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Abstract

Additive deformations of bialgebras in the sense of Wirth are deformations of
the multiplication map of the bialgebra fulfilling a compatibility condition with the
coalgebra structure and a continuity condition. Two problems concerning additive
deformations are considered.

With a deformation theory a cohomology theory should be developed. Here a
variant of the Hochschild cohomology is used. The main result in the first part
of this paper is the characterization of the trivial deformations, i.e. deformations
generated by a coboundary.

When one starts with a Hopf algebra, one would expect the deformed multipli-
cations to have some analogue to the antipode, which we call deformed antipodes.
We prove, that deformed antipodes always exist, explore their properties, give a
formula to calculate them given the deformation and the antipode of the original
Hopf algebra and show in the cocommutative case, that each deformation splits into
a trivial part and into a part with constant antipodes.

1 Introduction
Deformations of algebras are closely related to cohomology as Gerstenhaber showed in
his papers [4] and [5]. Suppose that A is an algebra and (µt)t≥0 a family of associative
multiplications on A, which can in any sense be written in the form

µt(a⊗ b) = µ(a⊗ b) + tF (a⊗ b) +O(t2),

where µ0 = µ is the original multiplication of the algebra. Writing down the associativity
condition for µt and comparing the terms of first order yields that

µ(F (a⊗ b)⊗ c) + F (µ(a⊗ b)⊗ c) = µ(a⊗ F (b⊗ c)) + F (a⊗ µ(b⊗ c))

and after rearranging

aF (b⊗ c)− F (ab⊗ c) + F (a⊗ bc)− F (a⊗ b)c = 0,

so the infinitesimal deformation F is a cocycle in the Hochschild cohomology associated
with the A-Bimodule structure on A given by multiplication.

Additive deformations were first introduced by Wirth in [10] as a generalization of
Heisenberg algebras. Given a finite dimensional complex vector space V with an al-
ternating bilinear form s (if s is nondegenerate, this is a symplectic form, whence the
letter s) one can form the Heisenberg algebra Hs := T (V)/Is, where T (V) =

⊕∞
n=0 V⊗n

is the tensor algebra over V and Is is the ideal generated by elements of the form
v ⊗ w − w ⊗ v − s(v, w), so that s becomes the commutator in the algebra Hs. It is
clear, that H0 =: H is the symmetric tensor algebra over V and it can be shown that
the family Hts, t ∈ R can be identified with a deformation of the symmetric algebra, i.e.
there are invertible linear mappings Φt : Hts → H and we get a family (µt)t∈R of multi-
plcations on H (see [10] and references therein). Setting in particular V the vectorspace
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with basis
{
a, a†

}
and s(a, a†) = ~ the obtained algebra is the algebra of the quantum

harmonic oscillator. In [7] Majid just calls this a bialgebra like structure. It is in fact an
example of an additive deformation in the following sense.

An additive deformation of a bialgebra B is a familiy (µt)t∈R of multiplications, which
turns Bt = (B, µt, 1) into a unital algebra (1 is the unit element of the original algebra
B) such that ∆ : Bt+s → Bt ⊗ Bs is an algebra homomorphism and which satisfies some
continuity condition (see Definition 1). Additive deformations are in 1-1-correspondence
to commuting normalized 2-cocycles in the Hochschild cohomology associated with the
B-Bimodule structure on C given by the counit, i.e. a.λ.b = δ(a)λδ(b). Here a cocycle
L is called commuting, if L ? µ = µ ? L and it is called normalized, if L(1⊗ 1) = 0 (see
Theorem1).

Wirth also showed in [10], that a Schoenberg correspondence holds for additive defor-
mations. In [8] and [3] quantum Lévy processes on additive deformations are introduced,
so additive deformations are of interest in quantum probability.

In the present paper we have two goals. First we wish to introduce a cohomology, such
that we have a 1-1-correspondence between additive deformations and all cocycles. This
also gives a concept of trivial deformations, i.e. deformations generated by a coboundary.
We give a characterization of these trivial deformations. The second goal is to describe
additive deformations of Hopf algebras. When one starts with a Hopf algebra, one would
expect the deformed multiplications to have some analogue to the antipode, which we
call deformed antipodes. We prove the existence of such deformed antipodes and describe
their behaviour.

In Section 3 we introduce a cohomology, such that the generators of additive de-
formations are exactly the 2-cocycles. This is done by requiring each n-cochain to be
normalized and to commute with µ(n), the multiplication map for n factors. One has to
show that this is a cochain complex, explicitly, that ∂c is normalized and commuting if
c is. The same can be done for ∗-deformations of ∗-algebras.

Once the cohomology is established the question is, what kind of deformations are
generated by coboundaries. It is shown, that those deformations are of the form

µt = Φt ◦ µ ◦ (Φ−1
t ⊗ Φ−1

t )

where the Φt constitute a pointwise continuous one parameter group of invertible linear
operators on B that commute in the sense that

(Φt ⊗ id) ◦∆ = (id⊗Φt) ◦∆.

