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Abstract

Additive deformations of bialgebras in the sense of Wirth are deformations of
the multiplication map of the bialgebra fulfilling a compatibility condition with the
coalgebra structure and a continuity condition. Two problems concerning additive
deformations are considered.

With a deformation theory a cohomology theory should be developed. Here a
variant of the Hochschild cohomology is used. The main result in the first part
of this paper is the characterization of the trivial deformations, i.e. deformations
generated by a coboundary.

When one starts with a Hopf algebra, one would expect the deformed multipli-
cations to have some analogue to the antipode, which we call deformed antipodes.
We prove, that deformed antipodes always exist, explore their properties, give a
formula to calculate them given the deformation and the antipode of the original
Hopf algebra and show in the cocommutative case, that each deformation splits into
a trivial part and into a part with constant antipodes.

1 Introduction

Deformations of algebras are closely related to cohomology as Gerstenhaber showed in
his papers [4] and [5]. Suppose that A is an algebra and (u):>o a family of associative
multiplications on A, which can in any sense be written in the form

pi(a®b) = p(a®b) +tF(a®b) + Ot?),

where pg = p is the original multiplication of the algebra. Writing down the associativity
condition for p; and comparing the terms of first order yields that

WEFa®b)@c)+ F(ula®b) ®@c) =pua@ Fb®c))+ Fla® ub®c))
and after rearranging
aF(b®c)—F(ab®c)+ Fla®be) — Fla®b)e =0,

so the infinitesimal deformation F' is a cocycle in the Hochschild cohomology associated
with the A-Bimodule structure on A given by multiplication.

Additive deformations were first introduced by Wirth in [10] as a generalization of
Heisenberg algebras. Given a finite dimensional complex vector space V with an al-
ternating bilinear form s (if s is nondegenerate, this is a symplectic form, whence the
letter s) one can form the Heisenberg algebra H, := T'(V)/I,, where T'(V) = &, , V®"
is the tensor algebra over V and I, is the ideal generated by elements of the form
v w —w® v — s(v,w), so that s becomes the commutator in the algebra Hs. It is
clear, that Hy =: H is the symmetric tensor algebra over V and it can be shown that
the family H;, t € R can be identified with a deformation of the symmetric algebra, i.e.
there are invertible linear mappings @, : H;s — H and we get a family (p;)ser of multi-
plcations on H (see [10] and references therein). Setting in particular V the vectorspace



with basis {a, a*} and s(a,a’) = h the obtained algebra is the algebra of the quantum
harmonic oscillator. In [7] Majid just calls this a bialgebra like structure. It is in fact an
example of an additive deformation in the following sense.

An additive deformation of a bialgebra B is a familiy (u+):er of multiplications, which
turns B; = (B, ut,1) into a unital algebra (1 is the unit element of the original algebra
B) such that A : Byys — B; ® By is an algebra homomorphism and which satisfies some
continuity condition (see Definition 1). Additive deformations are in 1-1-correspondence
to commuting normalized 2-cocycles in the Hochschild cohomology associated with the
B-Bimodule structure on C given by the counit, i.e. a.A\.b = 6(a)A§(b). Here a cocycle
L is called commuting, if L % u = p* L and it is called normalized, if L(1 ® 1) = 0 (see
Theorem 1).

Wirth also showed in [10], that a Schoenberg correspondence holds for additive defor-
mations. In [8] and [3] quantum Lévy processes on additive deformations are introduced,
so additive deformations are of interest in quantum probability.

In the present paper we have two goals. First we wish to introduce a cohomology, such
that we have a 1-1-correspondence between additive deformations and all cocycles. This
also gives a concept of trivial deformations, i.e. deformations generated by a coboundary.
We give a characterization of these trivial deformations. The second goal is to describe
additive deformations of Hopf algebras. When one starts with a Hopf algebra, one would
expect the deformed multiplications to have some analogue to the antipode, which we
call deformed antipodes. We prove the existence of such deformed antipodes and describe
their behaviour.

In Section3 we introduce a cohomology, such that the generators of additive de-
formations are exactly the 2-cocycles. This is done by requiring each m-cochain to be
normalized and to commute with £, the multiplication map for n factors. One has to
show that this is a cochain complex, explicitly, that dc is normalized and commuting if
c is. The same can be done for x-deformations of x-algebras.

Once the cohomology is established the question is, what kind of deformations are
generated by coboundaries. It is shown, that those deformations are of the form

pe=Propo (Pt @)

where the ®; constitute a pointwise continuous one parameter group of invertible linear
operators on 3 that commute in the sense that

When L = 0% is the generator of the additive deformation, then ®; = (id ®ei¢) is the
one parameter group of operators.

