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1 Introduction

In a very general sense, this thesis deals with quantum stochastic evolutions. One can say
that the theory of such evolutions is well developed, but actually there are many different
mathematical theories which were inspired by the questions, how quantum mechanical
systems evolve in time, some of them can be thought of as physical models, others are
difficult to find in nature, but turned out to have surprisingly fruitful applications inside
mathematics. The kind of “evolutions” we will study look quite different at first sight, but
they have in common a certain kind of stationarity. To formulate this similarity rigorously
we need to deal with category theory, specifically tensor categories or monoidal categories.
The categorial objects which have the desired stationarity are called comonoidal systems.

The prototype of a stationary stochastic evolution is a classical Lévy process, which

consists of real valued random variables X;,¢ > 0, with the following properties:
(LP1) Xo ~ dp.

(LP2) The increments Xy, — Xty, Xty — Xy, ..., Xt, — Xy, _, are independent for all
0<tg <ty < <ty

(LP3) The increments are stationary, that is (X; — Xs) ~ X5 for all s < ¢.

Lévy processes play a fundamental role in probability theory, as they are the building
blocks of stochastic calculus. With the Brownian motion and the Poisson process as ex-
amples they are also highly important in physics. It is well known that a Lévy process can
be reconstructed from its convolution semigroup of 1-dimensional distributions. Given
any convolution semigroup of probability measures on R, one can construct a projective
system of probability spaces (R™, B", i, ® - -+ ® py,, ), which has a projective limit by the
Daniell-Kolmogoroff theorem. If X; ~ pu;, the projective limit is stochastically equivalent

to the Lévy process (X¢)ier, -



1 Introduction

The key idea of quantum probability is as follows: First, express a probabilistic no-
tion in terms of a (commutative) algebra of functions on a probability space without
an explicit reference to the elements of the probability space. Then allow for general,
not necessarily commutative algebras. For example, L>°(€Q, F,P) is a commutative von
Neumann algebra and ®(f) := E(f) = [ fdP is a normal state. This led to the definition
of a von Neumann quantum probability space as a pair (A, ®) with A a (not necessar-
ily commutative) von Neumann algebra and ® a normal state. There are also other,
more algebraic, notions of quantum probability spaces. The most general one means
just an algebra with a linear functional. In fact, many interesting questions such as mo-
ments, cumulants, quantum stochastic independence, quantum Lévy processes, quantum
stochastic integration, et cetera can be discussed at this level. We will also adopt this
notion of a quantum probability space meaning simply a pair (A, ®) with A an algebra
and ® a linear functional. When we need additional structure, for example an involution
or a unit, we will explicitly say so and speak of x-algebraic quantum probability spaces,

unital quantum probability spaces, and so on.

The history of quantum Lévy processes starts with von Waldenfels’ work on light
emission and absorption, which he describes as a quantum stochastic process with sta-
tionary and independent multiplicative increments on a non-commutative version of the
coefficient algebra of the unitary group U(2) [vW84]. Later, Schiirmann developed a
comprehensive theory of quantum Lévy processes on x-bialgebras [Sch93|. A *-bialgebra
is a unital *-algebra A together with a coassociative comultiplication A : A — A® A
and a counit ¢ : A — C which are unital *-algebra homomorphisms. In a *-bialgebra the
convolution of linear functionals can be defined as @1 %2 := (1 ® p2)oA. A convolution
semigroup on A is a family of linear functionals ¢; : A — C such that ¢ *x py = @sit
for all s,t € Ry := [0,00). Schiirmann proves that quantum Lévy processes on A are
in 1-1-correspondence with continuous convolution semigroups of states on .A. The con-
struction of a quantum Lévy process from a convolution semigroup is in a sense dual
to the classical construction mentioned above and involves inductive limits instead of
projective limits. Note that when the ¢; form a convolution semigroup, then A can be
seen as a functional preserving homomorphism from (A, ps1¢) to (AR A, ps @ ¢i). By

iteration of A, we can define more general maps, which turn the family formed by the



quantum probability spaces (A®™ ¢y, ® - ® ¢y, ) into an inductive system. An ana-
logue of the Daniell-Kolmogoroff theorem for quantum probability spaces guarantees the
existence of an inductive limit. In case the y; form a continuous convolution semigroup
of states, the inductive limit can be interpreted as a quantum Lévy process in the sense of
[Sch93]. The sketched construction goes back to Accardi, Schiirmann and von Waldenfels
[ASYWSS|. Up to now, quantum Lévy processes are an active area of research. Schiir-
mann’s theory of quantum Lévy processes on *-bialgebras can be applied in the study of
compact quantum groups in the sense of Woronowicz, since a compact quantum group
contains a dense sub-k-bialgebra [Wor87, Wor9§|. Schiirmann and Skeide were able to
classify all quantum Lévy processes on Woronowicz’ SU,(2), thus establishing a Lévy-
Khintchine type result for a quantum group [SS98|. Recently, Franz, Kula, Lindsay and
Skeide proved similar theorems for SU,(N) and Uy(N) [FKLS14]. In the work of Lind-
say and Skalski [LS05] [LS08, [LS12] a rich topological theory of quantum Lévy processes
on C*-bialgebras is developed, which can be used, for example, to study quantum Lévy
processes on locally compact quantum groups. All quantum Lévy processes mentioned
so far have independent increments with respect to the so-called temsor independence.
There are other generalizations of stochastic independence in the quantum world, for ex-
ample freeness or Boolean independence. These come from universal products, which are
prescriptions to calculate mixed moments of pairs of random variables, and modelled on
free products instead of tensor products. The reconstruction of processes that are Lévy
processes with respect to one of these independences from their convolution semigroups

works similar; see [BGS05] and [VosI3l Section2.2.2].

A tensor category (or monoidal category) is, roughly speaking, a category C with
an essentially associative multiplication X (of objects as well as of morphisms) and an
essentially neutral object . We postpone a precise definition, in which we explain pre-
cisely what we mean by “essentially”, to Section [2.2] Instead, we provide the examples
that play a role in this thesis. The reader unfamiliar with tensor categories can simply
view the term as standing for any of the examples. The name comes from the usual
tensor product of linear algebra, which turns the category of complex vector spaces into
a tensor category. The tensor product is associative in the sense that there are canonical

isomorphisms (V1 ®@V2)®@V3 = V1 @ (Va®Vs3). These isomorphisms form a natural isomor-
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phism in the sense of Section that is they fulfill a certain compatibility condition
with the corresponding morphisms, here linear maps. The neutral object is the ground
field C viewed as a vector space over itself. Again, this means the existence of canonical
isomorphisms C® V = V =2 VYV ® C, which form natural transformations. The tensor
product of two algebras Aj,. 4y is again an algebra with respect to the multiplication
(a1 ® a2)(by ® by) := a1b; ® agby. The obtained tensor product of algebras turns the
category of algebras into a tensor category. The tensor product of unital algebras with
unit elements 17 and 1s respectively is again a unital algebra with unit element 1; ® 1.
The unital algebras form a tensor category with respect to this product as well. Sim-
ilarly, one can construct tensor categories of coalgebras, bialgebras and Hopf algebras.
The tensor product of Hilbert spaces is another main example. The neutral object is the
one dimensional Hilbert space C. Examples quite different from the preceding ones are
the tensor categories of (quantum) probability spaces. The tensor product of classical
probability spaces (1, Fi1, 1), (22, Fo, pu2) is defined as (21 x Qq, F1 @ Fo, p1 @ pz) and
we get a tensor category. Tensor categories of quantum probability spaces are closely re-
lated to quantum stochastic independence. In contrast to classical probability, there are
different notions of independence in quantum probability and, correspondingly, different
structures of a tensor category. Recall that the free product A; U As of two algebras A;
is determined by the universal property, that there are embeddings ¢; : A; — A U As
and for any algebra A and algebra homomorphisms f; : A; — A there exists a unique
algebra homomorphism f; U fs : A; U Ay — A with (fiU fa2) oti = fi, or in other words,
the free product is the coproduct in the category of algebras. Of most interest are such
tensor products on the category of quantum probability spaces for which the algebra of
the product space as well as the product of morphisms are given by the free product.
Five such products are well known in quantum probability: The tensor product, the free
product (of quantum probability spaces), the Boolean product, the monotone and the
anti-monotone product. In this case, the neutral object is always the zero algebra with
zero functional. Of course it is possible to construct other tensor products of quantum
probability spaces. But under mild assumptions one can show that these are always quo-
tients of tensor products build on the free product of algebras. The categorial aspects of

independence have been worked out by Franz [Fra06]. They also led him to the definition



of independence in a purely categorial framework; see Section [2.2.1]

In Chapter [2] we introduce the abstract notion of a comonoidal system; see Defi-
nition Let (C,X, E) be a tensor category (or simply one of the examples of the
preceding paragraph) and S a monoid. A comonoidal system consists of objects (A;)ies
with embeddings of Az, into As K A, that iterate coassociatively. The monoid S is
usually Ng (discrete case) or R4 (continuous-time case). But sometimes other examples
play a role, too. We consider the continuous-time case. Let J; be the system of all finite
subsets of (0,¢). Then J; is a directed set with respect to the subset relation. For I € J;,
I=A{ty,....tp} with t; <ty <--- <t, weput Ay := Ay, KAy, 4, K---X A, . Then
the (Aj)res, naturally form an inductive system. If the inductive limit A; exists for every
t, the obtained family (A;)cr, is again a comonoidal system referred to as generated
system. Often, the generated system plays an important role. In the category of Hilbert
spaces, one arrives at the famous Arveson systems, see below. In the case of quantum
probability spaces, one can use the construction to build a quantum Lévy process from
a convolution semigroup, see [ASvW88| for an early example. This involves taking a

second inductive limit of the A; over R;. The main aims of the chapter are

» To provide a general concept of stationarity encompassing ordinary convolution
semigroups as well as the structures appearing in the following chapters, addi-
tive deformations, subproduct systems, and convolution semigroups for other non-

commutative independences.
» To perform the typical inductive limit constructions at this general level.
» Find general conditions for the monoids which can be used instead of R;.

» Find general categorial conditions on the tensor category C for the inductive limits
to have good properties known from the examples of Arveson systems and Lévy

processes.

Let C be an inductively complete tensor category, that is all inductive systems possess

inductive limits. Then we find the following results:

» If S is a unique factorization (uf-) monoid (see Definition [2.3.5)), we can perform the

first inductive limit (A¢)ies — (At)tes and (Ay)ies is again a comonoidal system;
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see Theorem 2.3.14]

» If the tensor product preserves inductive limits, then Ay = AsX As; see Theo-
rem 2.9, 10l

» Suppose the uf-monoid S is abelian and has no nontrivial invertible elements. Fur-
thermore, assume that C is equipped with compatible inclusions 1*,1% (see Sec-
tion and that the tensor product X perserves inductive limits. Then the sec-
ond inductive limit yields an abstract Lévy process in the sense of Definition
see Theorem 2.3.23

Chapter [3|deals with additive deformations. Sections[3.2]and [3.3]are based on [Ger11].
Section [3.4] contains generalizations of results obtained in [GerlI] and [Wir02] to braided
additive deformations and is based on [GKLI12| (joint work with Stefan Kietzmann and
Stephanie Lachs). Let B be a bialgebra with multiplication g, unit element 1, comulti-
plication A and counit §. In [Wir02], Wirth defined an additive deformation of B as a
family of linear maps u; : B ® B — B, such that the following four conditions hold:

(AD1) The map o coincides with the multiplication u of B.
(AD2) (B, ut,1) is a unital algebra for all ¢ > 0.
(AD3) d o : B— C is pointwise continuous.

(AD4) For all s,t > 0 it holds that
Aopsi = (s @) o (id®@7®id) o (A ®A) (1.0.1)

where 7 : B® B — B ® B is the flip.

The tensor product A; ® Ao of unital algebras A;, A2 is again a unital algebra with

multiplication
mg = (M1 ®@mg)o (id® 7 ®id)

mi, mo the multiplication maps of A1, As. Therefore, writing B; := (B, ut, 1) for short,
equation (|1.0.1)) is equivalent to



(AD4’) For all s,t >0, Agt: Bsgt = Bs ® By, Ay = A is an algebra homomorphism.

In other words, (B;)er, is a comonoidal system in the category of unital algebras with
all embeddings equal to the comultiplication.

A Hochschild 2-cocycle (or simply: cocycle) is a linear functional L : B® B — C such
that

d(a)L(b®c) — L(ab® c) + L(a ® bc) — L(a®b)d(c) =0

for all a,b,c € B. A cocycle is called normalized if L(1 ® 1) = 0 and commuting if
L % p = p* L, where x denotes the usual convolution on the *-bialgebra B B. A
cocycle L is called coboundary if there exists a linear functional ¢ : B — C such that
L(a®b) = 6(a)p(b)—1(ab)+1(a)d(b). Wirth’s theorem states that additive deformations
of a fixed bialgebra B are in 1-1 correspondence with normalized, commuting cocycles
via the equations

d
L=—9¢ = puxell
dt O,utt:O, He =[x e,

[Wir02]; see Theorem . There is an analogous theorem for x-bialgebras. One can ask,
which deformations are generated by a coboundary. The answer was found in [Ger(Q9]
under the assumption that L is the coboundary of a commuting functional v, that is
1 xid = id x ¢; see also Theorem An additive deformation is generated by the
coboundary of a commuting functional if and only if there exists a semigroup of linear
maps ®; : B — B which are algebra isomomorphisms ®; : By, — Bsy for all s > 0 and
which fulfill some additional property.

It was shown in [Ger09] that one can construct quantum Lévy processes on additive
deformations of *-bialgebras. Any convolution semigroup of states ; : By — C defines
a comonoidal system of unital *-algebraic quantum probability spaces (B, ¢¢)ier, Wwith
respect to Ag; = A the comultiplication of B. We know that A is an algebra homo-
morphism and the needed compatibility with the ¢, is exactly the semigroup property
Vst = Psxpr = (s @ @) o A. Thus, the construction of a corresponding quantum Lévy
process is now a special case of the theory developed in Chapter 2] Another point is, how

to get hold of convolution semigroups of states. To this end, Wirth proved a Schoenberg



1 Introduction

correspondence for additive deformations, which characterizes continuous convolution
semigroups of states by their generators.

A key example comes from the algebra of the quantum harmonic oscillator, which
is generated by two mutually adjoint elements z,z* subject to the relation [z,z*] =
xx® —x*x = 1; see the introduction of Chapter |3|for details. One would also like to treat
the Fermi harmonic oscillator, where the relation between x and z* is zz* + z*x = 1.
This only works by using braided algebras.

The aims of the chapter are:

» To improve the cohomological theory behind additive deformations
» To study additive deformations of Hopf algebras

» To generalize the theory to braided *-bialgebras.

We find the following results:

» By introducing the needed chain complexes to deal with the different cases (bial-
gebras and x-bialgebras) as subcomplexes of the standard Hochschild complex, we

can reduce the calculations for the proof of Theorem to a minimum.

» If 5 is a Hopf algebra we show that the identity map viewed as linear map from the
coalgebra B to the algebra B; has a convolution inverse S; for every ¢ and present
an explicit formula, Theorem In Theorem we prove under an extra
condition on the generator L that every additive deformation of B is equivalent to
a deformation with constant antipodes. The equivalent generator can be explicitly

calculated. The imposed condition is automatically fulfilled if B is cocommutative

(see Lemma (3.3.13)).

» We generalize Wirth’s theorem on the generator of an additive deformation to
the braided case, Theorem We prove a general form of the Schoenberg
correspondence, thus characterizing the generators of convolution semigroups of

states on braided additive deformations, Theorem

Chapter [4] deals with subproduct systems. Those parts of Chapter [] that deal with
the discrete case are based on joint work with Michael Skeide [GS14b]. A product system



of Hilbert spaces is, roughly speaking, a family of Hilbert spaces H; indexed by a monoid

S with associative identifications
H5®Ht = H5+t. (102)

The interest in product systems mainly comes from quantum dynamics. Arveson [Arv&9]
gave the first formal definition of a product system (including also some technical condi-
tions) of Hilbert spaces. He showed how to construct such Arveson systems from so-called
normal FEy—semigroups (semigroups of normal unital endomorphisms) over S = Ry on
B(H). Bhat [Bha96| generalized this to normal Markov semigroups (semigroups of nor-
mal unital completely positive (CP-) maps) on B(H), by dilating the Markov semigroup
in a unique minimal way to an Ey—semigroup and computing the Arveson system of
the latter. Product systems of correspondences (that is, Hilbert bimodules) occur first
in Bhat and Skeide [BS00]. They constructed directly from a Markov semigroup on a
unital C*-algebra or a von Neumann algebra B a product system of correspondences
over B, and used it to construct the minimal dilation. Muhly and Solel [MS02| con-
structed from a Markov semigroup on a von Neumann algebra B a product system over
the commutant of B. This product system turned out to be the commutant (see Skeide
[Ske03l [Ske09), [Ske08|) of the product system constructed in [BS00].

In all these applications, the construction of a product system starts with a subproduct
system (Shalit and Solel [SS09|, and Bhat and Mukherjee [BM10]), where the condition
is weakened to

H,® H D Hs+t- (103)

A subproduct system is nothing but a comonoidal system in the category of Hilbert
spaces. The inductive limits H; of Hy, ®---® Hy, with t; +--- 4+ ¢, = t using
are the generated comonoidal system in the sense of Chapter [2] It is always a product
system, that is Hsit = Hs® H¢. The construction for S = R, is described in detail
by Bhat and Mukherjee [BM10] and their formulation actually generalizes without a
problem to the general setting in Section [2.3.3]

The classification of product systems is a difficult subject. Product systems can
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roughly be distinguished into three types by their so-called units, that is sections w =
(wt)tery With ws ® wy = wsy¢ under the identification Hy, ® Hy = Hyy4. The linear spans
Ui := span{w; | w is a unit of (H;);er, } form a subproduct system. The product system
is type I if it is generated by the Uy, it is type III if U, = {0} for all ¢ > 0 and it is
type II if it is neither type I nor type III, that is if there exists a nontrivial unit, but
the units do not generate the system. The simplest examples of Arveson systems are the
Fock-systems. The symmetric Fock space or Bose Fock space over a Hilbert space H is
the direct sum over all symmetric tensor powers of H, I'(H) := @,en, H®*". There is a
natural unitary isomorphism I'(Hy @ Hy) = I'(Hy) ® I'(H3). In particular, for the Fock
spaces F(LQ([O, t), K )) over the square integrable functions with values in some Hilbert

space K, one has the canonical unitary isomorphisms

with composition us; : T'(L?([0,s+t), K)) — T'(L*([0,s), K )) ® T (L*([0,t), K ) ). With
respect to the identifications given by the u,;, the F(LQ([O, t), K)) form a Type I Arve-
son system, the Fock system over K. It can be shown that every type I Arveson system is
actually Fock. In principle, product systems of this type are known since Streater [Str69],
Araki [Ara70], Guichardet |[Gui72], or Parthasarathy and Schmidt [PS72]. Though more
difficult to construct, there are many Arveson systems of type II and III; see, for in-
stance, Tsirelson [Tsi00a) [Tsi00b], Liebscher [Lie09], Powers [Pow04], Bhat and Srinivasan
[IRBS05], and Izumi and Srinivasan [IS08].

There is a 1-1 correspondence between units of a subproduct system und units of
its generated product system; see [BM10, Theorem 10]. In view of this, the terminol-
ogy of types can also be used for subproduct system. Since there are much more sub-
product systems than product systems, a classification of all subproduct systems up to
isomorphism is hopeless. In the 2009 Oberwolfach Mini-Workshop on “Product Systems
and Independence in Quantum Dynamics” [BES09], Bhat suggested to try to classify at
least the finite-dimensional subproduct systems and the product systems they generate.

Finite-dimensional subproduct systems occurred in several ways. For instance, every

10



CP-semigroup on the n x n—matrices M,, gives rise to its finite-dimensional subproduct
system of Arveson-Stinespring correspondences; see Shalit and Solel [SS09]. Moreover,
every subproduct system (finite-dimensional or not) arises in this way from a normal CP-
semigroup on B(H); see again [SS09]. Other examples arise from homogeneous relations
on polynomials in several variables; see Davidson, Ramsey and Shalit [DRS11]. Also a
subclass of interacting Fock spaces gives rise to finite-dimensional subproduct systems
and further generalizes the notion of subproduct system; see Gerhold and Skeide [GS14al.
Tsirelson has determined the structure of two-dimensional discrete subproduct systems
[Tsi09a] and of two-dimensional continuous time subproduct systems [Tsi09b] and the
product systems they generate. He exploits that subproduct systems also may be viewed
as graded algebras; see Remark and Section

It is obvious that the fibrewise dimension of a subproduct system is submultiplicative
in the sense that dim Hs1¢ < dim Hsdim H; for all s,¢t € S. Shalit and Solel [SS09] posed
an interesting question: Is there a discrete subproduct system with dim H,, = d,, for all
n for every submultiplicative sequence? We can show that the answer is “no”, and ask
instead, what are the sequences that arise as dimension sequences of discrete subproduct
systems. Of course, similar questions make sense for other types of comonoidal systems.
We will basically deal with two types, subproduct systems and Cartesian systems (see
Definition , over the three monoids Ng, Q4+ and R;.

Our main results are:

» The dimension sequences of discrete subproduct systems are the same as the car-
dinality sequences of discrete Cartesian systems and the same as the complerity
sequences of factorial languages; see Corollary The proof uses a classical
theorem about graded algebras. Complexity sequences of factorial languages are

well studied by combinatorialists.

» We present a simple necessary and sufficient condition, (4.2.1)), for a function to
be the dimension function of a rational time subproduct system or a rational time

Cartesian system; see Theorem [1.2.15]

» The same condition characterizes the dimension functions of continuous-time Carte-

sian systems; see Theorem [£.2.18 For continuous time subproduct systems we have

11
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to impose a continuity condition to show that the condition is necessary; see The-

orem It is left open, if the continuity condition is indeed needed.

The last chapter is based on [GL14] with Stephanie Lachs. As mentioned earlier, inde-
pendence in quantum probability is often modelled by so-called universal products, which
are basically tensor product structures on the category of algebraic quantum probability
spaces such that the “algebra part” is simply the free product. It is customary to denote
a universal product as a product of linear functionals, thus writing ¢ [ @2 instead of
(A1, p1) B(Ag, ¢2). For any universal product, a rich quantum probabilistic theory can
be developed, including independence, Lévy processes, central limit theorems, et cetera.
Very successfull examples are Voiculescu’s freeness and the Boolean independence. A
universal product is called commutative if 1 [ @2 = @2 ¢ holds under the canonical
identification of A; U Ay with As U A;. Commutative universal products were classified
by Speicher [Spe97|, and Ben Ghorbal and Schiirmann [BGS02]. Without commutativity
in general, but still assuming commutativity on elements of length 2 in the free product,
the classification is due to Muraki [Mur03|. Giving up on this restricted commutativity
also, Lachs found a new family of universal products, the (r, s)-products, depending on
two complex parameters r and s, which coincides with the Boolean product for r = s = 1.
These complete the classification of universal products except for degenerate cases; see
[Lac14] and |GL14].

In the study of quantum Lévy processes, GNS-construction plays a crucial role, es-
pecially the question, how to calculate the GNS-construction for product functionals.
Since the (7, s)-products do not preserve positivity, the usual GNS-construction can not
be used.

The aims of this chapter are:

» Find a generalization of the GNS-construction for arbitrary, that is not necessarily

positive, linear functionals on algebras.

» Calculate the GNS-construction for (r, s)-product functionals in terms of the GNS-

construction for the factors.

Our results are:

12



» A general GNS-construction is presented in Section [5.2.2] The main difference to
the usual construction is that instead of one representation, we get a pair consisting
of two compatible representations. There was another approach to this question

by Wilhelm [Wil08]. In Section we prove that the two constructions are

equivalent.

» The general form of the GNS-construction of the (7, s)-product functional is given
as a quotient of a direct sum; see Theorem [5.2.13] It depends heavily on the
parameters r and s. Even the dimension of the representation spaces can change.
We present examples where the dimension is greater than in the Boolean case as

well as examples where it is smaller than in the Boolean case.
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2 Comonoidal Systems and Abstract

Lévy-Processes

Suppose (ft)ier, is a convolution semigroup of probability measures on the real line.
Let us sketch, how to construct a Lévy process X; :  — R with marginal distributions
Px, = p. First, for all finite subsets J = {t; < ta < --- < t,} C Ry define probability
measures iy := fiy; @ fly—t; @ - @ g, —¢,_, on R7 . Then show that these are coherent

in the sense that

pr = pyo (p)~!

for all I C J and p{ : RY = R! the canonical projection. In this situation the probability
spaces (R7,B(R”), ;) with the projections (p7) form a projective system. Now, the
Daniell-Kolmogoroff theorem guarantees the existence of a projective limit, which is a
probability space (€2, F,P) with projections ps : Q — R’ such that uy = Po(p;)~!. The
random variable X; := py;, has distribution y; and it is not difficult to prove that the
X, have independent and stationary increments Xg — Xy ~ ps—¢.

A similar construction allows to associate quantum Lévy processes with convolution
semigroups of states on *-bialgebras. The formulation of quantum probability is dual to
that of classical probability, so inductive limits appear instead of projective limits. Due
to the fact that there are different notions of independence in quantum probability on
the one hand and the interactions between quantum probability and operator algebras
on the other hand, there are many different theorems of the same kind (construction
of Lévy processes for other notions of independence) or similar kind (for example the
construction of product systems from subproduct systems). The main aim of this section

is to give a unified approach to these different situations. To this end we introduce the
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2.1 Basic Notions of Category Theory

language of tensor categories and the concept of comonoidal systems, which generalizes

that of convolution semigroups.

2.1 Basic Notions of Category Theory

The main point of this section is to fix notations and recall basic facts about inductive
limits. We also give a list of those categories which appear as examples for the following

sections.

2.1.1 Categories, Functors, Natural Transformations

A category C consists of
» a class of objects Obj(C)
» a set of morphisms Mor(A, B) for each two objects A, B
» an identity morphism idg € Mor(A, A) for each object A

» a composition map (f,g) — fog:Mor(B,C) x Mor(A, B) — Mor(A, C) for each
three objects A, B,C

such that, where defined, the composition is associative and the identity morphisms act
neutrally under composition. We will frequently write A € C instead of A € Obj(C) and
f:A— Binstead of f € Mor(A, B). A morphism f : A — B is called a monomorphism
if it is left cancellative, that is if f o gy = f o go implies g1 = g2. It is called an
epimorphism if it is right cancellative, that is if gj o f = goo f implies g1 = go. It is called
an isomorphism if it is invertible, that is if there exists a (necessarily unique) morphism
f~':B = Awith fof~! =idg and f~' o f = id4. Clearly, every isomorphism is both,
a monomorphism and an epimorphism, but the converse does not hold in all categories.
We sometimes write f : A = B to indicate that f is an isomorphism. A category D
is called a subcategory of C if all objects and morphisms of D are objects respectively
morphisms of C and the identity morphisms and composition maps agree. A subcategory

is called full if every morphism of C between objects of D is also a morphism of D. For
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2 Comonoidal Systems and Abstract Lévy-Processes

every subclass of objects there is a unique full subcategory with exactly these objects,
called the full subcategory with the specified class of objects.

Equalities between morphisms will frequently be expressed in terms of commutative
diagrams. A diagram is a directed graph with object-labeled vertices and morphism-
labeled edges. We say that a diagram commutes if the composition of morphisms along
any two directed paths with the same source and the same target vertex yield the same
result. We will usually not explicitly write the inverse of an isomorphism with an extra
edge, but it shall be included when we say that the diagram commutes.

We will now introduce categories which are of particular importance throughout this
thesis. When two categories have the same objects, but different sets of morphisms,
we will usually indicate this by a suggestive superscript which describes the type of

morphisms.

Sets Define a category Set whose objects are all sets and whose morphisms between two
sets A and B are the mappings from A to B. The composition is the usual composition
of maps. The identity map on a set A serves as an identity morphism id4 : A — A.
Since the composition of two injective maps is again injective and all identity maps are
injective, we can define a subcategory Set?” with the same objects as Set but only the
injective maps as morphisms. Similarly we define Set**7 and Set®” as the categories
with objects all sets and morphisms all surjections respectively all bijections.

We can also restrict the class of objects. We define FinSet to be the full subcategory

of Set with finite sets as objects.