When L = ∂ψ is the generator of the additive deformation, then Φt = (id⊗etψ? ) is the
one parameter group of operators.

The second section of the paper discusses additive deformations of Hopf algebras.
Deforming the multiplication of a bialgebra B also gives a deformed convolution product
for linear maps from B to B:

A ?t B := µt ◦ (A⊗B) ◦∆,

where (µt)t∈R is a deformation of the multiplication map µ of B. If B is a Hopf algebra,
i.e. there is an antipode S, which is the convolution inverse of the identity on B w.r.t.
? = µ ◦ (· ⊗ ·) ◦∆, it is quite natural to ask, whether there are also deformed antipodes
St, which are convolution inverse to the identity map w.r.t. ?t and if they exist, what
properties they have. Such a deformation is called a Hopf deformation.

In a Hopf algebra the antipode S is an algebra antihomomorphism and a coalgebra
antihomomorphism, i.e.

S ◦ µ = µ ◦ (S ⊗ S) ◦ τ
∆ ◦ S = τ ◦ (S ⊗ S) ◦∆.

Similar properties hold for the deformed antipodes St of a Hopf deformation. We can
prove

St ◦ µ−t = µt ◦ τ ◦ (St ⊗ St) (1)
∆ ◦ St+r = (St ⊗ Sr) ◦ τ ◦∆. (2)
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Applying δ ⊗ δ to (2) we get

δ ◦ St+r = ((δ ◦ St)⊗ (δ ◦ Sr)) ◦ τ ◦∆ = ((δ ◦ Sr)⊗ (δ ◦ St)) ◦∆,

i.e. δ ◦ St is a convolution semigroup w.r.t. ? = (· ⊗ ·) ◦∆. So one would like to prove,
that this semigroup has a generator, so that the St are of the form

St = S ? e−tσ? . (3)

To get a hint, how to find σ, we assume for the moment, that δ ◦ St is differentiable
in 0 and define

σ := − d
dt
δ ◦ St

∣∣∣∣
t=0

.

Then we can apply δ to (3) and differentiate to get

L ◦ (S ⊗ id) ◦∆− σ = L ◦ (id⊗S) ◦∆− σ = 0

or after rearranging
σ = L ◦ (S ⊗ id) ◦∆ = L ◦ (id⊗S) ◦∆. (4)

In fact we will prove, that every additive deoformation of a Hopf algebra is a Hopf
deformation and (3) and (4) give a formula for the deformed antipodes.

In two special cases the structure can even be better understood. In the case of a
trivial deformation it is easy to see, that

St = Φt ◦ S ◦ Φt

is another way to find the deformed antipodes. Differentiating this also gives a second
formula for the generator

σ = −ψ − ψ ◦ S.

If the bialgebra B is cocommutative we show, that every additive deformation splits in
a trivial part and a part with constant antipodes. Applying δ to (1) and differentiating
yields

−σ ◦ µ− L = L ◦ (S ⊗ S) ◦ τ − σ ⊗ δ − δ ⊗ σ

or after rearranging

L+ L ◦ (S ⊗ S) ◦ τ = δ ⊗ σ − σ ◦ µ+ σ ⊗ δ = ∂σ.

So L can be written as

L =
1
2
∂σ︸︷︷︸

:=L1

+
1
2

(L− L ◦ (S ⊗ S) ◦ τ)︸ ︷︷ ︸
:=L2

and if B is cocommutative the second part corresponds to constant antipodes.

2 Notation and Basic Definitions
All vector spaces considered are over the complex numbers, denoted by C. The algebraic
dual of a vector space V is denoted V ′ := {ϕ : V → C | ϕ linear}. The tensor product ⊗
is the usual algebraic tensor product. If V is a vector space we write

V⊗n := V ⊗ · · · ⊗ V︸ ︷︷ ︸
n×

for n ≥ 1 and V⊗0 := C.
A bialgebra (B, µ,1,∆, δ) is a complex unital associative algebra (B, µ,1) for which

the mappings ∆ : B → B ⊗ B and δ : B → C are algebra homomorphisms and satisfy
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coassociativity and counit property respectively. A Hopf algebra is a bialgebra with an
antipode, i.e. a linear mapping S : B → B with

µ ◦ (id⊗S) ◦∆ = 1δ = µ ◦ (S ⊗ id) ◦∆.

A ∗-bialgebra is a bialgebra with an involution, i.e. (B, µ,1, ∗) is a ∗-algebra and ∆, δ are
∗-homomorphisms. If B is a ∗-bialgebra, an involution on B ⊗ B is given by (a ⊗ b)∗ =
a∗ ⊗ b∗. A ∗-Hopf algebra is a Hopf algebra which also is a ∗-bialgebra.