The second section of the paper discusses additive deformations of Hopf algebras.
Deforming the multiplication of a bialgebra B also gives a deformed convolution product
for linear maps from B to B:

Axi B:=p0(A® B)o A,

where (p¢)ier is a deformation of the multiplication map p of B. If B is a Hopf algebra,
i.e. there is an antipode S, which is the convolution inverse of the identity on B w.r.t.
*=po(-®-)oA, it is quite natural to ask, whether there are also deformed antipodes
S;, which are convolution inverse to the identity map w.r.t. x; and if they exist, what
properties they have. Such a deformation is called a Hopf deformation.

In a Hopf algebra the antipode S is an algebra antihomomorphism and a coalgebra
antihomomorphism, i.e.

Sopu=po(S®S)or
AoS=70(S®S5)0cA.

Similar properties hold for the deformed antipodes S; of a Hopf deformation. We can
prove

Stop—y=poTo (S ®S5) (1)
AoSt+T:(St®ST)OTOA' (2)



Applying 6 ® § to (2) we get
50 Sy = ((005) @ (605,))oro A= ((§05,) @ (505))0 A,

i.e. § o S; is a convolution semigroup w.r.t. x = (- ® ) o A. So one would like to prove,
that this semigroup has a generator, so that the S; are of the form

S =Sxe . (3)

To get a hint, how to find o, we assume for the moment, that ¢ o S; is differentiable
in 0 and define

d
oc:=— —005;
dt =0

Then we can apply 0 to (3) and differentiate to get
Lo(S®id)oA—oc=Lo(id®S)ocA—-0c=0
or after rearranging
c=Lo(S®id)ocA=Lo(id®S)oA. (4)

In fact we will prove, that every additive deoformation of a Hopf algebra is a Hopf
deformation and (3) and (4) give a formula for the deformed antipodes.

In two special cases the structure can even be better understood. In the case of a
trivial deformation it is easy to see, that

StZCDtOSO@t

is another way to find the deformed antipodes. Differentiating this also gives a second
formula for the generator

o=—9p—1obl.

If the bialgebra B is cocommutative we show, that every additive deformation splits in
a trivial part and a part with constant antipodes. Applying ¢ to (1) and differentiating
yields

—copu—L=Lo(S®S)oT—0®I—I®0

or after rearranging
L+Lo(S®S)or=0Q@0c—copu+0c®4d=00.
So L can be written as

L:%80+%(L—LO(S®S)OT)

~—
::Ll ::LQ

and if B is cocommutative the second part corresponds to constant antipodes.

2 Notation and Basic Definitions

All vector spaces considered are over the complex numbers, denoted by C. The algebraic
dual of a vector space V is denoted V' := {¢ : V — C | ¢ linear}. The tensor product ®
is the usual algebraic tensor product. If V is a vector space we write

V=Y R0V
N———

nx
for n > 1 and V®Y .= C.

A bialgebra (B, u,1,A,d) is a complex unital associative algebra (B, u, 1) for which
the mappings A : B — B® B and ¢ : B — C are algebra homomorphisms and satisfy



coassociativity and counit property respectively. A Hopf algebra is a bialgebra with an
antipode, i.e. a linear mapping S : B — B with

po(id®S)o A =15 = po (S®id) o A.

A x-bialgebra is a bialgebra with an involution, i.e. (B, u,1,x*) is a *-algebra and A, § are
x-homomorphisms. If B is a #-bialgebra, an involution on B ® B is given by (a ® b)* =
a* ®b*. A =-Hopf algebra is a Hopf algebra which also is a *-bialgebra.

) (2)

We use Sweedler’s notation, writing Aa = ZZ:o a,(cl ®ay’ =: aq) @ a(zy and the

notations x(™ : B®" — B, A(™ . B — B&”»

O\ = A1 A0 =5
p ) = o (id @p™) A — (id@AM™) o A,

The Sweedler notation for this is
AMg = A1) @ @ a(p)-

With B also each B®™ is a bialgebra in the natural way. We frequently use the
comultiplication on B ® B, which we denote by A and which is defined by

Ala®b) = an) @by @ ag) @by,

ie. A= (id®T®id) o (A ® A). The counit of B® B is just d ® 4.

If (C,A) is a coalgebra and (A, m) is an algebra we define the convolution product
for mappings R, S : C — Aby RxS :=mo (R®S)oA. In our context C and A are
usually tensor powers of the same bialgebra B.

A pointwise continuous convolution semigroup is a family (¢;):>0 of linear mappings
¢ : B — C such that

® Vi *x Ps = Pits
o o) =% 5(b) WbeB

Note that 0 is the unit for the multiplication x on B’ (This is exactly the counit property).
It follows from the fundamental theorem for coalgebras, that for a pointwise continuous
convolution semigroup there exists a generator v, which is the pointwise limit

dt =0 t—0 t
and for which we have
Pt = eilp-

Cf. [2] section 4 for details.