Vector Spaces The category Vect has as objects all (complex) vector spaces and as
morphisms all linear maps. Like for sets, we define subcategories Vect, Vect*"’
and Vect? consisting of all vector spaces as objects, but only injective, surjective and
bijective linear maps as morphisms respectively. We also define FinVect to be the full

subcategory of Vect whose objects are the finite-dimensional vector spaces.

Hilbert Spaces The category Hilb has as objects all Hilbert spaces and as morphisms

all bounded linear maps. We mainly consider the subcategory Hilb®*°™ with the same

objects, but only isometries as morphisms. Other interesting subcategories are Hilb#5o™
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2.1 Basic Notions of Category Theory

and HilbP*"™ whose morphisms are the coisometries and the partial isometries re-
spectively. Also, FinHilb denotes the full subcategory of Hilb formed by the finite-

dimensional Hilbert spaces.

Algebras By Alg we denote the category of all (associative, complex) algebras with
algebra homomorphisms as morphisms. We use the same superscripts as for sets and
vector spaces when we restrict to injective, surjective or bijective morphisms. The sub-
category of unital algebras with unital algebra homomorphisms as morphisms is denoted
by Alg;. Similarly we define the categories x-Alg and *-Alg; with objects all (unital)

x-algebras and morphisms all (unital) *-algebra homomorphisms.

Algebraic Quantum Probability Spaces A pair (A, ) consisting of an algebra A and a
linear functional ¢ : A — Cis called an (algebraic) quantum probability space. A quantum
probability space is called unital if A is unital and ¢(1) = 1, it is called commutative if
A is commutative. A x-algebraic quantum probability space consists of a x-algebra A and
a positive linear functional . The algebraic quantum probability spaces form a category
AlgQ where the morphisms are the functional preserving algebra homomorphisms, that
is a morphism from (Aj, 1) to (Az,p2) is an algebra homomorphisms f : A; — As
with @2 o f = 1. By AlgQq we denote the subcategory formed by unital quantum
probability spaces and unital functional preserving homomorphisms as morphisms. Of
course, there are also categories *-AlgQ and *-AlgQq of (unital) x-algebraic quantum
probability spaces.

Given two categories C and D, a functor F is a prescription which assigns to each
object A € C an object F(A) € D and to each morphism f : A — B in C a morphism
F(f): F(A) — F(B) such that F(ida) = idr(4) for all A € C and F(go f) = F(g)oF(f)
forall f: A— B,g: B— C with A, B,C € C. We write F': C — D to indicate that F
is a functor from C to D. Given two functors F : C — D and G : D — &, the composition
G o F can be defined in the obvious way and is a functor from C to £.

The Cartesian product C x D of two categories C and D consists of ordered pairs (A, B)
with A € C, B € D as objects and ordered pairs (f,g) with f : A — A’,g: B — B’ as
morphisms from (4, B) to (A’, B’). This becomes a category with id4 p := (id4,idp)
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2 Comonoidal Systems and Abstract Lévy-Processes

and entrywise composition. The projections on the first respectively second component
for objects and morphisms yield functors Py : C X D — C, Py : C x D — D. A functor
defined on a Cartesian product category is sometimes referred to as a bifunctor.

For two functors F,G : C — D between the same categories, a natural transformation

is a family oo = (s : F(A) — G(A))aec of morphisms such that the diagram

F(4) —"—=G(4)

commutes for every morphism f : A — B in C. A natural transformation is usually
denoted by « : F = G. Where it is convenient we simply write a : F(A4) — G(A)
instead of a4 also for the single morphism. A natural transformation is called a natural
isomorphism if all 4 are isomorphisms.

2.1.2 Inductive Limits

In category theory there are the general concepts of limits and colimits. Since in our

applications only inductive limits play a role, we restrict to this special case. The general

case can for example be found in the book of Adamek, Herrlich and Strecker [AHS04].
A partially ordered set [ is called directed if any two Elements of I possess a common

upper bound, that is if for all a;, 8 € I there exists v € I with v > «, 8.
2.1.1 Definition. Let C be a category. An inductive system consists of
» a family of objects (Aq)aer indexed by a directed set [
» a family of morphisms (f§ : Aa — Aga<p
such that
1. f&=idg, foralla el
2. flofg=frforalla<pf <y

An object A together with morphisms f*: A, — A for a € [ is called inductive limit of

the inductive system ((Aa)acr, (f§)a<p) if
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2.1 Basic Notions of Category Theory

1. fa:fﬂofgforallagﬂ

2. whenever ¢® = g% o f§ holds for a family of morphisms g« : A, — B to some common
object B, there exists a unique morphism g : A — B such that g o f* = g* for all

« € I. This is referred to as the universal property of the inductive limit.

2.1.2 Example. The vector spaces (C"),en form an inductive system with respect
to the linear maps f* : C™ — C", (z1,...,Zm) — (1,...,Zm,0,...,0) . Let lp :=
{(zn)nen | n = 0 except for finitly many n} < CN denote the vector space consist-
ing of terminating sequences. Then [y together with the linear maps f™ : C" — I,

(X1, yxp) — (T1,...,2,,0,0,...) is an inductive limit.

If an inductive limit exists, it is essentially unique. More precisely, if (A, (f*)acr)
and (B, (¢“)aer) are two inductive limits of the same inductive system (Ag)aer, then
the uniquely determined morphisms f : A — B with fo f* = ¢* and g : B — A with
gog® = f* are mutually inverse isomorphisms.

In general, inductive limits may or may not exist. The inductive system of Exam-
ple has an inductive limit in Vect but the same inductive system viewed as an
inductive system in FinVect has no inductive limit. We call a category in which all
inductive systems have inductive limits inductively complete. For example, the cate-
gories Set, Hilb™*™ Alg and AlgQ are inductively complete; see [Bou04, § 7.5] for
Set, [Boug9l § 10.3] for Alg, and [Vos13| or [Lacl4] for AlgQ; see also [AHS04, Chapter
12] for general arguments showing that Set, Hilb®*™ and Alg even fulfill the stronger
property of cocompleteness .

A subset J of a directed set [ is called cofinal if for every o € I there exists a § € J
with 8 > a.

2.1.3 Example. For any fixed ag € I the set {5 | 5 > ap} is cofinal. Indeed, since I is

directed, there is a 8 > «, ag for all a € 1.

Clearly, if ((Aa)aer; (f§)a<p.a,per) is an inductive system and J C I cofinal, then
also ((Aa)aes; (f§)a<pa,pes) is an inductive system. It is known that the inductive
limits are canonically isomorphic if they exist. We will need the following generalization

of this.
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2 Comonoidal Systems and Abstract Lévy-Processes

Let (Aq)acr be an inductive system with inductive limit (A, (f*)qer), K a directed
set and Jy C I for each k € K such that

» J;. is directed for all k € K
» J. C Jy forall k <k
» J = Urek Ji cofinal in 1.

Suppose the inductive systems (Aq)acs, have inductive limits (Ag, (f{j))aes,)- It holds
that f* = ffo fg for all & < § € Jy, since Jp C I. Similarly, for & < k' it holds
that f&,) = f(ﬁk,) o fg for all @« < f € Jj, since Jy C Jir. By the universal property
of the inductive limit Ay there are unique morphisms f,f, : Ay — Ap for k < K and
f¥: A, — A such that the diagrams

o Y
A, — 4 Ay — s A
Jf&% Jf&%

Ak -Ak
commute for all o € Jj.

2.1.4 Theorem. In the described situation ((Ax)kerc, (ff)k<k) is an inductive system

with inductive limit (A, (f*)rex).

Proof. The diagrams

e,
Aa —_— Aa #) Ak”

I A
TG I
a (k") ’ o (k") ’
J‘QN Tfk J‘f(N Tf,f//
f,’j/ 7

.Ak EEE—— .Ak/ Ak EEE— Ak/

commute, which implies f* = f¥ o fF, and ff, = fF o ff for all k < k' < k”. Now
suppose there are g* : A, — B with g* = gk/of,f, for all k < k. We put g% := gkofgc)of/g‘
for g € Ji, o < B. Since J = Uper Ji is cofinal in I, we can find such k and g for every

. One can check that the g do not depend on the choice and fulfill g = ¢® o [ for
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2.2 Tensor Categories

all a < . This yields a morphism ¢ : A — B which makes

commute.

On the other hand, any morphism which makes the upper right triangle

commute, automatically makes the whole diagram commute and will therefore equal

g.

O

2.1.5 Corollary. Let (An)acr be an inductive system with inductive limit (A, (f%)acr),

J C I cofinal. Then (Ay)acs is an inductive system with inductive limit (A, (f%)acs)-

Proof. This is a special case of the previous theorem with |K| = 1, since the inductive

system over the one point set K does not add anything.

2.2 Tensor Categories

O

A tensor category is a category C together with a bifunctor X : C x C — C which

» is associative under a natural isomorphism with components

apxpc:AR(BRC) S (ARB)RC

called associativity constraint,

» has a unit object £ € Obj(C) acting as left and right identity under natural iso-

morphisms with components

o

lA:EgA—>A,

ra ARE = A

called left unit constraint and right unit constraint respectively

21



2 Comonoidal Systems and Abstract Lévy-Processes

such that the diagrams

(AR B)® (C' X D)

QA B CRD QARB,C,D

AR (BR(CR D)) (AR B)X C)XD
idmaB,c,Di TQA,B,CIZidD
AR((BRC)K D) AR (AR (BRC))RD
AR(ERC) tAne (ARE)RC
m L%@dc
ARC

commute for all A, B,C, D € Obj(C). If the natural transformations «, [ and r are all
identities, we say the tensor category is strict.

The compatiblity conditions are called the pentagon and the triangle axioms. It is
shown by Mac Lane [ML98, VII.2] that these imply commutativity of all diagrams which
only contain «,! and r. This is called coherence.

Even for non-strict tensor categories, we will frequently suppress the associativity and
unit constraints in the notation and write (C,X, E), or even (C,X) or C. In the examples

we treat, «, [ and r are always canonical.

2.2.1 Categorial Independence

In order to unify the different notions of independence in quantum probability, Franz
came up with a definition of independence in a tensor-categorial framework |[Fra06l, Sec-
tion 3]. Recall that P; : C x C — C for i € {1,2} denotes the projection functor onto the

first respectively second component.

2.2.1 Definition. Let (C,X) be a tensor category. A natural transformation ¢! : P; = X
is called left inclusion and a natural transformations ¢? : Py = X is called right inclusion.
A tensor category together with a right and a left inclusion is referred to as inclusive

tensor category or tensor category with inclusions.

In more detail, inclusions for a tensor category are two collections of morphisms
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2.2 Tensor Categories

Vi, B, : Bi = Bi® By for By, By € C, i € {1,2} such that

A A RA, <Y A

1 1 2 2

fli J{flﬁh lh
Ll L2

B, B1 X By By

commutes for all f;: A; — By, i € {1,2}.

2.2.2 Definition. Let (C,X,:!,:?) be a tensor category with inclusions. Two morphisms
j1,42 : B; — A are independent if there exists a morphism h : By K B, — A such that
the diagram

A
J1 T j2
h
B, B1 X By By

commutes. Such a morphism h is called independence morphism for j; and ja.

2.2.3 Example. We begin with a trivial example. The direct sum of vector spaces V;
and Vs has the following property: Given any two linear maps f; : V; — W to some third
vector space W, there exists a unique linear map h : Vi @ Vo — W with h(v;) = fi(v;)
for all v; € V;, namely h = f1 + fo (here we identify V; with the corresponding subspace
of V1 & Vs). In particular, in the tensor category (Vect, ) with the canonical inclusions
Vi < V1 @ Vs, all pairs of linear maps into a common vector space are independent.

In the tensor category (Alg, ) with LI the free product of algebras (see Section
the situation is similar. With respect to the canonical inclusions A; < A; LA, any pair
of algebra homomorphisms j; : A; — B to a common algebra B is independent.

In the two mentioned cases the tensor product coincides with the so-called “coproduct”
in the category; see [Fra06] or [McL92|. Coproducts exist in many categories. But
we should not take the coproduct as tensor product if we are looking for interesting

independences.

2.2.4 Example. Independence in quantum probability is usually implemented by a
universal product, which is a prescription & that assigns to two linear functionals on

algebras A1, Ao a new linear functional (1 & 9 on the free product Aj Ao such that the
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2 Comonoidal Systems and Abstract Lévy-Processes

bifunctor ((A1, ®1), (A2, ®2)) — (A1UAz, &1 .Az) turns the category AlgQ of quantum
probability spaces into a tensor category with the canonical embeddings A; — Ay LI As
as inclusions (see Chapter |5| and in particular Definition [5.1.1). An example is the tensor

product of linear functionals defined by

— —
D@ Po(ar---an) =1 | ] ai | P2 ] @ |,
a; €Ay a; €Az

N
where [] denotes the product of the algebra elements in the same order as they ap-
pear in aj - - - a,. In this case categorial independence reproduces the notion of tensor-

independence. If [ is the free product, we get freeness.

Although Definition was motivated by quantum probability, it encompasses also

non-stochastic notions of independence, as the following examples show.

2.2.5 Example (Linear Independence). Consider the category Vect™ of vector spaces
with injective linear maps. The direct sum turns this into a tensor category with inclu-
sions with respect to the canonical embeddings V; — V1 @ Vs. Two injections f; : V; — W
are independent if and only if they have linearly independent ranges. The only choice for
the independence morphism is the linear map h := fi+ fo : Vi® Vo — W. If h is injective,
then fi(v1) + fa(ve) = 0 implies fi(v1) = fa(v2) = 0, so the ranges are linearly indepen-
dent. On the other hand, if the ranges are linearly independent and h(v; @ ve) = 0, we
can conclude that f;(v;) = 0 for ¢ € {1,2}. Since f; and fo are injections, it follows that

v1 = 0 and v = 0, so h is injective.

2.2.6 Example (Orthogonality). Similar to the previous example, (Hilb®™ @) is a
tensor category with the canonical embeddings as inclusions. Two isometries v; : H; — G
are independent if and only if they have orthogonal ranges. Indeed, the only choice for
the independence morphism is the linear map h = vy + vo. This is an isometry if and

only if

0 = (1(21) + va(w2), vi(m) + va(w2)) — (11 & 22,11 & 2)
= (v1(1), va(w2)) + (va(2), v1 (1))
=2 Re<v1 (a;1),112(332)>

24



2.2 Tensor Categories

for all x; € Hy,xo € Ha, which is clearly equivalent to vi(H1) L va(H2).

In the previous examples the independence morphism h is always uniquely determined

if it exists. The next example shows that this is not the case in general.

2.2.7 Example. Consider the category Vect with tensor product

VioVe:=VioV,e V@ Vs

and the canonical inclusions V; < Vi ® V5 which identify V; with the summand V; in
Vi @ Vo. Any two linear maps f; : V; — W are independent, but the independence
morphism is not uniquely determined. Indeed, for an arbitrary linear map f: V; ® Vo —

W the linear map h = f1 + fo + f is an independence morphism for f; and fo.

2.2.2 Cotensor Functors

Given tensor categories (C,X) and (C’,X') with unit objects, associativity and unit con-
straints E,«,l,7 and E’ o/ ;7" respectively, a cotensor functor is a triple (F,4d, A)

consisting of
» a functor F:C — ('
» a morphism 6 : F(E) — E’
» a natural transformation A : F(- K ) = F(-) X F(-)

such that the diagrams

F(aa,B,c)

F(AR(BR()) F((ARB)R ) (2.2.1)
FA)R F(BRC) F(AR B)R' F(C)
idﬂA)&’AB,cl lAA,BIE’idHC)

O (4),7(B), ()

FAR (F(B)R F(C)) (F(A) R F(B)) & F(C)
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2 Comonoidal Systems and Abstract Lévy-Processes

AB.E

F(BRE) F(B)® F(E) (2.2.2)
}'(TB)l lidﬂs)@’é

F(B) 7o) F(B)K E'
FERB)— 2 F(B)R F(B) (2.2.3)
]:(IB)\L i5|g'id}-(3)

F(B) e F(B)

commute for all A, B,C € Obj(C). A cotensor functor is called strong if A is a natural

isomorphism and § is an isomorphism.

2.2.8 Theorem. Let F : C — C' and F' : C' — C" be cotensor functors with coproduct
morphisms Aa g, Ay g and counit morphisms 6,9'. Then F' o F is a cotensor functor

with coproduct morphisms A/J-‘(A),}‘(B) o F'(Aa,B) and counit morphism &' o F'(4).

This is well known and can be shown by writing down the involved diagrams and
check that they commute; see [Lacl4] for an explicit proof.

Similarly, a tensor functor is a functor F : C — C’ together with a natural trans-
formation p : F(-)X' F(-) = F(-X-) and a morphism 1 : E' — F(E) such that the
diagrams one obtains from — by reversing the arrows and replacing A and

0 with g and 1 commute.

2.3 Comonoidal Systems

A monoid is a semigroup with a unit element. We identify a monoid S with the strict
tensor category whose objects are the elements of S with only the identity morphisms

and the tensor product given by the multiplication of S.

2.3.1 Definition. Let S be a monoid and (C,X) a tensor category. A monoidal system
over S in C is a tensor functor from S to C. A comonoidal system over S in C is a

cotensor functor from S to C. A comonoidal system is called full if the cotensor functor
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2.3 Comonoidal Systems

is strong. A monoidal system (respectively comonoidal system) over the trivial monoid

{e} is simply called a monoid in C (respectively comonoid in C).

Since there are only identity morphisms in S, any functor defined on S acts trivially
on morphisms, so it is determined by the object assignment and can be identified with
the family (Ag)ses where A4 denotes the value of the functor at s € S. Thus, a monoidal
system over S in C is the same as a family of objects (As)ses together with product
morphisms sy : As®A; — Ag and a unit morphism u : E — A, such that the natural

associativity and unit properties

) -1 o1

A RA KA A R4, ERA, <2 A, %, A RE
lidr X ps,t LUTSJ Ju&id Jid J/id&u

A RA; — 0 A, ARA, Loty A, 0 AR A,

are fulfilled. In particular, a monoid in Set is just a usual monoid. Similarly, a
comonoidal system over S in C is a family of objects (Ag)ses together with coproduct
morphisms Ag; @ Ay — AsX A and a counit morphism ¢ : Ac — E such that coasso-

ciativity and the counit properties

A?"S €,8 s,€e
Arst > Ars X At Ae X As = As = As X Ae
JAr,st JAT,S X idt J& Xid id J/ld X6
id, X As t ZAS TAg
A RAy — A KA K A, EX A, As AsXE

hold. The composition of two cotensor functors is again a cotensor functor in the sense
of Theorem m This immediately implies that a cotensor functor (F,D,d) maps a
comonoidal system (Ag)ses with coproduct morphisms Ag; and counit morphism 6 to a
comonoidal systems (F(As))ses with coproduct morphisms Dy, 4, o F(As+) and counit
morphism d o F(§). The analogous statements hold for monoidal systems.

In the following, we concentrate on comonoidal systems, because they are more im-
portant in the subsequent chapters. Most results have an obvious corresponding result

for monoidal systems.

2.3.2 Theorem. Let U C S be a submonoid. If (As)ses is a comonoidal system with
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2 Comonoidal Systems and Abstract Lévy-Processes

coproduct morphisms (Agt)sies and counit morphism &, then (Ag)seu is a comonoidal

system with coproduct morphisms (Agt)steu and counit morphism 6.

Proof. The inclusion U < S is a monoid homomorphism, hence it is a cotensor functor
with respect to the identity natural transformation and identity morphism. The theorem

now follows from Theorem 2.2.8 O

2.3.1 The Main Examples

In this section we list all kinds of monoidal and comonoidal systems which will play a

role later on.

Sets Monoids in (Set, x) are just ordinary monoids. Consider the tensor category
(Set™ x) with the unit object E. Note that E is necessarily a one point set. For
reasons that will become aparent later, we like to assume E = {A} is the set which
contains the empty tuple A = (). If (As)ses is a comonoidal system, injectivity of the
counit morphism § : A — E implies that A. is either empty, or also a one point set.
A comonoidal system (As)ses with A. = {A} is called a Cartesian system. Cartesian

systems over No, Q4 and Ry appear a lot throughout Chapter [4]

Vector Spaces Monoids in (Vect,®) are unital algebras, comonoids are coalgebras.
Let (At)tes be a monoidal system in (Vect,®). Then A := @;cs At is an S-graded

algebra with respect to the multiplication given by
ab := ps1(a®0b)

for elements a € As,b € A;. If we consider (Vect®™’, ®), a monoidal system over
No yields a standard graded algebra, that is an No-graded algebra A = @, en, An With
Ag =C1 and A, Ay, = Amtn. Indeed, the two conditions are exactly the surjectivity of
the unit morphism 1: C — Ag and the product morphisms (i, : Am @ Ap = Apgn.

Hilbert Spaces Comonoidal systems in (Hilb*°™ ®) with H, = C and § = id¢ are
called subproduct systems. Subproduct systems over Ng, Q4+ and Ry are the main subjects

of Chapter [l Full subproduct systems are called product systems. Actually, defining
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2.3 Comonoidal Systems

subproduct systems as monoidal systems in (Hilb®*°™ @) gives an equivalent definition.
More precisely ((Hs)ses, (Ast)sies,d) is a comonoidal system in (Hilb™°™, ®) if and
only if ((Hs)ses, (A% ¢)s,tes; ™) is a monoidal system in (Hilb®om ).

2.3.3 Remark. The forgetful functor F : (FinHilb“*°" ©) — (FinVect*"") is easily
seen to be a tensor functor. Tensor functors map monoidal systems to monoidal systems
(just as cotensor functors do with comonoidal systems). So it follows from the previous
paragraph that (F(Hy))nen, yields a standard graded algebra if (Hy, )nen, is a subproduct

system.

Algebras Comonoids in (Algy,®) are called bialgebras, those in *-Alg, are referred
to as x-bialgebras. Comonoids in (Alg,Ll) are called dual semigroups. The additive
deformations of Chapter |3| provide examples of comonoidal systems in (Alg;,®) and
(+-Algq, ®).

Algebraic Quantum Probability Spaces The tensor categories of quantum probabil-
ity spaces which will appear are (AlgQ,,®) and (AlgQ, ) for a universal product
. The main interest lies in comonoidal systems coming from convolution semigroups.
We explain this for (AlgQ,,®). Suppose B is a bialgebra with comultiplication A
and (¢¢)ier, a convolution semigroup, that is @, x @ = (s @) 0 A = @giy for
all s,t € Ry and @9 = & (confer Section 3.1). Then A may be viewed as a mor-
phism Ag; : (B, pstt) = (B®B,ps @) and the counit § : B — C as a morphism
d: (B,d) = (C,idc). Coassociativity and the counit property are trivially fulfilled, so

(B, ¢t)tery » (Ast)ster, ,0) is a comonoidal system.

2.3.2 Cancellative Monoids

A monoid S is called cancellative if ab = ac implies b = ¢ and ba = ca implies b = ¢ for
all a € S. Note that left invertibility, right invertibility and invertibility are all equivalent
for elements of a cancellative monoid S. Indeed, suppose ab = e with e € S the unit
element. This implies baba = bea = bae. Since S is cancellative it follows that ba = e

and hence a = b~ 1.
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2 Comonoidal Systems and Abstract Lévy-Processes

Denote by S* the set of all tuples (si,...,s,) over S of arbitrary length n € Ng. The

concatenation of tuples is written in this section as
(81,...,8n) ~ (t1,...,tm) = (81,...,Sn,t1,...,tm)

to clearly distinguish it from the monoid multiplication. The set of all invertible elements
or units is denoted by U(S).

A tuple (s1,...,8,) € S* is called a factorization of t € Sif t = s1---s, with s; €
S\ U(S). The empty tuple is the unique factorization of e. The set of all factorizations
of t is denoted by F;. A factorization o € F; is said to be a refinement of a factorization
(t1,...,tp) e Rpifo =7 — --- — 7, for some 7, € Ft,. We write 0 > 7 if 0 is a

refinement of 7. This defines a partial order on F;.

2.3.4 Proposition. Let S be a cancellative monoid. If 71 — -+ — T, =7 — -+ — T},

with 1, 74, € Fy,, then 1, = 7], for all k.

Proof. For n = 0 or n = 1 there is nothing to prove. Suppose 71 — -+ — 7, =
T — =1, = (81,...,8¢) with 7, = (8g,...,8¢),7), = (Skr,...,80) € Fy,,. We have
Sp+--S¢ = S - 5g. Suppose k < k’. Since S is cancellative, this implies s ---sp_1 = €
and thus sy, is invertible which contradicts 7, € F;. So k > k’. Analogously, we get &’ > k

which shows k = £k’ and thus 7, = 7],. Now the proposition follows by induction. ]

2.3.5 Definition. A cancellative monoid S is called a unique factorization monoid or uf-

monoid for short if any two factorizations of the same element have a common refinement.

Equivalently, a uf-monoid is a cancellative monoid such that F; is a directed set with
respect to refinement for every ¢t € S. The term uf-monoid is used by Johnson [JohTI]
for this kind of monoids. In the paper he gives different characterizations of uf-monoids
and presents constructions to find uf-monoids. The examples we will use later on are
only Np, Q4+ and Ry, but it seems that uf-monoids provide the most general setting in

which we can study the inductive limit constructions of the following sections.

2.3.6 Definition. A positive monoid is a cancellative monoid S with a partial order

such that
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2.3 Comonoidal Systems

l.e<sforallse$S
2. s <t implies sr < tr and rs < rt for all r € S.

Johnson requires a positive monoid to be linearly ordered. The next two propositions

do not require a linear ordering, so we omit this condition.
2.3.7 Proposition. Let (S, <) be a positive monoid. Then U(S) = {e}.

Proof. Suppose s € U(S). By the first condition, we have e < s and e < s~!. By the

second condition, e < s~! implies s < ss~! = e. Together this yields s = e. O

2.3.8 Proposition. A positive monoid (S, <) is directed.

Proof. From e < s it follows that ¢ < st and from e < t it follows that s < st. So st is a

common upper bound for s and t. O

Let S be a cancellative abelian monoid with U(S) = {0}. Put s <t ift = s+ r for
some r € S. Since S is cancellative, r is uniquely determined. So for s < ¢ we can define

t — s to be the unique r with ¢ = s + r. Then it holds that:
2.3.9 Proposition. (S, <) is a positive monoid.

Proof. The relation < is obviously reflexive and transitive. If s =t +r and t = s + 1/,
we have s = s+ +r and t = t + r + 7/, which implies ' +r = 0. By U(S) = {0} it
follows that r = v’ = 0, thus s = t. Hence, < is a partial order on S. The properties
and [2] of Definition are obviously fulfilled. O

2.3.10 Proposition. Let S be an abelian uf-monoid with U(S) = {0}. Then < is a

linear order.

Proof. Let s,t € S. Since s+t = t + s, the unique factorization property tells us that
there are rq,...,r, € S\{0} with ri+---+ry = s, g1+ -+rp =tand ri+---+ry = t,
rey1+ - +rp =38 Now, k < £ implies s <t and ¢ < k implies ¢ < s. O
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2 Comonoidal Systems and Abstract Lévy-Processes

2.3.3 First Inductive Limit: The Generated Full Comonoidal System

Let ((As)sess (Ast)stes,d) be a comonoidal system over a cancellative monoid S in a
tensor category (C,X) with unit object E. For a tuple o = (s1,...,8,) € Fy put A, :=
Ag M- XA, forn>1and A() := FE. Define A, : Ay — A, recursively by

A(t) = ldt
A(S1,...,Sn+1) = (A(s1,...,sn) I id8n+1) © A(81-~~Sn,8n+1)'

Let 7 = (t1,...,t,) € Fy and o0 > 7. Since S is cancellative, we can use Proposition m

to write 0 = 71 — - -+ — 7, for uniquely determined 73, € F;,. With this notation we put
A=A K- KA, A — A,

forall 7 <o €F,.

2.3.11 Lemma. [t holds that AJ o A7 = AJ for allT < o < p € Fy for every cancellative

monoid.

Proof. The proof of Bhat and Mukherjee for the case S = Ry [BM10, Lemma 4] works

without a change for general cancellative monoids. O

2.3.12 Corollary. Let S be a uf-monoid and ((Ag)ses, (Ast)stes, ) a comonoidal system
in a tensor category C. Then for every t € S, ((AT)Tept, (AZ,)GZTGH) is an inductive

system.

