.

Being the smallest building blocks (the maximal proper word subsystems) it is important

to understand the case R = {r}, that is the word systemsX>({r}). Also the case R = R2

is important; in Section 4.1.4 it will lead to word systems of graphs.

Generating functions. Guibas and Odlyzko [GO81, Theorem 1.1] find the generating

function
∑∞
n=0 #Xn(R)z−n for a word system with a finite reduced set R of excluded

words as the solution of a system of linear equations only depending on the so-called

correlation of the words in R. As a special case, they give an explicit formula for the

generating function in the case R = {r}, which depends only on the autocorrelation of

the only one excluded word r. In [GO81, Section 7], they decide which word r gives the

“biggest” word system: #Xn({r}) ≥ #Xn({s}) if and only if the autocorrelation of r

is less or equal to the autocorrelation of s. There is a nice survey in Odlyzko [Odl85].

Some more methods to determine the generating function can be found in Goulden and

Jackson [GJ79].

Growth rates. One may analyze the asymptotic behaviour of the cardinality sequence.

It is clear, that the sequence may break down simply by setting Xn = ∅ for all n ≥ N ,

or that dn is limited by dn for the full word system A∗ with #A = d. But there are

more interesting results. For instance, Shur shows in [Shu06] that for all s ∈ R+ there

are word systems with asymptotic growth rate ns. In [Shu09], it is shown that there

are word systems with asymptotic growth rate larger than every polynomial and smaller

than every exponential function.
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4.1.3 Complexity of Factorial Languages: New Results

In this section we present some results which, we believe, may be new. The results are

formulated for cardinality sequences of word systems. Of course, from Theorem 4.1.5 it

follows that all these results remain true for Cartesian systems. It also should be noted

that some results (Theorem 4.1.19 and its consequences) are much easier to prove for

Cartesian systems than for word systems.

Local to global

Let X> be a word system over A and let R be the unique reduced set of excluded words

such that X> = X>(R). Put di := #Xi. It is noteworthy that in order to determine

X1, . . . , Xk, and therefore d1, . . . , dk, up to some finite k, we only need to know the Ri

up to the same k. In order to realize the partial sequence d1, . . . , dk as a cardinality

sequence of a word system, it does not matter what the word system X> does for i > k,

nor, equivalently, what the Ri are for i > k. We may cut down X> by assuming Xi = ∅

for i > k; this is an easy choice but, possibly, not the most clever, because it makes the

corresponding Ri rather big. We also may cut down R by assuming Ri = ∅ for i > k;

this gives the biggest word system with the partial sequence Xi for i = 1, . . . , k with the

corresponding Ri for i = 1, . . . , k. This choice has the advantage that now the resulting

truncated set of excluded words is finite, so, all results for generating functions for finite

sets of excluded words (for instance, those in [GO81]) are applicable for checking if the

partial sequence d1, . . . , dk can be realized for suitable choices of R1, . . . , Rk.

If for a sequence d1, d2, . . . we can realize d1, . . . , dk for each finite k by choosing

R1, . . . , Rk in such a way that each Ri does not depend on k ≥ i, then, of course, the

whole sequence of Rk determines a word system X> with #Xk = dk for all k. But what,

if we can realize each finite subsequence d1, . . . , dk, but without being able to fix the

Ri? The following theorem shows that this local realizability of the sequence d1, d2, . . .

is sufficient.

4.1.18 Theorem. Let (dn)n≥1 be a sequence of nonnegative integers. Suppose for every

k ∈ N there exists a word system Y > with #Yi = di for i = 1, . . . , k. Then there exists a

word system X> with #Xi = di for all i ≥ 1.
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Proof. Every word system X> may be considered as a word system over X1 as alphabet.

And if two word systems X> and X ′> (over potentially different alphabets) fulfill #X1 =

#X ′1, then there is a bijection from X ′1 to X1, which corresponds to an isomorphism

from X ′> to another word system X ′′>, also over X1. So, we may assume that the Y (k)>

realizing d1, . . . , dk are over a fixed finite alphabet A.

Let us consider word systems as elements of the product

W(A) := ×
n∈N0

P(An)

of the power sets P(An) of An. By WS(A) ⊂W(A) we denote the set of all word systems

over A. Let (Y (k)>)k∈N be a sequence in WS(A) fulfilling #Y
(k)
i = di for i = 1, . . . , k.

We will show:

1. There is a subsequence (Y (kn)>)n∈N of (Y (k)>)k∈N such that for each i ∈ N the

sequence (Y
(kn)>
i )n∈N is eventually constant, say, Y (kn)>

i =: Xi for sufficiently big

n.

2. The Xi form a word system X> with #Xi = di for all i.

Such a sequence can be constructed explicitly by hand. But one has to introduce ad hoc

total orders on P(An), and writing it down requires lots of more indices. We prefer to

introduce a topology on W(A) that allows to apply Tychonoff’s theorem.

We equip P(An) with the discrete topology and W(A) with the product topology.

So, convergence in P(An) means eventually constant, and convergence in W(A) means

eventually constant entrywise. Since A is assumed finite, P(An) is finite, hence, compact.

By Tychonoff’s theorem, W(A) is compact. Since W(A) is first countable, it is even

sequentially compact. This proves (1) and, of course, it proves that the limit X> of the

subsequence of (Y (k)>)k∈N fufills #Xi = di for all i.

To show that X> is a word system, we show that WS(A) is closed in W(A). Suppose

Z ∈ W(A) is not a word system. That is, there exists a word w ∈ Zk with a subword

y of w with y ∈ Am \ Zm. Then the set U := {Z0} × {Z1} × · · · × {Zk} ××n>k P(An)

is an open neighbourhood of Z and no element of U is a word system. This shows that

W(A) \WS(A) is open, hence, WS(A) is closed.
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‘Thinning out’ Cartesian systems

We present some results how to select from a Cartesian system a subsequence and turn

that subsequence again into a Cartesian system. We know from Theorem 4.1.5 that

every Cartesian system is isomorphic to a word system, and all results about cardinality

sequences also apply to word systems. But it would be very cumbersome, indeed, if we

had to turn these fresh Cartesian systems into word systems, explicitly. These results are,

therefore, instances that illustrate how powerful the considerably more flexible notion of

Cartesian system can be as compared with the more restrictive notion of word system.

Let us start with the following triviality - and imagine how notationally complicated

it would be to prove it, using only word systems.

4.1.19 Theorem. Let X> be a Cartesian system with injections im,n and fix k ∈ N.

Then the family Y > = (Yn)n∈N0 with Yn := Xnk and with the injections jm,n := imk,nk

is a Cartesian system.

The next result relies on the important property that, unlike for tensor products, in

a Cartesian product of sets there are canonical projections onto the factors; see Propo-

sition 4.1.2. For all sets S1 and S2, define Pi : S1 × S2 → Si by Pi(s1, s2) = si.

4.1.20 Theorem. Let X> be a Cartesian system with injections im,n and fix k ∈ N.

Then the family Y > = (Yn)n∈N0 with

Yn =


Xn+k, n > 0

{Λ} , n = 0

together with the injections

jm,n := (P1 ◦ im+k,n, P2 ◦ im,k+n) (4.1.3)

for m,n ≥ 1 and jm,0 and j0,n being (necessarily) the canonical injections is a Cartesian

system.

Proof. Note that the construction ‘commutes’ with isomorphisms α> : X> → X ′>. In-
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4.1 Cartesian Systems

deed, since i′m,n ◦ αm+n = (αm × αn) ◦ im,n, we find

(P1 ◦ i′m+k,n, P2 ◦ i′m,k+n) ◦ αm+k+n

= (P1 ◦ (αm+k × αn) ◦ im+k,n, P2 ◦ (αm × αk+n) ◦ im,k+n)

= (αm+k ◦ P1 ◦ im+k,n, αk+n ◦ P2 ◦ im,k+n)

= (αm+k × αk+n) ◦ (P1 ◦ im+k,n, P2 ◦ im,k+n),

so that j′m,n◦αm+k+n = (αm+k×αk+n)◦jm,n. By Theorem 4.1.5, every Cartesian system

is isomorphic to a word system. Therefore, we may assume that X> is a word system.

For a word system X>, the definition in (4.1.3) leads to

jm,n(a1, . . . , am+n+k) :=
Ä
(a1, . . . , am+k), (am+1, . . . , am+n+k)

ä
(4.1.4)

for all m,n ≥ 1. In other words, the k letters ‘in the middle’ am+1, . . . , am+k are ‘repli-

cated’ once to the right part of the left factor and once to the left part of the right factor.