Definition 1. An additive deformation of the bialgebra B is a family (1):>0 of mappings
ut : B® B — B such that

1. for each t > 0 (B, ut, 1) is an unital algebra

2. po=p

3. Ao pyys = (@ ps) o (id®r ®id) o (A ® A) (7 denotes the flip on B ® B)

4. the mapping t — Jop, is pointwise continuous, i.e.d o =9, dopu = d®J pointwise

5. if B is a x-bialgebra and for each ¢ > 0 (B, i, 1, %) is a unital *-algebra, we call the
deformation an additive deformation of a *-bialgebra.



Theorem 1 (Cf. [10]). Let (ut)i>0 be an additive Deformation of the bialgebra B. Then

L= % exists pointwise and we have for a,b,c € B,t >0

1.y = pxett

2. uxL=Lx%u ’Lis commuting’

3. L(1®1) =0 'L is normalized’

4. 6(a)L(b®c) — L(ab® c) + L(a ® bc) — L(a ® b)d(c) = 0.
If (ue)e>0 is a *-bialgebra deformation, then

5. Lb®c) = L(c* ®b*) L is hermitian’

also holds.
Conversely, if L : BR B — C is a linear mapping, which fulfills conditions 2,3 and /
(in case of x-bialgebra also 5), than the first equation defines an additive deformation on

B.

3 Cohomology of Additive Deformations

3.1 Subcohomologies of the Hochschild cohomology

A cochain complex (ccc) consists of a sequence of vector spaces C' = (C,)nen and linear
mappings 9, : C,, — Cjp41 such that 0,41 09, = 0 for all n € N. The elements of
Z,(C) = kern 9,, are called (n—)cocycles, the elements of B,,(C) = im9,_; are called
(n— )coboundaries and the vector-space H,,(C) = Z,(C)/B,(C) is called n-th cohomol-
ogy. A sequence D = (D,,)nen is called sub-cec, if D,, C C,, and 9,,D,, C D,, 41 for all n.
Then ((Dn)neN, (an|Dn)n€N) is again a ccc and we have:

1. The cocycles of D are exactly the cocycles of C, belonging to D, i.e.

Zn(D) = Zn(c) N Dy,

2. each coboundary of D is a coboundary of C, i.e.
B,(D) € Bn(C) N Dn,
3. equality holds, iff the mapping H, (D) — H,(C), f + Bn(D) — f + B,(C) is an
injection,
4. If D, E are sub-ccc’s, then (D,, N E,),en is a sub-cce.

Points 1,2 and 4 are obvious, while 3 follows from the observation, that the kernel of the
given mapping is exactly B, (C) N D,,.
For an algebra A and an A-bimodule M we define

C, = Lin(A®", M)

One can show, that together with the coboundary-operator

anf(ah s aan-‘ra) =

n

Cll.f((lg, . ,an+1)+2(—1)i f(al, ey aiai_H, ey an+1)+(—1)”+1 f(al, . ,an).an_,_l

i=1



this is a ccc. Especially for A = B a bialgebra and M = C the B-bimodule given by
a.A.b=0(a)Aj(b) for A € C and a,b € B we have

anf(ala LR a’n+a) = 5(a1)f(a27 AR an+1) + Z(_l)l f(ala sy QA1 an+1)
i=1

+ (_1)n+1 f(al,... ,an)é(an+1). (5)

The generators of additive deformations are normalized commuting cocycles, so it is
natural to define

N ={feC,|fa®") =0}
o) = {f €Cy | fru™ :u(”)*f}

If B is a *-bialgebra the generators are also hermitian. We define for f € C),

flan@ - @an) = fla; © - @aj)

and set

~
I

{rec.
{f ey

F f}, if [

F —f}, if [2] even, ie. n=0,3,4,7,8,...

W odd, ie. n=1,25,6,...

I3

CcH =

~
I

Proposition. Cr(LN), C,(LC) and C’le) are sub-ccc’s of C,,.
Proof. We only need to show, that 9% € O for = N, C, H.

N: Let f € OV, ie. f(1®") = 0. Then

n

DFAP D) = 6(2)F %) + 3 (~1)F FAP) + (1) F@ES(E) = 0

i=1
C: For f € C’,(LC) we get
8f*lu(n+1) —

(5 ®f+ Z(—l)kf o (idp—1 Op @ idp_z) + (-1)" T f @ 5) & D).
k=1

Next we show, that each summand commutes with p under convolution:
O f)*p" (a1 ®- - @ ans1)
— 5a)f (o0 00 aly) o ..o,
s (@ @all) o a2,
=af (aéQ) ®--® afi)rl) aél) . aﬁ}jl as fxp™ =p™ & f
= agl) ... a511-)-15(a§2))f (agQ) R ® af_i)_l)
=p" % (6@ (a1 @+ @ ang).
Analoguesly we see that

(f@8) % p*) = (D o (F @ 5).