Proof. By Definition of a uf-monoid, F; is directed. The first condition of an
inductive system, AT = id, is obvious. The second condition, A7 o A7 = A7 for all

T <0 < p € Fy, is the statement of Lemma [2.3.11 [

Suppose the inductive systems (A;)rep, have inductive limits A; with morphisms
D™ : A, — A;. For 7 € F; denote by F, the set of all refinements of 7. Then F, is a
cofinal subset of F;, see Example Denote by A, the inductive limit. Then there is
a canonical isomorphism A; = A, because of Corollary 2.1.5]
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2.3 Comonoidal Systems

2.3.13 Lemma. The diagram

A, KA, —278DT L AR A,

A° X AT’J /
OJ T ! !
D XD7

Ay KA

commutes for all o’ > o € Fg, 7" > 1 € Fy.

Proof. By functoriality of X, we have
(D7 RD™)o (AL KAL) = (D 0 A%)R(D™ o AT)) = DK D".
O

So, by the universal property of the inductive limit, there are unique morphisms

Zs,t : Ay — As X A, such that

A,RA, —P7EDT A KA

lD”V/
As,t

At = A(s,t)

commutes for every o € Fs, 7 € Fy.

2.3.14 Theorem. The A; form a comonoidal system with respect to the coproduct mor-

phisms Ag; and the counit morphism idg.

Proof. First note that A. = F, since F. = {()} and Ay = E. The counit property is
trivially fulfilled. In the diagram

Arst
A T A
Dp—o—T

AR Ay 27T A RA,RA, 2B AL R A,

~ JD”@D"K’ s
dXKA ANid

ATIZASIZAt
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2 Comonoidal Systems and Abstract Lévy-Processes

the four corners commute by the definition of A and this proves coassociativity. O
Define Dy : Ay — A; by Dy := DW for t # e and D, := 6.

2.3.15 Theorem. The morphisms (Dy)ies form a morphism of comonoidal systems,

that is Ags o Dgt = (Dy®Dy) o Ay and idp o D, = 6.
Proof. The counit is respected by definition of D.. In the diagram

Ag
Ay ——20 5 AR A,

lD(St) D) lD(S) x D)

Ast 2 Ay ——— As XA,
s,t
the lower right commutes by definition of A and the upper left because A, is the inductive

limit. So the outside square commutes, which finishes the proof. O

Let F : C — D be a functor. Then any inductive system ((Aa)a, (fg)agﬁ) in C
is mapped to an inductive system ((f(Aa))a, (.F(fg))oéﬂ) in D. We say that F pre-
serves inductive limits if for every inductive limit (.A, ( fa)a) of an inductive system
((Aa)a, (fg)a§5> it holds that (]:(.A), (]:(fa))a) is an inductive limit of the inductive
system. ((F(Aa))a (F(f§))azs)-

2.3.16 Theorem. If the tensor product preserves inductive limits, the morphisms Ag

are all isomorphisms. In other words (A¢)ies is a full comonoidal system.

Proof. The tensor product is a bifunctor X : C x C — C. Inductive systems in C x C are in
bijection with pairs of inductive systems in C and an inductive limit in C x C is a pair of
inductive limits for the inductive systems in C. If K preserves inductive limits, Az X A;
is an inductive limit of the inductive system formed by (A, X A;)scF, reF, with respect

to the maps D? X D". Since ZS¢ makes the diagram

A,RA, —P7EDT . A KA

DGVTJ/ /
As,t

Ast = A(s,t)
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2.3 Comonoidal Systems

commute, it is the canonical isomorphism between the two inductive limits. ]

All tensor categories we are interested in have tensor products which do preserve

inductive limits. The following example illustrates that this is not true in general.

2.3.17 Example. Consider the category Vect with the tensor product given by

VieV, if one of the two is finite-dimensional
Vi X V2 =

Vi@ Vo® W if both are infinite-dimensional

for some fixed vector space W. This is a tensor category with unit object {0} and even has
inclusions. Consider the inductive system (C")nen with morphisms f(z1,...,ZTm) =
(T1,...,Tm,0,...,0) with inductive limit ly; see Example Then the inductive limit
of the inductive system (C™ @ C"),, nen is lp @ lp and has a countable basis. But if W
has no countable basis, then also the tensor product lg Xy = lo @ 1o ® W of the seperate
inductive limits has no countable basis, so there cannot be an isomorphism. In fact, even
if we put W = C the tensor product defined above does not preserve inductive limits,

but one would have to argue more carefully to prove this.

2.3.4 Compatible Inclusions

We can define independence of two morphisms in any tensor category with inclusions.
But to get a good (associative) notion for more than two morphisms, we need a certain
compatiblity between the inclusions and the structure of the tensor category. This is
necessary in order to deal with Lévy processes in the categorial setting. As it turns out,
the condition we need is equivalent to the unit object E being an initial object and ¢!, 12
being related to the unit constraints [ and = in a nice way.

1

Let C be a tensor category with inclusions ¢!, :2. The inclusions are called compatible

if I,1147E =3, L%’A = I,! and the diagram

1
E— 2" \ERA

JL‘Q“’E JIA (2.3.1)

ARE —™4 5 A
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2 Comonoidal Systems and Abstract Lévy-Processes

commutes for all A € C

2.3.18 Theorem. In a tensor category (C,X, E) with inclusions 1*, 12, the following are

equivalent:
(i) The inclusions are compatible.

(ii) There exists a natural transformation 1 : E = ide such that 1p = idg,

vy p = (ida®1p)o rit and g = (LaRidp) o 15! for all A,B € C.
Furthermore, 1 is uniquely determined, if it exists.

Proof. If 1 exists, L}EA = (idpX1y)o rEl implies idX 1, = L1E7A org and thus 14 =
lao L1E7A orgolg', so 1 is uniquely determined.
Suppose 1,12 are compatible. Then define 14 := l4 o L}&A =Trp0 L1247E. From

1L =15 we get 1p = idg. In the diagram

the upper triangle and the left triangle commute by the naturality of :!. The right
triangle commutes by definition of 1p. Together this yields that the outside triangle
commutes, hence LhB = (idX1p) o ;. Analogously, one shows L1247B = (1aRid) o 15"

Now assume holds. Then /,1147E = (idR1g) ory' = r;" and in the same way we

get 12, 4 = 1. In particular ¢k, , = r' = 15! = 14 5. Considering the diagram
=1
EFE—— FEXE

o

L2:l_1
A— FKA
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2.3 Comonoidal Systems

the outside square commutes by naturality of (2. The upper right triangle commutes
by naturality of :!. So the lower left triangle commutes and we find l4 o L}E, 4 = 1a.

Analogously, we get 74 o L1247 g = 1a, which finishes the proof. O

Note that naturality of 1 just means that fols = 1p for all f : A — B. In particular
for f: E — B this yields f = folp = 1. So E is an initial object in C, that is for
every object B € C there is a unique morphism from F to B, namely 1g. Of course,

given any tensor category such that F is initial, we can define compatible inclusions by

the equations in
Compatible inclusions also respect the associativity constraint. For example it holds

that:

1

2.3.19 Theorem. For compatible inclusions o', % the diagrams

ARB<«+Y B_“ s BRC c—*“ BRC

! e

(ARNB)RC —2 5 AR(BRC) (ARB)XKC -2 AR(BXC)

commute.

Proof. Since by Theorem [2.3.18| we have 11 = (idX 1) or~! and 15 = (1®id) o[~} the

first diagram can be found on the outside border of

ARNB« ®¥d  pgp," p ' . prp_ 981 . pxC

e b

ARBREY" prpyxE 2 prBRE)EY pr(BRO)

idX1 ) )
\ l(mld)gl ll x(ld%

(ANB)RC —2— AR(BKC)

The upper squares commute due to the naturality of r—!, coherence of C and the nat-
urality of [=!. The square in the lower line commutes due to the naturality of a. The
remaining triangles commute because of the functoriality of X. We conclude that the
outside commutes. Commutativity of the second diagram in the theorem can be shown

similarly. 0
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2 Comonoidal Systems and Abstract Lévy-Processes

The two diagrams of the theorem above are the only compatibilities we need in the
next section. But it is probably possible to formulate and prove a coherence theorem for

tensor categories with compatible inclusions, similar to [MLI8, VII.2].

2.3.20 Remark. As Stephanie Lachs observed, commutativity of (2.3.1]) is equivalent
to the somehow more natural condition that (2Xid = «a o (idX:!). This can be read

from the diagram

E - EXA

EXE Y24, (FRARE

2 Jid X L%

ER(ARE)

—~

l71

AXE - A

in which the outside square is (2.3.1)) and the inside triangle is a special case of 12 Xid =
ao (idX ). All other areas commute, the upper and the left side due to the naturality
of {71 and r~! respectively, the lower right due to coherence. So commutativity of the

inside and the outside are equivalent.

2.3.5 Second Inductive Limit: Lévy-Processes

Let A; be a full comonoidal system over a cancellative abelian monoid S with coproduct
isomorphisms Z&t in a tensor category with compatible inclusions ¢!, ;2. Without loss of

generality assume that A, = E and that the counit morphism is § = idg.

For s <t define i : Ay — A; as the composition

A — s ARA A 4,

2.3.21 Theorem. ((A¢)cs, (if)s<t) is an inductive system.
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2.3 Comonoidal Systems

Proof. In the diagram

™
g

. A RA,_, As

id idX Lllbl lLl

Y A RA KA AR A KA,

—

™
R
|

id lidﬁz—l A1

A XA, Ay

the lower right corner commutes by coassociativity of A and the other three corners
commute by the naturality of ¢'. We suppressed the associativity constraint and identi-
fied A, X(As_, X A;_s) with (A, KA, ) K Ay, which leads to the two interpretations
idg, X L}ﬁlsfr,Atfs and L}4T®A54,At75 of the arrow A, X A;_, — A, K A;_, XK A;_s. O

For the rest of this section, we fix an abelian uf-monoid S with U(S) = {0} and an

1

inductively complete tensor category C with compatible inclusions ¢!, 2, whose tensor

product X perserves inductive limits.

2.3.22 Definition. Let (A;)ies be a comonoidal system in C. An abstract Lévy-process
on (A¢)ies is a collection of morphisms jg; : A;—s — B for s <t to some common object

B € C such that

1. jiy=1pod

2. Jsit1s- -1 Jsn,tn are independent if 51 <t <59 <02 <5, <ty

3. Jrst©As—ri—s = Jjrs for some independence morphism j,s; of j. s and jg ;.

Given only the comonoidal system ((At)tes, (As,t)s,tGS) one can construct a canonical
abstract Lévy-process. Since S is a uf-monoid and X preserves inductive limits, (A;)ies
generates a full comonoidal system ((.At)tes,Z) by Theorem Denote by D! :
A; — A; the canonical morphisms. Let (.A, (it A — A)t€g> the inductive limit of

(A¢)tes. Define jg; @ Ay — A as the composition

2

A 2 A S ARA A A, A
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2 Comonoidal Systems and Abstract Lévy-Processes

2.3.23 Theorem. The js; form an abstract Lévy process.

Proof. We construct the independence morphism j, s, for j,.s and js; and show that

Jrst © As—ri—s = Jrt. Define j. s, as the composition

1 it

As TlZAt . 7nth«Lls TIZ-At s%ArgAs T&At S A At ! A

Now, the diagram

A D' 4 2 A HA AT L4
t—s —_— t—s —_— S t—s —_— t

F o T

Ay RA DB WA~ A RA KA LA, — 5 A

R 2

A Ds—r A L2 A ‘XA Afl A
S—Tr E— S—T I — T S—T — S

commutes: The leftmost squares commute due to naturality of ' and (2. The next
squares commute by Theorem [2.3.19] The upper right square commutes by coassociativ-
ity of A. The triangles commute by definition of the inductive limit. It remains to show

commutativity of the lower right square. In a bit more detail, this is

A RA,  RA AT Ed A A, — B 4

T ]

A KA, Al A,

which commutes by naturality of ¢! and the definition of tf. This shows that j,. s is an

independence morphism. Next we consider

A DT » 2 A B A AT 4
ty —— Apey ——— A WA ——— Ay

~ ~ . it
As—r t—s A dXA id
A-1 it

Ay  RAD B KA —C s A RA KA 24, — A

in which the first square commutes because the D! form a morphism of comonoidal

systems by Theorem [2.3.15] the second square commutes due to naturality of 2, and the
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2.3 Comonoidal Systems

last square and the triangle commute trivially. So the outside commutes, thus establishing
jr,s,t S As—r,t—s - jr,t-

The general construction of an independence morphism for jg, ¢,, .. works

<y Jnstnt1

similar to that for j, s and j,;. O

There is also a direct way from the comonoidal system (A;)ics to the Lévy process.
Put F := {0 = (s1,...,8,) | n € No,sp € S\ {0}} = UsesFs and define ¢ > 7 =
(t1,...,ty) if there exist 7y,...,7p, Tpy1 With o =7 — -+ — 7, — 741, 7 € Fy, for
ke {1,...,n} and 7,41 € F. One shows that F is directed analogously to F;. Then
define an inductive system (Ay)scr with respect to the morphisms i : A — A, defined

as the composition

-
T — i —Tn

A, Ap R KA, —Y 5 A, K-RKA, KA, =A,

foro=7— - — Tp— Tpy1 > T.

2.3.24 Theorem. The inductive limits of (A )oer and (Ay)ies are canonically isomor-

phic.

Proof. This is exactly the situation of Theorem [2.1.4 O
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3 Additive Deformations

The material presented in Sections [3.2] and [3.3|is taken from [GerlI], Section [3.4]is from
[GKL12] with Stefan Kietzmann and Stephanie Lachs. Only minor changes have been
made, mainly to avoid redundance, unify notations, or emphasize connections to other
parts of this thesis.

The quantum harmonic oscillator is usually described in terms of the x-algebra A
generated by a, a* and a unit 1 with the relation [a,a*] = 1. One wants to define a

comultiplication on the generators by
Ala)=a®1l+1®a, A(d")=a"®@1+1®a",

but this cannot be extended as an algebra homomorphism from A to A® A since the
relation is not respected. As a possible solution to this problem, one can define A; as
the algebra with the same generators as A but under relation [a,a*], = t1 for t € R.
Then it is easily checked that A can be extended to an algebra homomorphism from A
to A; ® A; whenever s+t = 1. One observes that all A; are defined on the same vector
space and Ay is just the polynomial x-bialgebra in two commuting adjoint indeterminates.
This way to look at the quantum harmonic oscillator is already mentioned by Majid in
[Majo5, p. 71|, where he just calls this a “bialgebra like structure”. Wirth gave a rigorous
meaning to this phrase with the definition of additive deformations of bialgebras and
x-bialgebras in [Wir02], see Definition The terminology is slightly misleading: An
additive deformation of a bialgebra is a deformation of the algebra structure of B which
is compatible with the comultiplication in a certain way. But the deformed algebras
B; themselves are not bialgebras. Additive deformations are comonoidal systems in
the category of unital (x)-algebras, see Section Algebras. This special class of

comonoidal systems is quite tractable and contains a lot of interesting examples.
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3.1 Convolution

Wirth developed a description of additive deformations in terms of infinitesimal gen-
erators. Furthermore he was able to prove a Schoenberg correspondence for additive
deformations, which characterizes the continuous convolution semigroups of states on
additive deformations by a condition on the generator. This was the starting point for
the construction of quantum Lévy processes on additive deformations in [Sch05] and
[Ger09]. The relationship between quantum Lévy processes and convolution semigroups

in this case also follows from our general considerations in Chapter

In Section [3.2] we will review Wirth’s results and investigate the underlying cohomo-
logical theory. Most of the material of this section is already contained in my Diploma
thesis [Ger(09], but we will need it in the sequel and present it in a more systematic way,
now also including the description of the cochain complex for the x-case which is new.
In Section [3.3] we show that an additive deformation of a Hopf algebra automatically
fulfills a compatibility with the antipode and find a natural decomposition of additive de-
formations of cocommutative Hopf algebras. Finally, Section transfers the generator
calculus, the result on compatibility with the antipode, and the Schoenberg correspon-
dence to the braided case. This is necessary to treat, for example, the fermionic harmonic

oscillator in the framework of additive deformations in Section B.4.5

3.1 Convolution

The following conventions and definitions will be used throughout this chapter. The
algebraic dual of a vector space V is denoted V' := {¢ : V — C | ¢ linear}. The tensor
product ® is the usual tensor product of vector spaces. If V is a vector space, for n > 1
we write V¥ := V ® ---® V for the n-fold tensor product of V with itself and for n = 0
we put V0 := C. For two vector spaces V and W, we denote by 7 the flip from V@ W
to W®V given on simple tensors by 7(v @ w) = w ® v.

A bialgebra (B, u,1,A, ) is a complex unital associative algebra (B, u,1) for which
the mappings A : B — BB and 6 : B — C are algebra homomorphisms and satisfy coas-

sociativity and counit property respectively. In other words, a bialgebra is a comonoid in

Alg, and, similarly, a *-bialgebra is a comonoid in *-Alg,, see Section Algebras.
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3 Additive Deformations

A Hopf algebra is a bialgebra with an antipode, that is a linear mapping S : B — B with
po(id®S)oA=10=po(S®id) o A.

A Hopf x-algebra is a Hopf algebra which also is a *-bialgebra. For details on Hopf

algebras and bialgebras see for example [Swe69] or [Abe8(0], for Hopf x-algebras [KS97].

We use Sweedler’s notation, writing Aa = Y7, a,(gl) ® a,(f) =: a(1) ® a(g) and the

notations p(™ : B — B, A . B — B®"

O ) = A1, AQ =5
p ) = o (id ® ,u(n)), ACHD — (id ® A(”)) o A.

The Sweedler notation for this is
AMg = a) @ -+ @ a(p)-

With B also each B®" is a bialgebra in the natural way. We frequently use the
comultiplication on B ® B, denoted by A, which is defined by

Ala®b) = a) ® b(l) ®a) ® b(g),

that is A = (Id®7®id) o (A® A). The counit of B B is just 6 ®4. If B is a x-bialgebra,
an involution on B®" is given by (a1 ® -+~ ®an)* = ai ®---@ak.

If (C,A,0) is a coalgebra and (A, i, 1) is a unital algebra, we define the convolution
product for linear mappings R, S : C — A by

RxS:=po(R®S)oA.

This turns the space of linear maps from C to A into a unital algebra with unit 14. In
our context C and A are usually tensor powers of the same bialgebra B.
A pointwise continuous convolution semigroup is a family (¢;)i>0 of linear functionals

@¢ : B — C such that

P sk P = Pstt
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3.2 Additive Deformations of Bialgebras

> o (b) =% 5(b) for all b € B.

It follows from the fundamental theorem for coalgebras that for a pointwise continuous

convolution semigroup there exists a generator 1, which is the pointwise limit

_ dei(b) T oi(b) — 0(b)
v =~ e Ty
and for which we have
Pt = €iw = Z(W)m,
n=0

also as a pointwise limit. Confer [ASYWS88, Section 4] for details.

3.2 Additive Deformations of Bialgebras

Deformations of algebras are closely related to cohomology, as Gerstenhaber showed in his
papers [Ger63) [Ger64]. Suppose that A is an algebra and (j)er, a family of associative

multiplications on A which can in any sense be written in the form
p(a®b) = pla®b) +tF(a®b) + O(t?)

where g = p is the original multiplication of the algebra. Writing down the associativity

condition for y; and comparing the terms of first order yields that
p(F(a@b)@c) +F<,u(a®b)®c) :,u(a®F(b®c)) +F<a®,u(b®c))
and after rearranging
aF(b®c)— Flab®c)+ F(a®bec) — F(a®b)c =0,

so the infinitesimal deformation F' is a cocycle in the Hochschild cohomology associated

with the A-bimodule structure on A given by multiplication.

3.2.1 Definition. An additive deformation of the bialgebra B is a family (u:)ier, of
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3 Additive Deformations

mappings s : B® B — B such that

1. (B, ut,1) is a unital algebra for each t € Ry

2. po = p

3. Aoy = (ps @ pz) o (Id@7®id) 0o (A®A)

4. the mapping t — § o y; is pointwise continuous, that is § o 20 50 =094
pointwise

5. if B is a x-bialgebra and (B, i, 1, %) is a unital x-algebra for each ¢ € Ry, we call the

deformation an additive deformation of a *-bialgebra.

This definition implies that

(00 ps)x (00 p)=(6@0) 0 (ns @p)o(id@T@id)o (AR A)

=(0®06) 0 Ao gyt =080 psit,

hence (8 o pt)ier, is a pointwise continuous convolution semigroup of linear functionals
on the coalgebra B ® B. As such it has a generator, which we will usually denote by L.
The following theorem of Wirth was first proven in [Wir02], see also [Ger09]. We give a

full proof of its generalization to the braided case in Section [3.4]

3.2.2 Theorem. Let (u;)ier, be an additive deformation of the bialgebra B. Then

L= % —o exists pointwise and for a,b,c € B,t € Ry the following statements hold:

1. = pxelt
2. wxL=Lxu °’Lis commuting’
3. L(1®1) =0 'L is normalized’

4. 0(a)L(b®c) — L(ab® ¢) + L(a ® be) — L(a ® b)d(c) = 0.

'L is a cocycle’.
If (¢)ter, is a x-bialgebra deformation, then additionally

5. L(b®c) = L(c*®b*) 'L is hermitian’.
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3.2 Additive Deformations of Bialgebras

Conversely, if L : B® B — C is a linear mapping, which fulfills conditions 2,3 and /
(in case of x-bialgebra also 5), than the first equation defines an additive deformation on

B.

In this section we wish to introduce a cochain complex such that the generators of
additive deformations are exactly the 2-cocycles. Once the complex is established the
question is, what kind of deformations are generated by coboundaries. It is shown, that

those deformations are of the form
p=Popo (et @d ),

where the @, constitute a pointwise continuous one parameter group of invertible linear

operators on BB that commute in the sense that
(P ®id) o A = (id ® P;) 0 A.

When the generator of the additive deformation is the coboundary of ¥ : B — C, then

O, = (d® ey t¢) o A is the one parameter group of operators.

3.2.1 Subcohomologies of the Hochschild Cohomology

A cochain complex consists of a sequence of vector spaces C = (Cy)nen and linear
mappings 9, : C, — Cpy1 such that 9,41 09, = 0 for all n € N. The elements
of Z,(C) = kern 9,, are called (n-)cocycles, the elements of B,,(C) = imd,,_; are called
(n-)coboundaries and the vector space Hy,(C) = Z,(C)/Bn(C) is called n-th cohomology.
A sequence D = (Dy)nen is called subcomplex if D,, C C,, and 9, D,, C Dy4; for all n.

Then <(Dn)neN, (an|Dn)neN) is again a cochain complex and we have:

1. The cocycles of D are exactly the cocycles of C, belonging to D, that is
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3 Additive Deformations

2. Each coboundary of D is a coboundary of C, that is

By (D) € Bn(C) N Dy.

3. Equality holds in 2, if and only if the mapping
H,(D) = H,(C), f + Bn(D) — f+ Bn(C)
is an injection.
4. If D, E are subcomplexes, then (D,, N Ey,)pen is a subcomplex.

Points 1,2 and 4 are obvious, while 3 follows from the observation, that the kernel of the
given mapping is exactly B, (C) N D,.

For an algebra A and an A-bimodule M we define
C,, := Lin (.A®n,M> = {f C AT M| f linear} .

One can show, that together with the coboundary operator

n

Onflat, ... ansa) :=a1.f(az,...,ans1) + Z(—l)i flar,...,ai@i41, ... ant1)
=1

+ (—1)”+l flai, ... an).ant1

the C,, form a cochain complex, the so-called Hochschild complez, see for example [Ger63].
Especially for A = B a bialgebra and M = C the B-bimodule given by a.\.b = §(a)Ad(b)
for A € C and a,b € B we have

Onflar,. .. anta) = 0(a1)f(az, ... ant1) + > _(=1)" flai,..., aiGis1, ..., ans1)
i=1

+ (=)™ f(ar, ..., an)0(ans1). (3.2.1)
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3.2 Additive Deformations of Bialgebras

The generators of additive deformations are normalized commuting cocycles, so it is

natural to define

oM ={fec,| fa® =o},
CO ={feCul|fxpm=p"xf}.

If B is a x-bialgebra the generators are also hermitian. We define for f € C,

flar® -+ @an) := fla; @ -+ @ aj)

and set

f}, if [4] odd, that is n =1,2,5,6,...

)
I

e C,

|l
{
(H)

3.2.3 Proposition. C’le), 07(10) and Cyp, "’ are subcomplezes of C,.

/
f ff}, if [3] even, that is n =0,3,4,7,8,. ..

)
I

e C,

Proof. We only need to show that 807(1*) - C(jl for x = N, C, H.

n

N: Let f € ). Then

DS = §(1)FAF) + S (1) FAP) + (~1)™ FAEMA(L) = 0

i=1

proves Of € 07(32

C: For f € C7(LC) we get

Of % M(n—&-l)

= (5 ®f+ i(—l)kf o (idp—1 ® p ®idp—p) + (-1)""' f @ 5) o Y.
k=1

Next we show, that each summand commutes with g under convolution:
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3 Additive Deformations

(6@ f)xp™ (a1 @ @ ans)
5 (") £ (o - @ al)) 0 .0,
—arf () & @al )P ..
caf (@ e 0aZ) ol (as = e
o a6 (o) 1 (o @)

=" (6@ flar ® -+ @ anga)-

(n+1) (n+1)

Analogously, we see that (f®0)*pu *(f®46). For the remaining summands

= 1

we calculate

(f o (idg—1 ® p® idn,k» * u(”“)(al ® - @ apt1)
1) (2) (2) (2)

1 1 2
:f(ag) ®(a§€)a§€£1)® - ® n+1)a()"‘ak A1 -+ Onyl
=f (agl) @@ (apapy) P @ ® aglll) a?) - (apags)® . aﬁl

(as A is an algebra homomorphism)

=f (a?) ® @ (apaps1)?P @ ® agi)l) agl) - (apage )W a7(11+)1
(as o plm = p™ 5 f)

= u"tY « (f o (idp—1 @ p® idnfk)>(a1 ® - ®ant1)

All in all, we conclude 8f x p"t1) = 4(+D L G f hence df € C’,(fr)l

H: Let f: +f. For n odd we get

5?((11,...,(1”+1) =0f(a} q,...,a})

=6(a n+1)f ,ay +Z n+1 Zf n+1""aa:+1a;‘k""7a>{)

+f(ay ;... a5)0(at)

50



3.2 Additive Deformations of Bialgebras

n

= 5(a1)f(a2, e 7an+1) + Z(—l)i f(Gh R 217 RS P an+1)

=1
+ flat, ..., an)d(ans1)
= j:@f(al, cee ’an+1)

and for n even we calculate

Of(ar,.. any1) = Of (a7 1y, af)
= (a5 flag, - af)

+Z n+1 Zf n_’_l,...,a:Jrlar,.--,aT)_f(a:H_l"'-’a;)é(a’lﬂ)

= —6(a1)f(ag, ..., ant1)

n

— Z(—l)i f(al, ey Qi@ e A1) fN(al, ceeyan)0(ant1)
i=1
— FOf (a1, .., ans1).
H) . .. H
So we see that f € C@S ) implies 0f € C(Jr)l.
Since the intersection of subcomplexes is again a subcomplex we have

3.2.4 Corollary. C(NC) = CT(L ) N C( ) and C(NCH) = C’( ©) N C’( ) are cochain
complexes with the coboundary operator (3.2.1)).

3.2.2 Characterization of the Trivial Deformations

For an additive deformation of the bialgebra B the generator L of the convolution semi-

group (0 o fi)ier, is an element of ZéN ) and conversely if L € Zy (NC) we can define an
additive deformation via p; := pu % e!F. In the case of a *-bialgebra the generators are
(NCH)

exactly the elements of Z. . We wish to answer the question, which deformations are

(NCH)

generated by the coboundaries, that is the elements of BéNC) or By respectively.