The maps jm,n : Xm+n+k → Xm+k ×Xn+k defined in (4.1.4) are clearly injective. The

computationÄ
(jm,n × idY`) ◦ jm+n,`

ä
(a1, . . . , am+n+`+k)

= (jm,n × idY`)
Ä
(a1, . . . , am+n+k), (am+n+1, . . . , am+n+`+k)

ä
=
Ä
(a1, . . . , am+k), (am+1, . . . , am+n+k), (am+n+1, . . . , am+n+`+k)

ä
= (idYm × jn,`)

Ä
(a1, . . . , am+k), (am+1, . . . , am+n+`+k)

ä
=
Ä
(idYm × jn,`) ◦ jm,n+`

ä
(a1, . . . , am+n+`+k)

proves associativity for m,n, ` ≥ 1. For the cases involving m = 0 or n = 0 or ` = 0 there

is nothing to prove. So the Yn = Xn+k together with the maps jm,n form a Cartesian

system.

4.1.21 Corollary. Suppose for n ∈ N there is a function f : Nn−1
0 → N0 such that for

every word system X> we have

#Xn ≤ f(#X1,#X2, . . . ,#Xn−1).
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4 Dimension of Subproduct Systems

Then for every Cartesian system X> we have

#Xna+b ≤ f(#Xa+b,#X2a+b, . . . ,#X(n−1)a+b).

Proof. By the preceding two theorems the Yn = Xna+b form a Cartesian system.

4.1.22 Corollary. For every cardinality sequence dn = #Xn of a word system X>, we

have

dm+n+k ≤ dm+kdn+k (4.1.5)

for all m,n, k ∈ N0. In particular, dk+1 ≤ d2
k for every k ≥ 1.

Proof. Equation (4.1.5) follows from Corollary 4.1.21, because every cardinality sequence

#Xn is submultiplicative (#Xm+n ≤ #Xm#Xn). The formula dk+1 ≤ d2
k follows from

(4.1.5) with m = n = 1.

4.1.23 Corollary. Not every submultiplicative sequence dn is the cardinality sequence of

a word system.

Proof. A cardinality sequence fulfills d3 ≤ d2
2. However, the sequence d1 = 2, d2 = 1,

d3 = 2, and dk = 0 for k > 3 is submultiplicative, but d3 � d2
2.

A sufficient criterion motivated by submultiplicativity

It is well known that for every submultiplicative sequence (dn)n∈N of nonnegative inte-

gers we have limn→∞
n
√
dn = infn

n
√
dn. On the other hand, if we assume the limit is

approached monotonously, that is, if we assume m+1
√
dm+1 ≤ m

√
dm for all m ∈ N, from

dm+n = m+n
»
dm+n

m
m+n
»
dm+n

n
≤ m
√
dm

m n
√
dn

n
= dmdn

we get that (dn)n∈N is submultiplicative. We may ask, if this condition is sufficient to

be the cardinality sequence of a word system. It turns out that this condition is neither

sufficient (Example 4.1.29) nor necessary (Example 4.1.26). However, we may modify

the condition to make it at least sufficient.
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4.1 Cartesian Systems

Recall our notation dae := min {n ∈ Z | n ≥ a} and bac := max {n ∈ Z | n ≤ a} for

a ∈ R.

4.1.24 Theorem. Let (dn)n∈N be a sequence of nonnegative integers such that

⌈
n+1
»
dn+1

⌉
≤
ö
n
√
dn
ù

(4.1.6)

for all n ∈ N. Then there exists a word system X> with #Xn = dn for all n ∈ N.

Proof. Set X0 = {Λ}, X1 = {1, . . . , d1}, and choose arbitrary Xn ⊂ Xn
1 such that¶

1, . . . ,
ö
n
√
dn
ù©n ⊂ Xn ⊂

¶
1, . . . ,

†
n
√
dn
£©n

.

Since
ö
n
√
dn
ùn ≤ dn ≤ † n√dn£n, this is always possible. We find

Xm+n ⊂
{

1, . . . ,
⌈
m+n
»
dm+n

⌉}m+n

=
{

1, . . . ,
⌈
m+n
»
dm+n

⌉}m
×
{

1, . . . ,
⌈
m+n
»
dm+n

⌉}n
⊂
¶

1, . . . ,
ö
m
√
dm
ù©m × ¶1, . . . ,

ö
n
√
dn
ù©n

⊂ Xm ×Xn

for all m,n ∈ N0. So, the Xn form a word system over X1.

Example 4.1.26 will also show that the sufficient condition (4.1.6) is not necessary.

4.1.4 (Counter)examples with word systems of graphs

We establish a connection between word systems and directed graphs. In fact, the paths

of a directed graph without multiple edges form a word system over its vertex set. More-

over, every word system is a subsystem of such a graph system. As application, we

provide examples that show that n+1
√
dn+1 ≤ n

√
dn for all n ∈ N0 is neither necessary

nor sufficient for the existence of a word system with cardinality sequence dn. Of course,

this implies that the sufficient condition in Theorem 4.1.24, which is even stronger, is

not necessary.
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4 Dimension of Subproduct Systems

By a graph, we will always mean a directed graph, possibly with loops, but without

multiple edges. That is, a graph is a pair (V,E), where V is a set, whose elements are

called vertices, and a subset E of V × V , whose elements are called edges.

4.1.25 Theorem. The following statements hold:

1. Let Γ = (V,E) be a graph and set

E0 := {Λ} , E1 := V, E2 := E,

En :=
¶

(v1, . . . , vn) ∈ V n
∣∣∣ (vi, vi+1) ∈ E for all i = 1, . . . , n− 1

©
.

(That is, En consists of all paths of length n− 1.)

Then En = Xn

Ä
(V × V ) \ E

ä
. In particular, the En form a word system over V , the

graph system X>
Γ .

2. Every word system X> is a subsystem of the graph system X>
(X1,X2) associated with

the graph (X1, X2).

Proof.

1. By definition,

Xn

Ä
(V × V ) \ E

ä
:=
¶

(v1, . . . , vn) ∈ V n
∣∣∣ (vi, vi+1) /∈ (V × V ) \ E ∀ i = 1, . . . , n− 1

©
= En.

2. For each word (v1, . . . , vn) ∈ Xn, the (vi, vi+1) are subwords, hence belong to X2. So

Xn is a subset of En.

Of course, (V × V ) \ E is reduced. So graph systems are precisely those word systems

which have a reduced set of excluded words consisting only of words of length 2.
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4.1 Cartesian Systems

Let Γ = (V,E) be a graph with V = {1, . . . , d}. Its adjacency matrix is the d × d

matrix A with entries

Aij =


1 for (i, j) ∈ E,

0 otherwise.

Then, obviously, the number of paths of length n from i to j is given by the i-j-entry of

An. For any d× d matrix B, denote by

Σ(B) :=
∑

i,j=1,...,d

Bi,j

the sum of all its entries. So Σ(An−1) = #En. Denote by 1m×n the m× n matrix with

all entries equal to 1 and put 1d := 1d×1 and 1td := 11×d. Note that in this notation

1d×d1d = d1d.

4.1.26 Example. Let (V,E) be the graph with d+1 vertices and adjacency matrix A =Ç
0 1td

1d 0

å
. Then #E2 = Σ(A) = 2d. Since A2 =

Ç
d 0

0 1d×d

å
we have #E3 = Σ(A2) = d2 +d.

4.1.27 Example. Let (V,E) be a graph with #E = 1, so E = {(v, w)}. If v 6= w, then

for n > 2 there is no path of length n−1, so En = ∅. If v = w, then En = {(v, v, . . . , v)},

so, #En = 1.

Let (V,E) be a graph with #E = 2, that is, its adjacency matrix A is the sum of two

distinct matrix units Eij and Ekl. We find

#E3 = Σ(A2) = Σ
Ä
(Eij + Ekl)

2
ä

= δij + δil + δkj + δkl.

Since three of the equalities i = j, i = l, k = j and k = l necessarily lead to i = j = k = l,

it follows that #E3 ≤ 2. Since every word system is a subsystem of its graph system,

the implication #X2 ≤ 2 ⇒ #X3 ≤ 2 holds for all word systems. In other words, if we

define

f(d1, d2) :=


2 for d2 ≤ 2,

d3
1 otherwise,
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4 Dimension of Subproduct Systems

then d3 ≤ f(d1, d2) for all cardinality sequences of word systems. By Corollary 4.1.21,

d4 = d3+1 ≤ f(d1+1, d2+1) = f(d2, d3) = 2, because d3 ≤ 2, and so forth. Hence,

#E2 ≤ 2 implies #E2+k ≤ 2 for all k ∈ N0.