For the remaining summands we calculate

(f o (idx—1 ®p @idp ) % p " (a1 @+ @ ap 1)
1 1 1 1 2 2 2 2
= (Ve o @) @ wal) ) ol ol el

f( 1)® ®(akak+1)(l)®”'®aSJ)r1) (2)' -(akak+1)(2)~ SJ)A

(as A is an algebra-homomorphism)

=/ (a(lz) ® @ (apars1)? @ - ®aﬂl) oV (apare )Vl
(as f*‘u(n) = u(n) *f)
= M(n+1) *x (f o (idp_1 @p ®@idy_x)) (a1 @ -+ @ Any1)-

H: Let f: +f. For n odd, we get

Of(aty- . sans1) = 0f(ahsry-- - ay) = d(ah ) f(ah,- .. af)

+Z V)=t fad g, algal, e a}) + flag, - a3)d(a])

n

= (5(@1)]7(@, ey CLn+1) + Z(—l)z f(al, ey QA4 1y ey an+1) + f(al, e ,an)é(anH)

i=1
= :l:af(ala SRR an-l—l)
and for n even
0f(ar,... ans1) = 0f(afy, .. a7) = 6(aq ) f(a, ., af)

+Z n+1 Zf +17"-7a?+1a?7'--7a>1k)_f(a:+1""’a;)5(aik)

= —6(a1)flaz. ... ant1) = D (=) flar,... aiait1, ..., ans1) + flar,...,an)0(ans1)

i=1

=Fof(a,...,ans1)-

Since the intersection of sub-ccc’s is again a sub-ccc we have

Corollary. C’,SNC) = C,(LN) N C,(,C) and C,(LNCH) = Cy(lNc) N C’,SH) are ccc’s with the
coboundary-operator (5).

3.2 Characterization of the trivial deformations

For an additive deformation of the bialgebra B the generator L of the convolution-
semigroup (6 o f¢)¢>0 is an element of ZéNC) and conversely if L € ZQ(NC) we can define
an additive deformation via p; := pxell. In the case of a *-Bialgebra the generators are

exactly the elements of ZéNCH). We wish to answer the question which deformations are

(NC) . BéNCH)

generated by the coboundaries, i.e. the elements of B, respectively.



Theorem 2. Let B be a bialgebra, L € BéNC), L = 0y with ¢ € CfNC). Then (®y)>0 is
a pointwise continuous semigroup of unital algebra isomorphisms ®; : (B, ) — (B, p),
for which

(P ®id) o A = (id®@P;) o A for allt >0, (6)

(NCH)

where ®, = id e’ and pe = pxetl. If B is a *-algebra and L € B, , then we can

choose ¢ € CfNCH) and the ®; are x-algebra isomorphisms.
Conversely, if (®,)i>0 is a pointwise continuous semigroup of invertible linear map-
pings ¢ : B — B, such that ®,(1) = 1 for all t > 0, and which fulfills (6), then
Lt ::q);louo(q)t@q)t)
defines an additive Deformation of B with generator L &€ BéNc), If B is a x-algebra
and the ®; are hermitian, then we get an additive deformation of a *-bialgebra and
L e BN,

Before we prove this, we recall the following Lemma. When B is a bialgebra and
¢ : B — C a linear functional on B we define

R,:B— B, R,:=id*p = (id®y)oA.
Lemma 1. For ¢,¢ € B’ the following holds:
1. R0 Ry = Ryyy
2. 00R, =
3. Rsgp = id®R,
4. Rogs = R, ®1id
5. poRyoy=Roopn
Note that the last three equations are between operators on the bialgebra B ® B.

Proof. This is all straightforward to verify. O

Proof of Theorem 2. Let B be a bialgebra and L € BSNC) a coboundary, L = 0v with

(NS C’{NC). We write ¢; := et¥ and note, that this is a pointwise continuous convolution
semigroup and the ¢; are commuting (i.e. s x id = idxp;) since ¢ is. Then the
mappings ®; = R, yield a pointwise continuous semigroup of linear operators on B and
we only need to show, that they are unital algebra isomorphisms. It is obvious, that
(1) = 1, since (1) = 0, and P, 0 P_; = id, so P; is invertible. We have to prove that
D, : (B, ) — (B, pe) is an algebra homomorphism, i.e.

pe=pxell =0 opo (P ®Py).
From

ell — etdv

_ (0@ —thoutPp®9)
= e*

- e:twou * ei5®w * ei¢®6

= (p—top)* (0@ @) * (Pt ®9),
where we used that § ® ¥, ¥ o p and ) ® § commute under convolution, we conclude

p = pxeldV

— (n )0

= poR v

=110 Ry _0p)x(5000)%(: )

=poR, ,on0(id®R,,) o (R, ®id)
=R, ,opo (R% ® Rw)
:‘I)t_lo,uo(q)t(@q)t).