3.2.5 Theorem. Let B be a bialgebra, L € BSNC), L = Oy with ¢ € CfNC) and put

P, = idxey ™ and pe = pxetl. Then (®¢)ier, is a semigroup of linear automorphisms of
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3 Additive Deformations

B. Furthermore, the ®; are unital algebra isomorphisms ®y : (B, u) — (B, ut), for which
(P ®id)o A=(1d@P;) o A forallt € Ry (3.2.2)

and (60®;)er, s a pointwise continuous convolution semigroup. If B is a x-bialgebra and
L e B;NCH), then we can choose 1) € CfNCH) and the ®; are x-algebra isomorphisms.
Conversely, if (®¢)ier,. s semigroup of invertible linear mappings ®; : B — B such

that (8 o ®¢)ier, pointwise continuous, (3.2.2)) holds and ®¢(1) =1 for allt € Ry, then

pe = Popo (o7 @ @)

(NC)

defines an additive deformation of B with generator L € By . If B is a x-algebra
and the ®, are hermitian, then we get an additive deformation of a *-bialgebra and
L e B{NW,

We postpone the proof a bit. When B is a bialgebra and ¢ : B — C a linear functional

on B we define
R,:B—=B, R,:=idxp=(id®p)oA.

3.2.6 Lemma. For ¢, € B’ the following hold:
(i) Roo Ry = Rouy
(17) o Ry, =
(i71) Rsgy, =1id @ R,
(iv) Ryogs = Ry, ®id
(v) 1o Ryou = Ry
Note that the last three equations are between linear maps defined on the bialgebra B® B.

Proof. This is all straightforward to verify. O

Proof of Theorem[3.2.5. Let B be a bialgebra and L = d¢y € BéNC) a coboundary with

P € C’fNC). We write ¢ := ey ¥ and note that this is a pointwise continuous convolution
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3.2 Additive Deformations of Bialgebras

semigroup and the ¢; are commuting (that is ¢; * id = id x ¢;) since 9 is. Then the
mappings ®; = R, yield a semigroup of linear operators on B with §o®; = ¢; and we only
need to show that they are unital algebra isomorphisms. It is obvious, that ®;(1) = 1,
since ¢(1) = 0, and ®;0®_; = id, so P, is invertible. We have to prove that ®; : (B, u) —
(B, j1¢) is an algebra homomorphism, that is p; = u* el = ®;0po (@;1 ® @;1) . Using
that 6 ® ¢, ¥ o p and ¥ ® § commute under convolution, we find

ell — ot — OBV —You+y@d) _

e;wo” * eff@w * eiw®5

= (prop) * (6 @ p—t) * (p—t ® ).
From this we conclude

pe=pxel = (n@e®) oA =poRu = 1o Rigopmusme (o ie0)

= poRpopo ([d@ Ry ,) o (Ry, @1id)
= R@t oOpo (R@—t ® R@—t)
:Q)to,uo(q);l@)q)t_l).

It is clear that the ®; are x-homomorphisms in the x-bialgebra case.

Now let (®¢);cr, be semigroup of invertible linear mappings with ®;(1) = 1 and
(¢ ®id) o A = (id ® ®;) o A such that (p;)ier,, @t := 6 0 $y, is pointwise continuous.
We observe that

1. The family (¢¢)ier, is a pointwise continuous convolution semigroup with generator

(RS C%NC). Indeed,

@s*@t:((5O¢)5)®(5O‘I’t)>OA:(5®5)O(<I>S®id)o(id®q>t)oA
=(0®d)o(®Ps®id) o (®; ®id) o A

=(0®0) 0 (Psyy ®id) 0 A = psiy

and ¥(1) = 0,9 xid = id x ¢ follow from ¢;(1) = 1 and ¢; *xid = id * ¢; via

differentiation.
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3 Additive Deformations

2. It holds that ®; = R, for all ¢. This is shown by the simple calculation

Ry, = (id® (00®)) o A= (id®d) o (id® B;) o A

So the first part of the theorem tells us, that L = 9y € BéNC) is the generator of an
additive deformation, for which u; = ®; o po ((I>t_ ' o, 1> . If B is a *x-bialgebra and
all the ®; are hermitian, then so are all the ¢y = § o ®; and via differentiation also ).
This shows ¢ € C’}NCH) and thus L = 0y € BSNCH). So the deformation is an additive

deformation of a x-bialgebra. O

3.2.7 Remark. Let L € By, that is L = v for an arbitrary linear functional 1. Because

of L(1®1) = 5(1)Y(1) — (1) + ¢(1)5(1) = (1), L € 5 implies v € €Y and

therefore BéN) =ByN CéN). If L is hermitian, (¢ + ¢) is a hermitian linear functional,

whose coboundary is also L. This shows BgH) = BzﬂCéH). But it is not clear under which

circumstances Béc) =DByn C’éc) holds, that is if there are 2-coboundaries that commute
but are not coboundaries of a commuting linear functional. This possible difference is
actually the main reason why we need the altered cochain complex to get a good notion

of trivial deformations.

3.3 Additive Deformations of Hopf Algebras

Deforming the multiplication of a bialgebra B also gives a deformed convolution product

*; for linear maps from B to B
AxtB:=p0(A® B)oA,

where (1;)¢er is a deformation of the multiplication map u of B. Recall that B is a Hopf
algebra if the identity map on B has a convolution inverse S, called antipode. We ask,

whether there are also deformed antipodes Sy which fulfill

pro (St ®id) o A = pp o (id ® S¢) o A = 16, (3.3.1)
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3.3 Additive Deformations of Hopf Algebras

that is whether the identity map also has an inverse with respect to the deformed con-
volution ;. An additive deformation which admits deformed antipodes is called a Hopf
deformation in this section. In a Hopf algebra, the antipode S is an algebra antihomo-

morphism and a coalgebra antihomomorphism, that is

Sop=po(S®S)or,
AoS=70(S®S)o0A.

Similar properties hold for the deformed antipodes S; of a Hopf deformation. We can

prove (Theorem [3.3.4)

Sop—t =g o7 o (St ®St), (3.3.2)
Ao St—H" = (St & Sr) oToA. (333)

Applying 6 ® d to (3.3.3) we get
508y =((608)®(508,))oroA=((008)®(50S5))0A,

that is § 0 S; is a convolution semigroup with respect to x = (- ® -) o A. So one would

like to prove that this semigroup has a generator, such that the S; are of the form
Sy =Sxe;t. (3.3.4)

To get a hint how to find o, we assume for the moment that § o S; is differentiable in 0

and define

d
U.——a(soSttzo.

Then we can apply § to (3.3.1) and differentiate to get

Lo(S®id)oA—oc=Lo(ild®S)oA—-0c=0
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3 Additive Deformations

or after rearranging

c=Lo(S®id)oA=Lo(ild®S)oA. (3.3.5)

In fact, we will prove that every additive deformation of a Hopf algebra is a Hopf de-

formation and (3.3.4) and (3.3.5) give a formula for the deformed antipodes; see Theo-
rem [3.3.T0

In two special cases the structure can even be better understood. In the case of a

trivial deformation it is easy to see that
St = (I)t oSo (I)t

is another way to find the deformed antipodes. Differentiating this equation also gives a

second formula for the generator
oc=1¢+1os.

If the bialgebra B is cocommutative, we show that every additive deformation splits in a
trivial part and a part with constant antipodes. Applying ¢ to (3.3.2)) and differentiating
yields

—cop—L=Lo(S®S)oT—0®I—0®0
or after rearranging
L+Lo(S®S)or=0®0c—0cou+0o®0=0o.
So L can be written as

1, 1
L= 00+ (L-Lo(S®8)oT).

—~—
=1 =Lo

If B is cocommutative, the second part corresponds to constant antipodes, see Theo-

rem [3.3.12] and Lemma B.3.131
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3.3 Additive Deformations of Hopf Algebras

3.3.1 Existence of Deformed Antipodes

We start with extending an additive deformation from the half line to the line.

3.3.1 Lemma. Let B be a bialgebra and L the generator of an additive deformation.
Then we can define py == etX % u for all t € R (that is not only for t > 0). Furthermore,
A Bgyy — Bs ® B, is an algebra homomorphism for all s,t € R.

Proof. 1t follows from Theorem that — L is the generator of an additive deformation,

so for t < 0 the definition of y; yields a multiplication on B. We calculate

Ao gy = Ao(u®e*5+t >oA (Ao,u ) @ el HDE )oA
=(popee@el)oA®
= (peet ®,u®€*L>oA(4)
(M*e (el ))OA

(Ms &® :U't)

for all s,t € R. O

From now on we always view an additive deformation as a family of multiplications

indexed by all real numbers.

3.3.2 Definition. An additive deformation is called a Hopf deformation if for all t € R

there exists a linear mapping S; : B — B such that
o (S ®id) o A = pyp o (id ® S¢) o A = 14. (3.3.6)

The S; are referred to as deformed antipodes.

For t = 0 the above defintion of course implies that B is a Hopf algebra with antipode
S =5.

3.3.3 Remark. Many proofs in this section follow a common path. To show an identity

a = b, we find an element ¢ and a convolution product ¢ such that aoc = cob = § where
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3 Additive Deformations

0 is the neutral element for ¢. Then we can conclude
a=aod=aocob=5ob=0.
This is the usual argument to prove that an element in a semigroup is invertible if and

only if it has a left and a right inverse.

3.3.4 Theorem. Let (11)icr be a Hopf deformation of B. Then the deformed antipodes
Sy are uniquely determined by (3.3.6). Furthermore, the following statements hold:

(i) Si(1)=1
(it) Syop—¢=po (S @Sy or
(191) Ao Spyr = (S ® Sp)oT0 A

(iv) If B is cocommutative, that is A = 7 o A, then Sy is invertible for all t € R and
(St)_l =S5_4.

Proof. (Uniqueness) : By (3.3.6), S; is the two-sided convolution inverse of the identity

map on B with respect to *.
[(D)} Follows from 1 = py o (S ®@id) o A(1) = S(1).
We prove that both sides are convolution inverses of u; with respect to x;. For the

left hand side we calculate

(Stop—g)xt pre = py o (S ®id) o (u—y @ pag) o A
=po(Si®id)oAopu=21opu=1® 9,

and for the right hand side we get

ot K¢ (MtO(St(X)St)OT) (a®b)
= e 0 (b @ ) o (id2®((5t®5t)07)) oA(a®b)
= (au) ©b(1) @ St (ba)) © St (a<2>>)

= 6B (aqy @ St (aq)) ) = d(a)d(b)1.
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3.3 Additive Deformations of Hopf Algebras

For linear maps A, B from the coalgebra (B,A) to the algebra (B; ® B,) we have

a convolution ¢ defined as
AoB= (@ pu)o(id®r®id) o (A® B) o A.

We show that both sides of are inverses of A with respect to ¢. For the left hand

side we get

(AoSpr) o A= (@ pr)o(id®7T®id) o (A®A) o (Spyr ®id) 0 A
= Ao pir 0 (Sipr ®id) o A = A(1)6 = 1 ® 16,

and for the right hand side

Ao ((Si®Sy)oT0A)(a)
= (1t ® pty) 0 (([d @7 @1d) o (idy ® Sy ® ) o (idy @ 7) 0 AP ()
= (1t @ i) (a1 ® Si(ag) ® a@) @ Sp(ag3)))
= pue(ag) @ Si(a)) ®1=6(a)1® 1.

: Suppose A = 7oA. We prove S;0S_; = id by showing that Sy 0 S_; is convolution

inverse to S;. Therefore we calculate

(StoS_t)*t St =pr 0 (St ®S) o (St ®id)o A
=Siopu_roTo(S;®id)o A
=Siopu_o(id®S_y)oToA=1035(1) =14

Since S is invertible with respect to *¢, the left inverse S; 0 S_; is automatically a two
sided inverse. Thus S; o S_; = id.
O

The Deformed Antipodes for Trivial Deformations We start with showing the exis-
tence of deformed antipodes for all trivial deformations. We find simple descriptions of

the deformed antipodes. From these descriptions we can easily read, when the deformed
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antipodes of a trivial deformation are constant.

3.3.5 Theorem. Let B be a Hopf algebra and (u;)icr a trivial deformation with p, =
Do o0 (q);l ® @;1) and ®; = id x ex for a commuting, normalized linear functional

. Then (put)ier is a Hopf deformation with deformed antipodes
Sy =050 = S xey TV
for allt € R.

Proof. For S; = ®; 0.5 o ®; we calculate

o (Sp@id)o A=d0po0 (@' @d; ) o ((®r0S0d)®id)oA
=P, opo(Sod,@d; oA
=®opo(S®P Mo (P ®@id)o A
=0, 0p0(S®P o (id®d)oA
=d®,opo(S®id)o A
= ®y(1)6 = 16

which proves that S; is a left inverse of the identity on B with respect to x;. In the same

way one proves that Sy is a right inverse.

Now we consider the case Sy = S % e, HWoSHY) e first recall that ¥ is commuting

and L = 01 is the generator of the additive deformation. Next we observe that

(oS xS =(h®id)o(S®S5) oA
=(Y®id)oToAoS
= (@ ®id)oAoS
= ([d®1)o(S®S)oA=5x% (o).

With this in mind we calculate

peo (Si@id)o A(a) = (n®el)o A(e;“/’ (S(aqy))ex " (ag) - Slags) @ a(4))

60



3.3 Additive Deformations of Hopf Algebras

= e, (Slaqy))ex ¥ (ap)ett (S(am) @ awm)1
= (a’)lu

since

eth(S(awy) ® ag)
= %V (S(ag)) ® ag))ex ™ (S(a@m)) ® am)e®(S(am) ® ag))
= el (ag))el? (S(ag))-

Again, the proof that S; is also a right inverse is similar.

An alternative way to prove the second equality in the theorem is to write ®; =
(e:tw ®id) o A in Sy = ®; 0 S o &; and make use of the fact that S, and ¥ o S all

commute with each other under convolution. O

It is still possible that the deformed antipodes are constant. We have

3.3.6 Theorem. Let (Si)ier be the deformed antipodes of a trivial deformation with
Lt :thouo(Cb;l@@;l). Then Sy =S for allt € R if and only if

(I)toS:SOq)_t.
for allt € R.

Proof. This follow directly from S; = ®; 0.5 o ®; and @, l—_,. O

The Deformed Antipodes in the General Case We want to show that every additive
deformation of a Hopf algebra is a Hopf deformation and give a formula for the deformed

antipodes. Let B be a Hopf algebra and L the generator of an additive deformation
(11t )ter-

3.3.7 Lemma. We have

Lo(S®id)oA=Lo(id®S)oA.
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3 Additive Deformations

Proof. From 0L = 0 it follows easily that L(a ® 1) = L(1 ® a) = 0 for all a € B. Hence,

0= 0L(ag) ® S(a@) ® ag))
= 0(a)L(S(a@) ® a) — L{aw)S(aw) @ ag))
+ L(aq) ® S(ag)a) — L(aw) ® S(a))d(ag)
= L(S(a) @ a@)) — L(aq) ® Sae))-

We define

oc:=Lo(id®S)oA=Lo(S®id)oA. (3.3.7)

We freely choose between the two possibilities to write o, but Lemma [3.3.7] will only

be essential in the proofs of Theorem [3.3.12] and Lemma [3.3.13]in Section [3.3.2

3.3.8 Lemma. The linear functional o defined by (3.3.7) is commuting, that is
(c®id)o A= (id® o) o A.
Proof. Since L is commuting, we have

L(agy ® S(a))) = L{agy © S(aw))a@)Slag) = (Lx u)(aq) @ Sae))
— (ur L)( S(a))

= L(a) ) )S(

= aa)L(a(z) ® S (a(3)))5 (ag))-

(l

aq a(4

This helps us to see

(o ®id) o Afa) = a(a(l))a(z) = (L o(id® S)o A) (a(l)) a(2)
= L(ag) ® S(ag))ag)
= aqyL(a@) ® S(a))S(aw)ags)
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= amyL(ag) ® S(ag)
— (id® o) o Ala).

3.3.9 Lemma. The following equations hold:
(1) Lo (id® S) o A =™
(i1) el o (id® S)o A = elf.

Proof. We prove (i) by induction over n. For n = 0,1 the proposition is clear. Using

that o commutes by Lemma [3.3.8] we calculate

L aq) ® S(a)) = Lx L™ (aq) @ S(ag))
= L(aq) ® S(ag)) L™ (ag) ® S(a))
= L{aq) ® S(ag)) o™ (ae)

— L{ago*™(a@) ® S(ags)
= L(0*(ag1))ag) ® S(ag)

= 0" (ag))o(agp) = o (a).
The equation (i7) follows easily from (i) by
, X g 1" e e
el o(id® S)o A= Z%HL o(id® S)o A = Z_:Oaa =elo.
O

3.3.10 Theorem. Every additive deformation of a Hopf algebra is a Hopf deformation.

The deformed antipodes are given by the formula
St =S e:w

with o defined by (3.3.7)).
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3 Additive Deformations

Proof. Making use Lemma [3.3.9] we calculate

pe o (id ® Sp) o Aa) = el x u(ap) ® S(ag))ex " (ag))

e (aq) ® S(aw))aSlag)ex (as)
= e’ (aqy ® Slag))er 7 (as)1
e (a1))ex (a(2))1—5( a)l,

so S; is a left inverse of the identity map with respect to x;. In the same manner one can

show that S; is a right inverse. O

3.3.2 Constant Antipodes in the Cocommutative Case

We will show in this section that an additive deformation of a cocommutative Hopf
algebra always splits into a trivial part and a part with constant antipodes. Let ¢ be the

linear functional defined by ({3.3.7)).
3.3.11 Lemma. We have do =L+ Lo (S®S)oT
Proof. From

0= 9L(S(bu)) ® S(ag)) ® a)b))
= 0(b) L(S(aq)) ® agbe)) — L(S(b))S(aq) © a@)bez)
+ L(S(ba) @ S(aq))a@be)) — L(S(ba) @ S(aw)))dae)be)
= L(S(a@) ® a@b) — L(S(bw)S(aw) @ apbe)
+6(a)L(S(by) ® biay) — L(S(b) ® S(a))

we conclude

8(a)L(S(br)) ® b)) = L(S(b))S(aqr)) @ ag)bz))
= L(5(b) ® S(a)) — L(S(aq)) ® a@b). (3.3.8)

64
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From

0=0L(S(a)) ® a@) ®b) = d(an)) Lae) @ b) — L(S(aq))a@) @b)
+ L(S(aq)) ® a@yb) — L(S(a)) @ agz))d(b)
= L(a®b) —6(a)L(L®b)
+ L(S(aq)) ® a@yb) — L(S(aa)) @ agz))d(b)

we conclude
—L(S(aq)) ® a@b) + L(S(aq)) ® a@))d(b) = L(a @ b), (3.3.9)
since L(1 ® b) = 0. Using the ) and (B.3.9), we calculate

do(a @ b) = d(a)o(b) — o(ab) + o(a)i(b)
a)L(S (b)) ® bz)) = L(S(aqyb) © ag)b)
(S(a )®a(2))5(b)
= 0(a)L(S (b)) @ by ) = L(S(bw))S(aqy) ® agbee))

(S(a ) ® a(g))é(b)
= L(S(b) ® S(a)) — L(S(aq)) ® a@bd) + L(S(an)) ® a))d(b)
=L(5(b) ® S(a)) + L(a ®@Db).

3.3.12 Theorem. Let B be a Hopf algebra and L the generator of an additive deforma-

tion. Furthermore assume 0 = oo S. Then
~ 1
L=L—--0o
2
is the generator of a Hopf deformation (fit)ier, which has constant antipodes, that is

pgro(S®id)oA=1d=po(id® S)o A forallt € R.
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3 Additive Deformations

Proof. We can write

L= (L+Lo(Se8)or)+5(L—Lo(s®5)or)

=1 =L

Then we have L1 = 0§ and 03 := Lz o (S ® id) o A = 0, since

Lo(S®S)oT0(S®id)ocA=Lo(id®S)o(S®S)oT0A
=Lo(S®id)oAoS

=008 =o,

where we made essential use of Lemma [3.3.7] O

3.3.13 Lemma. If B is cocommutative, we have o0 = goS for every additive deformation.

Proof. With the use Lemma [3.3.7 we calculate

coS=Lo(S®id)oAoS=Lo(S®id)o(S®S)oToA
:Lo(S2®S)oToA:LO(id®S)OA:O'.

O

So when deforming a cocommutative Hopf algebra one can always find an equivalent

deformation such that S; = S for all t € R.

3.3.3 Examples

We will use Theorem [3.3.12]to decompose additive deformations in several examples. For
the first example we need some preparatory results. Let B be a bialgebra. An element

a € B is called primitive, if
Ala) =a®1l+1®a.

It follows directly that d(a) = 0 for every primitive element a.
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3.3 Additive Deformations of Hopf Algebras

3.3.14 Proposition. Let B be a bialgebra with additive deformation p; = p* X and

a,b € B. If a and b are primitive, we have
pr(a®@b) =ab+tL(a®b)l.
Proof. First let us calculate the coproduct,

Aa®b) = (i[d@T®id)(A(a) ® A(b))
= (([d®7r®Rid)((@®1+1®a)@(b01+1ab))
=([deTeid)(e®1eb2l+ae2l®leb+1lRaeb1+10a®1®b)

a®b®1914+a21010b+107(a®b)R1+101Qa®b.

Since L(1®c¢) = L(c®1) =0 for all ¢ € B and 6(b) = d(a) = 0, we get

2
etla®b) = <5®5+tL—|-t2L*L+'--) (a®b) =tL(a®D)

claol) =l (1®b)=0
1ol =(26)(1lel) =1.
It follows that

pi(a®b) = (uxetl) (a®b) = ab+ tL(a®b)1.

O]

Let £ be an abelian Lie algebra, that is [a,b] = 0 for all a,b € L. Consider the
universal enveloping Hopf algebra U(L), that is the symmetric tensor algebra over £
with the unique comultiplication such that all elements of £ are primitive. This is indeed
a Hopf algebra with antipode given by S(a) := —a on elements of £. In the case where
L is of finite dimension n this is just the polynomial Hopf algebra in n commuting

indeterminates.

3.3.15 Proposition. For two additive deformations uﬁ”,u?) of U(L) with generators

Ly, Lo the following statements are equivalent:
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3 Additive Deformations

(1) Ly —Lgy is a coboundary that is the two deformations differ by a trivial deformation
(i1) ugl)(a®b—b®a) = ,u,@(a@b—b@a) foralla,be L,t €R
(i19) L1(a®@b—-b®a) = La(a®b—-b®a) for alla,be L,t €R
Proof. For any additive deformation of U (L) we have

pue(a ®b) =ab+tL(a® b)l

by Proposition This implies the equivalence of (ii) and (ii).

To prove that (i) is equivalent to (ii7), it suffices to show that L is a coboundary if
and only if L(a®b—b®a) =0 for all a,b € L. Indeed, we can put L = L1 — La. So let
L = 0 be a coboundary. Since the counit vanishes on elements of £ and £ is abelian,

we conclude
Lla®b—-b®a)=—y(ab—ba) = 0.

Now let L(a @ b—b® a) = 0 for all a,b € L. Choose a basis of £ and introduce any

ordering on this bases. Then define

L(ay---ap—1®ap) forn>2anda; <...<a,
Q/)(a/l...a/n) =

0 otherwise.

We write L = L + 9¢ and fi: = p*etl. Now an easy induction on n shows that
ﬁgn)(al ® - ®ap) = ap---ay for ap < .-+ < a,. But from the equivalence of (i7)
and (ii1) we know that fi; is commutative so we get iz = p for all ¢ € R. Finally,

L=L+ 01 = 0 shows that L is a coboundary. O

3.3.16 Example. In this example we realize the algebra of the quantum harmonic
oscillator as the essentially only non-trivial additive deformation of the Hopf *-algebra

of polynomials in adjoint commuting variables C [z, z*] with comultiplication and counit
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defined via
Alzf)=2°®1+1®z" and d(z) =0,

where € € {1, x}.

It follows from Proposition that a deformation of C [z, z*| is determined up to
a trivial deformation by the value of L(zx ® z* — 2* @ y) = p1(x ® 2* — 2* ® ). In case
of a x-deformation L. must be hermitian, so this is a real number. Choosing different
constants here corresponds to a rescaling of the deformation parameter t. We assume
L(z®z*—2*®x) = 1. There is also a canonical representative for the cohomology class of
the generator for which the antipodes are constant. Choosing L(z®z*) = —L(z*®z) = 3
yields o = 0.

One gets a well defined *-algebra isomorphism from the algebra generated by a,al
and 1 with the relation aa! — afa = 1 to the deformation of the polynomial algebra
(Clx,2*], 1) by setting ®(a) = 2 and ®(a’) = 2*. In this sense the quantum harmonic
oscillator algebra is the only non-trivial additive deformation of the polynomial algebra

in two commuting adjoint variables.

In the next three examples we take as Hopf algebra the group algebra CG over a
group G with comultiplication given by Ag = g ® g for elements of G. We identify
linear functionals on (CG)®* with functions on G* in the obvious way. If (ji)scr is an
additive deformation of CG with generator L : G x G — C, the deformed multiplication

tL(

on groupelements g1, g2 € G is given by (g1 ® g2) = e 91:92) g, go.

3.3.17 Example. We saw that in the cocommutative case it is possible to split an
additive deformation into a trivial part and a part that corresponds to constant antipodes.
But it is still possible that the part with constant antipodes is trivial, as this example

shows. Consider the function L : Z x Z — C defined by

L(m,n) = m*n + mn?.
The function L is a coboundary, since L = 9 for (k) = —%k?’. We also see that

L(0,0) = 0 and L is commuting, so L € BWMOC) Therefore it generates a trivial deforma-
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3 Additive Deformations

tion. In the following, group elements inside CZ are denoted by (k) to avoid confusion

with the complex number k. The deformation generated by L is non-constant, since

(W) ® 1) =e"tVR)=2) # (2) = u((D) @ (1)

Since o(k) = L(k,—k) = —k3+ k® = 0 for all k € Z, the antipodes are constant. We can

calculate the isomorphisms ®; for the trivial deformation and get
(k) = e E) (k) = e (k).
The second way for calculating the S; yields
Si(k) = B0 S o Dy(k) = e Dy (—k) = e * R (—k) = (—k).

So this is a situation, where we have S o ®; = ®_; 0 S, compare Theorem [3.3.6]

3.3.18 Example. On Z% every d x d-matrix A with complex entries defines a 2-cocycle

L via
L(k,1) := kAI'

for k,1 € Z4, since the functions ((k1, ..., kq), (1, ..,1a)) — kil; define cocycles for i, j =
1,...,d, as is easily checked. These cocycles are of course normalized and commuting,
so they are generators of additive deformations on a cocommutative Hopf algebra. L
is hermitian if and only if A is hermitian. We want to apply Theorem SO we

calculate
o(k) = L(k,—k) = —kAK'

and

A+Atlt

0 5 L

g
—(k,1
2(77,

1 1
) = 5 (—hAE + (b + DAk +1)' — LAI') = o (kAL + LAK') = k
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3.4 Additive Deformations of Braided Hopf Algebras

which gives

L) = (L—S00) (b1) = 2 ALy

I
5 L

So every such cocycle is equivalent to one which comes from an antisymmetric matrix.

3.3.19 Example. Let G be a group. then CG can be turned into a Hopf *-algebra in a
natural way by extending the map * : g — ¢~! antilinearly to the whole of CG. On the
group elements the involution * coincides with the antipode S. Now let L be a generator

of an additive #-deformation, that is L is a normalized hermitian 2-cocycle. Then

5%(g’h) — (L+Lo(S®S)OT)(97h)

= %(L(Q, h)+ L(h*,g%)) = %(L(g, h) + L(g,h)) = Re L(g, h)

and, consequently,

Eg.h) = L~ 500(g,h) = Tm L(g, ).

So one has to consider only the case where L is purely imaginary on the group elements.

3.4 Additive Deformations of Braided Hopf Algebras

In |[Ger09] quantum Lévy processes on additive deformations of *-bialgebras were con-
structed and for the additive deformation on C [z, z*] (discussed in the beginning of this
chapter) this resulted in a pair of operator processes fulfilling canonical commutation
relations.

If one wants to mimic the constructions on C [z, z*] for the algebra with two adjoint
anti-commuting generators, there is the problem that this is not a *-bialgebra, but a
graded *-bialgebra (see for example [Sch93]). In this section we generalize the definition
of an additive deformation even to the case of a braided bialgebra in the sense of [Maj95]
Definition 9.4.5] (respectively [F'S99] for s-bialgebras). However, we do not work with
braided tensor categories, but it is sufficient in our context to define braided vector spaces

as in [Ufe04], because we are concerned only with tensor powers of the same vector space.
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3 Additive Deformations

For more clarity we use a graphic calculus, in the literature known as “braid diagrams”.