4.1.28 Observation. A straightforward calculation gives

Σ(1d×dA) = Σ(A1d×d) = dΣ(A)

for all A ∈Md. Put A := 1d×d −A. Combining the two equations

Σ(AA) = Σ
Ä
(1d×d −A)A

ä
= Σ(1d×dA−A2) = dΣ(A)− Σ(A2)

and

Σ(AA) = Σ
Ä
A(1d×d −A)

ä
= Σ(A1d×d −A

2
) = dΣ(A)− Σ(A

2
),

we get

Σ(A2) = Σ(A
2
) + d

Ä
Σ(A)− Σ(A)

ä
. (4.1.7)

4.1.29 Example. Let Γ = (V,E) be a graph with 3 vertices and 7 edges. For its

adjacency matrix A we, thus, have Σ(A) = 7 and Σ(A) = 2. Note that A is the adjacency

matrix of the complementary graph Γ := (V, (V ×V )\E). Therefore, by Example 4.1.27,

we obtain Σ(A
2
) ≤ 2. So, (4.1.7) yields

#E3 = Σ(A2) = Σ(A
2
) + d

Ä
Σ(A)− Σ(A)

ä
≤ 2 + 3(7− 2) = 17.

This shows that a graph with 3 vertices and 7 edges has at most 17 paths of length two.

4.1.30 Example. In a graph with d vertices and d2 − 1 edges we have Σ(A) = d2 − 1,

Σ(A) = 1 and Σ(A
2
) is either 1 or 0, depending on whether the missing edge is a loop
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or not. Using again (4.1.7), we find

#E3 = Σ(A
2
) + d(d2 − 2) =


d3 − 2d if the missing edge is a loop,

d3 − 2d+ 1 if the missing edge is not a loop.

We learn from these examples that the condition m+1
√
dm+1 ≤ m

√
dm is neither suf-

ficient nor necessary for the existence of a Cartesian system X> with #Xn = dn.

By Example 4.1.29 there is no system with #X1 = 3,#X2 = 7,#X3 = 18. But

182 = 324 < 343 = 73. So, the sequence d1 = 3, d2 = 7, d3 = 18, dn = 0 for n > 3 fulfills

the condition. So the condition is not sufficient. In Example 4.1.26, putting d = 10, we

get a system with #X1 = 11,#X2 = 20,#X3 = 110. But 1102 > 10000 > 8000 = 203.

So the condition is not necessary. As mentioned in the beginning of this section, this

implies that the stronger condition (4.1.6) is not necessary either.

Especially in view of Theorem 4.1.18, the following class of questions is interesting:

Fixing (some of) the cardinalities #X1, . . . ,#Xn, what is the maximal possibility for

#Xn+1 in a word system X>? The question, which graph with d1 vertices and d2 edges

has the maximal number of paths of length 2, is clearly of the above type with n = 2. It

was first investigated by Katz in [Kat71], who gave an answer only for special values of

d1 and d2. A complete answer was given by Aharoni in [Aha80] by exhibiting four special

types of graphs, (two of them are close to being complete graphs, two of them are close

to being complements of complete graphs) one of which is maximal for any choice of d1

and d2. This allows one to determine the maximal d3 such that there is a word system

X> with #X1 = d1,#X2 = d2 and #X3 = d3. Similar results for undirected graphs can

be found in [AK78], [PPS99] and [ÁFMNW09]. It seems the questions for higher n are

still open problems.

4.2 Subproduct Systems

For convenience of the reader, we repeat the definition of a subproduct system in a plain

way. See also Section 2.3.1, Hilbert Spaces.

4.2.1 Definition. A subproduct system (over S) is a family H5 = (Ht)t∈S of Hilbert
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spaces Ht with H0 = C and with coisometries

ws,t : Hs ⊗Ht −→ Hs+t

such that the product defined by xsyt := ws,t(xs ⊗ yt) is associative and such that w0,t

and wt,0 are the canonical identifications.

It is more common to write subproduct systems with the adjoint maps vs,t :=

w∗s,t : Hs+t → Hs ⊗Ht, which have to fulfill the coassociativity and marginal conditions

expressed in the following two diagrams.

Hr+s+t Hr+s⊗Ht Hs

Hr ⊗Hs+t Hr ⊗Hs⊗Ht H0⊗Hs Hs Hs⊗H0

vr+s,t

vr,s+t vr,s⊗ idt
v0,s vs,0

ids

idr ⊗ vs,t ∼= ∼=

The isometries vs,t emphasize the idea, of considering Hs+t as a subspace of Hs ⊗ Ht.

It also makes clear that subproduct systems are the same as comonoidal systems in the

tensor category (Hilbisom,⊗) with H0 = C.

The aim of this section is to characterize the dimension functions s 7→ dimHs. In the

discrete case we show that the dimension sequences of subproduct systems are the same

as the dimension sequences of certain N0-graded algebras and the same as the cardinality

sequences of word systems and Cartesian systems. Thus, the results of the previous sec-

tion apply also to discrete subproduct systems. We can use this fact and Theorem 4.1.9

to give a simple characterization of all dimension functions of rational-time subproduct

systems and cardinality functions of rational-time cartesian systems. Finally, we dis-

cuss the continuous-time situation. For Cartesian systems the simple characterization

remains true, but for continuous-time subproduct systems we need additional continuity

assumptions to extend the rational-time results.

4.2.1 Dimension of Discrete Subproduct Systems

Recall that a product system is simply a full subproduct system, that is all the isometries

vm,n are unitaries.
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4.2.2 Example. Discrete product systemsH⊗ = (Hn)n∈N0 are easy to understand. If we

identifyHn withH⊗n1 (n ≥ 1) via the inverse of the unitary determined by xn⊗· · ·⊗x1 7→

xn · · ·x1, it is clear that the product of H⊗ = (H⊗n1 )n∈N0 is nothing but the tensor

product (xm ⊗ · · · ⊗ x1)(yn ⊗ · · · ⊗ y1) = xm ⊗ · · · ⊗ x1 ⊗ yn ⊗ · · · ⊗ y1. By mentioning

that we are working in a tensor category, this is nothing but the identification map

H⊗m1 ⊗ H⊗n1 ≡ H
⊗(m+n)
1 . We say a (discrete) product system H⊗ = (H⊗n)n∈N0 with

the identity as product is in standard form.

As far as discrete product systems are concerned, there is not more to be said than

what is said in the preceding example. The situation gets more interesting for subproduct

systems. We start with an obvious relation between subproduct systems and Cartesian

systems.

4.2.3 Example. Let X> = (Xn)n∈N0 be a Cartesian system. Denote by Hn the canon-

ical Hilbert space with orthonormal basis Xn. Then, clearly, the embeddings im,n of

Xm+n into Xm ×Xn extend as isometries vm,n : Hm+n → Hm ⊗Hn and the vm,n define

a subproduct system structure, the subproduct system associated with X>. Moreover, if

X> is a word system over A, so that Xn ⊂ An and Hn ⊂ H⊗n1 , this subproduct system is

a subproduct subsystem of a product system in standard form. We say the subproduct

system is in standard form.

Obviously, dimHn = #Xn. We see, for every Cartesian (word) system there is a

subproduct system (in standard form) such that the dimension sequence of the latter

coincides with the cardinality sequence of the former. Before we show the converse state-

ment in Proposition 4.2.5, let us mention that not every subproduct system is isomorphic

to one that is associated with a word system.

4.2.4 Observation. If at least one Xn in a word system contains a word with at least

two different letters, then the associated subproduct system in standard form is not

commutative. But there are commutative subproduct systems. See, for instance, the

symmetric subproduct system introduced by Shalit and Solel [SS09], which is obtained

by considering the symmetric tensor power H⊗sn as subspace of H⊗n.

By an N0-graded algebra we mean a unital algebra A with a vector space direct

sum decomposition A =
⊕
n∈N0

An such that AmAn ⊂ Am+n for all m,n ∈ N0. The
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vector spaces Am are called homogeneous components of A. An N0-graded algebra is

called connected if A0 = C1 and standard graded if it is connected and An = An1 =

span{a1 · · · an | ai ∈ A1, i = 1, . . . , n}. Equivalently, one can define a graded algebra

as a monoidal system (An)n∈N0 over N0 in (Vect,⊗) and a standard graded algebra as

a monoidal system over N0 in (Vectsurj ,⊗); compare Section 2.3.1, Vector Spaces. An

N0-graded algebra is called locally finite-dimensional if all An are finite-dimensional.

Every finite-dimensional discrete subproduct system can be considered as a locally

finite-dimensional standard graded algebra with respect to the multiplication induced by

the structure maps wm,n = v∗m,n; compare also Remark 2.3.3. In particular, for every

finite-dimensional subproduct system there is a standard graded algebra such that their

dimension sequences coincide. The next proposition closes the circle:

4.2.5 Proposition. Let A =
⊕
n∈N0

An be a locally finite-dimensional standard graded

algebra with dimAn <∞ for all n ∈ N0. Then there exists a word system (Xn)n∈N0 with

#Xn = dimAn for all n ∈ N0.