It is clear that the ®; are x-homomorphisms in the *-bialgebra case.
Now let (®¢):>0 be pointwise continuous semigroup of invertible linear mappings with
®,(1) =1 and (P; ®id) o A = (id ®P;) o A. Then we write p; = § o &; and observe that

1. (¢i)i>0 is a pointwise continuous convolution semigroup, so that there is a ¢ €

Cl(NC) with ¢, = eiw. Indeed

=((00®)®(50®s))0 A
=(0®0)o (P ®id) o (Id@Ps) 0 A
=(0®0)o (idedP;)o (Ps®@id) o A
=(0®0) o (ild®@Piys)0 A

= Pt+s

Pt * Ps

and ¥(1) = 0,9 xid = idxy follow from (1) = 1 and ¢; x id = id*p; via

differentiation. If the ®; are hermitian, ¢ is also hermitian, i.e. ¥ € C’fNCH).

2. &y =R,,, as

Ry, = (id®(0 0 @) 0 A
(id ®6) o (Id ®@D;) 0 A
(id ®8) o (o, ®id) o A

D,.

So the first part of the theorem tells us, that L = 9y € BéNc) is the generator of an

additive deformation, for which
pe =P, opo (B @ By).

If B is a %-algebra and all the ®, are hermitian, then so are all the ¢, and via differ-
entiation also 1. That means L € BSNCH) and the deformation is a deformation of
x-algebras. O

4 Additive Deformations of Hopf Algebras

4.1 Definition of Hopf deformations and general observations

Lemma 2. Let B be a Bialgebra and L generator of an additive deformation. Then we
can define
. tL
e = e K

for allt € R (i.e. not only fort>0) and
AIBt+s —>Bt®Bs
is an algebra homomorphism for all s,t € R.

Proof. 1t follows from Theorem 1 that —L is the generator of an additive deformation,
so for ¢t < 0 the definition of y; yields a multiplication on B. We calculate

Aopprs =Ao(p®e(t+s)L)oA
= (Aow) @ et +5)L) oA
= (pepedcl®el)o AW
=(noeloupel)o AW
(
(

(ux e tl) @ (uxexsl)) oA
= (1t ® ps) o A



From now on we always view an additive deformation as a family of multiplications
indexed by all real numbers.

Definition 2. An additive deformation is called a Hopf deformation, if for all ¢ € R
there exists a linear mapping S; : B — B such that

pro (S ®id) o A = pp o (Id®Sy) o A = 41. (7)

For ¢ = 0 this of course implies, that B is a Hopf algebra with antipode S = Sj.

Many proofs in this section follow a common path. To show an identity a = b, we
find an element ¢ and a convolution product ¢ such that a o c = co b = 0 where ¢ is the
neutral element for ¢. Then we conclude

a=aod=aocob=0ob=0b

and hence

a=b=c""!

Let B be a bialgebra with additive deformation (u)ier and p; = p * elX for a nor-
malized, commuting cocycle L.

Theorem 3. If a family S; with (7) exists, it is uniquely determined and the following
statements hold:

1. 5(1) =1
2. S;: B_; — By is an algebra antihomomorphism, i.e.

Spop—y=po(Se®Sy)or (8)

3. A0Sy, = (5, ®8S,)oToA
4. If B is cocommutative, i.e. A =710 A, then
StoS_;=id
forallt e R

Proof. (Uniqueness) The uniqueness statement is clear, as (7) states, that S; is the
two-sided convolution inverse of the identity mapping on B w.r.t. *¢.

1. This is clear, since
1=p0 (S ®id) o A(L) = Se(1).

2. We show, that both sides of (8) are convolution inverses of p; w.r.t. *:
(St o p—t) *t pre = pp o (Sp ®1id) o (p—y ® p1g) o A
=po(Si®id)oAopu=95opl =§®i1
and

pie e (e o (St ® S¢) o7) (@ @)
— 1o (e @ i) o (ida ®((S, © 5,) 0 7)) 0 A (a @ b)
= Iu,z(f)(a(l) X b(l) (24 St(b(g)) & St(a(g)))
= 0(b)ut(aq)y @ Si(a)))
= 6(a)o(b)1

10



3. For linear maps from the coalgebra (B, A) to the algebra (B; ® B;.) we have a convo-
lution ¢ defined as

AoB = (ut® ) o(id®r®id)o (A® B) o A.
We show that both sides of (2) are inverses of A w.r.t. o:
(Ao Siir) oA = (1t @ pr) o (Id®T®id) 0 (A ® A) 0 (Styr ®id) 0 A
=Ao s 0 (S, ®id)c A=5A(L)=01®1
and
Ao((8.@5,) 070 A)a)
= (e @ ) 0 ([d @7 @1d) o (idy ®S; ® 8,) o (idy ®7) 0 A (a)
= (1t @ pr)(aqy ® Si(agy) @ a@) @ Sr(a)))

pe(ay ® Si(a))) ©1
d(a)1®1

4. Let A =70A. Then

(StoS_y)*x Sp=pr0(Si® 8o (S_y®id)o A
=Siopu_roro(S_;®id)o A
=Siop_to(id®S_t)oTo A
=65:(1) =41

4.2 The deformed antipodes for trivial deformations

Theorem 4. Let B be a Hopf algebra and (ui)icr a trivial deformation,
ut:q)touo(q);l@q)t_l),

and
P, = id xe'?

for a commuting, normalized linear functional . Then
St =®;0 So P, = S*ei(wos+'¢1)
is the deformed antipode, so (ut)ier s a Hopf deformation.