We use Sweedler’s notation, writing ∆a =
∑n
k=0 a

(1)
k ⊗ a

(2)
k =: a(1) ⊗ a(2) and the

notations µ(n) : B⊗n → B, ∆(n) : B → B⊗n

µ(0)(λ) = λ1 ∆(0) = δ

µ(n+1) = µ ◦ (id⊗µ(n)) ∆(n+1) = (id⊗∆(n)) ◦∆.

The Sweedler notation for this is

∆(n)a = a(1) ⊗ · · · ⊗ a(n).

With B also each B⊗n is a bialgebra in the natural way. We frequently use the
comultiplication on B ⊗ B, which we denote by Λ and which is defined by

Λ(a⊗ b) = a(1) ⊗ b(1) ⊗ a(2) ⊗ b(2),

i.e. Λ = (id⊗τ ⊗ id) ◦ (∆⊗∆). The counit of B ⊗ B is just δ ⊗ δ.
If (C,∆) is a coalgebra and (A,m) is an algebra we define the convolution product

for mappings R,S : C → A by R ? S := m ◦ (R ⊗ S) ◦ ∆. In our context C and A are
usually tensor powers of the same bialgebra B.

A pointwise continuous convolution semigroup is a family (ϕt)t≥0 of linear mappings
ϕt : B → C such that

• ϕt ? ϕs = ϕt+s

• ϕt(b)
t→0−−−→ δ(b) ∀b ∈ B

Note that δ is the unit for the multiplication ? on B′ (This is exactly the counit property).
It follows from the fundamental theorem for coalgebras, that for a pointwise continuous
convolution semigroup there exists a generator ψ, which is the pointwise limit

ψ(b) =
dϕt(b)

dt

∣∣∣∣
t=0

= lim
t→0

ϕt(b)− δ(b)
t

and for which we have
ϕt = etψ? .

Cf. [2] section 4 for details.

Definition 1. An additive deformation of the bialgebra B is a family (µt)t≥0 of mappings
µt : B ⊗ B → B such that

1. for each t ≥ 0 (B, µt, 1) is an unital algebra

2. µ0 = µ

3. ∆ ◦ µt+s = (µt ⊗ µs) ◦ (id⊗τ ⊗ id) ◦ (∆⊗∆) (τ denotes the flip on B ⊗ B)

4. the mapping t 7→ δ◦µt is pointwise continuous, i.e.δ◦µt
t→0−−−→ δ◦µ = δ⊗δ pointwise

5. if B is a ∗-bialgebra and for each t ≥ 0 (B, µt, 1, ∗) is a unital ∗-algebra, we call the
deformation an additive deformation of a ∗-bialgebra.
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Theorem 1 (Cf. [10]). Let (µt)t≥0 be an additive Deformation of the bialgebra B. Then
L = d(δ◦µt)

dt

∣∣∣ exists pointwise and we have for a, b, c ∈ B, t ≥ 0

1. µt = µ ? etL?

2. µ ? L = L ? µ ’L is commuting’

3. L(1⊗ 1) = 0 ’L is normalized’

4. δ(a)L(b⊗ c)− L(ab⊗ c) + L(a⊗ bc)− L(a⊗ b)δ(c) = 0.

If (µt)t≥0 is a ∗-bialgebra deformation, then

5. L(b⊗ c) = L(c∗ ⊗ b∗) ’L is hermitian’

also holds.
Conversely, if L : B ⊗ B → C is a linear mapping, which fulfills conditions 2,3 and 4

(in case of ∗-bialgebra also 5), than the first equation defines an additive deformation on
B.

3 Cohomology of Additive Deformations

3.1 Subcohomologies of the Hochschild cohomology
A cochain complex (ccc) consists of a sequence of vector spaces C = (Cn)n∈N and linear
mappings ∂n : Cn → Cn+1 such that ∂n+1 ◦ ∂n = 0 for all n ∈ N. The elements of
Zn(C) = kern ∂n are called (n−)cocycles, the elements of Bn(C) = im ∂n−1 are called
(n−)coboundaries and the vector-space Hn(C) = Zn(C)/Bn(C) is called n-th cohomol-
ogy. A sequence D = (Dn)n∈N is called sub-ccc, if Dn ⊆ Cn and ∂nDn ⊆ Dn+1 for all n.
Then

(
(Dn)n∈N, (∂n|Dn)n∈N

)
is again a ccc and we have:

1. The cocycles of D are exactly the cocycles of C, belonging to D, i.e.

Zn(D) = Zn(C) ∩Dn,

2. each coboundary of D is a coboundary of C, i.e.