4.2.6 Remark. It turned out that this has been proven already in [Ani82]. Anick’s proof

is almost the same as that of [Sta78], who showed a corresponding result for commutative

graded algebras, and who tributes this result to MacAulay [Mac27]. The proof presented

here is basically Anick’s proof, but it was found independently and first written down

directly for subproduct systems. It is left in the thesis on the one hand to be self contained

and on the other hand to present it in a modern terminology and notation.

We give a short preparation for the proof.

4.2.7 Definition. Let A be a partially ordered alphabet. Then the lexicographical order

≤lex on An is given by (a1, . . . , an) ≤lex (b1, . . . , bn) if ak = bk for all k or if ak < bk for

k being the smallest index i with ai 6= bi.

It is easy to show that the lexicographical order is a total order on An whenever ≤ is

a total order on A. Without the obvious proof, we state:

4.2.8 Lemma. Let y, y′ ∈ An. Then

y ≤lex y′ ⇐⇒ ∃x, z ∈ A∗ : xyz ≤lex xy′z ⇐⇒ ∀x, z ∈ A∗ : xyz ≤lex xy′z.
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Proof of Poposition 4.2.5. Let (a1, . . . , ad) be a basis of A1. Set A = {1, . . . , d}. For

a word w = (i1, . . . , in) in An we define the element aw ∈ An, aw := ai1 · · · ain . The

multiplication Am × An → Am+n is surjective for all m,n ∈ N0. Therefore, a simple

induction yields An = span {aw | w ∈ An}. Set

Xn :=
¶
w ∈ An

∣∣∣ aw /∈ span {av | v <lex w}
©
.

Since {aw | w ∈ Xn} is linearly independent and still spans An, it is a basis of An. Thus,

#Xn = dimAn for all n ∈ N0.

We claim X> = (Xn)n∈N0 is a word system over A. Let y ∈ Ak be a subword

of w ∈ An (k ≤ n), that is w = xyz for some x, z ∈ A∗. We are done if we show

y /∈ Xk ⇒ xyz /∈ Xn. Suppose y /∈ Xk, that is

ay =
∑
y′<y

αy′ay′ .

Then, we have

aw = axayaz =
∑
y′<y

αy′axay′az =
∑
y′<y

αy′axy′z.

Since, by Lemma 4.2.8, y′ <lex y implies xy′z <lex xyz, we obtain aw /∈ Xn.

The content of this section is summarized in:

4.2.9 Corollary. Let (dn)n∈N0 be a sequence of nonnegative integers. Then the following

are equivalent

(i) There exists a discrete subproduct system H5 with dimHn = dn for all n ∈ N0.

(ii) There exists a standard graded algebra A with dimAn = dn for all n ∈ N0.

(iii) There exists a factorial language L with #(L ∩An) = dn for all n ∈ N0.

(iv) There exists a word system X> with #Xn = dn for all n ∈ N0.

(v) There exists a discrete Cartesian system X> with #Xn = dn for all n ∈ N0.
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Thus, results on the complexity of factorial languages hold for the dimension sequence

of a subproduct system. In particular, Theorem 4.1.9 translates to:

4.2.10 Corollary. Suppose d := dimHk ≤ k for some k ∈ N. Then

dimHm ≤
°
d+ 1

2

§ õ
d+ 1

2

û
for all m ≥ k + d.

4.2.2 Rational Time

For rational-time subproduct systems we can give a simple characterization of the possible

dimension functions.

4.2.11 Proposition. Let H5 = (Ht)t∈Q+ be a rational-time subproduct system with

dimHt = d(t). Then

d(s) ≤
¢
d(t) + 1

2

•ú
d(t) + 1

2

ü
(4.2.1)

holds for all s > t. The analogous statement holds for a rational-time Cartesian system.

Proof. Denote the isometries of H5 by vm,n. For every t ∈ Q+ and every N ∈ N, the

family (Ht,N
n )n∈N0 with Ht,N

n := Ht n
N

is a discrete subproduct system with respect to

the isometries (vt,Nm,n) := vtm
N
,t n
N
; compare Theorem 2.3.2. Suppose d(t) < ∞. Applying

Corollary 4.2.10 to the subproduct system (Ht,N
n )n∈N0 yields

dimHtm
N
≤
¢
d(t) + 1

2

•ú
d(t) + 1

2

ü
for all m ≥ N + d. Every rational s > t can be written in the form s = tmN with

m ≥ N + 1. Expanding the fraction by d yields s = tdmdN with dm ≥ dN + d. So we may

conclude that (4.2.1) holds for all s > t.

The same proof works for a Cartesian system when we use Theorem 4.1.9 instead of

Corollary 4.2.10.

We will show that the inverse also holds, that is if d : Q+ → N0 is a function with

d(0) = 1 and which satisfies (4.2.1) for all s > t, then there exists a rational-time
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4.2 Subproduct Systems

Cartesian system X> with #Xt = d(t) for all t ∈ Q+. Then, analogous to Example 4.2.3

for the discrete case, there is also a rational-time subproduct system H5 with dimHt =

d(t) for every t ∈ Q+. We start with the following obvious corollory to Lemma 4.1.10.

4.2.12 Corollary. There exists a rational-time Cartesian system X> with Xt := N× N

and is,t(i, j) :=
Ä
(i, 1), (1, j)

ä
for all s, t 6= 0.

4.2.13 Lemma. Suppose m,n : Q+ \{0} → N0 are decreasing and Xt ⊂ N×N such thatÄ
[m(t)]× {1}

ä
∪
Ä
{1} × [n(t)]

ä
⊂ Xt ⊂ [m(t)]× [n(t)].

Then the Xt together with X0 = {Λ} form a Cartesian subsystem X> ⊂ X>.

Proof. Since m and n are decreasing, we have [m(s+ t)] ⊂ [m(s)] and [n(s+ t)] ⊂ [n(t)]

for all s, t. Thus,

is,t(Xs+t) ⊂ is,t
Ä
[m(s+ t)]× [n(s+ t)]

ä
⊂ is,t

Ä
[m(s)]× [n(t)]

ä
⊂
Ä
[m(s)]× {1}

ä
×
Ä
{1} × [n(t)]

ä
⊂ Xs ×Xt.

4.2.14 Proposition. Let d : Q+ → N0 be a function with d(0) = 1 and which fulfills

(4.2.1). Then there exists a Cartesian system with #Xt = d(t) for all t ∈ Q+.

Proof. Let d : Q+ → N0 be a function and assume (4.2.1) holds for all s > t. Put

d̂(t) := min{d(s) | 0 < s ≤ t},m(t) :=

°
d̂(t)+1

2

§
and n(t) :=

õ
d̂(t)+1

2

û
. We have m(t) +

n(t) = d̂(t) + 1, which implies m(t) + n(t)− 1 = d̂(t) and, therefore,

m(t) + n(t)− 1 ≤ d(t) ≤ m(t)n(t)

for every t ∈ Q+. Thus, it is possible to choose Xt ⊂ N× N with #Xt = d(t) andÄ
[m(t)]× {1}

ä
∪
Ä
{1} × [n(t)]

ä
⊂ Xt ⊂ [m(t)]× [n(t)]

Since m and n are decreasing, we can apply Lemma 4.2.13 to conclude that the Xt form

a Cartesian subsystem of X>.

121



4 Dimension of Subproduct Systems

Since the subproduct system H5 associated with X> fulfills dimHt = #Xt, the same

holds for subproduct systems. We summarize the results of this section in:

4.2.15 Theorem. Let d : Q+ → N0 be a function. Then the following are equivalent:

(i) There is a rational-time subproduct system H5 with dimHt = d(t) for all t ∈ Q+.

(ii) There is a rational-time Cartesian system X> with #Xt = d(t) for all t ∈ Q+.

(iii) The function d fulfills d(0) = 1 and (4.2.1) for all s > t > 0.

4.2.3 Continuous Time

For Cartesian systems the situation is as nice as in the rational-time case. The proof of

Proposition 4.2.14 remains valid when we replace Q+ by R+, so we have:

4.2.16 Proposition. Let d : R+ → N0 be a function with d(0) = 1 and which fulfills

(4.2.1) for all s > t > 0. Then there exists a continuous-time Cartesian system with

#Xt = d(t) for all t ∈ R+.

For the converse we need the continuous-time analogue of Theorem 4.1.20.

4.2.17 Theorem. Let X> be a continuous-times Cartesian system with injections is,t

and fix r ∈ R+. Then the family Y > = (Yt)t∈N with

Yt =


Xt+r, t > 0

{Λ} , t = 0

together with the injections

js,t := (P1 ◦ is+r,t, P2 ◦ is,r+t)

for s, t ≥ 1 and js,0 and j0,t being (necessarily) the canonical injections is a continuous-

time Cartesian system.

Proof. This is just a tedious calculation to check the associativity of the js,t.

4.2.18 Theorem. Let d : R+ → N0 be a function. Then the following are equivalent:
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4.2 Subproduct Systems

(i) There is a continuous-time Cartesian system X> with #Xt = d(t) for all t ∈ R+.