We show how the generator calculus and the Schoenberg correspondence of [Wir02]
can be carried over to braided x-bialgebras (see Sectionrespectively. Whereas
most results can be proved along the lines of [Wir02] for the bialgebra case, the diagram-
matic approach gives more insight into the structure of these proofs and things get more
involved in the x-bialgebra case, where we use the definition of a braided *-bialgebra of
[F'S99]. Our version of the Schoenberg correspondence (Theorem generalizes and

unifies two older versions:
» In [F'SS03| there are no additive deformations allowed.
» In [Wir02] additive deformations are considered, but no braidings.

The existence of deformed antipodes, which was established for the non-braided case in

Section [3.3.1} also remains true, as we show in Section [3.4.3

3.4.1 Braided Structures and Braid Diagrams

A braided vector space is a pair (V, 3) consisting of a vector space V' and a braiding f €

Aut(V ® V), that is a linear automorphism of V' ® V' which satisfies the braid equation
(B®id)o (ld® ) o (f®id) = (Id® B) o (®id) o (id ® ).

For reasons of clarity and comprehensibility, we use well known braid diagrams (see for
example [Maj95, p. 430 f.]) to express coherences with braidings. In this notation the

braid equation above can be visualized by

In our case we do not assume that the braiding fulfills the symmetry condition 82 =

idy g v. So we distinguish them by under and over crossing like the figure explains:

b= A=
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Other morphisms will be represented as nodes with the corresponding number of input
and ouput strings. For the multiplication p: A® A — A and the unit 1 : K — A on an
algebra A respectively for the comultiplication A : C — C ® C and the counit § : C — K

on a coalgebra C we use the shorthand notations:

p="1) 1-=o A=y 6=4

One defines By, : VEM@VE" — VO @ VO™ for every braiding 8 € Aut(V V)
inductively by

Boo =1ide, Bim+1 = (idv @ Bim) o (B@idyem),
B0 = Po1 :=1idv, But1m = (Bnm ®@idy) o (idyen @ B1m).

The braiding 3, , can be illustrated by the figure

Note that (871),.m is its inverse.

Crucial properties for linear maps on braided vector spaces (V, 3) are the following.

A linear map f : VO™ — VO ig called S-invariant, if
(f®id) o Brm = Prno (1d® f)
and accordingly B~ !-invariant if
(id® f) o Bm,1 = Bn,1 0 (f ®id).

In case f fulfils both invariance conditions, we refer to f as B-compatible.

3.4.1 Remark. One can easily see that the tensor product and the composition of (-
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invariant (respectively B~ !-invariant and B-compatible) linear maps is again S-invariant
(respectively 3~ !-invariant and B-compatible). For a B-invariant linear map f : V™ —

V@™ and a f~!-invariant linear map g : V* — VOl we get

(f®g)oBem=Bino(g®f).

As an example for a (trivial) braiding we get the flip-operator 7(v ® w) = w®v. Obvi-

ously, all linear maps are T-compatible.

To switch between two braided vector spaces (V4, 31) and (Va, 32), we use the notion

of a braided morphism. A linear map f : V3 — Vo will be called braided morphism, if

(f@f)opr=P2o(f@f).

Expressed by braid diagrams, this equation looks like

-

A braided algebra (A, p, 1, B) is a unital associative algebra (A, i, 1) and a braided vector
space (A, 3), such that g and 1 are S-compatible, that is

(p®@id)o B2 = Bo (id®u), (id®u) o P21 = B o (n@id),
(1®id) = Bo (id®1), (d®1) = Bo (1®id).

We can visualize these four conditions by

Y 0-U e ey

We define M; := p and M, for n > 2 inductively via

Mn = (H®Mn—1) © (id@gn—l,l ®1d®(n71))
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Then <A®”, M,,19"™, ﬁmn) becomes a braided algebra. In particular,
(A®A M, 181, 8)

is a braided algebra, whereby M = My = (p® ) o (id® f®id). Note that the usual
multiplication map on A® A has changed: We get the braiding [ instead of the flip

operator 7.

Dually, a braided coalgebra (C,A,d,3) is a coalgebra (C,A,J) and a braided vector
space (C, ), such that A and § are S-compatible, that is

(A®id)o B = Bi20 (Id®A), (id®A)of = f210(A®id),
(d®id)o B = (Id® ), (id®d) o B = (d®id).

The corresponding diagrams are:

o B B

Analogous to the multiplication map in the algebra case, we define A; := A and for

n > 2 inductively by
Ap = (id® B1p-1 @id®" V) o (A® Ap_1).
Then <C®”, A, 697, Bnm) becomes a braided coalgebra. In particular,
(C®C, A 5@, Bap)

is a braided coalgebra, whereby A := Ay = (id® f®id) o (A® A).

3.4.2 Remark. Given a braided algebra A and a braided coalgebra C, it can be easily
shown that the opposite algebra A°P := (A, o 3,1,0) is a braided algebra and the
coopposite coalgebra C°P := (C, o A, 4, 3) is also a braided coalgebra. The algebra A is
said to be commutative, if u = o 8 and the coalgebra C is referred to as cocommutative

in case fo A = A.
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A braided bialgebra (B, A,d,u,1,3) is a braided algebra (B, u,1,3) and a braided
coalgebra (B, A, 4, 3), such that 0, A are braided algebra homomorphisms, that is

Aop=(pep o(idepf®id)o (A®A) (3.4.1)

dopu=0®0

is fulfilled. Equation (3.4.1)) is called braided bialgebra condition and differs from the

usual bialgebra condition. In the used graphical calculus the picture

represents this equation.

A homomorphism f : (By, 1) — (B2, f2) of braided bialgebras is defined as a homo-
morphism of algebras and coalgebras such that (f® f)o 51 = 20 (f® f).

If B is a braided bialgebra, B™ is a coalgebra and B®™ is an algebra for all n,m € IN.
It follows directly from Remark [3.4.1] that the convolution R+T of compatible linear maps
R, T :B®" — B®™ is compatible.

A braided bialgebra H is called braided Hopf algebra if it is also a Hopf algebra.
Graphically, the antipode condition is expressed by

4

3.4.3 Remark. For a braided Hopf algebra (H, A, 6, 1, 1, S, 3), similar to the nonbraided

case, the following properties are fulfilled.
» The antipode S is uniquely determined if it exists.

» S is a braided algebra and coalgebra anti-homomorphism, that is

Sopu=pofo(S®S), Sol=1, AoS=p0o(S®S)oA, doS=9§
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are satisfied. The first equation follows from the fact that both sides of this equation
are convolution inverses of u. The third equation follows analogously to the first.

The second and fourth equation can be shown as in the non-braided case.

» S is S-compatible, which can be visualized by

» If in addition H is commutative as an algebra or cocommutative as a coalgebra,

then S? = id holds. If H is cocommutative, that is 5o A = A, the diagrams

l
-
|

show S? = id. The proof in the commutative situation is analogous.

» It can be easily seen that the braiding 5 is determined by the formula
B=(nepo(Se(Aon)@s)o(AcA),

Now we want to define involutions on braided algebraic structures. We follow the

definition of an involutive braided bialgebra or braided *-bialgebra given by Franz, Schott,
and Schiirmann (see [FSS03| or [Fra06], Section 3.8), which differs from that given by
Majid in [Maj95|, Proposition 10.3.2].

A braided x-bialgebra (B, A, 0, u,1, 3, %) is a braided bialgebra (B, A,J, u, 1, ) with

an anti-linear map * : B — B such that (B, u,1,x) is a x-algebra and there exists an

involution *ggp on B® B for which the canonical embeddings B — B® B < B and A

are x-algebra homomorphisms.

3.4.4 Remark. From the definition above we get the following properties concerning
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braided *-bialgebras:

» If the canonical embeddings a — a®1 and a — 1®a are x-algebra homomor-
phisms, we have (a®1)* = a*®1 and (1®a)* = 1®a*. Since the involution on

B ® B shall be an anti-algebra homomorphism, we get

(a@b)* = ((a®1)(1®b)) = (1xb) (a®1)" = (1ob")(d* 1)
=pepo(idefeid)(1eb* ®a* ®1)
=B ®a*)=pFo(x®@%)oT(a®Db).

(Note that we used the S-compatible multiplication M = (p® p) o (id® S ®id) on
B ® B instead of the usual one.) It follows that the involution on B ® B is given by

*poB = B0 (x®%*)oT,

where 7 is the usual flip operator 7(a ® b) = b® a.

» Summarizing, we get an equivalent definition for braided x-bialgebras: A braided

x-bialgebra B is a braided bialgebra B with an involution *, such that
(*eB)? = (Bo(x®%) o 7)2 = idggB.
The involution * is, in general, not S-compatible, but fulfills
Bo(x@¥)or=(x@x)orof .

This condition contains the flip operator and the braiding. To avoid confusion, we

did not use braid diagrams in calculation with x.

» Note that the multiplication p and the comultiplication A fulfill

xopu=po(x®@x)or, Aox=sx%gggoA.

Now we want to show a central but not obvious property of hermitian bilinear func-
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tionals on a braided coalgebra. We call a bilinear functional K : C®C — C on a braided
coalgebra C hermitian if K(a*®b*) = K(b®a) for all a,b € C. Note that this condition
differs from K((a ® b)*5’®3) =K(a®b).

3.4.5 Proposition. Suppose we have two hermitian, bilinear functionals K,L on a
braided *-coalgebra (C,A,d,B). If K is B-invariant or L is ~'-invariant, the convo-

lution K x L is hermitian, too.

Proof. That K and L are hermitian means K = K o (*®*) o7 and L = Lo (x®%*) o T.

We calculate

(KxL)o(x@%*)or
=(K®L)oAo(x®x)oT
=(K®L)o(*x@+@*x®@x)o (T®7)o (ld®®id)o (A®A)o (*x®@x)oT
=(K®L)o(x@+x@*x®*)o (T®7)o0 (ild® A ®id)
o(fR®PL)o(x®@*R*xRx)o(TRT)o (ARA)oT
=(K®L)o(x@+@*x®*)o (T®71)o0 (ild® S ®id)
o(*@*@*@%) o (TOT) o (@B omao (AR A)
=(K®L)o(x@+@*x®*)o (T®71)o0 (ild® S ®id)
o(*R*R*®@*) o (TR®T) om0 (1A 1) o(ARA)
=(K®L)o(x@+@*x®*)o (T®7)o0 (ld® A ®id)
o (x@*@x®x) o (ildeT®id) oy o (B @B ) o (A®A)
=(KRL)o(TR®7T)o (*R+Q@*R@*) o (xR*@*Rx) o (ildRT®id)
o(id®B ! @id) oy o (B @A) o (ABA)
=(K®L)o(t®T7)o (id®7®id) o 7(14)
o(ide B 'wid)o ('@ o (A®A)
=(K®L)omyo0fy50A
=(L®K)oByyoA=(K®L)oA=K~*L,

wherein 7(14) is defined by a®b®c®d — d®b® c®a. We used the S-invariance of K
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(respectively S~ !-invariance of L) twice at the last step. O

It follows directly from Proposition that for a hermitian and S-compatible bilin-
ear functional L : C®C — C the convolution exponential e/ is also hermitian for every

t € R. We will need this in the following section.

3.4.2 Generator Calculus

Let (B, A, 0, u, 1, ) be a braided bialgebra. Then we call a family (u)ier of S-compatible
maps 1 BB — B an additive deformation if

> o = [,

» B = (B, u,1,3) is a braided unital algebra for all ¢ € R,

> Aoprs = (@ ps)o(id®p®id)o (A®A) for all t,s € R,
> oy pa d o g =9 ®J pointwise.

Assume B is a braided *-bialgebra. Then we call (u)ier an additive x-deformation if in

addition
> u(a*®@b*) = uw(b®a)* for all t € R,
that is oy = pg o (* @ %) o 7.

3.4.6 Remark. The third condition states that the comultiplication A is a x-algebra
homomorphism from B, into By ® By, as the comultiplication on the bialgebra B® B is

defined by A = (id® f®id) o (A®A).

3.4.7 Theorem. Suppose that B is a braided bialgebra and (u)ier an additive deforma-
tion. Then

d 1

L= —dou = lim n

Cdt t=0 t—07T (0om =029

exists pointwise and defines a B-compatible, commuting, normalized 2-cocycle which ful-

fills

e = pk etk (3.4.2)
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If B is even a braided x-bialgebra and (ui)ier an additive x-deformation, then we have

additionally

La®b) = L(b* ®a*). (3.4.3)

Conwversely, for every [3-compatible, commuting, normalized 2-cocycle L : BQB — C
on a braided bialgebra B, equation (3.4.2) defines an additive deformation. If B is a
braided x-bialgebra and L satisfies additionally (3.4.3), then (3.4.2)) defines an additive

x-deformation.

Proof. (in the non-braided case due to Wirth, see [Wir02]) Let (u:)ier be an additive

deformation. It follows that
(0ops)*(0op)=(6®d)o(us®@pu)oA=(3@5) 0 Ao psry =00 psys

Thus (d o p¢)er 1s a continuous convolution semigroup, which implies that there exists

a generator L = limy_,q % (it —6®9) with § o uy = etl. Moreover,
px(Sop) = (p@dom))oh=(ded)o(p@u)oA=(id®d5)oAou = u.

Analogously, (§ o ) *x = p holds. The differentiation of

elwp=pxell, (101) =1, o (u®id) = ps o (Id® ),
the S-compatibility of p; and * oy = py o (x®%) o7 (in the x-case) at ¢ = 0 gives the
claimed properties of L.
Conversely, assume L : BB — C is a -compatible, commuting, normalized 2-
cocycle. We want to show the associativity of y; := pxetl. Obviously, the multiplication

1t is B-compatible due to Remark First we show that
(efF o (id@p)) x (d@elr) = (el o (n®id)) * (elr @ 4). (3.4.4)

Since (id ® p) is a coalgebra homomorphism, et o (id ® ) = bt pyom (0® Kip)*

(@ Ks) = 6 ®(K; x K3) we conclude that §@etl = e9®L. Tt is easy to see that
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o (id®p) and § ® L commute under convolution, so we have
(etL o (id®u)) . ((5@6”‘) _ (eiLo(id@)u)) « (et6®L> = (lleldon+ie L)
Analogously, it holds that
(etL ° (M®id)) . (etL ® 5) — (Lo ®id)+L&J)
and ([3.4.4)) follows from the cocycle property § ® L— Lo (p®id)+Lo(id®@ u)—L® 4§ = 0.

Now we calculate u; o (id ® u¢) with braid diagrams, where ® means e”. We get

The last diagram is equal to ;) x (eiL o(id® M)) * ((5 ® eiL>. In the same manner, we
get py o (1 ®id) = pu® x (eiL o(u® id)) * (eiL ® 5). So associativity of y; follows from

(3.4.4). We also have
m(1®1) = pretf(101) =Y 101) =1

for all £ € R and, obviously, uo = p is fulfilled. Now we prove that A : By, — By ® Bs

is an algebra homomorphism

(m@ps)oh=(Elropopeer)o
=(loneued )O(1d®1d®A®1d®1d)oA(3)
= Ao (effouel)o
=Ao(ueel®el)o

= Ao w®$“>WA=Aowﬁy

82



3.4 Additive Deformations of Braided Hopf Algebras

At last we need the implication: If L is hermitian, then B; becomes a x-algebra, that is

pr(a®b) = pu(b* @ a*)*:

koo (x®%)oT
=xo(pxel)o(x®@%)oT
=0 (u®el)o(idoB®id)o (A®A)o(x®@*)oT
= () o(x+@+@%) o (1®7) o0 (Id®A®id) o (AR A) o (x®@%*) 0T

This last expression is the same as line three in the proof of Proposition with K
replaced by p and L replaced by e!*. The same manipulations can be performed and we

arrive at
(n@elr)ompoByyoh= (e @pu)opysoh=(nwel) o=y,
using the S~ !-invariance of L. O

3.4.8 Remark. A cohomological description in the sense of Section [3.2.1] is possible.

Put
Cflﬁ){f : B®™ — C | f is B-compatible}.

Then 807(16 ) ¢ 07(1@1 by Remark so the C’,(Lﬁ ) form a subcomplex of the Hochschild
complex. We define CSNF .= CCN 0 08 and CCNHB .= CCNH 1 08 to obtain cochain
complexes such that the generators of additive deformations of braided (x)-bialgebras are
exactly the 2-cocycles. The characterization of trivial deformations works analogously
to Section [3.2.2l The only change is that the appearing linear maps are required to be

[B-compatible.

3.4.3 Hopf-Deformations

In this section, we want to show the existence of deformed antipodes on braided Hopf
(x-)algebras and explore their properties. The use of Sweedler notation is heavily reduced

due to the braiding. Thus, the proofs are sometimes a bit more complicated than the
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proofs of the corresponding statements for the non-braided case in Section [3.3]
Let (H,A,(S,,u,l,S,B, (*)) be a braided Hopf (x-)algebra. If we have an additive

deformation (u¢)ier with generator L, the equation
Lo(id®S)ocA=Lo(S®id)oA (3.4.5)
holds because of

0=0L (a(l) ® S(a(z)) ® a(B))

=L (S(a(l)) ®a(2)) - L(1®a)+ La®1)-L (a(l) ® S(a(g)))
=0 =0

just as in the non-braided case, see Lemma [3.3.7]

3.4.9 Lemma. Let K be a B-invariant linear functional on H®H and define K =
Ko(S®id)oA. Then K p = pu* K implies K xid = id x K .

Proof. First we use AoS =0 (S®S)oA in order to get

Ao(S®id) o A= (ilde®®id) o (A®A)o (S®id) o A
= (i[d®A®id) o (B®id®id) o (S®S®id®id) o AW
= (fr2®id) o (S®S®id®id) o AW,

This allows us to calculate

(K xp)o(S®id)o A= (K®pu)o(Bfi1a®id)o(S®S®id®id) o AW
:MO(S®E®id)oA(3)

using [S-invariance of K. Next we get

(nx K)o (S®id)o A= (n® K)o (f12®id) o (S® S®id®id) o AW
= ([d® K)o (f®id) o ([d®u®id) o (S®S®id®id) o AW
= ([d® K)o (B®id) o (S®1®id)oA=10K
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using S-invariance of p and 1 as well as the antipode equation. Combining these two

equations, it follows from K %y = ux K that

1oK = (uxK)o(S®id)o A= (K xp)o(S®id) oA =po(S®K ®id) o A®),

or in Sweedler notation (suppressing the unit)

We conclude that

(idx K)(a) = aqy K (a2) = a)(S(a@) K (ag)aw)) = K(aq))ae) = (K xid)(a)

for all a € H. O

3.4.10 Corollary. The family F; := et o (S®id) o A is a continuous convolution semi-

group and
elo(S@id)oA=elo(id®S)o A =el
with 0 :== Lo (S®id) o A.

tL

Proof. The continuous convolution semigroup e fulfills et x = p x e!*. Because of

Lemma [3.4.9] we have F; xid = id x F;. So we get

FixFy=(FioF)oA=¢lo(S®idoF,)oAB) =cfo(S® F,®id) o A®)
=elo(ideel®id)o (S®S®id®id) o AW

=l o(ideet ®id)o (B ®id®id) o (A®A) o (S®id)o A

=elfo (e ®id®id) o (1o ®id) o (Bl @id®id) o (A®A) o (S®id) o A

=elf o (el ®id®id) o ([d® B®id) o (A®A) o (S®id) 0 A

= (el @elY oo (S®id)o A

=" (S®id)o A = Fi .
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The continuity of F; follows from the continuity of et* and differentiating gives us the
generator 0 = Lo (S®id) o A.
Analogously, one concludes that the linear functionals e!* o (id ® S) o A constitute a

continuous convolution semigroup with generator Lo (id ® S) o A. But this equals o due

to (B43). O

3.4.11 Theorem. Every additive deformation on a braided Hopf algebra provides a fam-
ily of deformed antipodes (St)ier with

St S*e

where 0 = Lo (id® S) o A.
Proof. For Fy = et o (id® S) o A, we get
peo (Id®(S+Fy)) o A

= (e @u)oho(id®SQF_)o AB)

= (e @up)o(idoB®id) o (A®A) o ([d®S®F ;) o A®

= (e @p)o(id®B®id) o (Id®id® ) o (Id®id®S®S® F_;) o AP

= (e ®id) o (id®B) o (1d®1®id) o (1d® S ® F_;) 0 AG)

= (e ®1)o([d®S®F_)oA®

=10 (F,®@F_4)o0A =16

0

3.4.12 Theorem. Let (1;)ier be an additive deformation of a braided Hopf algebra with
generator L. Then the deformed antipodes Sy have the properties

(i) Si(1) =1
(i4) Spop—t = pr o (St ®St) o B,
(1i1) Ao Spyr = (Si®S,)0Bo A,

(i) if B is commutative or cocommutative, we get Sy o S_; = id and
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(v) if we have a braided Hopf x-algebra, S_y o x 0 Sy o x = id is fulfilled.

Proof. The proof of|(¢)|to is quite similar to the proof of Theorem for the non-
braided case. For convenience of the reader we rewrite the main calculation for the proof
of avoiding Sweedler notation. Following the proof of Theorem at one point we
have to show that g x¢ (py o (S ® Si) o) =10 ® 4. Using (id® B) o (f®id)o (id® A) =
fr2o(id®A) = (A®id) o 3, we calculate

pit *¢ (i 0 (St @ St) o B)
=P (id2®((5t®5t) ° 5)) o(i[d®B®id) o (A®A)
= 1P 0 (1[d® 1y ®id) 0 ([A®1d® S ® S;) 0 ([d® A®id) o (Id® B) o (A ®id)
= 1Yo (id@1®id)o (id® S) o (i[d® s ®id) o (iId® B) o (A®id)
= o (id®Sy) o Ao (id®6)
=15®4.

The corresponding calculation for works similar, making use of (id ® u,) o (8 ®1id) o
(id®B) = (Id® pr) 0 f2,1 = B o (ur ®id).

For we calculate

p_t o (S_t®(S—tox08;0%)) oA
=po(S_t®S_;)o(x®@x*)o(Id®Sy) o (x®@x) o A
=S jouof to(x®@%)o(id®S;) o (x®@%)0 A
=S iomo(x@%)oTofoTo(id®S) o (x@*) oA
=S joxopo(id®S)oBoTo(x@%)0A
=S yoxopo(id®S)oAox
= S_4(1)(x0 dox) =14,

which shows that S_; o *x 0 Sy o % is inverse to S_; with respect to the convolution *_;.

Hence, S_; o %0 S; o x =id. ]
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3.4.4 Schoenberg Correspondence on Braided x-Bialgebras

A Schoenberg correspondence is a 1-1 correspondence between positive semigroups and
conditionally positive generators. The original version is for matrices and Schiirmann

transferred this to a result for coalgebras.

3.4.13 Theorem (Special case of [Sch85, Theorem 4.2|). Let K be a hermitian bilinear

form on a x-coalgebra C. Then the following two statements are equivalent:
(1) e (c*®e) >0 for allc € C,t €R4,
(1i) K(c*®c) >0 for all ¢ € kerd (K is conditionally positive).

In this section we prove the following theorem, which generalizes the version of Wirth
for additive deformations [Wir(2, Theorem 2.1.11] as well as the version of Franz, Schott
and Schiirmann for braided x-bialgebras [FSS03, Theorem 2.1].

A linear functional ¢ : A — C defined on a unital x-algebra A is called a state if
©(1) = 1 and p(a*a) > 0 for all @ € A. A linear functional ¢ : B — C defined on a
x-bialgebra B is called L-conditionally positive for a 2-cocycle L if (¢pop+ L)(b* ®@b) > 0
for all b € kerd.

3.4.14 Theorem (Schoenberg correspondence for braided additive deformations). Let
B be a braided *-bialgebra with an additive deformation (u¢)ier and let ¢ : B — C
be a hermitian, B-invariant linear functional with (1) = 0. Then the following two

statements are equivalent:

(1) ¢ = e is a state on By for allt >0,

(73) ¢ is L-conditionally positive.
Proof of (i) = (ii). The function t — ¢ o s (¢* ® ¢) is positive for ¢ > 0. For ¢ € kerd
this function vanishes at 0, since

woo o (c"@c) = (6®8)(c*@c) = [6(c))* = 0.

So the derivative %(gpt o ut(b* ® b))‘ = (Yo pu+ L)(b* ®b) must be positive in this

t=0
case. O
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The aim of the remainder of this short section is to prove the converse implication.

For a vector space V turn the set V := {v:v € V} into a vector space by defining

T+ AW = v+ Iw.
Now let (C,A,d) be a S-braided *-coalgebra. Then * can be interpreted as a linear
map from C to C and from C to C. Recall that *5o5 = (x®@%) o7 0 371, We define

a®b:=a®b and set
A:=(x®@%)oTof T oAox, that is A(c) = Ale),
6 :=080%, that is 3(e) = o(c),
Bi=(x®@%)oTof lo(x®%)or, that is B@®b) = Baxb).

Then (@, A, 6) is a 3-braided *-coalgebra and (é@C, ([deT®id) o (ARA),§® 5) is a
usual x-coalgebra, that is a 7 o-braided *-coalgebra.

We call a linear map C®C — C bilinear form on C and a linear map C®C — C
sesquilinear form on C. For a bilinear form K we define the corresponding sesquilinear

form K := K o (x®id). This is a bijection of bilinear forms and sesquilinear forms on C.

3.4.15 Lemma. Let x be the convolution of bilinear forms with respect to the comultipli-
cation A = (id®@ f®id) o (AR A) on CRC and let ® be the convolution of sesquilinear
forms with respect to the comultiplication (id® 1 ®id) o (A®A) on C®C. For two bi-
linear forms M and K on the B-braided x-coalgebra C the following is fulfilled. If M is

B-invariant, we have

Proof.

M+ K = (M~*K)o (x®id)
=(MeK)o(ld®f®id)o (A®A) o (x®id)
=(M®K)o(ild®B®id)o (B®id®id) o (*®*®id®id) o (T®id®id) o (A® A)
=Ko(id®M®id)o (x®*®id®id) o (t®id®id) o (A® A)
=(M®K)o(id®7®id) o (T®id®id) o (*® *®id®id) o (T®id®id) o (A® A)
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=M K)o (*®id®*®id) o (id®T®id) o (A® A)

With this lemma we get for a S-invariant bilinear form K on C
(@) = el (cwe)
so the following is now a direct consequence of Theorem [3.4.13]

3.4.16 Lemma. Let K be a B-invariant, hermitian bilinear form on a the 3 braided

x-coalgebra C. Then the following two statements are equivalent:
(i) eX(c*®@c) >0 for allc € C,t € Ry,
(ii) K(c*®c) >0 for all ¢ € kerd.
With this we are able to prove the Schoenberg correspondence.

Proof of Theorem|3.4.14}, (i) = (i). Let L be the generator of the additive deformation
(1t)ter and define K := 1 o u+ L, which is a hermitian, conditionally positive bilinear

form on the S-braided x-bialgebra B. With the previous lemma we conclude
0 <eB(c*@c)=elVrttl(c*@e) = el well (¢ @) = e o (urelf)(¢* @ ¢)

= @t o p(c* ®c),

since (Yopu)*L = o (Lxp) = 1po(uxL) = Lx(tpou) and p is a coalgebra homomorphism.
From (1) = 0 it follows directly that (1) = (1) = ¢ = 1, since A(1) =
1®1. O

3.4.5 The Fermi Harmonic Oscillator

We will need the corresponding result to[3:3:14] which determines additive deformations

on primiteve elements.
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3.4.17 Proposition. Let B be a (-braided bialgebra with additive deformation p, =

pxetl and a,b € B. If a and b are primitive, we have
pr(a®b) =ab+tL(a®b)1.