Proof. All we have to show is that
pyo (S ®id) o A = py o (Id®Sy) o A = 41,
for S; =®;0S50®d; and S; = S * ei(wos+w). In the case S; = ®; 0 S o P, we calculate

pio(S;®id)o A=®opo (P, ' @8, ) o ((®r080®;)®@id)oA
Sod, ®®;')oA
S@®; ) o (®, ®id)o A
=d,0p0(S®@P; ) o (idad;) oA
=®;opo(S®id)o A

=0P,(1) =41

=®,opo
=®,opo

—~ o~~~

and the second equality is proved in the same way.

11



Now we consider the case S; = S ei(wos+w). We first recall that ¢ ist commuting
and L = —0 is the generator of the additive deformation. Next we observe that

(YoS)+S=(p@id)e(S@5)oA
= (¢ ®id)o AP0 S
=(Yp®id)oAoS
(idey)o(S®S)o A
=S % (o).

With this in mind we calculate
pir o (Sy @id) o A(a) = (@ ell) o Alel (S(agw)))el (a)S(ag) @ aw))

= el (S(a)))el! (ag))et™ (S(ag)) ® a)
=d(a)
since
" (S(aqy) ® aez)
= e (S(aw) ® a))el*(S(ag) @ ag)e; " (S(ag)) ® age))
= ;" (S(a)))exr ¥ (ag)-

Again the second equality is proven similarly.
One can also prove this by writing ®; = (eiw ®id) o A in Sy = ®; 0 S o ®; and using
that S, and ¥ o S all commute with each other. O

It is still possible that the deformed antipodes are constant. We have

Theorem 5. Let L be generator of a trivial additive deformation. Then it has constant
antipodes, i.e. Sy = S Vt € R iff

d,08=S80d_,.
for allt € R.
Proof. This follow directly from S; = ®; 0.S o ®; and @;1 =d_,;. O]

4.3 The deformed antipodes in the general case

We want to show, that every additive deformation of a Hopf algebra is a Hopf deformation
and give a formula for the deformed antipodes.

Lemma 3. We have
Lo(S®id)oA=Lo(id®S)oA.

Proof. From dL = 0 it follows that
0= 8L(a(1) & S(a(g) & CL(3))
= d(aqy)L(S(a(2) ® agz)) — L(aq)S(a) @ a())

+ L(aq) ® S(agae)) — L{ag) @ a@))d(a))
= L(S(aq)) ® ag)) — Llaq) ® S(az)-

O

Definition 3. Let B be a Hopf algebra and L generator of an additive deformation.
Then we set
o:=Lo (id®S)oA.

Lemma 4. o is commuting, i.e.

(c®id) o A = (id®c) o A.

12



Proof. First we observe that

L(ay ® S(a))) = Laq) ® S(awy))a)S(as))
= L* p(aq) ® S(az)))
= p*x L(agy @ S(ag))
= L(ag) ® S(a)))aq)S(aw)-
Now we calculate
(c ®id) o A(a) = U(a(l))a(g)
= (Lo (id®S) o A)(a()) a2
= L(a) ® S(ag)))a
= L(a@z) ® S(ag)))an
= aq)L(a@) © S(ag))
= (id®0o) o A(a).

)
yS(ag)acs)

Lemma 5. The following equations hold:
e "o (id®S)o A =0o*"
o el o(id®S)o A =elo

Proof. We prove this by induction over n. For n = 0,1 the proposition is clear. We
calculate

L™ aqy @ S(a)) = aa
= L( aa) ®
= L{ag) ®

(aqy ®

(
(

a(1)

S(a(4))) (
5(0(3))) *n(a@))
Sani2)))Llap) ® Slas))) - Llagn ® S(a@ni1)))
ag) @ as))

a(1))a) @ ags))

(
agy)o(ag))
*n+1( )

an O_*n(

I
=

O_*’I’L (

I
QQ

The second equation follows easily now:

el o (id@S) o A = Z L*” o ({d@S) o A = Zt n_ olo,

nO n=0
O

Theorem 6. Let B be a Hopf algebra and L generator of an additive deformation. Then
it is a Hopf deformation and the deformed antipodes are given by

St =S5% e:t”
Proof. We have to check (7), so we calculate

p o (iId®S;) 0 Aa) = el x p(aqy © S(ag))es (a(3))

= ¢ (aq) ® S(aw))ag)S(a@) )es 7 (ag)
=" (an ®S(a(2))) er "7 (a@)1
= et (a)ex " (ag)1
= §(a)l.
The second equality in (7) follows in the same manner. O