(ii) The function d fulfills d(0) = 1 and (4.2.1) for all s > t > 0.

Proof. Let X> be a continuous-time Cartesian system and S > T > 0. Then, there

exist R ∈ R+ with R < T and Q ∈ Q+ with Q > 1 such that S − R = Q(T − R).

Now, by Theorem 4.2.17, the Yt := Xt+R form a continuous-time Cartesian system. Put

S′ := S − R and T ′ := T − R, whence S′ = QT ′. The Zq := YqT ′ form a rational-time

Cartesian system Z> by Theorem 2.3.2. Since Z1 = YT ′ = XT and ZQ = YQT ′ = YS′ =

XS , applying Proposition 4.2.11 to Z> shows that (4.2.1) holds for S and T . The other

direction is Proposition 4.2.16.

Proposition 4.2.16 holds likewise for subproduct systems, but the proof of the con-

verse statement breaks down. It might well be that the converse is even false in general

for subproduct systems. But the main interest in subproduct systems comes from their

relation to product systems and for most applications technical assumptions like measur-

ability or contiuity are needed anyway. So the following weaker version of the converse

is still useful.

4.2.19 Theorem. Let H5 be a continuous-time subproduct system and assume that

t 7→ dimHt is lower semicontinuous. Then (4.2.1) holds for all s > t > 0.

Proof. Fix t ∈ R+. Lower-semicontinuity implies that {s | dimHs ≤ N} is closed for

every N . In particular, {s | (4.2.1) holds} is closed. The Hqt for q ∈ Q+ form a rational-

time subproduct system, so (4.2.1) holds for all s > t > 0 with s = qt for some rational

q. Thus, {s | (4.2.1) holds} is closed and dense in the interval (t,∞), so it contains

(t,∞).
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5 Universal Products

We have seen that independence can be defined in any tensor category with inclusions;

confer Section 2.2.1. Whereas there is essentially only one notion of independence for

classical probability spaces, it turned out that there are several such notions for quantum

probability spaces, each with a rich theory and connections to other areas of mathematics.

The most prominent example is Voiculescu’s freeness, which has many interrelations with

the theory of random matrices and the theory of operator algebras. Soon, the question

arose what are “all” notions of independence of quantum probability spaces. One way to

make this question precise is to ask for all ways to turn AlgQ into a tensor category with

inclusions. This approach naturally leads to universal products. Suppose (AlgQ,�) is a

tensor category with inclusions ι1, ι2. For quantum probability spaces (A1, ϕ1), (A2, ϕ2)

let (A1, ϕ1)�(A2, ϕ2) = (A, ϕ). Then ϕ1 �ϕ2 := ϕ ◦ (ι1 t ι2) defines a linear functional

on A1 t A2. Using this definition one gets a new bifunctorÄ
(A1, ϕ1), (A2, ϕ2)

ä
7→ (A1 t A2, ϕ1 � ϕ2) : AlgQ×AlgQ→ AlgQ

which turns AlgQ into a tensor category with the canonical embeddings into the free

product as inclusions and ι1 t ι2 defines a natural transformation between the two. The

axioms of tensor categories with inclusions translate to axioms for �, which are the

definition of universal products.

Recently, Lachs discovered a new family of universal products, the (r, s)-products. As

a first step towards a detailed study of (r, s)-independence and (r, s)-Lévy-processes, we

present a construction, which allows to calculate the GNS-constructions of (r, s)-product

functionals.

Section 5.2 is based on [GL14].
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5.1 Universal Products

5.1 Universal Products

Let I be an arbitrary index set. We put

AI := {ε = (ε1, . . . , εm) | m ∈ N, εk ∈ I, εk 6= εk+1, k = 1, . . . ,m− 1}

and define the length of ε as |ε| := m if ε = (ε1, . . . , εm). We simply denote A{1,...,k} by

Ak. For ε ∈ AI , |ε| = m and vector spaces Vi, i ∈ I, we set

Vε := Vε1 ⊗ · · · ⊗ Vεm .

The free product of algebras Ai, i ∈ I, is defined as the vector space

⊔
i∈I
Ai :=

⊕
ε∈AI

Aε

with the multiplication given by

(a1 ⊗ · · · ⊗ am)(b1 ⊗ · · · ⊗ bn) :=


a1 ⊗ · · · ⊗ am ⊗ b1 ⊗ · · · ⊗ bn, εm 6= δ1

a1 ⊗ · · · ⊗ amb1 ⊗ · · · ⊗ bn, εm = δ1

for all a1 ⊗ · · · ⊗ am ∈ Aε, b1 ⊗ · · · ⊗ bn ∈ Aδ, where ε, δ ∈ AI , |ε| = m, |δ| = n. By

slight abuse of notation, expressions of the form a1 · · · an ∈ Aε are always supposed to

signify |ε| = n and ai ∈ Aεi . Similarly a1 · · · an ∈
⊔
i∈I Ai shall mean there is an ε ∈ AI

such that a1 · · · an ∈ Aε, that is a1, . . . , an are always assumed to belong to alternating

algebras. The free product of two algebras is denoted by A1 t A2 and has the following

universal property: For two algebra homomorphisms ji : Ai → A, i ∈ {1, 2}, one gets a

unique algebra homomorphism j1 t j2 : A1 tA2 → A such that j1 t j2 (a) = ji(a) for all

a ∈ Ai. In particular, this implies that for two algebra homomorphisms ji : Ai → Bi we

have a unique algebra homomorphism j1 q j2 : A1 tA2 → B1 tB2 fulfilling j1 q j2 (a) =

ji(a) for all a ∈ Ai.

5.1.1 Definition. A universal product is a prescription � that assigns to each pair of

linear functionals ϕi : Ai → C on algebras Ai a linear functional ϕ1 �ϕ2 : A1 tA2 → C
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5 Universal Products

such that the following axioms hold:

(UP1) (ϕ1 � ϕ2) ◦ (j1 q j2) = (ϕ1 ◦ j1) � (ϕ2 ◦ j2) for all algebra homomorphisms

ji : Ai → Bi, where i ∈ {1, 2}.

(UP2) (ϕ1 � ϕ2) � ϕ3 = ϕ1 � (ϕ2 � ϕ3) for all linear functionals ϕi : Ai → C, where

i ∈ {1, 2, 3}.

(UP3) (ϕ1 � ϕ2)(a) = ϕi(a) for all a ∈ Ai ⊂ A1 t A2 and i ∈ {1, 2}.

5.1.2 Example. For algebraic quantum probability spaces (Ai, ϕi), i ∈ {1, 2}, the well-

known Boolean product ♦ is given by

ϕ1 ♦ ϕ2(c1 · · · cn) = ϕε1(c1) · · · ϕεn(cn)

for c1 · · · cn ∈ Aε. This is a universal product. It made early appearances, although not

named this way, in the work of von Waldenfels [vW73] and Bozejko [Boż87]. The theory

of Boolean convolution was established in [SW97]. Nowadays it is an important part of

non-commutative probability theory, see for example the work of Arizmendi and Hasebe

[AH13], [AH14].

We know from Section 2.2.1 that independence can be defined in every tensor category

with inclusions. The following two propositions explain the close relationship between

universal products and notions of independence in quantum probability.

5.1.3 Proposition. Let � be a universal product. ThenÄ
(A1, ϕ1), (A2, ϕ2)

ä
7→ (A1 t A2, ϕ1 � ϕ2)

(j1, j2) : (A1 ×A2)→ (A′1,A′2) 7→ j1 q j2 : A1 t A2 → A′1 t A′2

is a bifunctor, which turns AlgQ into a tensor category with the canonical embeddings

into the free product as inclusions.

Proof. (UP1) shows that the prescription is a bifunctor. (UP2) guarantees that the

natural isomorphism A1 t (A2 t A3) ∼= (A1 t A2)A3 induces a natural isomorphism of

quantum probability spaces. (UP3) shows that the zero algebra with zero functional
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5.1 Universal Products

is a neutral element and the canonical embeddings induce natural transformations of

quantum probability spaces.

We identify the universal product with the bifunctor from the above proposition and

simply write Q1 �Q2 for (A1 t A2, ϕ1 � ϕ2) when Qi = (Ai, ϕi).

Let � be a bifunctor, which turns AlgQ into a tensor category with inclusion ι1, ι2.

Note that both, ι1 and ι2, are families of algebra homomorphisms indexed by AlgQ ×

AlgQ and that ι1Q1,Q2
and ι2Q1,Q2

have the same target algebra. Thus, we can define

a family of algebra homomorphisms ι1 t ι2 given by (ι1 t ι2)Q1,Q2 := ι1Q1,Q2
t ι2Q1,Q2

.

To simplify notation, we will sometimes omit the subscripts and just write ιi instead of

(ιi)Q1,Q2 .