Proof. The same as the proof of for the unbraided case with 7 replaced by . This

works, because 1 is S-compatible. O

Consider the polynomial algebra B := C(z,z*) in two non-commuting adjoint inde-
terminates. For a monomial M we define the grade g(M) as the degree of the monomial

M. Then
BM@N) := (—1)9MIMN N & M

for monomials M, N defines a braiding on g, which is a symmetry, that is 4% = id ®id.
So B-invariance of a map is equivalent to S~ !-invariance. It is easily checked that the
multiplication is S-invariant. B is turned into a S-braided Hopf x-bialgebra by defining

comultiplication, counit and antipode on the generators as
AGE®) = e@1+10e®, §(2®) =0, SE)= 2t

and extending them as algebra homomorphisms, respectively anti-homomorphism in the
case of S. The ideal I generated by elements of the form za* + x*x is a coideal. One has

to show §(I) = 0, which is obvious, and A(I) € I ® B+ B® I. Therefore we calculate

Alzz™) = A(x)A(z™) =z2" @1+ 22" + Sz @) + L@ax”
=" ®l4+ Rz — e+ 1lxx”

and analogously A(z*z) = z*z®1+ 2" ®x — z®z* + 1 ®z*x. Combining these two

equations, we get

Azz* +2'z) = (22" + 0*2) @1 + 1Q(xx* + 2*z) e IQ B+ B 1.
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Furthermore, we have S(I @B+ B® 1) C I© B+ B® I, so B := B/I is also a braided
Hopf *-algebra. A hermitian 2-cocycle on B is given by L(z* ® ) = 1 and L(M @ N) =0
for all other monomials. We want to show that it is commuting and B-compatible. We

use the following general proposition.

3.4.18 Proposition. Let B be a braided bialgebra and 5 be a symmetry, that is fo 8 =
id®id. Then B o A(a) = A(a) and o A(b) = A(b) implies that B o A(ab) = A(ab). In

particular, B is cocommutative if B is generated by primitive elements.

Proof. Assume o A(a) = A(a) and 5o A(b) = A(b). Then we calculate

BoAopula®b)
= Bo(u@p)o(idefeid) o (A A) (a®b)
=(pep)e(idepf®id)o (B®pH) o (Id®A®id)o(ld® ®id) o (A®A)(a®b)
B2
= (p@p) o (idepwid) o (B® B)(Ala)® Ab))
= (pop) o (idoB®id) o (A®A)(a®b)
=Aopula®b).

The second statement is a direct consequence of the first, since for a primitive element

aeB
BoAla) =Fa®l+1®a)=1®a+a®1=A(a)

and finite products of generators span B. O

In our example § is a symmetry and B is generated by primitive elements, so B is

cocommutative. Then also B® B is cocommutative, as

BagoA = (idoB®id)o (B h)o (id® A2 ®id)o (A®A) = A.
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Hence, L x i = pux L is fulfilled. To see that L is S-invariant, we only need to calculate

(L®id)o (id®B) o (B®id)(M @z* @) = (=1)2M) a1
=M= (d® L) (M®z* )

for all monomials M, as L vanishes for other terms. L is obviously hermitian. We have

now completed showing that L is the generator of an additive x-deformation.

We calculate p; = (u® etl) o A. First, we know from Proposition [3.4.17| that
(' @z) =plr*@z) +tLh(z*@x)l = —zz* +t1 = —(z@x*) +t1,  (3.4.6)

since = and z* are primitive. Next, notice that p(M @ N) and pu(M @ N) = MN can
only differ, when M contains a factor * and N contains a factor z. With these two
facts we know p, because of associativity. Let M = 2™ (z*)™2 and N = x™! (2*)"2 with

mi,ma,ni,ny € IN be two monomials. Write m = my + mg and n = ny + ns. Then

,Ut(M®N) = jiz © ( ®M(n)) ( ®my ® ®m2) ®(x®n1 ®($*)®n2))
= o (1" @ ") (=™ 0 @) ) o™ o))

_ Ngm-i-n) (x®m1 ®(z*)®™2 @ 7™ ®(x*)®nz) )

Now one can use (3.4.6) to calculate this. The x-algebra B, = (B, ut) is isomorphic to
the x-algebra A; generated by a,a* and 1 with the relation aa* + a*a = t1. The map
a— x, a" — x* can be extended as an algebra homomorphism 9, : C (a,a*) — By. Since

the relation is respected, that is
i(aa* + a*a) = p(r@* + 2" @x) =t = By(t1),

we get an algebra homomorphism ®; : A; — B;. It is clear from our considerations on
¢ that this is an isomorphism as it maps the vector space basis {ak(a*)l | k,l e ]N} of
A; to the vector space basis {xk(x*)l | k,l € ]N} of B;.

Since 0 is a hermitian, L-conditionally positive linear functional vanishing at 1, the

exponential e’ = § is a state on every B;. Note that this is less trivial than it seems at
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3 Additive Deformations

a first glance because for example 5(,ut(:r* ®a:)) =0(—za* +t1) =t
For every g # 0 there is a unique braiding 3, on the algebra C (x,z*) of two non-

commuting, adjoint indeterminates such that
» C(z,2*) is a B,-braided *-algebra

» 3, is defined on the generators in the following way:

Belz@z)=qr® Belz@z") =qa* @

Bylz* @) = ¢zt By(z*®@2") = ¢ '@t

These equations determine 3, on all pairs of monomials due to the compatibility of the
unit and the multiplication. There exists a compatible Hopf *-algebra structure such that
A(z®)) = 20 © 141 @ z*) and the ideal I, generated by elements of the form zz* —ga*x
is a coideal with S,(I® B+ B®I) C I®B+ B®1. Dividing by this biideal yields a
Bg-braided Hopf *-algebra B, with two g-commuting, primitive, adjoint generators. Note
that for ¢ = —1 the previous example is obtained. But for ¢ # +1 a multiplication y; on
B, such that
p(r@x* —gr*@x) =t1

cannot be 3,-compatible, as it would follow that

(ne ®@id) o (Id® By) o (B ®id)(z@(z®@a* — g 2" ® 1)) = ¢* 1@,
(Ba1,2

but
Byo(ideu)(z(x®a’ —qa* @) =tle.

So this can only work for the considered cases ¢ = +1. Still, our version of the Schoenberg

correspondence applies to the braided Hopf x-algebras (g, Bq) and (By, By)-
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4 Dimension of Subproduct Systems

Most of the material in this chapter is taken from [GS14b| which is joint work with
Michael Skeide. The results in Section for rational-time systems and Section [4.2.3]
for continuous-time systems are not yet published.

We can think of a subproduct system as a family of Hilbert spaces (Hy)ies indexed
by some (abelian) monoid S with Hgyy C Hs ® H, for all s,t € S. The precise definition
coincides with that of a comonoidal system over S in the tensor category of Hilbert spaces
with isometries as morphisms; see Section Hilbert Spaces, or Definition £.2.1 A
subproduct system is a product system if H,, fills the whole of Hy ® H; or more precisely
if it is full as a comonoidal system. Shalit and Solel study subproduct systems over Ny
in order to deal with the dilation problem for commuting CPg-semigroups. Bhat and
Mukherjee study subproduct systems over Ry (under the name of inclusion systems) as
a tool for the construction and analysis of amalgamated products of product systems.

Since the classification of product and subproduct systems is extremely difficult, we
adress a somewhat simpler question. Which possibilities are there for the dimension
function t — dim H; of a product or subproduct system (H)ics. We will treat the
monoids S = Ny (discrete), S = Q4 (rational time), and S = R4 (continuous time). An
obvious necessary condition is submultiplicativity, that is dim Hsyy < dim H, dim H; for all
s,t € S. Shalit and Solel explicitly raised the question whether for every submultiplicative
sequence there exists a discrete subproduct system with dimensions given by the sequence
in [SS09).

Before we come to subproduct systems themselves, we treat the somewhat sim-
pler case of Cartesian systems, which are comonoidal systems in the tensor category
(Set™, x) of sets with injections as morphisms and the Cartesian product as tensor

product. We exhibit a special kind of discrete Cartesian systems called word systems,
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4 Dimension of Subproduct Systems

and show that each Cartesian system is isomorphic to a word system. For word systems
the question of all possible cardinality sequences has quite some history, which we lay out
in In [£.1.3] we prove some results which might be new, or at least we could not find
them in the literature. The problem is that the literature is vast and the terminology
far from unique. It seems many results in this area have been reproved several times.
Still we expect that especially the results which explicitly use the notion of Cartesian
systems are either new or get a much simpler proof by using our approach. The detailed
study of Cartesian systems proves useful, as we show in Section that the dimen-
sion sequences of discrete subproduct systems coincide with the cardinality sequences
of Cartesian systems (and give some other characterizations). The difficult step of the
proof turned out to be a classical result on graded algebras, see Remark A simple
conclusion is that not every submultiplicative sequence appears as dimension sequence of
a subproduct system, but of course the result tells us much more than this. We apply the
results for discrete systems in the study of rational-time and continuous-time systems.
For rational-time subproduct (and Cartesian) systems we present a simple characteriza-
tion of the dimension functions via the inequality , see Corollary The same
inequality yields a characterization of the cardinality functions of continuous-time Carte-
sian systems (Theorem , but we do not know this for continuous-time subproduct
systems yet. At least, we get a necessary condition for the dimension function if the

subproduct system fulfills a mild continuity condition, see Theorem [4.2.19

4.1 Cartesian Systems

We already gave a definition of Cartesian systems as comonoidal systems in (Set™, x),
see Section But for convenience of the reader who is unfamiliar with category
theory, as well as to fix our standard notation for Cartesian systems in this chapter, we

repeat the definition in a more direct language.

4.1.1 Definition. A Cartesian system (over S) is a family X~ = (X;)ies of sets Xy

with Xo = {A} a one point set and with injections

Z‘S7t: X5+t — XS X Xt
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4.1 Cartesian Systems

such that the diagrams

ir+s,t
Kpgstt — Xpps X Xy

Xs
. . . iO,s . is,()
lr,s+t 1pr,s X idg idg

Xs

id'r X 7:s,t =

Xp X Xgpt — Xp X X5 X X Xo X X

— XSXXO

commute. A family Y~ = (Y})es of subsets Y; C X; is a Cartesian subsystem of X~ if

is+(Ystt) C Yy x Yz, where, as customary, we identify Y; x Y; C X, x X;.

The aim of this section is to characterize sequences (dy)nen, for which there exists
a Cartesian system X~ with #X,, = d,, for all n € Ny. Therefore we will present a
certain standard form of a Cartesian system named word systems. Those are Cartesian
systems for which there is a set A such that X,, C A™ and the injection ¢,y is simply the
restriction of the canonical identification A" =2 A™ x A" to X,,1,. In this case the set
L := Unen, Xn is a factorial language, that is a subset of A* which is closed under taking
subwords or factors. Of course, one can recover the word system from the language L as
X, = LN A", so factorial languages and word systems are 1-1. The sequence (#X5)nen,
is known as complezity of the factorial language. We show that every Cartesian system
is isomorphic to a word system. Hence all results about the complexities of factorial
languages translate to cardinality sequences of Cartesian systems. We list some known

results and prove some new results. The most relevant for the other parts of this chapter

is Theorem [BB05, Theorem 8| of Balogh and Bollobés.

4.1.1 Discrete Cartesian Systems, Word Systems and Factorial Languages

Let us fix a set A, called alphabet. We refer to the elements of A as letters, the tuples
in A* = Upen, A" are called words and the subsets of A* are called languages. The
concatenation product of words turns A* into a monoid with the empty word A = () as

neutral element. In this section, we simply write

(a1,...yan)(b1,y ..., bm) == (a1,...,an,b1,...,bp),
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4 Dimension of Subproduct Systems

for the concatenation, omitting the symbol — which was used in Chapter 2] The length

of a word is |(a1,...,an)| := n. The complexity of a language L C A* is the sequence

(#(L N A"))neNg-
4.1.2 Proposition. Let A be an alphabet. Then the following statements hold:
(i) Bvery word w in AUt % factors uniquely as w = wy - - - wy, with w; € A%,

(i) Suppose X; C AY. Then w € Xy --- Xy, € AL % 4f and only if w; € X; for all
i=1,... k.

Proof. This proposition is a simple consequence of the fact that A x --- x A% may be
identified with A™ by sending (wq,...,wg) to wy - - - wg, and of the fact that an element

s in a product Sj X --- X S is a unique tuple (sq,..., sk). O

4.1.3 Example. Choose an alphabet A. By Proposition 4.1.2(7)| the restriction of the
concatenation product to A™ x A" is an invertible map onto A™*". Define im,n to be
the inverse of this map. Then A* := (A"),eN, With the maps iy, ,, is a Cartesian system,

the full word system over A.

4.1.4 Definition. Let A be an alphabet. A word system over A is a Cartesian subsystem

of the full word system over A.

4.1.5 Theorem. Every discrete Cartesian system X~ = (Xp)nen, S isomorphic to a

word system over X;.

Proof. The fastest way is to use Theorem [2.3.15] The full Cartesian system generated
by X~ is clearly (X7)nen,- The images of the canonical maps Dy, : X, — X]" form the

desired word system. O

We say a word y is a subword of w if there are words x,z € A* with w = zyz. One
may check that the relation defined by y being a subword of z, is a partial order. Note
that some authors call this a factor, while using the term “subword” for a more general

concept.
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4.1 Cartesian Systems

4.1.6 Definition. A language L C A* is called factorial if it is closed with respect to
taking subwords, that is if

zyz € L=yeL

for all x,y,z € A*.

4.1.7 Proposition. Put X, := LN A". L is factorial if Xp4+1 C AX, N X, A for all

n € Np.

Proof. By repeated application of the inclusion, we obtain X, pnir C A™X, A*. So, by
Proposition if zyz € Xpgnar C A™X,AF with x € A™,y € A", 2z € A¥ then
y € Xy, O

Obviously, the converse is true, too.

4.1.8 Theorem. Let A be an alphabet. For a family (Xy)nen, of subsets X,, C A™ the

following conditions are equivalent.
(1) (Xn)neN, is a word system over A.
i) L:= X, is a factorial language over A.
ne€Ng

Proof. If w € X~ and w = zy, then x and y are subwords. So, is immediate.
Conversely, suppose Xp1pn C X, X, for all m,n € Ng. This means, in particular,

that X1 € X1X, N X, X; € AX,, N X,,A. By Proposition L is factorial. This
shows |(2)={(44)] O

Frequently, we will identify a word system X~ with the corresponding factorial lan-

guage L = Jpen, Xn- In particular, we will write A* \ X~ instead of A*\ L.

4.1.2 Complexity of Factorial Languages: Known Results

We started with the question, what are the possible cardinality sequences of discrete
Cartesian systems. As we have seen, all Cartesian systems are isomorphic to word sys-
tems and word systems are in 1-1 correspondence with factorial languages. Complexity

of factorial languages is a well studied area, correspondingly there is a long list of known
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4 Dimension of Subproduct Systems

results. Additionally, there are different names and equivalent descriptions, still multi-
plying the number of applicable results. Unfortunately, the publications dealing with
this structure frequently seem not to interact. (We hope it may be forgiven that we add
a further name. The term “word system” is inspired from the analogy with subproduct
systems.) Thus, it is quite difficult to get a an idea about the real status of the theory.
In this section we intend to give an overview over important known results. It should be
clear that this cannot be exhaustive. But we hope we can at least provide a small guide
pointing into interesting directions. We cite sources where the interested reader can find
more information.

It seems that it is easier to get estimates for the complexity when restricting to the
subclass of factorial languages L™ consisting of all (finite) subwords of a single (usually)
infinite word w. (These languages are particularly relevant for comupter science.) The
complexity of LY is usually referred to as subword complexity of w. As early as 1938,
Morse and Hedlund [MH38| provided a necessary condition for that a sequence occurs
as subword complexity: Let X} := L N A". Then, either #X7 ; > #X for alln € N
or #X is eventually constant. Ferenczi [Fer99, Section 3| provides several results on
subword complexities. For instance, if for some a > 0 it holds that #X < an for all
n € N, then there exists a C' > 0 such that #XY,, — #X¥ < Ca?® for all n.

The following result of Balogh and Bollobas on general factorial languages, which is
related to Morse and Hedlund’s theorem, will prove very useful later on. We prefer to
formulate the results in this section for the corresponding word systems. For a € R, we

write [a| :=min{n € Z|n > a} and |a]| :=max{n € Z|n < a}.

4.1.9 Theorem ([BB05, Theorem 8|). Let X~ be a word system. Suppose d := #Xj, < k
for some k € N. Then (#X,)nen is bounded. Furthermore,

==

#Xmg[ 2 2

(4.1.1)

for allm >k +d.

The bound in the above theorem is best possible, even if one restricts to word systems
over a two-letter alphabet, see [BB05, Theorem 7|. We present Cartesian systems for

which equality holds in (4.1.1). These Cartesian systems have the advantage that the
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4.1 Cartesian Systems

construction can be generalized to rational-time and continuous-time Cartesian systems

without any difficulties.

4.1.10 Lemma. Let X :=NxN andt: X — X x X defined by 1(i,j) == ((i,1),(1,5)).

Then v is injective and satisfies
(txid)or = (id x ¢) o . (4.1.2)
Proof. Injectivity is obvious. The direct calculation
(> 1d)((6,1)(1,5)) = ((,1), (1. 1), (1,)) = (id x ) ((i, 1)(L,))

proves (4.1.2]). O

As an obivious conclusion we have:

4.1.11 Corollary. Let X,, := X and iy = ¢ for all m,n # 0. Furthermore put
Xo = {A} and iy, canonical form =0 orn = 0. Then this defines a discrete Cartesian

system X~ .

4.1.12 Example. For a natural number k € N, we denote by [k] the set {1,...,k}. Let
m,n € N and I C N. Put

(Im] x {1}) U ({1} x [n]) for kel
Xp = ¢ [m] x [n] for ke N\ I
{A} for k= 0.

Then for every (i,j) € [m] x [n] one has (i, j) = ((z, 1), (1,j)> € ([m] X {1}) X ({1} X [n]),
hence the X}, form a Cartesian subsystem X~ C X~. The dimension sequence is given

by

m+n—1 forkel
#Xip = {mn for ke N\ I

1 for k=0.
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4 Dimension of Subproduct Systems

If we let d € Ng and put m := [f2] ,n = |42 |, it follows that m +n =d + 1 and

d forkel
#Xp = [HE] [45E] forkeN\T
1 for £ = 0.

This shows that (4.1.1)) in Theorem gives indeed the best possible bound.

Reduced sets of excluded words. A word system can be described by indicating which
words do not occur as subwords. The following results are well known (see for example
[CMROS]), but we prefer to give independent proofs, first, to illustrate how arguments
work and, second, to be self-contained in the following section. They also promise to be

relevant in analyzing the structure of associated graph C*-algebras.

4.1.13 Observation. Let £ C A* be any set of words. Then the sets
Xn(E) :={w € A" | w has no subword from E'}

form a word system. Indeed, if w does not contain a subword from E and y is a subword

of w, then, by transitivity, also y cannot contain a subword from FE.

Reflexivity means that every word is a subword of itself. From this it immediately

follows that F and X~ (F) are disjoint.

4.1.14 Observation. Every word system X~ can be obtained as X~ = X~ (F). Indeed,
take F := A*\ X~ the set of all words in A* that do not belong to X~. A word belongs to

the word system X~ if and only if all its subwords belong to X~. Equivalently, z € X~
if and only if none of its subwords is in A* \ X~ that is, X~ = X~ (A*\ X~).

E = A*\ X~ is, clearly, the maximal choice. We now show that there is a unique

minimal choice.

4.1.15 Definition. A subset E C A*\ {A} is called reduced (or antifactorial) if no word

of E is a proper subword of another word of E.
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4.1 Cartesian Systems

Note that E = A*\ X~ is reduced if and only if it is empty, that is, if X~ is the full
word system over A. (Indeed, suppose that F is reduced. If A = (), so that A* = {A},
then a reduced subset E of A, by definition, is empty. And if A is nonempty, then every
word z is a proper subword of another word y. If y € X~ then x € X~, because X~ is
a word system. If y ¢ X~ that is, if y € E, then x ¢ E, that is, x € X~ because E is

reduced. So, every word z is in X~ that is, X~ = A*. The other direction is obvious.)
4.1.16 Proposition. Let E be reduced and X~ (E) = X~ (E’). Then E C E'.

Proof. We conclude indirectly. Suppose w € E'\ E’. Since w € F, w does not belong to
X~ (E) = X~ (E'). Therefore, w contains a subword y € E’. Since w ¢ E’, y is a proper
subword of w. Since FE is reduced, y and all subwords of y are not in E. Therefore,

y€ X~ (E). But,ye E',soy ¢ X~ (E') = X~ (F). Contradiction! O

This proposition shows that if there is a reduced set R such that X~ (R) = X~, then
R = Nx>(g)=x> E. In particular, R is unique. The following theorem settles existence
by giving an explicit formula for R. The unique reduced set R generating X~ as X~ (R)

is also called the antidictionary of X~.

4.1.17 Theorem. For every word system X~ over A,

R:=[J Ry, Rn:=(X,1ANAX, 1)\ X,

n>1
is the unique reduced set of words such that X~ = X~ (R).

Proof. A word w = (ay,...,a,) is in X,,_1AN AX,_1 if and only if the two subwords
wy = (ai,...,an-1) and wy = (ag,...,ay) are in X,,_1. Now, each proper subword y of
w is a subword of w;; or a subword of ws. Since X > is a word system, y € X~. In other
words, w = (a1,...,a,) is in X,,_1AN AX,,_; if and only if each of its proper subwords
is in X~

In order to illustrate some different techniques, we continue in two versions.

Version 1: Since all proper subwords of w € R,, are in X~, these subwords are not in

R. Therefore, R is reduced.
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4 Dimension of Subproduct Systems

To show X~ C X~ (R) take any w ¢ X~ (R). Then w has a subword r € R. Since R
and X~ are disjoint, 7 is not in X~. Hence, the word w containing r is not in the word
system X~.

For the other inclusion, we show X, (R) C X,, by induction on n. Since a reduced set
may not contain the empty word, Xo = {A} = Xo(R). Now let n > 1 and suppose
Xn-1(R) C Xp—1. Let w = (a,...,a,) € Xp(R). As X7 (R) is a word system, the two
subwords wy; and w; of w belong to X,,—1(R). By assumption, X,,—1(R) is a subset of
X,—1. In other words, w € (X,,—1A) N (AX,,—1). Since R and X~ (R) are disjoint, w is
not an element of R,,. Since R, = ((X,—14) N (AX,—1)) \ X, this implies w € X,,, so
Xn(R) C X, for all n. In conclusion, X~ (R) C X~.

Version 2: Given any E C A* we may obtain the unique reduced E™¢ such that

X>(E"d) = X>(F) by replacing E, := E N A" with
Effd = {fw € E,, | w has no subword from Ey, k=1,...,n— 1}.

(We omit the proof.) So, for our word system X~, appealing to Observation [4.1.14] put
E:= A*\ X~. We find

Ered — {weA”\Xn | w has no subword from A*\ Xy, k = 1,...,n—1}
= {w € A"\ X, | all proper subwords of w are in X>}
={we A"\ X, |we X, 1ANAX, 1}

So, Ered = R,,.
0

The second proof also illustrates the feature of exclusion sets with only one word as
atoms, and further exploitation of the problem’s inductive structure will be demonstrated
in Theorem [4.1.18] For simplicity assume X; = A. To understand the reduced set R of
a given word system X~ over X1, for Ry simply take all words of length 2 that do not
occur in X~. Then to get Rs from X~ (Ry) take all words of length 3 that do not occur
in X~. Then proceed with X~ (Rs U R3) and words of length 4 to get R4, and so forth.
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4.1 Cartesian Systems

In general, we have
X7 (EUE)=X"(E)n X~ (E".
So, not only do we get X~ (RaU---UR,) =X~ (Ra)N---NX7(R,), but

x> = Xx>({r})
reR
Being the smallest building blocks (the maximal proper word subsystems) it is important
to understand the case R = {r}, that is the word systems X~ ({r}). Also the case R = Rq
is important; in Section it will lead to word systems of graphs.

Generating functions. Guibas and Odlyzko |[GO81, Theorem 1.1] find the generating
function Y0 #X,,(R)z~" for a word system with a finite reduced set R of excluded
words as the solution of a system of linear equations only depending on the so-called
correlation of the words in R. As a special case, they give an explicit formula for the
generating function in the case R = {r}, which depends only on the autocorrelation of
the only one excluded word r. In [GOS81) Section 7|, they decide which word r gives the
“biggest” word system: #X,({r}) > #X,({s}) if and only if the autocorrelation of r
is less or equal to the autocorrelation of s. There is a nice survey in Odlyzko [OdI85].
Some more methods to determine the generating function can be found in Goulden and

Jackson [GJ79).

Growth rates. One may analyze the asymptotic behaviour of the cardinality sequence.
It is clear, that the sequence may break down simply by setting X,, = ) for all n > N,
or that d, is limited by d" for the full word system A* with #A4 = d. But there are
more interesting results. For instance, Shur shows in [Shu06] that for all s € Ry there
are word systems with asymptotic growth rate n°. In [Shu(9], it is shown that there
are word systems with asymptotic growth rate larger than every polynomial and smaller

than every exponential function.
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4.1.3 Complexity of Factorial Languages: New Results

In this section we present some results which, we believe, may be new. The results are
formulated for cardinality sequences of word systems. Of course, from Theorem it
follows that all these results remain true for Cartesian systems. It also should be noted
that some results (Theorem and its consequences) are much easier to prove for

Cartesian systems than for word systems.

Local to global

Let X~ be a word system over A and let R be the unique reduced set of excluded words
such that X~ = X~ (R). Put d; := #X,. It is noteworthy that in order to determine
X1,..., X}, and therefore dy,...,d, up to some finite k, we only need to know the R;
up to the same k. In order to realize the partial sequence di,...,d; as a cardinality
sequence of a word system, it does not matter what the word system X~ does for i > k,
nor, equivalently, what the R; are for ¢ > k. We may cut down X~ by assuming X; = ()
for ¢ > k; this is an easy choice but, possibly, not the most clever, because it makes the
corresponding R; rather big. We also may cut down R by assuming R; = 0 for i > k;
this gives the biggest word system with the partial sequence X; for ¢ = 1,..., k with the
corresponding R; for ¢ = 1,..., k. This choice has the advantage that now the resulting
truncated set of excluded words is finite, so, all results for generating functions for finite
sets of excluded words (for instance, those in [GOS8I]) are applicable for checking if the
partial sequence dq,...,d; can be realized for suitable choices of Rq,..., Rj.

If for a sequence di,ds,... we can realize dy,...,d; for each finite k by choosing
R1,..., Ry in such a way that each R; does not depend on k£ > i, then, of course, the
whole sequence of Ry, determines a word system X~ with # X, = dj, for all k. But what,
if we can realize each finite subsequence di,...,d;, but without being able to fix the
R;? The following theorem shows that this local realizability of the sequence di,do, ...

is sufficient.

4.1.18 Theorem. Let (dy,)n>1 be a sequence of nonnegative integers. Suppose for every
k € N there exists a word system Y= with #Y; = d; fori=1,...,k. Then there exists a
word system X~ with #X; = d; for all 1 > 1.
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Proof. Every word system X~ may be considered as a word system over X as alphabet.
And if two word systems X~ and X'> (over potentially different alphabets) fulfill #X; =
#X/, then there is a bijection from X{ to Xj, which corresponds to an isomorphism
from X'> to another word system X”>, also over X;. So, we may assume that the Y (%)>
realizing dy, ..., d; are over a fixed finite alphabet A.

Let us consider word systems as elements of the product

W(4) = X P(A")
neNg
of the power sets P(A") of A™. By WS(A) C W(A) we denote the set of all word systems
over A. Let (Y(®)>),cn be a sequence in WS(A) fulfilling #Yi(k) =d; fori=1,...,k.
We will show:

1. There is a subsequence (Y n)>), oy of (Y(*)>),cy such that for each i € N the

(kn)

sequence (Yé(k"b)neN is eventually constant, say, Y, Z =: X; for sufficiently big

n.
2. The X; form a word system X~ with #X; = d; for all i.

Such a sequence can be constructed explicitly by hand. But one has to introduce ad hoc
total orders on P(A"), and writing it down requires lots of more indices. We prefer to
introduce a topology on W(A) that allows to apply Tychonoff’s theorem.

We equip P(A™) with the discrete topology and W(A) with the product topology.
So, convergence in P(A™) means eventually constant, and convergence in W(A) means
eventually constant entrywise. Since A is assumed finite, P(A™) is finite, hence, compact.
By Tychonoff’s theorem, W(A) is compact. Since W(A) is first countable, it is even
sequentially compact. This proves (1) and, of course, it proves that the limit X~ of the
subsequence of (Y #)>), . fufills #X; = d; for all i.