Bn(D) ⊆ Bn(C) ∩Dn,

3. equality holds, iff the mapping Hn(D) → Hn(C), f + Bn(D) 7→ f + Bn(C) is an
injection,

4. If D,E are sub-ccc’s, then (Dn ∩ En)n∈N is a sub-ccc.

Points 1,2 and 4 are obvious, while 3 follows from the observation, that the kernel of the
given mapping is exactly Bn(C) ∩Dn.

For an algebra A and an A-bimodule M we define

Cn = Lin(A⊗n,M)

One can show, that together with the coboundary-operator

∂nf(a1, . . . , an+a) :=

a1.f(a2, . . . , an+1)+
n∑
i=1

(−1)i f(a1, . . . , aiai+1, . . . , an+1)+(−1)n+1 f(a1, . . . , an).an+1
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this is a ccc. Especially for A = B a bialgebra and M = C the B-bimodule given by
a.λ.b = δ(a)λδ(b) for λ ∈ C and a, b ∈ B we have

∂nf(a1, . . . , an+a) := δ(a1)f(a2, . . . , an+1) +
n∑
i=1

(−1)i f(a1, . . . , aiai+1, . . . , an+1)

+ (−1)n+1 f(a1, . . . , an)δ(an+1). (5)

The generators of additive deformations are normalized commuting cocycles, so it is
natural to define

C(N)
n =

{
f ∈ Cn | f(1⊗n) = 0

}
C(C)
n =

{
f ∈ Cn | f ? µ(n) = µ(n) ? f

}
If B is a ∗-bialgebra the generators are also hermitian. We define for f ∈ Cn

f̃(a1 ⊗ · · · ⊗ an) := f(a∗n ⊗ · · · ⊗ a∗1)

and set

C(H)
n =


{
f ∈ Cn

∣∣∣ f̃ = f
}
,

∣∣∣∣ if
⌈
n
2

⌉
odd, i.e. n = 1, 2, 5, 6, . . .{

f ∈ Cn
∣∣∣ f̃ = −f

}
, if

⌈
n
2

⌉
even, i.e. n = 0, 3, 4, 7, 8, . . .

Proposition. C(N)
n , C(C)

n and C(H)
n are sub-ccc’s of Cn.

Proof. We only need to show, that ∂C(∗)
n ⊆ C(∗)

n for ∗ = N,C,H.

N: Let f ∈ C(N)
n , i.e. f(1⊗n) = 0. Then

∂f(1⊗(n+1)) = δ(1)f(1⊗n) +
n∑
i=1

(−1)i f(1⊗n) + (−1)n+1 f(1⊗n)δ(1) = 0

C: For f ∈ C(C)
n we get

∂f ? µ(n+1) =(
δ ⊗ f +

n∑
k=1

(−1)kf ◦ (idk−1⊗µ⊗ idn−k) + (−1)n+1f ⊗ δ

)
? µ(n+1).

Next we show, that each summand commutes with µ under convolution:

(δ ⊗ f) ? µ(n+1)(a1 ⊗ · · · ⊗ an+1)

= δ(a(1)
1 )f

(
a
(1)
2 ⊗ · · · ⊗ a

(1)
n+1

)
a
(2)
1 . . . a

(2)
n+1

= a1f
(
a
(1)
2 ⊗ · · · ⊗ a

(1)
n+1

)
a
(2)
2 . . . a

(2)
n+1

= a1f
(
a
(2)
2 ⊗ · · · ⊗ a

(2)
n+1

)
a
(1)
2 . . . a

(1)
n+1 as f ? µ(n) = µ(n) ? f

= a
(1)
1 . . . a

(1)
n+1δ(a

(2)
1 )f

(
a
(2)
2 ⊗ · · · ⊗ a

(2)
n+1

)
= µ(n+1) ? (δ ⊗ f)(a1 ⊗ · · · ⊗ an+1).

Analoguesly we see that

(f ⊗ δ) ? µ(n+1) = µ(n+1) ? (f ⊗ δ).
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For the remaining summands we calculate

(f ◦ (idk−1⊗µ⊗ idn−k)) ? µ(n+1)(a1 ⊗ · · · ⊗ an+1)

= f
(
a
(1)
1 ⊗ · · · ⊗ (a(1)

k a
(1)
k+1)⊗ · · · ⊗ a(1)

n+1

)
a
(2)
1 . . . a

(2)
k a

(2)
k+1 . . . a

(2)
n+1

= f
(
a
(1)
1 ⊗ · · · ⊗ (akak+1)(1) ⊗ · · · ⊗ a(1)

n+1

)
a
(2)
1 . . . (akak+1)(2) . . . a(2)

n+1

(as ∆ is an algebra-homomorphism)

= f
(
a
(2)
1 ⊗ · · · ⊗ (akak+1)(2) ⊗ · · · ⊗ a(2)

n+1

)
a
(1)
1 . . . (akak+1)(1) . . . a(1)

n+1

(as f ? µ(n) = µ(n) ? f)

= µ(n+1) ? (f ◦ (idk−1⊗µ⊗ idn−k))(a1 ⊗ · · · ⊗ an+1).