5.1.4 Proposition. Let � be a bifunctor, which turns AlgQ into a tensor category with

inclusions ι1, ι2. Then there is a unique universal product � such that the family of

algebra homomorphims ι1 t ι2 is a natural transformation ι1 t ι2 : ·� · ⇒ ·� ·.

Proof. Morphisms in AlgQ are functional preserving, so � is uniquely determined by

ϕ1 �ϕ2 := (ϕ1�ϕ2) ◦ (ι1 t ι2)

where ϕ1�ϕ2 denotes the linear functional of (A1, ϕ1)�(A2, ϕ2). It remains to show

that the prescription defined this way is indeed a universal product. Since ι1 is a natural

transformation, we have

(j1� j2) ◦ (ι1 t ι2) ◦ i1 = (j1� j2) ◦ ι1 = ι1 ◦ j1 = (ι1 ◦ j1) t (ι2 ◦ j2) ◦ i1

where i1 is the canonical inclusion into the free product. Analogously it holds that

(j1� j2) ◦ (ι1 t ι2) ◦ i2 = (ι1 ◦ j1) t (ι2 ◦ j2) ◦ i2.

By the universal property of the free product we get

(j1� j2) ◦ (ι1 t ι2) = (ι1 ◦ j1) t (ι2 ◦ j2)
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and thus

((ϕ1 ◦ j1) �(ϕ2 ◦ j2)) = ((ϕ1 ◦ j1)�(ϕ2 ◦ j2)) ◦ (ι1 t ι2)

= (ϕ1�ϕ2) ◦ (j1� j2) ◦ (ι1 t ι2)

= (ϕ1�ϕ2) ◦ ((ι1 ◦ j1) t (ι2 ◦ j2))

= (ϕ1�ϕ2) ◦ (ι1 t ι2) ◦ (j1 t j2)

= (ϕ1 �ϕ2) ◦ (j1 t j2)

which proves (UP1). (UP2) and (UP3) are easy to check.

Let S be a set. Recall that S∗ denotes the set of all finite tuples over S and Λ denotes

the empty tuple. A tuple partition of S is a set of tuples Π = {V1, . . . , V`}, Vi ∈ S∗ \ {Λ}

such that every element of S belongs to one and only one of the tuples Vi. The set of

all tuple partitions of S is denoted by TP(S). A tuple partition of {1, . . . , n} is called

compatible with ε ∈ AI if |ε| = n and, for all i, j ∈ {1, . . . , n} that belong to the same

block of Π, one has εi = εj . The set of all tuple partitions compatible with ε is denoted

by TP(ε). We simply write TP(n) for TP({1, . . . , n}). Let ϕ1 : A1 → C, ϕ2 : A2 → C

be linear functionals, and c1 · · · cn ∈ Aε. For a tuple U = (i1, . . . , im) such that all cik
belong to the same algebra Aj we use the shorthand notation

ϕU (c1 · · · cn) := ϕj(ci1 · · · cim).

Furthermore, for ε ∈ A2, c1 · · · cn ∈ Aε and a tuple partition Π ∈ TP(ε) we write

ϕΠ(c1 · · · cn) :=
∏
U∈Π

ϕU (c1 · · · cn).

5.1.5 Theorem. Let � be a universal product. Then there exist unique constants tε(Π)

for every k ∈ N, ε ∈ Ak and Π ∈ TP(ε) such that

ϕ1 � · · · �ϕk(c1 · · · cn) =
∑

Π∈TP(ε)

tε(Π)ϕΠ(c1 · · · cn)

for all c1 · · · cn ∈ Aε.
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Theorem 5 of [BGS02] deals with the case k = 2 and commutative universal products,

but the proof relies on UP(UP1) only, hence it applies to our more general situation. See

also [Mur03, Theorem 3.1].

In the following we call a universal product which fulfills

t(1,2)({(1), (2)}) = r and t(2,1)({(1), (2)}) = s

an (r, s)-universal product . By Theorem 5.1.5 every universal product is an (r, s)-

universal product for unique constants r, s ∈ C. If r = s = q we speak of a q-universal

product . A 1-universal product is also called a normalized universal product.

5.1.6 Observation. Let � be an (r, s)-universal product. Then one easily checks that

ϕ1 �op ϕ2 := ϕ2 �ϕ1 defines an (s, r)-universal product. For the universal coefficients

t�ε (Π) and t�op

ε (Π) one finds

t�ε (Π) = t�
op

ε (Π)

where εk := 1 if εk = 2 and vice versa.

5.2 The (r, s)-Products

For a tuple ε = (ε1, . . . , εn) ∈ Nn we call a position k ∈ {1, . . . , n− 1} an up if εk < εk+1

and a down if εk > εk+1. Denote the set of all ups by u(ε) and the set of all downs by

d(ε). The sets u(ε) and d(ε) are always disjoint One has u(ε) ∪ d(ε) = {1, . . . , n− 1} if

and only if εk 6= εk+1 for all k ∈ {1, . . . , n− 1}, that is if ε ∈ AN.

5.2.1 Definition. Let r, s ∈ C be fixed. The (r, s)-product of two functionals ϕi : Ai → C

is defined as ϕ1fϕ2 : A1 t A2 → C with

ϕ1fϕ2(a1 . . . an) := r#u(ε)s#d(ε)ϕ1 � ϕ2(a1 . . . an)

for all a1 . . . an ∈ Aε.

At first, only commutative universal products have been considered. It can be shown

that there are exactly three commutative q-universal products for every q 6= 0, see Spe-
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icher [Spe97] and Ben Ghorbal and Schürmann [BGS02]. The classification of noncom-

mutative 1-universal products was done by Muraki [Mur03] and it can easily be extended

to show that there are exactly five q-universal products for every q 6= 0. By discovering

the (r, s)-products the classification of general universal products was completed (except

for the case q = 0 which is still open).

5.2.2 Theorem ([GL14, Theorem 3.21], see also [Lac14]). Let � be an (r, s)-universal

product with r 6= s. Then � coincides with the (r, s)-product f.

In this section we will perform the GNS-construction for the (r, s)-product of two

linear functionals. Since the (r, s)-product is not preserving positivity, we have to gener-

alize the usual GNS-construction to not necessarily positive functionals. When comparing

with the case of the Boolean product, that is r = s = 1, strange things happen to the

dimension of the representation space. Since the (r, s)-product of two homomorphisms is

not a homomorphism, the dimension can increase, see Example 5.2.14. It is also possible

that the dimensions coincide, as is shown in example 5.2.17, or even that the dimension

is smaller than in the Boolean case, see Example 5.2.18.

5.2.1 Dual Pairs

We briefly mention some basic definitions and facts.

5.2.3 Definition. A semi-dual pair consists of a pair of vector spaces (E,F ) and a

bilinear form 〈·, ·〉 : E×F → C. A semi-dual pair is called a dual pair if its bilinear form

is non-degenerate in the sense that

I 〈e, f〉 = 0 for all e ∈ E implies f = 0 and

I 〈e, f〉 = 0 for all f ∈ F implies e = 0.

In that case the bilinear form is called dual pairing of (E,F ).

Given a semi-dual pair (E,F ) and a subset M ⊂ E, the orthogonal space of M is

M⊥ :=
¶
f ∈ F

∣∣∣ 〈e, f〉 = 0 ∀e ∈M
©
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and similarly for a subset N ⊂ F

N⊥ :=
¶
e ∈ E

∣∣∣ 〈e, f〉 = 0 ∀f ∈ N
©
.

The subspaces F⊥ ⊂ E and E⊥ ⊂ F are called degeneracy spaces of (E,F ).

5.2.4 Proposition. Let (E,F ) be a semi-dual pair. Denote by [e] and [f ] the equivalence

classes of e and f in E/F⊥ and F/E⊥ respectively. Then

〈[e], [f ]〉 := 〈e, f〉

gives a well-defined dual pairing on (E/F⊥, F/E⊥).

Proof. Let e ∈ E, e′ ∈ F⊥, f ∈ F, f ′ ∈ E⊥. Then

〈e+ e′, f + f ′〉 = 〈e, f〉

by bilinearity. This shows well-definedness. To show non-degeneracy assume 〈[e], [f ]〉 = 0

for all f ∈ F . Since 〈[e], [f ]〉 = 〈e, f〉 we get e ∈ F⊥, hence [e] = 0. Analogously

〈[e], [f ]〉 = 0 for all e ∈ E implies [f ] = 0.

5.2.5 Example. Any complex m× n matrix B defines a bilinear form

〈x, y〉 := xtBy

on Cm × Cn. We have F⊥ =
¶
x ∈ Cm

∣∣∣ xtBy = 0 ∀y ∈ Cn
©
so dimF⊥ = m − rankB

and dimE/F⊥ = m− dimF⊥ = rankB. Similarly, dimF/E⊥ = rankB.