13



4.4 Constant antipodes in the cocommutative case

Lemma 6. We have
dc=L+Lo(S®S)oT

Proof.

do(a®b) *5( )o(b) —o(ab) + o(a)s(b)
( a)L(S(b)) ® b)) — L(S(a@)b)) ® a@2)bz))
(S(a(1 X a(2) )5(b)
( a)L(S (b)) ® biz)) — L(S(b(1))S(a(1)) @ agz)bz))
+ L(S(a@)) @ ag))i(d)
L(S(b) @ S(a)) — L(S(aq)) ® a)b) +6(b)L(S(a)) ® ac))
L(S(b) ® S(a)) + L(a® ),

where in the fourth equality we used

0=0L(S(bn)) ® S(aq)) ® a)bz))
= 5(b(1 JL(S(aq)) ® a@)be) — L(S(bw))S(aq)) @ a@)be))
L(S(b) )® S(aqy)ag)be) — L(S(ba)) @ S(aq)))d(a)be))
( (aq1)) ® agz)b) — L(S(b))S(aq)) ® a)b())
+0(a)L(S(b)) ® bez)) — L(S(b) ® S(a))

and in the last equality

0 =0L(S(an)) ® a) ®b)
= d(aq))L(ag) ®b) — L(S(aq))a) ®b)
+ L(S(a(l)) ® a(g)b) — L(S(a(l)) ® a(g))é(b)
=Lla®b) —(a)L(1 ®D)
+ L(S(aq)) ® a@)b) — L(S(aq)) ® a2))é(b).

Theorem 7. Let B be a Hopf algebra, L generator of an additive deformation.
If c =008, then

~ 1
L=L-— 560’
is the gemerator of a Hopf deformation with constant antipodes, i.e.
pro(S®id)oc A=16 =iz o (Id®5) 0 A

Proof. We can write

L:%(L‘FLO(S@S)OT)—‘F%(L—LO(S@S)OT)

=0 =Ly

Then we have Ly = 0% and 02 = Ly o (S®id) o A =0, since

0o(S®S)oTo(S®id)oA=Lo(id®S)o(S®S)ToA
=Lo(S®id)oAoS

=cgoS=o.
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Lemma 7. If B is cocommutative, we have
oc=00S5.
Proof. We calculate

—Lo(S®id)oAoS
=—Lo(S®id)o(S®S)o AP
~Lo(5?®8)o0 A

—Lo(

Lo
Lo(id®S)o A

[¢]

=o.
O

So when deforming a cocommutative Hopf algebra one can always find an equivalent
deformation, such that S; = S for all t € R.

5 Examples

Ezample 1. In this example we realize the algebra of the quantum harmonic oscillator as
the essentially only nontrivial additive deformation of the x-Hopf algebra of polynomials
in adjoint commuting variables C [z, z*] with comultiplication and counit defined via

Al)=z'®@14+1®a° and 6(z€) =0,

where € € {1, *}.

Proposition. Let £ be an abelian Lie algebra, i.e. [a,b] = 0 Va,b € £ and consider
the universal enveloping Hopf algebra U(L). In the case where L is of finite dimension

n this is just the polynomial algebra in n commuting indeterminates. For two addi-

tive deformations ugl), u?) of U(L) with generators Lj, Ly the following statements are

equivalent:
1. L1 — Ly is a coboundary i.e. the two deformations differ by a trivial deformation
2. ,ugl)(a®b—b®a) :,ugz)(a@b—b@a) forall a,be L,t e R
3. Li(a®@b—b®a)=La(a®@b—b®a) forall a,b e L,t € R
Proof. For any additive deformation of U (L) we have
pi(a®b) = px el (a@b)

=p®ef@ebelel+aleleb+10b0a1+1R1®a®b)
=ab+tL(a®b)1
as L is normalized. From this the equivalence of 2 and 3 follows directly and to show
that 1 is equivalent to 3 it suffices to show that L is a coboundary iff L(a®b—b®a) =0

for all a,b € L, since we set L = L1 — Lo.
So let L be a coboundary, i.e. L = 0v. It follows that

Lla®b—b®a) = —y(ab—ba) =0,

since L is abelian.

Now let L(a®b—b®a) =0 for all a,b € L. Choose a basis of £ and introduce any
ordering on this bases. Then expressions of the form a; ...a, with a; <--- < a, form a
basis of U(L) define

L(ay...an-1®a,) witha <---<a,ifn>2

0 else.
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We write L = L + oY and [y = p* eiz. Now an easy induction on n shows that
~(n)

gy (ay...an) = aj...a, for ag < -+ < a,. But from the equivalence of 2 and 3 we
know that p; is commutative so we get u; = p forallt e R. So L=L+ 0y =0and L
is a coboundary. O

It follows that a deformation of C [z, z*] is determined up to a trivial deformation by
the value of L(z @ 2* —2* ®y) = p1(x @ 2* —2* ® ). In case of a *-deformation L must
be hermitian, so this is a real number. Choosing different constants here corresponds to
a rescaling of the deformation parameter ¢ so we assume L(z ® 2* — 2* ® y) = 1. There
is also a canonical representative for the cohomology class of the generator for which the
antipodes are constant. Choosing L(z ® z*) = —L(z* ® z) = § one gets o = 0.