H: Let f̃ = ±f . For n odd, we get

∂̃f(a1, . . . , an+1) = ∂f(a∗n+1, . . . , a
∗
1) = δ(a∗n+1)f(a∗n, . . . , a∗1)

+
n∑
i=1

(−1)n+1−i f(a∗n+1, . . . , a
∗
i+1a

∗
i , . . . , a

∗
1) + f(a∗n+1, . . . , a

∗
2)δ(a∗1)

= δ(a1)f̃(a2, . . . , an+1) +
n∑
i=1

(−1)i f̃(a1, . . . , aiai+1, . . . , an+1) + f̃(a1, . . . , an)δ(an+1)

= ±∂f(a1, . . . , an+1)

and for n even

∂̃f(a1, . . . , an+1) = ∂f(a∗n+1, . . . , a
∗
1) = δ(a∗n+1)f(a∗n, . . . , a∗1)

+
n∑
i=1

(−1)n+1−i f(a∗n+1, . . . , a
∗
i+1a

∗
i , . . . , a

∗
1)− f(a∗n+1, . . . , a

∗
2)δ(a∗1)

= −δ(a1)f̃(a2, . . . , an+1)−
n∑
i=1

(−1)i f̃(a1, . . . , aiai+1, . . . , an+1) + f̃(a1, . . . , an)δ(an+1)

= ∓∂f(a1, . . . , an+1).

Since the intersection of sub-ccc’s is again a sub-ccc we have

Corollary. C(NC)
n := C

(N)
n ∩ C(C)

n and C
(NCH)
n := C

(NC)
n ∩ C(H)

n are ccc’s with the
coboundary-operator (5).

3.2 Characterization of the trivial deformations
For an additive deformation of the bialgebra B the generator L of the convolution-
semigroup (δ ◦ µt)t≥0 is an element of Z(NC)

2 and conversely if L ∈ Z(NC)
2 we can define

an additive deformation via µt := µ? etL? . In the case of a ∗-Bialgebra the generators are
exactly the elements of Z(NCH)

2 . We wish to answer the question which deformations are
generated by the coboundaries, i.e. the elements of B(NC)

2 or B(NCH)
2 respectively.
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Theorem 2. Let B be a bialgebra, L ∈ B(NC)
2 , L = ∂ψ with φ ∈ C(NC)

1 . Then (Φt)t≥0 is
a pointwise continuous semigroup of unital algebra isomorphisms Φt : (B, µt) → (B, µ),
for which

(Φt ⊗ id) ◦∆ = (id⊗Φt) ◦∆ for all t ≥ 0, (6)

where Φt = id ?etψ? and µt = µ ? etL? . If B is a ∗-algebra and L ∈ B(NCH)
2 , then we can

choose ψ ∈ C(NCH)
1 and the Φt are ∗-algebra isomorphisms.

Conversely, if (Φt)t≥0 is a pointwise continuous semigroup of invertible linear map-
pings Φt : B → B, such that Φt(1) = 1 for all t ≥ 0, and which fulfills (6), then

µt := Φ−1
t ◦ µ ◦ (Φt ⊗ Φt)

defines an additive Deformation of B with generator L ∈ B
(NC)
2 . If B is a ∗-algebra

and the Φt are hermitian, then we get an additive deformation of a ∗-bialgebra and
L ∈ B(NCH)

2 .

Before we prove this, we recall the following Lemma. When B is a bialgebra and
ϕ : B → C a linear functional on B we define

Rϕ : B → B, Rϕ := id ?ϕ = (id⊗ϕ) ◦∆.

Lemma 1. For ϕ,ψ ∈ B′ the following holds:

1. Rϕ ◦Rψ = Rϕ?ψ

2. δ ◦Rϕ = ϕ

3. Rδ⊗ϕ = id⊗Rϕ
4. Rϕ⊗δ = Rϕ ⊗ id

5. µ ◦Rϕ◦µ = Rϕ ◦ µ
Note that the last three equations are between operators on the bialgebra B ⊗ B.
Proof. This is all straightforward to verify.

Proof of Theorem2. Let B be a bialgebra and L ∈ B(NC)
2 a coboundary, L = ∂ψ with

ψ ∈ C(NC)
1 . We write ϕt := etψ? and note, that this is a pointwise continuous convolution

semigroup and the ϕt are commuting (i.e. ϕt ? id = id ?ϕt) since ψ is. Then the
mappings Φt = Rϕt yield a pointwise continuous semigroup of linear operators on B and
we only need to show, that they are unital algebra isomorphisms. It is obvious, that
Φt(1) = 1, since ψ(1) = 0, and Φt ◦Φ−t = id, so Φt is invertible. We have to prove that
Φt : (B, µ)→ (B, µt) is an algebra homomorphism, i.e.