5.2.6 Definition. Let A be an algebra. A (semi-)dual pair of A-modules is a (semi-)dual

pair (E,F ) such that

I E is a right A-module,

I F is a left A-module,

I 〈ea, f〉 = 〈e, af〉 for all e ∈ E, a ∈ A and f ∈ F .
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If A has a unit 1A, (E,F ) is called unital if e1A = e and 1Af = f for all e ∈ E, f ∈ F .

5.2.7 Proposition. Let A be an algebra and (E,F ) a semi-dual pair of A-modules. If

the subspace U ⊂ E is invariant under the right-action of A on E, then U⊥ is invariant

under the left-action of A on F .

Proof. Let U ⊂ E be invariant, that is e ∈ U implies ea ∈ U for all a ∈ A. For f ∈ U⊥

and arbitrary a ∈ A we get

〈e, af〉 = 〈ea, f〉 = 0

for all e ∈ U , that is af ∈ U⊥.

In particular F⊥ ⊂ E is invariant. Of course, we can switch the roles of E and F to

show E⊥ ⊂ F is invariant.

5.2.8 Theorem. Let (E,F ) be a semi-dual pair of A modules. Then (E/F⊥, F/E⊥) is

a dual pair of A modules with actions and dual pairing given by

[e]a = [ea], a[f ] = [af ] and 〈[e], [f ]〉 = 〈e, f〉

for all e ∈ E, f ∈ F and a ∈ A.

Proof. The pair (E/F⊥, F/E⊥) is a dual pair by Proposition 5.2.4. The given actions

are well-defined by proposition 5.2.7, . Furthermore (E/F⊥, F/E⊥) is a dual pair of A

modules, since

〈[e]a, [f ]〉 = 〈[ea], [f ]〉 = 〈ea, f〉 =

〈e, af〉 = 〈[e], [af ]〉 = 〈[e], a[f ]〉

for all e ∈ E, f ∈ F and a ∈ A.

5.2.2 A Generalized GNS-Construction

Every algebra A acts on itself from the right and from the left by multiplication. For

any linear functional ϕ : A → C the bilinear form (a, b) 7→ ϕ(ab) : A × A → C turns
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(A,A) into a semi-dual pair of A-modules. We denote by Nϕ
R and Nϕ

L the degeneracy

spaces. Define Eϕ := A/Nϕ
R and Fϕ := A/Nϕ

L . By the preceding theorem (Eϕ, Fϕ)

is a dual pair of A-modules. Furthermore, if A is unital und ϕ(1) = 1, then we define

Ωϕ := [1] ∈ Eϕ and Ξϕ := [1] ∈ Fϕ. Then it holds that

〈Ωϕ, aΞϕ〉 = ϕ(1a1) = ϕ(a) (5.2.1)

for all a ∈ A and Eϕ = ΩϕA, Fϕ = AΞϕ.

5.2.9 Definition. Let A be an algebra and E a right A-module. A vector Ω ∈ E is

called cyclic if ΩA = E and quasi-cyclic if CΩ + ΩA = E.

In other words, a vector Ω ∈ E is quasi-cyclic, if and only if the smallest submodule

of E that contains Ω equals E. Cyclicity and quasi-cyclicity for left modules are defined

likewise.

For a unital algebra with normalized linear functional (Eϕ, Fϕ) is a dual pair of A-

modules with cyclic vectors Ωϕ,Ξϕ from which we can recover the functional by (5.2.1).

Denote by ‹A the unitization of A, that is the unital algebra with underlying vector

space ‹A = C⊕A and product (λ, a)(µ, b) = (λµ, λb+aµ+ab). Then a right A-module E

can be turned into a right ‹A-module by setting e(1, a) := e+ ea. Clearly, a vector Ω ∈ E

is quasi-cyclic for the A-action if and only if it is cyclic for the corresponding ‹A-action.
For a functional ϕ : A → C define ϕ̃ : ‹A → C with ϕ̃(λ, a) := λ + ϕ(a). Using ‹A and

ϕ̃ instead of A and ϕ we can always use the construction above to find a dual pair of A

modules which allows us to reconstruct ϕ by (5.2.1).

5.2.10 Proposition. Let (E,F ) be a dual pair of A-modules, Ω ∈ E, Ξ ∈ F quasi-cyclic

vectors with

〈Ω,Ξ〉 = 1 and 〈Ω, aΞ〉 = ϕ(a) (5.2.2)

for all a ∈ A. Then there is a unique pair of module isomorphisms U : Eϕ̃ → E,

T : F ϕ̃ → F with U(Ωϕ̃) = Ω and T (Ξϕ̃) = Ξ. It holds that 〈Ue, Tf〉 = 〈e, f〉 for all

e ∈ Eϕ̃, f ∈ F ϕ̃.

133



5 Universal Products

Proof. Since Ωϕ̃ and Ξϕ̃ are quasi-cyclic, U and T are uniquily determined, if they exist.

We have

〈
Ωϕ̃a, bΞϕ̃

〉
= ϕ(ab) = 〈Ωa, bΞ〉 and

〈
Ωϕ̃a,Ξϕ̃

〉
= ϕ(a) = 〈Ωa,Ξ〉

for all a, b ∈ A. Together this yields
¨
Ωϕ̃a, f

∂
= 〈Ωa, f〉 for all f ∈ F . Provided U and T

exist this also settles the last equality in the proposition. Since (Eϕ̃, F ϕ̃) is a dual pair,

the pairing is non-degenerate. So

Ωϕ̃a = 0⇔
〈

Ωϕ̃a, f
〉

= 0 for all f ∈ F

⇔ 〈Ωa, f〉 = 0 for all f ∈ F

⇔ Ωa = 0.

This shows that U : λΩϕ̃ + Ωϕ̃a 7→ λΩ + Ωa is well defined. The existence of T follows

analogously.

5.2.11 Definition. Let A be an algebra and ϕ : A → C a linear functional. A dual

pair of A-modules (E,F ) with quasi-cyclic vectors Ω,Ξ is called GNS-pair of (A, ϕ) if it

fulfills (5.2.2).

We have seen that a GNS-pair always exists and is unique up to isometric isomor-

phism in the sense of Proposition 5.2.10. In particular, for A a unital algebra and

ϕ(1) = 1 we have (Eϕ, Fϕ) ∼= (Eϕ̃, F ϕ̃), since they are both GNS-pairs of (A, ϕ).

5.2.12 Example. Let A be an algebra and ϕ : A → C a homomorphism, that is

ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ A. Then (C,C) becomes a dual pair of A-modules with

canonical dual pairing 〈λ, µ〉 := λµ and left and right actions on C by

λa := λϕ(a), aµ := ϕ(a)µ.

The unit 1 ∈ C is quasi-cyclic for these actions and (C,C) with Ω := 1,Ξ := 1 is obviously

a GNS-pair of (A, ϕ). Also note that Ω and Ξ are cyclic if and only if ϕ 6= 0.

The converse holds, that is if the GNS-modules are one-dimensional, then ϕ is a

homomorphism. For let (E,F ) with quasi-cyclic vektors Ω ∈ E,Ξ ∈ F be a GNS-pair
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with dimE = dimF = 1. So E = CΩ, F = CΞ and 〈λΩ, µΞ = λµ〉. From 〈Ω, aΞ〉 = ϕ(a)

we conclude aΞ = ϕ(a)Ξ. Since ϕ(ab)Ξ = (ab)Ξ = a(bΞ) = ϕ(a)ϕ(b)Ξ for all a, b ∈ A, ϕ

is a homomorphism.

5.2.3 GNS-Construction for the (r, s)-Products

Fix r, s ∈ C and denote by f the (r, s)-product. Let (Ei, Fi) with quasi-cyclic vectors

Ωi,Ξi be a GNS-pair of (Ai, ϕi) for i = 1, 2. In the following we will present a way to

express the GNS-pair of (A1tA2, ϕ1fϕ2) in terms of the respective GNS-pairs (Ei, Fi).