To show that X~ is a word system, we show that WS(A) is closed in W(A). Suppose
Z € W(A) is not a word system. That is, there exists a word w € Zj with a subword
y of w with y € A™ \ Z,,. Then the set U := {Zo} x {Z1} x -+ x {Z1} x X, 5, P(A")
is an open neighbourhood of Z and no element of U is a word system. This shows that

W(A)\ WS(A) is open, hence, WS(A) is closed. O
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‘Thinning out’ Cartesian systems

We present some results how to select from a Cartesian system a subsequence and turn
that subsequence again into a Cartesian system. We know from Theorem that
every Cartesian system is isomorphic to a word system, and all results about cardinality
sequences also apply to word systems. But it would be very cumbersome, indeed, if we
had to turn these fresh Cartesian systems into word systems, explicitly. These results are,
therefore, instances that illustrate how powerful the considerably more flexible notion of
Cartesian system can be as compared with the more restrictive notion of word system.
Let us start with the following triviality - and imagine how notationally complicated

it would be to prove it, using only word systems.

4.1.19 Theorem. Let X~ be a Cartesian system with injections iy, ,, and fix k € N.
Then the family Y~ = (Yn)neN, with Yy, = Xy and with the injections jmn = tmknk

is a Cartesian system.

The next result relies on the important property that, unlike for tensor products, in
a Cartesian product of sets there are canonical projections onto the factors; see Propo-

sition For all sets S; and Sy, define P;: S7 x So — S; by P;(s1,s2) = s;.

4.1.20 Theorem. Let X~ be a Cartesian system with injections iy, , and fix k € N.
Then the family Y= = (Yy,)nen, with

Xn-l-ku n>0

{A}, n=0

Y, =

together with the injections

jm,n = (Pl o im+k,na Pyo im,k+n) (4.1.3)

form,n >1 and jpyo and jo, being (necessarily) the canonical injections is a Cartesian

system.

Proof. Note that the construction ‘commutes’ with isomorphisms a”: X~ — X'~ In-
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deed, since iy, ,, © Qppin = (A X Q) © i, We find

(P10 ks P2 Oty i) © Qmgkan
= (Pl o (am—i-k X an) o im-i—k,na Pyo (am X ak:-i—n) © im,k—i—n)
== (am+k o Pl o z‘erk:,na Qftn O P2 o im,kJrn)

= (am+k X ak—i—n) © (Pl o im-i—k,n? Pyo im,k—i—n)a

so that j7, ,, 0 Qmikin = (Wmik X Qkgn)©Jm,n- By Theorem every Cartesian system
is isomorphic to a word system. Therefore, we may assume that X~ is a word system.

For a word system X~ the definition in (4.1.3)) leads to

(a1, Aminan) = ((a1, - Gnak), (@metts - Ggnt) ) (4.1.4)

for all m,n > 1. In other words, the k letters ‘in the middle’ ap+1,. .., antr are ‘repli-
cated’ once to the right part of the left factor and once to the left part of the right factor.
The maps jmn @ Xmtntk = Xtk X Xpyp defined in (4.1.4) are clearly injective. The

computation
(G % 1dy;) © mene) (@1, .- - Gmntek)
= (i % idy,) (@1, s @mntk)s (@it Gmgnyerk))
= ((a1,-- - @msk) (@ms1s -, Gk, (@t 1, - - Gtk )
= (idy,, % Jn.e) (a1, -, Gmsk), (@mats - - Omnnetn) )
= ((idy,, X Jne) © Gmmte) (@1, -, Gnntork)

proves associativity for m,n, ¢ > 1. For the cases involving m = 0 or n = 0 or £ = 0 there
is nothing to prove. So the Y;, = X, together with the maps j,, , form a Cartesian

system. ]

4.1.21 Corollary. Suppose for n € N there is a function f: Ng_l — Ng such that for

every word system X~ we have

#Xn < f(#X1, #Xo, . # Xn).
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4 Dimension of Subproduct Systems

Then for every Cartesian system X~ we have

#Xna-l—b < f(#Xa+b7 #X2a+ba ) #X(nfl)aer)'

Proof. By the preceding two theorems the Y,, = X445 form a Cartesian system. O

4.1.22 Corollary. For every cardinality sequence d, = #X,, of a word system X~ , we

have

dm+n+k < derkdnJrk (415)

for all m,n, k € Ng. In particular, dpy1 < d% for every k > 1.

Proof. Equation (4.1.5)) follows from Corollary 4.1.21} because every cardinality sequence
#X,, is submultiplicative (#Xpm4n < #Xm#Xn). The formula diq < d,% follows from

(4.1.5) with m =n = 1. 0

4.1.23 Corollary. Not every submultiplicative sequence d,, is the cardinality sequence of

a word system.

Proof. A cardinality sequence fulfills d3 < d3. However, the sequence d; = 2, dp = 1,
ds = 2, and dj, = 0 for k > 3 is submultiplicative, but ds % d3. O

A sufficient criterion motivated by submultiplicativity

It is well known that for every submultiplicative sequence (d,)nen of nonnegative inte-
gers we have lim,_,o, V/d, = inf, ¥/d,,. On the other hand, if we assume the limit is
approached monotonously, that is, if we assume ™%/d,,+1 < ¥d,, for all m € N, from

dm—l—n = m+vdm+nm erT\/dm—i—nn < W mn = dmdn

we get that (d,,)nen is submultiplicative. We may ask, if this condition is sufficient to

be the cardinality sequence of a word system. It turns out that this condition is neither

sufficient (Example [4.1.29) nor necessary (Example [4.1.26)). However, we may modify

the condition to make it at least sufficient.
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Recall our notation [a] := min{n € Z |n > a} and |a] := max{n € Z | n < a} for

a €R.

4.1.24 Theorem. Let (d,)nen be a sequence of nonnegative integers such that

[l | < [ V] (4.1.6)
for all m € N. Then there exists a word system X~ with #X, = d,, for all n € N.

Proof. Set Xo ={A}, X1 ={1,...,d1}, and choose arbitrary X,, C X7" such that

(o V@Y X {1, [V )

Since L v dan <d, < ({‘/ dnwn, this is always possible. We find

[}
R e AT e
L

c {1, [ W} x {1, [V}
C X, x X,
for all m,n € Ng. So, the X,, form a word system over Xj. O

Example [4.1.26| will also show that the sufficient condition (4.1.6)) is not necessary.

4.1.4 (Counter)examples with word systems of graphs

We establish a connection between word systems and directed graphs. In fact, the paths
of a directed graph without multiple edges form a word system over its vertex set. More-
over, every word system is a subsystem of such a graph system. As application, we
provide examples that show that "#/d,11 < {/d, for all n € Ny is neither necessary
nor sufficient for the existence of a word system with cardinality sequence d,,. Of course,
this implies that the sufficient condition in Theorem [£.1.24] which is even stronger, is

not necessary.
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4 Dimension of Subproduct Systems

By a graph, we will always mean a directed graph, possibly with loops, but without
multiple edges. That is, a graph is a pair (V, E), where V is a set, whose elements are

called vertices, and a subset FF of V x V| whose elements are called edges.
4.1.25 Theorem. The following statements hold:
1. LetT' = (V, E) be a graph and set

E() = {A}, E1 = V, E2 = E,
E, = {(vl,...,vn) ev” ‘ (vi,vig1) € E foralli=1,...,n— 1}.

(That is, E,, consists of all paths of length n —1.)

Then By, = Xn((V x V) \ E> In particular, the E, form a word system over V', the
graph system Xp.

2. Every word system X~ is a subsystem of the graph system X(>X1 X2) associated with

the graph (X1, X2).

Proof.
1. By definition,

X.(VxV)\E)
= (vl,...,vn)EV"‘(vi,le)§Z(V><V)\EVi:1,...,n—1} = E,.

2. For each word (v1,...,v,) € X, the (v;,v;41) are subwords, hence belong to X5. So

X,, is a subset of F,,.

Of course, (V x V) \ E is reduced. So graph systems are precisely those word systems

which have a reduced set of excluded words consisting only of words of length 2.
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4.1 Cartesian Systems

Let I' = (V,E) be a graph with V = {1,...,d}. Its adjacency matriz is the d x d

matrix A with entries

1 for (i,5) € F,
P L

0 otherwise.

Then, obviously, the number of paths of length n from ¢ to j is given by the i-j-entry of
A™. For any d x d matrix B, denote by

the sum of all its entries. So E(A"_l) = #FE,. Denote by 1,,x, the m X n matrix with
all entries equal to 1 and put 1y := 14%1 and 12 := 171x4q. Note that in this notation
1gxalq = dlq.

4.1.26 Example. Let (V| E) be the graph with d+ 1 vertices and adjacency matrix A =
<0 12). Then #FE2 = ¥(A) = 2d. Since A% = @0 ) we have #E3 = X(A?) = d?+d.

14 0 0 Laxa
4.1.27 Example. Let (V, E) be a graph with #FE =1, so E = {(v,w)}. If v # w, then
for n > 2 there is no path of length n—1, so E,, = (. If v = w, then E,, = {(v,v,...,v)},
so, #FE, = 1.
Let (V, E) be a graph with #FE = 2, that is, its adjacency matrix A is the sum of two
distinct matrix units E;; and Ej;. We find

#FE3 = Z(AQ) = 2((Eij + Ekl)Z) = (5¢j + 0 + 5kj + Op1.

Since three of the equalities i = j,© = [,k = j and k = [ necessarily lead toi =j =k =1,
it follows that #FE3 < 2. Since every word system is a subsystem of its graph system,
the implication #Xo < 2 = # X3 < 2 holds for all word systems. In other words, if we
define

2 for do <2,
f(dla d2) =

d} otherwise,
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then d3 < f(dy,ds) for all cardinality sequences of word systems. By Corollary [4.1.21
dy = dsy1 < f(di41,d241) = f(da,d3) = 2, because d3 < 2, and so forth. Hence,
#FEy <2 implies #Fo; < 2 for all £ € Ng.

4.1.28 Observation. A straightforward calculation gives
E(1ixaA) = X(Algxa) = dX(A)
for all A € My. Put A := 14,45 — A. Combining the two equations
S(AA) = 2((Laxa — A)A) = 2(LguaA — A%) = d5(A) — 5(4%)

and

we get

£(A%) = B(A%) + d(S(A4) - (A)). (4.1.7)

4.1.29 Example. Let I' = (V,E) be a graph with 3 vertices and 7 edges. For its
adjacency matrix A we, thus, have £(A) = 7 and X(A) = 2. Note that A is the adjacency
matrix of the complementary graph T := (V,(V x V)\ E). Therefore, by Example |4.1.27

we obtain E(ZQ) < 2. So, (4.1.7)) yields
#E; = B(A%) = £(A°) + d(S(A) ~ S(A)) <2+ 3(7-2) = 1.

This shows that a graph with 3 vertices and 7 edges has at most 17 paths of length two.

4.1.30 Example. In a graph with d vertices and d? — 1 edges we have $(A) = d? — 1,
Y(A) =1 and E(ZQ) is either 1 or 0, depending on whether the missing edge is a loop
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or not. Using again (4.1.7]), we find

_ d®—2d if the missing edge is a loop,
By = N(A) +d(d>—2) =
d® —2d 41 if the missing edge is not a loop.

We learn from these examples that the condition "™+/dp, 11 < %/dp, is neither suf-
ficient nor necessary for the existence of a Cartesian system X~ with #X,, = d,.
By Example [£.1.29 there is no system with #X; = 3,#Xy = 7,#X3 = 18. But
182 = 324 < 343 = 73. So, the sequence d; = 3,dy = 7,d3 = 18,d,, = 0 for n > 3 fulfills
the condition. So the condition is not sufficient. In Example [£.1.26] putting d = 10, we
get a system with #X; = 11, # Xy = 20, #X3 = 110. But 110? > 10000 > 8000 = 203.
So the condition is not necessary. As mentioned in the beginning of this section, this
implies that the stronger condition is not necessary either.

Especially in view of Theorem the following class of questions is interesting:
Fixing (some of) the cardinalities #X7,...,#X,, what is the maximal possibility for
#X, 11 in a word system X~ 7 The question, which graph with d; vertices and dy edges
has the maximal number of paths of length 2, is clearly of the above type with n = 2. It
was first investigated by Katz in [Kat71], who gave an answer only for special values of
dy and dy. A complete answer was given by Aharoni in [Aha80] by exhibiting four special
types of graphs, (two of them are close to being complete graphs, two of them are close
to being complements of complete graphs) one of which is maximal for any choice of d;
and dy. This allows one to determine the maximal ds such that there is a word system
X~ with #X1 = di,# X5 = dy and #X3 = d3. Similar results for undirected graphs can
be found in [AKT78|, [PPS99] and [AFMNWOQ9|. It seems the questions for higher n are

still open problems.

4.2 Subproduct Systems

For convenience of the reader, we repeat the definition of a subproduct system in a plain

way. See also Section [2:3.1] Hilbert Spaces.

4.2.1 Definition. A subproduct system (over S) is a family H® = (Hy)ies of Hilbert

115



4 Dimension of Subproduct Systems

spaces H; with Hy = C and with coisometries
Wst: HS &® Ht — Hs+t

such that the product defined by z,y; 1= ws (x5 ® y;) is associative and such that wo

and w; o are the canonical identifications.

It is more common to write subproduct systems with the adjoint maps v
w;t: H,. — H; ® H;, which have to fulfill the coassociativity and marginal conditions

expressed in the following two diagrams.

Ur+s,t
H’r—l-s-l—t — Hr-‘,—s & Ht

. v0,s
Ur, s+t Vr,s @ id¢

id, ® s, =
Hy® H,ypy ——% H, @ Hy® H, Ho® H,

—— H,;® Hy

H,

[
idg

H, +=

The isometries v, emphasize the idea, of considering H,; as a subspace of Hy @ H;.
It also makes clear that subproduct systems are the same as comonoidal systems in the
tensor category (Hilb™™ ®) with Hy = C.

The aim of this section is to characterize the dimension functions s + dim H,. In the
discrete case we show that the dimension sequences of subproduct systems are the same
as the dimension sequences of certain Ng-graded algebras and the same as the cardinality
sequences of word systems and Cartesian systems. Thus, the results of the previous sec-
tion apply also to discrete subproduct systems. We can use this fact and Theorem [4.1.9]
to give a simple characterization of all dimension functions of rational-time subproduct
systems and cardinality functions of rational-time cartesian systems. Finally, we dis-
cuss the continuous-time situation. For Cartesian systems the simple characterization
remains true, but for continuous-time subproduct systems we need additional continuity

assumptions to extend the rational-time results.

4.2.1 Dimension of Discrete Subproduct Systems

Recall that a product system is simply a full subproduct system, that is all the isometries

Um,n are unitaries.
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4.2 Subproduct Systems

4.2.2 Example. Discrete product systems H® = (Hy,)nen, are easy to understand. If we
identify H,, with HZ™ (n > 1) via the inverse of the unitary determined by z,®- - -®@x1
Ty ---x1, it is clear that the product of H® = (Hi@n)neNo is nothing but the tensor
product (z,, @ -+ R 21)(Yn @ - QY1) =Ty, @ -+ QT Yy @ -+ ® y;. By mentioning
that we are working in a tensor category, this is nothing but the identification map
HE™ @ HE" = HE™™  We say a (discrete) product system H® = (H®"),cy, with

the identity as product is in standard form.

As far as discrete product systems are concerned, there is not more to be said than
what is said in the preceding example. The situation gets more interesting for subproduct
systems. We start with an obvious relation between subproduct systems and Cartesian

systems.

4.2.3 Example. Let X~ = (X, )nen, be a Cartesian system. Denote by H,, the canon-
ical Hilbert space with orthonormal basis X,. Then, clearly, the embeddings i, , of
Xm+n into X, X X, extend as isometries vy, 1 Hypqn — Hp, ® H,, and the v, 5, define
a subproduct system structure, the subproduct system associated with X~. Moreover, if
X~ is a word system over A, so that X,, € A" and H, C H 1®”, this subproduct system is
a subproduct subsystem of a product system in standard form. We say the subproduct

system is in standard form.

Obviously, dim H,, = #X,,. We see, for every Cartesian (word) system there is a
subproduct system (in standard form) such that the dimension sequence of the latter
coincides with the cardinality sequence of the former. Before we show the converse state-
ment in Proposition let us mention that not every subproduct system is isomorphic

to one that is associated with a word system.

4.2.4 Observation. If at least one X,, in a word system contains a word with at least
two different letters, then the associated subproduct system in standard form is not
commutative. But there are commutative subproduct systems. See, for instance, the
symmetric subproduct system introduced by Shalit and Solel [SS09], which is obtained

by considering the symmetric tensor power H®s™ as subspace of H®".

By an Ng-graded algebra we mean a unital algebra 4 with a vector space direct

sum decomposition A = @en, An such that A,A, C Apqy for all m,n € Ng. The
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vector spaces A, are called homogeneous components of A. An Np-graded algebra is
called connected if Ay = C1 and standard graded if it is connected and A, = A} =
span{aj ---ay | a; € Aj,i = 1,...,n}. Equivalently, one can define a graded algebra
as a monoidal system (A;,,)nen, over No in (Vect, ®) and a standard graded algebra as
a monoidal system over Ng in (Vect**/, ®); compare Section Vector Spaces. An
No-graded algebra is called locally finite-dimensional if all A,, are finite-dimensional.
Every finite-dimensional discrete subproduct system can be considered as a locally
finite-dimensional standard graded algebra with respect to the multiplication induced by
the structure maps wy,n = vy, ,; compare also Remark . In particular, for every
finite-dimensional subproduct system there is a standard graded algebra such that their

dimension sequences coincide. The next proposition closes the circle:

4.2.5 Proposition. Let A = @en, An be a locally finite-dimensional standard graded
algebra with dim A,, < oo for all n € Ng. Then there exists a word system (Xp)nen, with
#X, =dim A, for all n € Ng.

4.2.6 Remark. It turned out that this has been proven already in [Ani82|. Anick’s proof
is almost the same as that of [Sta78], who showed a corresponding result for commutative
graded algebras, and who tributes this result to MacAulay [Mac27]. The proof presented
here is basically Anick’s proof, but it was found independently and first written down
directly for subproduct systems. It is left in the thesis on the one hand to be self contained

and on the other hand to present it in a modern terminology and notation.
We give a short preparation for the proof.

4.2.7 Definition. Let A be a partially ordered alphabet. Then the lexicographical order
<jez on A™ is given by (a1,...,an) <pez (b1,...,b,) if ap = by for all k or if a < by, for
k being the smallest index i with a; # b;.

It is easy to show that the lexicographical order is a total order on A™ whenever < is

a total order on A. Without the obvious proof, we state:

4.2.8 Lemma. Let y,yy' € A™. Then

Y <tez Y = 3dr,z2€A*:ayz <jpayz = Vax,z€ A" vyz <iep w2
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Proof of Poposition[{.2.5 Let (a1,...,aq) be a basis of A;. Set A = {1,...,d}. For

a word w = (i1,...,iy) in A™ we define the element a,, € A,,ay := a;, ---a;,. The

n

multiplication A,, x A, — A,+n is surjective for all m,n € Ng. Therefore, a simple

induction yields A,, = span{a,, | w € A"}. Set
X, = {w c A" ‘ Ay ¢ spanq{a, | v <jex w}}

Since {a,, | w € X,,} is linearly independent and still spans A,,, it is a basis of A,,. Thus,
#X, =dim A, for all n € Ng.

We claim X~ = (X,)nen, is a word system over A. Let y € A* be a subword
of w e A" (k < n), that is w = zyz for some z,z € A*. We are done if we show

y & Xy = zyz ¢ X,,. Suppose y ¢ X, that is

ay = Z ay/ay/.

y'<y

Then, we have

oy = QgQyl, = Z Oy Qg Qg Ay = Z Oyt Ay -
y'<y y'<y

Since, by Lemma Y <ier y implies xy'z <jer xyz, we obtain a,, ¢ X,. O
The content of this section is summarized in:

4.2.9 Corollary. Let (dy)nen, be a sequence of nonnegative integers. Then the following

are equivalent
(i) There exists a discrete subproduct system H® with dim H,, = d,, for all n € Ng.
(ii) There exists a standard graded algebra A with dim A,, = d,, for all n € Ny.
(131) There exists a factorial language L with #(L N A™) = d,, for all n € No.
(iv) There exists a word system X~ with #X,, = dy, for all n € Ny.

(v) There exists a discrete Cartesian system X~ with #X,, = d,, for all n € Ng.
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Thus, results on the complexity of factorial languages hold for the dimension sequence

of a subproduct system. In particular, Theorem [£.1.9] translates to:

4.2.10 Corollary. Suppose d := dim Hy < k for some k € N. Then

dim i <[] | 421
2 2

for allm >k +d.

4.2.2 Rational Time

For rational-time subproduct systems we can give a simple characterization of the possible

dimension functions.

4.2.11 Proposition. Let H® = (H)icq, be a rational-time subproduct system with
dim H; = d(t). Then

d(s) < {d(t);t 1} V(t); 1J (4.2.1)

holds for all s > t. The analogous statement holds for a rational-time Cartesian system.

Proof. Denote the isometries of H® by vy, ,. For every t € Q4 and every N € N, the
family (H5Y),en, with HEY = Hyn is a discrete subproduct system with respect to
the isometries (vfn]\;) i= vym ;23 compare Theorem Suppose d(t) < oco. Applying
Corollary |4.2.10| to the subproduct system (HLY),en, vields

<2422

for all m > N + d. Every rational s > ¢ can be written in the form s = t% with
m > N + 1. Expanding the fraction by d yields s = t% with dm > dN + d. So we may
conclude that (4.2.1)) holds for all s > ¢.

The same proof works for a Cartesian system when we use Theorem [4.1.9] instead of

Corollary [.2.10] O

We will show that the inverse also holds, that is if d : Q1 — Ng is a function with
d(0) = 1 and which satisfies (4.2.1)) for all s > ¢, then there exists a rational-time
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Cartesian system X~ with #X; = d(¢) for all ¢t € Q4. Then, analogous to Example
for the discrete case, there is also a rational-time subproduct system H® with dim H; =

d(t) for every t € Q4. We start with the following obvious corollory to Lemma [4.1.10

4.2.12 Corollary. There exists a rational-time Cartesian system X~ with X; == N x N
and i54(i,5) == ((i,1),(1,5)) for all s,t # 0.

4.2.13 Lemma. Suppose m,n : Q4+ \ {0} — Ng are decreasing and X; C N x N such that

([m(®)] x {1}) U ({1} x [n(8)]) € X € [m()] x [n(0)].

Then the X together with Xo = {A} form a Cartesian subsystem X~ C X~.

Proof. Since m and n are decreasing, we have [m(s+t)] C [m(s)] and [n(s+t)] C [n(t)]
for all s,¢. Thus,

ist(Xort) Cisa([m(s + )] x [n(s +1)]) Cise([m(s)] x [n(t)])
c ([m(s)] x {1}) x ({1} x [n(t)]) € Xs x Xq.

O]

4.2.14 Proposition. Let d : Q4+ — Ng be a function with d(0) = 1 and which fulfills
(4.2.1). Then there exists a Cartesian system with #X; = d(t) for all t € Q.

Proof. Let d : Q1 — Ng be a function and assume (4.2.1) holds for all s > t. Put
d(t) = min{d(s) | 0 < s < £}, m(t) = | D9 ] and n(r) = | X0+ | We have m(r) +
n(t) = d(t) + 1, which implies m(t) + n(t) — 1 = d(t) and, therefore,

m(t) +n(t) — 1 < d(t) < m(t)n(t)
for every ¢t € Q. Thus, it is possible to choose X; C N x N with #X; = d(t) and
(Im@®)] x {1}) U ({1} x [n(1)]) € X C [m(1)] x [n(t)]

Since m and n are decreasing, we can apply Lemma [£.2.13] to conclude that the X; form

a Cartesian subsystem of X'~. O
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Since the subproduct system H© associated with X~ fulfills dim H; = # X, the same

holds for subproduct systems. We summarize the results of this section in:

4.2.15 Theorem. Let d: Qi — Ng be a function. Then the following are equivalent:
(i) There is a rational-time subproduct system H® with dim Hy = d(t) for all t € Q..
(i1) There is a rational-time Cartesian system X~ with #X; = d(t) for all t € Q4.

(131) The function d fulfills d(0) =1 and (4.2.1)) for all s > ¢ > 0.

4.2.3 Continuous Time

For Cartesian systems the situation is as nice as in the rational-time case. The proof of

Proposition [£.2.14] remains valid when we replace Q4 by Ry, so we have:

4.2.16 Proposition. Let d : Ry — Ng be a function with d(0) = 1 and which fulfills
(4.2.1) for all s > t > 0. Then there exists a continuous-time Cartesian system with
#Xy =d(t) for allt € Ry.

For the converse we need the continuous-time analogue of Theorem [4.1.20]
4.2.17 Theorem. Let X~ be a continuous-times Cartesian system with injections i

and fir r € Ry. Then the family Y~ = (Y;)ien with

Xiip, t>0
=4 "

{A}, t=0
together with the injections
js,t = (Pl © is+r,ta Pyo iS,T+t)

or s,t > 1 and jso and jo; being (necessarily) the canonical injections is a continuous-
) Js, Jo, g

time Cartesian system.
Proof. This is just a tedious calculation to check the associativity of the js ;. O

4.2.18 Theorem. Let d: Ry — Ng be a function. Then the following are equivalent:

122



4.2 Subproduct Systems

(i) There is a continuous-time Cartesian system X~ with #X;, = d(t) for all t € Ry.
(i) The function d fulfills d(0) = 1 and (4.2.1)) for all s >t > 0.

Proof. Let X~ be a continuous-time Cartesian system and S > T > 0. Then, there
exist R € Ry with R < T and @ € Q4 with @ > 1 such that S — R = Q(T — R).
Now, by Theorem [£.2.17] the Y; := X4  form a continuous-time Cartesian system. Put
S":=8—Rand T := T — R, whence §' = QT'. The Z; := Yy form a rational-time
Cartesian system Z~ by Theorem . Since Z1 = Y = X7p and Zg = Yo =Yg =
Xg, applying Proposition to Z~ shows that holds for S and T'. The other
direction is Proposition [£.2.16] O

Proposition holds likewise for subproduct systems, but the proof of the con-
verse statement breaks down. It might well be that the converse is even false in general
for subproduct systems. But the main interest in subproduct systems comes from their
relation to product systems and for most applications technical assumptions like measur-
ability or contiuity are needed anyway. So the following weaker version of the converse

is still useful.

4.2.19 Theorem. Let H® be a continuous-time subproduct system and assume that

t +— dim H; is lower semicontinuous. Then (4.2.1)) holds for all s >t > 0.

Proof. Fix t € Ry. Lower-semicontinuity implies that {s | dim Hs < N} is closed for
every N. In particular, {s | holds} is closed. The Hy for ¢ € Q4 form a rational-
time subproduct system, so holds for all s >t > 0 with s = ¢t for some rational
g. Thus, {s | holds} is closed and dense in the interval (¢,00), so it contains
(t,00). O
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5 Universal Products

We have seen that independence can be defined in any tensor category with inclusions;
confer Section Whereas there is essentially only one notion of independence for
classical probability spaces, it turned out that there are several such notions for quantum
probability spaces, each with a rich theory and connections to other areas of mathematics.
The most prominent example is Voiculescu’s freeness, which has many interrelations with
the theory of random matrices and the theory of operator algebras. Soon, the question
arose what are “all” notions of independence of quantum probability spaces. One way to
make this question precise is to ask for all ways to turn AlgQ into a tensor category with
inclusions. This approach naturally leads to universal products. Suppose (AlgQ,X) is a
tensor category with inclusions ¢!, 2. For quantum probability spaces (Aj1, ¢1), (A2, p2)
let (A1, 1) K( Az, p2) = (A, ¢). Then 1 @2 := @ o (.} U?) defines a linear functional

on A; LI As. Using this definition one gets a new bifunctor

((A1, 1), (A2, 02)) = (A1 LA, 01 B 02) : AlgQ x AlgQ — AlgQ

which turns AlgQ into a tensor category with the canonical embeddings into the free
product as inclusions and ¢! LI .2 defines a natural transformation between the two. The
axioms of tensor categories with inclusions translate to axioms for [, which are the

definition of universal products.