µt = µ ? etL? = Φ−1
t ◦ µ ◦ (Φt ⊗ Φt).

From

etL? = et∂ψ?

= e
t(δ⊗ψ−ψ◦µ+ψ⊗δ)
?

= e−tψ◦µ? ? etδ⊗ψ? ? etψ⊗δ?

= (ϕ−t ◦ µ) ? (δ ⊗ ϕt) ? (ϕt ⊗ δ),

where we used that δ ⊗ ψ, ψ ◦ µ and ψ ⊗ δ commute under convolution, we conclude

µt = µ ? et∂ψ?

= (µ⊗ et∂ψ? ) ◦ Λ
= µ ◦Ret∂ψ?
= µ ◦R(ϕ−t◦µ)?(δ⊗ϕt)?(ϕt⊗δ)

= µ ◦Rϕ−t◦µ ◦ (id⊗Rϕt) ◦ (Rϕt ⊗ id)
= Rϕ−t ◦ µ ◦ (Rϕt ⊗Rϕt)
= Φ−1

t ◦ µ ◦ (Φt ⊗ Φt).
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It is clear that the Φt are ∗-homomorphisms in the ∗-bialgebra case.
Now let (Φt)t≥0 be pointwise continuous semigroup of invertible linear mappings with

Φt(1) = 1 and (Φt ⊗ id) ◦∆ = (id⊗Φt) ◦∆. Then we write ϕt = δ ◦Φt and observe that

1. (ϕt)t≥0 is a pointwise continuous convolution semigroup, so that there is a ψ ∈
C

(NC)
1 with ϕt = etψ? . Indeed

ϕt ? ϕs = ((δ ◦ Φt)⊗ (δ ◦ Φs)) ◦∆
= (δ ⊗ δ) ◦ (Φt ⊗ id) ◦ (id⊗Φs) ◦∆
= (δ ⊗ δ) ◦ (id⊗Φt) ◦ (Φs ⊗ id) ◦∆
= (δ ⊗ δ) ◦ (id⊗Φt+s) ◦∆
= ϕt+s

and ψ(1) = 0, ψ ? id = id ?ψ follow from ϕt(1) = 1 and ϕt ? id = id ?ϕt via
differentiation. If the Φt are hermitian, ψ is also hermitian, i.e. ψ ∈ C(NCH)

1 .

2. Φt = Rϕt , as

Rϕt = (id⊗(δ ◦ Φt)) ◦∆
= (id⊗δ) ◦ (id⊗Φt) ◦∆
= (id⊗δ) ◦ (Φt ⊗ id) ◦∆
= Φt.

So the first part of the theorem tells us, that L = ∂ψ ∈ B(NC)
2 is the generator of an

additive deformation, for which

µt = Φ−1
t ◦ µ ◦ (Φt ⊗ Φt).

If B is a ∗-algebra and all the Φt are hermitian, then so are all the ϕt and via differ-
entiation also ψ. That means L ∈ B

(NCH)
2 and the deformation is a deformation of

∗-algebras.

4 Additive Deformations of Hopf Algebras

4.1 Definition of Hopf deformations and general observations
Lemma 2. Let B be a Bialgebra and L generator of an additive deformation. Then we
can define

µt := etL? ? µ

for all t ∈ R (i.e. not only for t ≥ 0) and

∆ : Bt+s → Bt ⊗ Bs

is an algebra homomorphism for all s, t ∈ R.

Proof. It follows from Theorem1 that −L is the generator of an additive deformation,
so for t < 0 the definition of µt yields a multiplication on B. We calculate

∆ ◦ µt+s = ∆ ◦ (µ⊗ e?(t+ s)L) ◦ Λ
= ((∆ ◦ µ)⊗ e?(t+ s)L) ◦ Λ

= (µ⊗ µ⊗ etL? ⊗ esL? ) ◦ Λ(4)

= (µ⊗ etL? ⊗ µ⊗ esL? ) ◦ Λ(4)

= ((µ ? e?tL)⊗ (µ ? e?sL)) ◦ Λ
= (µt ⊗ µs) ◦ Λ

9



From now on we always view an additive deformation as a family of multiplications
indexed by all real numbers.

Definition 2. An additive deformation is called a Hopf deformation, if for all t ∈ R
there exists a linear mapping St : B → B such that

µt ◦ (St ⊗ id) ◦∆ = µt ◦ (id⊗St) ◦∆ = δ1. (7)

For t = 0 this of course implies, that B is a Hopf algebra with antipode S = S0.
Many proofs in this section follow a common path. To show an identity a = b, we

find an element c and a convolution product � such that a � c = c � b = δ where δ is the
neutral element for �. Then we conclude

a = a � δ = a � c � b = δ � b = b

and hence
a = b = c−1

Let B be a bialgebra with additive deformation (µt)t∈R and µt = µ ? etL? for a nor-
malized, commuting cocycle L.