One gets a well defined *-algebra isomorphism from the algebra generated by a,af
and 1 with the relation aa’ — afa = 1 to the deformation of the polynomial algebra
(C[x,2*], 1) by setting ®(a) = z and ®(a’) = 2*. In this sense the quantum harmonic
oscillator algebra is the only nontrivial additive deformation of the polynomial algebra

in two commuting adjoint variables.

In the last three examples we take as Hopf algebra the group algebra CG over a group
G. We identify linear functionals on CG* with functions on G* for k € N. For grouplike
a,b € B we have
pe(a @ b) = et @®b)gp,

Ezxzample 2. We saw that in the cocommutative case it is possible to split an additive
deformation into a trivial part and a part that corresponds to constant antipodes. But
it is still possible that the part with constant antipodes is trivial as this example shows.
Consider the 2-coboundary defined by

L(m,n) = m*n +mn?

on the group algebra of Z. In the following group elements of Z are denoted (k) to avoid

confusion with the complex number k. This is a coboundary, since L = 0¢ where

v(k) = —5h°

We also see that L(0,0) = 0 and L is commuting, so L € B™N®), Therefore it generates
a trivial deformation. The deformation is nonconstant, since

(1) ® (1) = M W(2) =2(2) £ (2) = u((1) @ (1)).

We calculate
o(k) = L((k),(=k)) =k + k> =0

for all £k € Z, so the antipodes are constant. Since the deformation is trivial we can
calculate the ®;. ,
Dy (k) = Wk = e* 'k

The second way for calculating the Sy yields
Si(k) = ®; 0 S 0 By(k) = e @y (—k) = %’ e+ (0) = (0).
So in this situation we have So ®; = ®_; 0 S.
Example 3. On Z% every d x d-matrix A with complex entries defines a 2-cocycle L via
L(k,1) := kAL

for k,1 € Z4, since the functions ((k1, ..., ka), (l1,...,la)) — k;l; define cocycles for i, j =
1,...,d, as is easily checked. These cocycles are of course normalized and commuting,
so they are generators of additive deformations on a cocommutative Hopf algebra. L is
hermitian iff A is hermitian. We want to apply Theorem 7, so we calculate

o(k) = L(k, —k) = —kAE'
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and

Q
—
7=
le—~
S~—"

I

%(—EAE + (k+ DAk + 1) — LAl
1

(kAI" + LAK")

A+Atlt
g L

I
=~ o

which gives
A— Al It
5 L
So every such cocycle is equivalent to one which comes from an antisymmetric matrix.

Lk D) = (L 500) (k1) = &

Ezxample 4. Let G be a group. then CG can be turned into a *-Hopf algebra in a natural
way by extending the map * : g — ¢! antilinearly to the whole of CG. On the group
elements the involution * coincides with the antipode S. Now let L be a generator of an
additive x-deformation, i.e. L is a normalized hermitian 2-cocycle. Then

5%(97/1) =(L+Lo(S®8)o1)(g,h)

= S(L(g.h) + L(h*4"))
= ({9, ) + T{5, )
=ReL(g,h)

and consequently

So one has to consider only the case where L is purely imaginary on the group elements.

17



References

[1] Abe, E.: Hopf Algebras. Cambridge University Press, 1980.

[2] Accardi, L., M. Schiirmann, and W. von Waldenfels: Quantum independent incre-
ment processes on superalgebras. Mathematische Zeitschrift, 1988.

[3] Gerhold, M.: Quanten-Lévy-Prozesse auf Deformationen von Bialgebren. Diplomar-
beit, Ernst-Moritz- Arndt-Universitdt Greifswald, 2009.

[4] Gerstenhaber, M.: The cohomology structure of an associative ring. The Annals of
Mathematics, 78(2):267-288, 1963.

[5] Gerstenhaber, M.: On the deformation of rings and algebras. The Annals of Math-
ematics, 79(1):59-103, 1964.

[6] Klimyk, A. and K. Schmiidgen: Quantum Groups and Their Representations.
Springer, 1997.

[7] Majid, S.: Foundations of Quantum Group Theory. Cambridge : Cambridge Uni-
versity Press, 1995.

[8] Schiirmann, M.: Lévy processes on deformations of hopf algebras. In Infinite Dimen-
sional Harmonic Analysis III, pp. 277-287. World Scientific Publishing Co., 2003.

[9] Sweedler, M.: Hopf Algebras. W.A. Benjamin, Inc, 1969.

[10] Wirth, J.: Formule de Levy Khintchine et Deformations d’Algebres. PhD thesis,
Universite Paris VI, 2002.

18