Recently, Lachs discovered a new family of universal products, the (r, s)-products. As
a first step towards a detailed study of (r, s)-independence and (r, s)-Lévy-processes, we
present a construction, which allows to calculate the GNS-constructions of (r, s)-product

functionals.

Section [5.2 is based on [GL14].
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5.1 Universal Products

5.1 Universal Products
Let I be an arbitrary index set. We put
Ar={e=(e1,....em) | meN,ep € I,e, # ep11,k=1,...,m—1}

and define the length of ¢ as [e| ;== m if ¢ = (e1,...,&,). We simply denote Agy 1y by

Ay. For e € Ay, |e| = m and vector spaces V;,i € I, we set
Vo=V, ® - @V, .

The free product of algebras A;,i € I, is defined as the vector space

|_|.Ai = @Ag

i€l €€A]

with the multiplication given by

AR Ry b @ - @by, €y # 01
(a1 ® - @ap) (b1 ® - @by) =

a1 ® - Qambt @ - @ by, €m = 01

forall ag ® -+ @ ap € Ae,b1 @ -+ ® by, € As, where £,6 € Ay, |e|] = m, 0| = n. By
slight abuse of notation, expressions of the form a; --- a, € A. are always supposed to
signify |e| = n and a; € A.,. Similarly a; -+ a, € | |;es Ai shall mean there is an € € A;
such that aj --- a, € Ag, that is a1, ..., a, are always assumed to belong to alternating
algebras. The free product of two algebras is denoted by A; LI Ay and has the following
universal property: For two algebra homomorphisms j; : A; — A, i € {1,2}, one gets a
unique algebra homomorphism j; U jo : A3 U Ay — A such that j; U jo (a) = ji(a) for all
a € A;. In particular, this implies that for two algebra homomorphisms j; : A; — B; we
have a unique algebra homomorphism j; IT ja : A U Ay — By U By fulfilling 51 11 j2 (a) =
ji(a) for all a € A,.

5.1.1 Definition. A universal product is a prescription [ that assigns to each pair of

linear functionals ¢; : A; — C on algebras A; a linear functional ¢ B2 : A1 LU Ay — C
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such that the following axioms hold:

(UP1) (@1 @ w2) o (j1 O j2) = (w1 041) @ (2 o j2) for all algebra homomorphisms
ji + Ai = B;, where i € {1, 2}.

(UP2) (¢1 [ ¢2) [ w3 = ¢1 @ (p2 @ 3) for all linear functionals ¢; : A; — C, where
i€ {1,2,3).

(UP3) (p1 @ w2)(a) = p;(a) for all a € A; C A U Ay and i € {1,2}.

5.1.2 Example. For algebraic quantum probability spaces (A;, i), i € {1,2}, the well-

known Boolean product < is given by

©1 O pa(er - en) =@ (c1) 0 e, (cn)

for ¢ -+ ¢, € A.. This is a universal product. It made early appearances, although not
named this way, in the work of von Waldenfels [yW73] and Bozejko [Boz87|. The theory
of Boolean convolution was established in [SW97]. Nowadays it is an important part of
non-commutative probability theory, see for example the work of Arizmendi and Hasebe

[AHT3), [AHT4].

We know from Section that independence can be defined in every tensor category
with inclusions. The following two propositions explain the close relationship between

universal products and notions of independence in quantum probability.
5.1.3 Proposition. Let [ be a universal product. Then

((-Ab ©1), (A2,SO2)) = (A1 U Az, 1 B 2)
(1,72) + (A1 x Az) = (A}, Ag) = ji g+ A LAy — A ULA)

1s a bifunctor, which turns AlgQ into a tensor category with the canonical embeddings

into the free product as inclusions.

Proof. (UP1)| shows that the prescription is a bifunctor. |(UP2)| guarantees that the
natural isomorphism A; U (Ag U A3z) = (A; U A2)A3 induces a natural isomorphism of

quantum probability spaces. [(UP3)[ shows that the zero algebra with zero functional
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is a neutral element and the canonical embeddings induce natural transformations of

quantum probability spaces. ]

We identify the universal product with the bifunctor from the above proposition and
simply write Q1 [ Qs for (A; U Ag, 1 B p2) when Q; = (A;, ;).

Let X be a bifunctor, which turns AlgQ into a tensor category with inclusion o', /2.
Note that both, ¢! and ¢?, are families of algebra homomorphisms indexed by AlgQ x
AlgQ and that LbLQQ and LéLQZ have the same target algebra. Thus, we can define
a family of algebra homomorphisms ¢! U /2 given by (/! U:?)g, 0, = LbLQQ L LéhQQ.

To simplify notation, we will sometimes omit the subscripts and just write ¢! instead of

(Li)Q17Q2'

5.1.4 Proposition. Let X be a bifunctor, which turns AlgQ into a tensor category with
inclusions ',12. Then there is a unique universal product [ such that the family of

algebra homomorphims ' U2 is a natural transformation U2 @3- = K-

Proof. Morphisms in AlgQ are functional preserving, so [ is uniquely determined by

P1E s == (p1 W) o (11 UW?)

where @1 X o denotes the linear functional of (Aj,p1)K(Asz, p2). It remains to show

1

that the prescription defined this way is indeed a universal product. Since ¢ is a natural

transformation, we have

1 2

(1Rj2) o (L' UP)oiy = (1B o) ot =l oji = (L oji)U(Poga)ois

where 47 is the canonical inclusion into the free product. Analogously it holds that
(718 j2) 0 (11 Li?) oz = (i1 0 j1) LI (% 0 j2) 0t
By the universal property of the free product we get

(1 Wj2) o (1 L) = (P o) U (4P 0 o)
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and thus
((p1051) B(p2 0 42)) = (1 0 51) Bz 0 ja)) o (¢ U 4?)
= (p1 W) 0 (j1®ja) o (11 L)
= (p1®p2) o ((th o j1) U (P 0 j2))
= (18 @) o (11 L4?) o (1 U ja)
= (p1 B p2) o (j1UJ2)
which proves [[UP1)} [[UP2)| and [[UP3)| are easy to check. O

Let S be a set. Recall that S* denotes the set of all finite tuples over .S and A denotes
the empty tuple. A tuple partition of S is a set of tuples Il = {V1,...,V;},V; € S*\ {A}
such that every element of S belongs to one and only one of the tuples V;. The set of
all tuple partitions of S is denoted by TP(S). A tuple partition of {1,...,n} is called
compatible with € € Ay if |¢| = n and, for all 4,7 € {1,...,n} that belong to the same
block of II, one has €; = €;. The set of all tuple partitions compatible with ¢ is denoted
by TP(e). We simply write TP(n) for TP({1,...,n}). Let ¢1 : A1 — C, 3 : A2 — C
be linear functionals, and ¢; --- ¢, € A.. For a tuple U = (i1,...,ip) such that all ¢;,

belong to the same algebra A; we use the shorthand notation

puler - cn) = pj(ciy - Cip)-

Furthermore, for € € Ag, ¢; -+ ¢, € A and a tuple partition II € TP(e) we write

pri(er - en) =[] euler -+ en).
Uen

5.1.5 Theorem. Let [ be a universal product. Then there exist unique constants t.(II)

for every k € N, e € Ay and I € TP(e) such that

P10 - Bog(er - en) = Z t(Ien(cr -+ cp)
IETP(e)

foralley -+ ¢y € A..
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Theorem 5 of [BGS02] deals with the case k = 2 and commutative universal products,
but the proof relies on UP(UP1)[only, hence it applies to our more general situation. See
also [Mur03l Theorem 3.1].

In the following we call a universal product which fulfills

ta({(1),(2)}) =7 and te1H({(1),(2)}) = s

an (r,s)-universal product. By Theorem every universal product is an (r,s)-
universal product for unique constants r,s € C. If r = s = ¢ we speak of a g-universal

product. A 1-universal product is also called a normalized universal product.

5.1.6 Observation. Let [ be an (r, s)-universal product. Then one easily checks that

01 [P g := @ [ 1 defines an (s,r)-universal product. For the universal coefficients

t2(I1) and 2 (II) one finds

2(1T) = 427 (1)

£

where g, := 1 if ¢, = 2 and vice versa.

5.2 The (r, s)-Products

For a tuple € = (€1,...,&,) € N we call a position k € {1,...,n—1} an up if e, < €41
and a down if e > €x41. Denote the set of all ups by u(e) and the set of all downs by
d(e). The sets u(e) and d(g) are always disjoint One has u(e) Ud(e) = {1,...,n — 1} if
and only if ) # €41 for all k € {1,...,n — 1}, that is if € € Ay.

5.2.1 Definition. Let r, s € C be fixed. The (r, s)-product of two functionals ¢; : A; — C
is defined as ¢1 A w9 : A U Ay — C with

o1 hpa(ar...ap) = r#u(E)S#d(E)SOI opa(ay...an)

forall ay...a, € A..

At first, only commutative universal products have been considered. It can be shown

that there are exactly three commutative g-universal products for every g # 0, see Spe-
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icher [Spe97] and Ben Ghorbal and Schiirmann [BGS02|. The classification of noncom-
mutative 1-universal products was done by Muraki [Mur03| and it can easily be extended
to show that there are exactly five g-universal products for every ¢ # 0. By discovering
the (r, s)-products the classification of general universal products was completed (except

for the case ¢ = 0 which is still open).

5.2.2 Theorem (|GL14, Theorem 3.21], see also [Lacl4]). Let @ be an (r,s)-universal
product with r # s. Then [ coincides with the (r,s)-product A.

In this section we will perform the GNS-construction for the (r,s)-product of two
linear functionals. Since the (7, s)-product is not preserving positivity, we have to gener-
alize the usual GNS-construction to not necessarily positive functionals. When comparing
with the case of the Boolean product, that is » = s = 1, strange things happen to the
dimension of the representation space. Since the (r, s)-product of two homomorphisms is
not a homomorphism, the dimension can increase, see Example It is also possible
that the dimensions coincide, as is shown in example or even that the dimension
is smaller than in the Boolean case, see Example [5.2.18]

5.2.1 Dual Pairs

We briefly mention some basic definitions and facts.

5.2.3 Definition. A semi-dual pair consists of a pair of vector spaces (E,F) and a
bilinear form (-,-) : E x F' — C. A semi-dual pair is called a dual pair if its bilinear form

is non-degenerate in the sense that
» (e, f) =0 for all e € F implies f = 0 and
» (e, f) =0 for all f € F implies e = 0.
In that case the bilinear form is called dual pairing of (E, F).

Given a semi-dual pair (E, F) and a subset M C E, the orthogonal space of M is

M* = {f € F| (e, f)=0Vee M}
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5.2 The (1, s)-Products

and similarly for a subset N C F
Nti={eeB| (e f)=0vfeN}.

The subspaces F- € E and E+ C F are called degeneracy spaces of (E,F).

5.2.4 Proposition. Let (E, F) be a semi-dual pair. Denote by [e] and [f] the equivalence
classes of e and f in E/F+ and F/E* respectively. Then

gives a well-defined dual pairing on (E/F*, F/EL).

Proof. Let e € E.¢’ € F-, f € F, ' € EL+. Then

(e+e, f+f)={(ef)

by bilinearity. This shows well-definedness. To show non-degeneracy assume ([e], [f]) = 0
for all f € F. Since ([e],[f]) = (e, f) we get e € F*, hence [e] = 0. Analogously
(le], [f]) = 0 for all e € E implies [f] = 0. O

5.2.5 Example. Any complex m X n matrix B defines a bilinear form
(x,y) :=a'By

on C™ x C*. We have Ft = {:c e C™ ' By =0Vy € C"} so dim F+ = m — rank B
and dim E/F+ = m — dim F+ = rank B. Similarly, dim F/E+ = rank B.

5.2.6 Definition. Let A be an algebra. A (semi-)dual pair of A-modules is a (semi-)dual
pair (E, F') such that

» F is a right A-module,
» Fis a left A-module,

» (ea, f) = (e,af) forallec F,ac Aand f € F.
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If A has a unit 14, (F, F) is called unital if ely = e and 14f = fforalle € E, f € F.

5.2.7 Proposition. Let A be an algebra and (E, F) a semi-dual pair of A-modules. If
the subspace U C E is invariant under the right-action of A on E, then UL is invariant

under the left-action of A on F.

Proof. Let U C E be invariant, that is e € U implies ea € U for all a € A. For f € U+
and arbitrary a € A we get

(e,af):<ea,f>:O

for all e € U, that is af € U*. O

In particular F- C E is invariant. Of course, we can switch the roles of E and F to

show E+ C F is invariant.

5.2.8 Theorem. Let (E,F) be a semi-dual pair of A modules. Then (E/F+, F/EL) is

a dual pair of A modules with actions and dual pairing given by

leJa = [ea],  alf]=[af] and ([e],[f]) = (e, [)

forallee E,f € F and a € A.

Proof. The pair (E/F*,F/E') is a dual pair by Proposition The given actions
are well-defined by proposition . Furthermore (E/F*, F/E"') is a dual pair of A

modules, since

([ela, [£1) = (leal, [f]) = (ea, f) =
(e,af) = ([e], [af]) = ([e], alf])

forallece F,f € F and a € A. O

5.2.2 A Generalized GNS-Construction

Every algebra A acts on itself from the right and from the left by multiplication. For

any linear functional ¢ : A — C the bilinear form (a,b) — ¢(ab) : A x A — C turns
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(A, A) into a semi-dual pair of A-modules. We denote by N}, and N} the degeneracy
spaces. Define E¥ := A/N}, and F¥ := A/N;. By the preceding theorem (E¥,F¥)
is a dual pair of A-modules. Furthermore, if A is unital und (1) = 1, then we define

0¥ :=[1] € E¥ and 2 := [1] € F'¥. Then it holds that
(Q%,aE%) = ¢(lal) = ¢(a) (5.2.1)
foralla € A and E¥Y = Q¥ A, F¥ = AZ®.

5.2.9 Definition. Let A be an algebra and F a right A-module. A vector ) € F is
called cyclic if QA = E and quasi-cyclic if CQ+ QA = F.

In other words, a vector 2 € E is quasi-cyclic, if and only if the smallest submodule
of E that contains €2 equals E. Cyclicity and quasi-cyclicity for left modules are defined
likewise.

For a unital algebra with normalized linear functional (E¥, F¥) is a dual pair of A-
modules with cyclic vectors Q¥ =¥ from which we can recover the functional by .

Denote by A the unitization of A, that is the unital algebra with underlying vector
space A = C® A and product (A, a)(i, b) = (A, \b+ap+ab). Then a right A-module E
can be turned into a right A-module by setting e(1, a) := e+ ea. Clearly, a vector Q € F
is quasi-cyclic for the A-action if and only if it is cyclic for the corresponding A-action.
For a functional ¢ : A — C define @ : A — € with @(\,a) := A+ ¢(a). Using A and
¢ instead of A and ¢ we can always use the construction above to find a dual pair of A

modules which allows us to reconstruct ¢ by (5.2.1).

5.2.10 Proposition. Let (E, F) be a dual pair of A-modules, 2 € E, = € F quasi-cyclic

vectors with
(,2)=1 and (Q,aZ) = ¢(a) (5.2.2)

for all a € A. Then there is a unique pair of module isomorphisms U : E¥ — E,
T : F¥ = F with U(Q¥) = Q and T(E¥) = =. It holds that (Ue, Tf) = (e, f) for all
e € Eg, fe Fe.
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Proof. Since Q% and =¥ are quasi-cyclic, U and T are uniquily determined, if they exist.

We have
<Q$a, bEg> = p(ab) = (Qa,b=) and <Q$a,5§5> = p(a) = (Qa, E)

for all a,b € A. Together this yields <Q$a, f> = (Qa, f) for all f € F. Provided U and T
exist this also settles the last equality in the proposition. Since (Ea, Fg) is a dual pair,

the pairing is non-degenerate. So

Q% =04 (2, [)=0forall f e F
< (Qa, f)y=0forall feF

< Qa = 0.

This shows that U : AQ? + Q%a — \Q + Qa is well defined. The existence of T' follows

analogously. O

5.2.11 Definition. Let A be an algebra and ¢ : A — C a linear functional. A dual
pair of A-modules (E, F') with quasi-cyclic vectors Q, = is called GNS-pair of (A, ¢) if it
fulfills (5.2.2]).

We have seen that a GNS-pair always exists and is unique up to isometric isomor-
phism in the sense of Proposition [5.2.10} In particular, for A a unital algebra and
(1) = 1 we have (E¥, F¥) & (Eg, Fg), since they are both GNS-pairs of (A, ¢).

5.2.12 Example. Let A be an algebra and ¢ : A — C a homomorphism, that is
e(ab) = p(a)p(b) for all a,b € A. Then (C,C) becomes a dual pair of .A-modules with
canonical dual pairing (\, p) := Ap and left and right actions on C by

Aa = p(a), ap:= @(a)p.

The unit 1 € C is quasi-cyclic for these actions and (C, C) with 2 := 1, = := 1 is obviously
a GNS-pair of (A, ). Also note that 2 and = are cyclic if and only if ¢ # 0.

The converse holds, that is if the GNS-modules are one-dimensional, then ¢ is a

homomorphism. For let (E, F) with quasi-cyclic vektors 2 € E,E € F be a GNS-pair
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with dimE =dimF = 1. So E = CQ, F = C=Z and (A\Q, p= = A\p). From (Q,aZ) = p(a)
we conclude aZ = p(a)=. Since p(ab)E = (ab)= = a(bZ) = p(a)p(b)Z for all a,b € A, ¢

is a homomorphism.

5.2.3 GNS-Construction for the (7, s)-Products

Fix r,s € C and denote by A the (r,s)-product. Let (E;, F;) with quasi-cyclic vectors
Q;,Z; be a GNS-pair of (A;, ;) for i = 1,2. In the following we will present a way to
express the GNS-pair of (A; LAz, 1 A ¢2) in terms of the respective GNS-pairs (E;, F;).
Set

EFE=CQaeNAL DN A and F :=C=2¢ A151 D Ax=s. (5.2.3)

and define a semi-dual pairing on (E, F') by

[1]

(Q,=)=1 (Q,0121) = (b1) (Q, baZa) = (ba) (5.2.4)
) = (a1) (Q1a1,01Z1) = (a1by) (Qay,b952) = r{a1)(b2)

<an2,E> = (a2> <QQG2,b151> = s<a2><b1) (an2,5232> = <a252>

<Qla17

[1]

where (a) := p;(a) for a € A;. Furthermore, set

(AQ + Qa1 + Qaa2)b ANb + Qrarb + spa(az)ihb for b € Ay
141 209)0 :

(5.2.5)
AQaob + 11 (a1)Qeb + Qaagb for b € Ag

and

_ _ _ ub=1 4 berZ1 + rpa(co)bZ1for b € Ag
(U= 4 c1Z1 + c2=9) = (5.2.6)

ubZa + s¢p1(c1)bZg + beaZafor b € A,.

5.2.13 Theorem. The aligns (5.2.5)),(5.2.6) define actions of A1 U As such that the
semidual pair (E, F) in (5.2.3) becomes a semi-dual pair of Ay U As-modules. The dual
pair (E/F*, F/ELY) with the vectors Q + F+ 2 + EL is the GNS-pair of ¢1 A @o.

Proof. Straightforward. O
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5.2.14 Example. Suppose 0 # ¢; : A; — C are homomorphisms. Then by Exam-
ple5.2.12| E; = CQ; and F; = CZ; for i = 1,2. So E, F = C? and the semi-dual pairing
(5.2.4)) is determined by the matrix

1 1 1
B=|111r
1 s 1

in the sense of Example [5.2.5] We have

1 forrs=1
rank B=492 forr=1,s#lorr#1,s=1

3 forrs#1

so the dimension of the the GNS-pair of (A; U A2, 1 A 2) depends on r and s.

Can it happen that the semi-dual pairing (5.2.4)) is degenerate even if r, s # 17 Before

we give two more examples let us do some general considerations.

5.2.15 Lemma. Let (E, F) be a GNS-pair of (A, ). Then
Qa=Q < p(a) =1 and p(ab) = p(b)Vb € A.

Proof. Straightforward. O

5.2.16 Proposition. Let 7,5 # 1. If Q and Qy are cyclic, then E+ = {0}.

Proof. Cyclicity means Q;.4; = F7 and Q.43 = FE5. Thus we can rewrite E of (5.2.3)) as
E=CQ® FE, & Es.

In particular, there exist a1 € Aj,a9 € Ay with Q1 = Q1a1,Q9 = Qoao € E. Let
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f=puE+bZ; + byZs € EL. Using (5.2.4)), we get the system of linear aligns

(Q, f) = p+@1(b1) + pa(b2) =0
(Q1, f) =+ @1(b1) + rea(ba) =0
(Qa, f) = 1+ s01(b1) + @a(ba) =0

which is determinate for r, s # 1. Hence p = ¢1(b1) = p2(b2) = 0. Furthermore
(hay, f) = e1(arbr) = (Qa1,01Z1) = 0

for all a; € A;. Using, again, cyclicity of ©; and non-degeneracy of (E1, F}) we conclude

b1Z1 = 0. In the same way we get bo=9 = 0 and finally f = 0. O

So in order to get more interesting examples it is necessary that the quasicyclic vectors

for the GNS-pair of at least one of the functionals are not cyclic.

5.2.17 Example. Let 0 # ¢1 : A; — € be a homomorphism and @9 : Co[z] — C given
by

. 1 form=2
pa(x™) 1=
0 for m # 2.

We already know the GNS-pair of ¢ is F1 = CQ; and F; = C=Z;. To determine the
GNS-pair of pg we calculate

N = {p:iaixi | o2(pq) =0 Vqe C[:U]}

=0

={p| @a(pz*) =0 Vk €N}

n
:{p:Zaixi\aozalzoq:O}

=0

which yields

Ey = Fy = Clal/N = span{[1], [z], [+?]}.
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Setting o = Zg := [1] we get

Q2Colz] = span{Qoz, Qox?}, Co[z]Zs = span{zZy, 225,}.
and

E = span{Q, Q1, Doz, Qa?}, F = span{E, Z1, 25, 2°=5}

with the semidual pairing determined by

1 1 01
1 1 0 r
B—
0 011
1 s 0 O
We find
3 forr=1lors=1
rank B =

4 forr,s#1.

So the dimension of the GNS-pair of ¢1 A 2 can be equal to the one in the Boolean case

r = s = 1 for other values of r and s.

5.2.18 Example. As a third example consider ¢ = @2 : Cy[z] — C with

. 1 form=2
pi(z™) =
0 form # 2.

We already know the GNS-pairs of ¢ and (3. From these we construct

2 2 = 20 o 2
E = span{Q, Q1z, U x*, Qox, Qox*}, F = span{E, =1, 2“2, 2=, x°Z2 }
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5.2 The (1, s)-Products

with the semidual pairing determined by

1 01 01
0100O0
B={(10 0 0 r
0 00T1O0
1 0 s 00

We calculate det B = —rs + r + s and thus find

4 forrs=r-+s
rank B =

3  otherwise.

This example shows that, surprisingly, the dimension of the GNS-module of 1 A @2 can

even be smaller than in the Boolean case r = s = 1.

5.2.19 Remark. One may ask if these dimension phenomena can also arise for the
normalized universal products, when one allows non-positive linear functionals. This it
not the case. The same constructions one uses to build the joint GNS-representations
of two states from their respective GNS-representations can be applied to build the
joint GNS-modules for general linear functionals. Non-degeneracy of the pairings is

automatically preserved.

5.2.4 GNS-Triples

The GNS-construction for nonpositive functionals has also been investigated by Wilhelm

[Wil08|. We show that his approach is equivalent to ours. He defines:

5.2.20 Definition. A GNS-triple (7, Hy,w) is a triple, consisting of a vector space H,
a representation 7 : A — L(H) with H = C® HY and the vector w = (1,0) such that

1. w is quasi-cyclic for 7

2. there is no nonzero invariant subspace of Hy.
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5 Universal Products

Let (m, Hy,w) be a GNS-triple. Set F':= H = Cw & Hy. The representation 7 : A —
L(H) yields a left action af := m(a)f on F' and a right action ea := e o w(a) on the
algebraic dual F’. Let FE := CP, + P,A be the submodule generated by P,.

5.2.21 Proposition. (E, F) is a dual pair of A-modules with the canonical dual pairing

(e, f) ==re(f) (5.2.7)

Proof. Clearly, defines a bilinear form on E x F' and fulfills (ea, f) = (e, af) for all
e€ E,a€ A, f e F. Hence we have a semi-dual pair of A-modules. Obviously (e, f) =0
for all f € F implies e = 0, since e is a linear functional on F. Suppose (e, f) = 0 for
all e € E. Since P,, € E, we have f € Hy. Furthermore we get P,af =0 for all a € A,
hence Cf + Af C Hy is an invariant subspace. So f = 0. O

5.2.22 Proposition. (E,F) with the vectors Q := P,,Z := w is a GNS-pair of the

functional p(a) := P,aw.

Proof. = is quasi-cyclic by in Definition [5.2.20[and €2 is cyclic by definition of . We

have
(Q,aE) = Pym(a)w = ¢(a)

for all a € A. O
On the other hand

5.2.23 Proposition. Let (E,F) be a dual pair of A-modules with quasi-cyclic vectors
Q,Z. Then (m,Q%,E) a GNS-triple, where 7 : A — L(F) is the representation defined
by m(a)f :==af.

Proof. It is immediately clear that 7 is a representation and = is quasi-cyclic. Let U C Q-+
be an invariant subspace and v € U. Then (Q,u) = 0 and (Qa,u) = (Q, au) = 0 for all

a € A. Since Q) is quasi-cyclic, this shows (e,u) = 0 for all e € E, hence u = 0. O
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Notation is only listed here if it is used
in several places with the same meaning. It
can happen that a symbol has a different
meaning than listed here in a specific con-

text.

Numbers

N.oooooo natural numbers 1,2,... [154]

No.oooooe N U {0}
Qu..... nonnegative rationals, with 0

Ri.oooiinn. nonnegative reals, with 0

Categories f.)

Set................... category of sets
FinSet .................... ~ finite ~ [0
Vect........ category of vector spaces
FinVect ...... ~ finite-dimensional ~ [16]
Hilb....... category of Hilbert spaces
FinHilb ...... ~ finite-dimensional ~ [I7]
Alg.............. category of algebras
Alg, ...... category of unital algebras
Alg.......... category of x-algebras

*x-Alg, ...category of unital x-algebras
AlgQ...... category of algebraic quantum
probability spaces [I7]
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Roman

Aro Ay K- KA,
Ao inductive limit of (A)es
Ao inductive limit of (A;)reF,
Ao inductive limit of (Ay)seF.
DT canonical map A, — A;
E..... unit object of a tensor category
el convolution exponential
Fooo set of all factorizations
Feooooil set of factorizations of ¢
Frooor . set of refinements of 7
it canonical map A; — A
L.o.................. generator of (ju);
Lo left unit constraint
Mor................. set of morphisms
Obj..... class of objects of a category
T right unit constraint
S antipode of a Hopf algebra
St deformed antipode
U()eoinnnnn. set of invertible elements
Greek

Qo associativity constraint
B braiding
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B - braiding of m and n strings
O counit morphism [27]
AP n-fold comultiplication
Agtoviniiin... coproduct morphism [27]
ZSJ ...coproduct morphism of (A)tes
G inclusion A; — A1 X Ay
Apooooo . comultiplication on B®™
Ao comultiplication on B& B [44]
7 deformed multiplication
p™ multiplication of n factors
Dy isomorphisms of a

trivial deformation B2

o generator of (S;);
T flip Vi®@Vy = Vo @V
Symbols

L linear dual of a vector space
X~ ... Cartesian/word system (X;)ies [96]
HS ... ... subproduct system (Hy)¢es m
0 . ... Hochschild coboundary operator
Ho cardinality of a set
L] finite set {1,...,k}
TP(n)......... set of tuple partitions [128
TP(e) .oooovn... ~ compatible with ¢ (128
[-]. . smallest integer above (100
-]t biggest integer below [100

o] length of a tuple/word
[ free product of algebras

II ... free product of homomorphisms

— = [—
[\ [\ I N ]
Ne) oY Lot

) (r, s)-product

=

e concatenation [30

P convolution [44]
Ko deformed convolution [54]
0% J vector space or Hilbert space
tensor product
Koo general tensor product
3 universal product
<...cancellative abelian monoid order
<o refinement order on F;
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