Theorem 3. If a family St with (7) exists, it is uniquely determined and the following
statements hold:

1. St(1) = 1

2. St : B−t → Bt is an algebra antihomomorphism, i.e.

St ◦ µ−t = µt ◦ (St ⊗ St) ◦ τ (8)

3. ∆ ◦ St+r = (St ⊗ Sr) ◦ τ ◦∆

4. If B is cocommutative, i.e. ∆ = τ ◦∆, then

St ◦ S−t = id

for all t ∈ R

Proof. (Uniqueness) The uniqueness statement is clear, as (7) states, that St is the
two-sided convolution inverse of the identity mapping on B w.r.t. ?t.

1. This is clear, since
1 = µt ◦ (St ⊗ id) ◦∆(1) = St(1).

2. We show, that both sides of (8) are convolution inverses of µt w.r.t. ?t:

(St ◦ µ−t) ?t µt = µt ◦ (St ⊗ id) ◦ (µ−t ⊗ µt) ◦ Λ
= µt ◦ (St ⊗ id) ◦∆ ◦ µ = δ ◦ µ1 = δ ⊗ δ1

and

µt ?t (µt ◦ (St ⊗ St) ◦ τ) (a⊗ b)
= µt ◦ (µt ⊗ µt) ◦ (id2⊗((St ⊗ St) ◦ τ)) ◦ Λ (a⊗ b)

= µ
(4)
t (a(1) ⊗ b(1) ⊗ St(b(2))⊗ St(a(2)))

= δ(b)µt(a(1) ⊗ St(a(1)))
= δ(a)δ(b)1
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3. For linear maps from the coalgebra (B,∆) to the algebra (Bt⊗Br) we have a convo-
lution � defined as

A �B = (µt ⊗ µr) ◦ (id⊗τ ⊗ id) ◦ (A⊗B) ◦∆.

We show that both sides of (2) are inverses of ∆ w.r.t. �:

(∆ ◦ St+r) �∆ = (µt ⊗ µr) ◦ (id⊗τ ⊗ id) ◦ (∆⊗∆) ◦ (St+r ⊗ id) ◦∆
= ∆ ◦ µt+r ◦ (St+r ⊗ id) ◦∆ = δ∆(1) = δ1⊗ 1

and

∆ � ((St ⊗ Sr) ◦ τ ◦∆)(a)

= (µt ⊗ µr) ◦ (id⊗τ ⊗ id) ◦ (id2⊗St ⊗ Sr) ◦ (id2⊗τ) ◦∆(4)(a)
= (µt ⊗ µr)(a(1) ⊗ St(a(4))⊗ a(2) ⊗ Sr(a(3)))
= µt(a(1) ⊗ St(a(2)))⊗ 1

= δ(a)1⊗ 1

4. Let ∆ = τ ◦∆. Then

(St ◦ S−t) ?t St = µt ◦ (St ⊗ St) ◦ (S−t ⊗ id) ◦∆
= St ◦ µ−t ◦ τ ◦ (S−t ⊗ id) ◦∆
= St ◦ µ−t ◦ (id⊗S−t) ◦ τ ◦∆
= δSt(1) = δ1

4.2 The deformed antipodes for trivial deformations
Theorem 4. Let B be a Hopf algebra and (µt)t∈R a trivial deformation,

µt = Φt ◦ µ ◦ (Φ−1
t ⊗ Φ−1

t ),

and
Φt = id ?etψ?

for a commuting, normalized linear functional ψ. Then

St = Φt ◦ S ◦ Φt = S ? e
t(ψ◦S+ψ)
?

is the deformed antipode, so (µt)t∈R is a Hopf deformation.

Proof. All we have to show is that

µt ◦ (St ⊗ id) ◦∆ = µt ◦ (id⊗St) ◦∆ = δ1,

for St = Φt ◦ S ◦ Φt and St = S ? e
t(ψ◦S+ψ)
? . In the case St = Φt ◦ S ◦ Φt we calculate

µt ◦ (St ⊗ id) ◦∆ = Φt ◦ µ ◦ (Φ−1
t ⊗ Φ−1

t ) ◦ ((Φt ◦ S ◦ Φt)⊗ id) ◦∆

= Φt ◦ µ ◦ (S ◦ Φt ⊗ Φ−1
t ) ◦∆

= Φt ◦ µ ◦ (S ⊗ Φ−1
t ) ◦ (Φt ⊗ id) ◦∆

= Φt ◦ µ ◦ (S ⊗ Φ−1
t ) ◦ (id⊗Φt) ◦∆

= Φt ◦ µ ◦ (S ⊗ id) ◦∆
= δΦt(1) = δ1

and the second equality is proved in the same way.
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Now we consider the case St = S ? e
t(ψ◦S+ψ)
? . We first recall that ψ ist commuting

and L = −∂ψ is the generator of the additive deformation. Next we observe that

(ψ ◦ S) ? S = (ψ ⊗ id) ◦ (S ⊗ S) ◦∆
= (ψ ⊗ id) ◦∆op ◦ S
= (ψ ⊗ id) ◦∆ ◦ S
= (id⊗ψ) ◦ (S ⊗ S) ◦∆
= S ? (ψ ◦ S).