Set

E := CΩ⊕ Ω1A1 ⊕ Ω2A2 and F := CΞ⊕A1Ξ1 ⊕A2Ξ2. (5.2.3)

and define a semi-dual pairing on (E,F ) by

〈Ω,Ξ〉 = 1 〈Ω, b1Ξ1〉 = 〈b1〉 〈Ω, b2Ξ2〉 = 〈b2〉 (5.2.4)

〈Ω1a1,Ξ〉 = 〈a1〉 〈Ω1a1, b1Ξ1〉 = 〈a1b1〉 〈Ω1a1, b2Ξ2〉 = r〈a1〉〈b2〉

〈Ω2a2,Ξ〉 = 〈a2〉 〈Ω2a2, b1Ξ1〉 = s〈a2〉〈b1〉 〈Ω2a2, b2Ξ2〉 = 〈a2b2〉

where 〈a〉 := ϕi(a) for a ∈ Ai. Furthermore, set

(λΩ + Ω1a1 + Ω2a2)b :=


λΩ1b+ Ω1a1b+ sϕ2(a2)Ω1b for b ∈ A1

λΩ2b+ rϕ1(a1)Ω2b+ Ω2a2b for b ∈ A2

(5.2.5)

and

b(µΞ + c1Ξ1 + c2Ξ2) :=


µbΞ1 + bc1Ξ1 + rϕ2(c2)bΞ1for b ∈ A1

µbΞ2 + sϕ1(c1)bΞ2 + bc2Ξ2for b ∈ A2.
(5.2.6)

5.2.13 Theorem. The aligns (5.2.5),(5.2.6) define actions of A1 t A2 such that the

semidual pair (E,F ) in (5.2.3) becomes a semi-dual pair of A1 t A2-modules. The dual

pair (E/F⊥, F/E⊥) with the vectors Ω + F⊥,Ξ + E⊥ is the GNS-pair of ϕ1fϕ2.

Proof. Straightforward.
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5.2.14 Example. Suppose 0 6= ϕi : Ai → C are homomorphisms. Then by Exam-

ple 5.2.12 Ei = CΩi and Fi = CΞi for i = 1, 2. So E,F ∼= C3 and the semi-dual pairing

(5.2.4) is determined by the matrix

B :=

á
1 1 1

1 1 r

1 s 1

ë
in the sense of Example 5.2.5. We have

rankB =


1 for r, s = 1

2 for r = 1, s 6= 1 or r 6= 1, s = 1

3 for r, s 6= 1

so the dimension of the the GNS-pair of (A1 t A2, ϕ1fϕ2) depends on r and s.

Can it happen that the semi-dual pairing (5.2.4) is degenerate even if r, s 6= 1? Before

we give two more examples let us do some general considerations.

5.2.15 Lemma. Let (E,F ) be a GNS-pair of (A, ϕ). Then

Ωâ = Ω⇔ ϕ(â) = 1 and ϕ(âb) = ϕ(b)∀b ∈ A.

Proof. Straightforward.

5.2.16 Proposition. Let r, s 6= 1. If Ω1 and Ω2 are cyclic, then E⊥ = {0}.

Proof. Cyclicity means Ω1A1 = E1 and Ω2A2 = E2. Thus we can rewrite E of (5.2.3) as

E = CΩ⊕ E1 ⊕ E2.

In particular, there exist â1 ∈ A1, â2 ∈ A2 with Ω1 = Ω1â1,Ω2 = Ω2â2 ∈ E. Let
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f = µΞ + b1Ξ1 + b2Ξ2 ∈ E⊥. Using (5.2.4), we get the system of linear aligns

〈Ω, f〉 = µ+ ϕ1(b1) + ϕ2(b2) = 0

〈Ω1, f〉 = µ+ ϕ1(b1) + rϕ2(b2) = 0

〈Ω2, f〉 = µ+ sϕ1(b1) + ϕ2(b2) = 0

which is determinate for r, s 6= 1. Hence µ = ϕ1(b1) = ϕ2(b2) = 0. Furthermore

〈Ω1a1, f〉 = ϕ1(a1b1) = 〈Ω1a1, b1Ξ1〉 = 0

for all a1 ∈ A1. Using, again, cyclicity of Ω1 and non-degeneracy of (E1, F1) we conclude

b1Ξ1 = 0. In the same way we get b2Ξ2 = 0 and finally f = 0.

So in order to get more interesting examples it is necessary that the quasicyclic vectors

for the GNS-pair of at least one of the functionals are not cyclic.

5.2.17 Example. Let 0 6= ϕ1 : A1 → C be a homomorphism and ϕ2 : C0[x]→ C given

by

ϕ2(xm) :=


1 for m = 2

0 for m 6= 2.

We already know the GNS-pair of ϕ1 is E1 = CΩ1 and F1 = CΞ1. To determine the

GNS-pair of ϕ2 we calculate‹N =

{
p =

n∑
i=0

αix
i | ϕ̃2(pq) = 0 ∀q ∈ C[x]

}

=
¶
p | ϕ̃2(pxk) = 0 ∀k ∈ N0

©
=

{
p =

n∑
i=0

αix
i | α0 = α1 = α2 = 0

}

which yields

E2 = F2 = C[x]/Ñ = span
¶

[1], [x], [x2]
©
.
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Setting Ω2 = Ξ2 := [1] we get

Ω2C0[x] = span{Ω2x,Ω2x
2},C0[x]Ξ2 = span{xΞ2, x

2Ξ2}.

and

E = span{Ω,Ω1,Ω2x,Ω2x
2}, F = span{Ξ,Ξ1, xΞ2, x

2Ξ2}

with the semidual pairing determined by

B =


1 1 0 1

1 1 0 r

0 0 1 1

1 s 0 0

 .

We find

rankB =


3 for r = 1 or s = 1

4 for r, s 6= 1.

So the dimension of the GNS-pair of ϕ1fϕ2 can be equal to the one in the Boolean case

r = s = 1 for other values of r and s.

5.2.18 Example. As a third example consider ϕ1 = ϕ2 : C0[x]→ C with

ϕi(x
m) :=


1 for m = 2

0 for m 6= 2.

We already know the GNS-pairs of ϕ1 and ϕ2. From these we construct

E = span{Ω,Ω1x,Ω1x
2,Ω2x,Ω2x

2}, F = span{Ξ, xΞ1, x
2Ξ1, xΞ2, x

2Ξ2}
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with the semidual pairing determined by

B =



1 0 1 0 1

0 1 0 0 0

1 0 0 0 r

0 0 0 1 0

1 0 s 0 0


.

We calculate detB = −rs+ r + s and thus find

rankB =


4 for rs = r + s

3 otherwise.

This example shows that, surprisingly, the dimension of the GNS-module of ϕ1fϕ2 can

even be smaller than in the Boolean case r = s = 1.

5.2.19 Remark. One may ask if these dimension phenomena can also arise for the

normalized universal products, when one allows non-positive linear functionals. This it

not the case. The same constructions one uses to build the joint GNS-representations

of two states from their respective GNS-representations can be applied to build the

joint GNS-modules for general linear functionals. Non-degeneracy of the pairings is

automatically preserved.

5.2.4 GNS-Triples

The GNS-construction for nonpositive functionals has also been investigated by Wilhelm

[Wil08]. We show that his approach is equivalent to ours. He defines:

5.2.20 Definition. A GNS-triple (π,H0, ω) is a triple, consisting of a vector space H0,

a representation π : A→ L(H) with H = C⊕H0 and the vector ω = (1, 0) such that

1. ω is quasi-cyclic for π

2. there is no nonzero invariant subspace of H0.
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Let (π,H0, ω) be a GNS-triple. Set F := H = Cω⊕H0. The representation π : A→

L(H) yields a left action af := π(a)f on F and a right action ea := e ◦ π(a) on the

algebraic dual F ′. Let E := CPω + PωA be the submodule generated by Pω.

5.2.21 Proposition. (E,F ) is a dual pair of A-modules with the canonical dual pairing

〈e, f〉 := e(f) (5.2.7)

Proof. Clearly, (5.2.7) defines a bilinear form on E×F and fulfills 〈ea, f〉 = 〈e, af〉 for all

e ∈ E, a ∈ A, f ∈ F . Hence we have a semi-dual pair of A-modules. Obviously 〈e, f〉 = 0

for all f ∈ F implies e = 0, since e is a linear functional on F . Suppose 〈e, f〉 = 0 for

all e ∈ E. Since Pω ∈ E, we have f ∈ H0. Furthermore we get Pωaf = 0 for all a ∈ A,

hence Cf +Af ⊂ H0 is an invariant subspace. So f = 0.

5.2.22 Proposition. (E,F ) with the vectors Ω := Pω,Ξ := ω is a GNS-pair of the

functional ϕ(a) := Pωaω.

Proof. Ξ is quasi-cyclic by (1) in Definition 5.2.20 and Ω is cyclic by definition of E. We

have

〈Ω, aΞ〉 = Pωπ(a)ω = ϕ(a)

for all a ∈ A.

On the other hand

5.2.23 Proposition. Let (E,F ) be a dual pair of A-modules with quasi-cyclic vectors

Ω,Ξ. Then (π,Ω⊥,Ξ) a GNS-triple, where π : A → L(F ) is the representation defined

by π(a)f := af .

Proof. It is immediately clear that π is a representation and Ξ is quasi-cyclic. Let U ⊂ Ω⊥

be an invariant subspace and u ∈ U . Then 〈Ω, u〉 = 0 and 〈Ωa, u〉 = 〈Ω, au〉 = 0 for all

a ∈ A. Since Ω is quasi-cyclic, this shows 〈e, u〉 = 0 for all e ∈ E, hence u = 0.
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