With this in mind we calculate

µt ◦ (St ⊗ id) ◦∆ (a) = (µ⊗ etL? ) ◦ Λ(etψ? (S(a(1)))etψ? (a(2))S(a(3))⊗ a(4))

= etψ? (S(a(1)))etψ? (a(2))etL? (S(a(3))⊗ a(4))
= δ(a)

since

etL? (S(a(1))⊗ a(2))

= e−tψ⊗δ? (S(a(1))⊗ a(2))eψ◦µ? (S(a(3))⊗ a(4))e−tδ⊗ψ? (S(a(5))⊗ a(6))

= e−tψ? (S(a(1)))e−tψ? (a(2)).

Again the second equality is proven similarly.
One can also prove this by writing Φt = (etψ? ⊗ id) ◦∆ in St = Φt ◦ S ◦ Φt and using

that S, ψ and ψ ◦ S all commute with each other.

It is still possible that the deformed antipodes are constant. We have

Theorem 5. Let L be generator of a trivial additive deformation. Then it has constant
antipodes, i.e. St = S ∀t ∈ R iff

Φt ◦ S = S ◦ Φ−t.

for all t ∈ R.

Proof. This follow directly from St = Φt ◦ S ◦ Φt and Φ−1
t = Φ−t.

4.3 The deformed antipodes in the general case
We want to show, that every additive deformation of a Hopf algebra is a Hopf deformation
and give a formula for the deformed antipodes.

Lemma 3. We have
L ◦ (S ⊗ id) ◦∆ = L ◦ (id⊗S) ◦∆.

Proof. From ∂L = 0 it follows that

0 = ∂L(a(1) ⊗ S(a(2) ⊗ a(3))

= δ(a(1))L
(
S(a(2))⊗ a(3)

)
− L

(
a(1)S(a(2))⊗ a(2)

)
+ L

(
a(1) ⊗ S(a(2)a(3))

)
− L

(
a(1) ⊗ a(2)

)
δ(a(3))

= L(S(a(1))⊗ a(2))− L(a(1) ⊗ S(a(2)).

Definition 3. Let B be a Hopf algebra and L generator of an additive deformation.
Then we set

σ := L ◦ (id⊗S) ◦∆.

Lemma 4. σ is commuting, i.e.

(σ ⊗ id) ◦∆ = (id⊗σ) ◦∆.
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Proof. First we observe that

L(a(1) ⊗ S(a(2))) = L(a(1) ⊗ S(a(4)))a(2)S(a(3))
= L ? µ(a(1) ⊗ S(a(2)))
= µ ? L(a(1) ⊗ S(a(2)))
= L(a(2) ⊗ S(a(3)))a(1)S(a(4)).

Now we calculate

(σ ⊗ id) ◦∆(a) = σ(a(1))a(2)

= (L ◦ (id⊗S) ◦∆)(a(1)) a(2)

= L(a(1) ⊗ S(a(2)))a(3)

= L(a(2) ⊗ S(a(3)))a(1)S(a(4))a(5)

= a(1)L(a(2) ⊗ S(a(3)))
= (id⊗σ) ◦∆(a).

Lemma 5. The following equations hold:

• L?n ◦ (id⊗S) ◦∆ = σ?n

• etL? ◦ (id⊗S) ◦∆ = etσ?

Proof. We prove this by induction over n. For n = 0, 1 the proposition is clear. We
calculate

L?n+1(a(1) ⊗ S(a(2))) = L ? L?n(a(1) ⊗ S(a(2)))
= L(a(1) ⊗ S(a(4)))L?n(a(2) ⊗ S(a(3)))
= L(a(1) ⊗ S(a(3)))σ?n(a(2))
= L(a(1) ⊗ S(a(2n+2)))L(a(2) ⊗ S(a(3))) . . . L(a(2n) ⊗ S(a(2n+1)))
= L(a(1)σ

?n(a(2))⊗ a(3))
= L(σ?n(a(1))a(2) ⊗ a(3))
= σ?n(a(1))σ(a(2))

= σ?n+1(a)

The second equation follows easily now:

etL? ◦ (id⊗S) ◦∆ =
∞∑
n=0

tn

n!
L?n ◦ (id⊗S) ◦∆ =

∞∑
n=0

tn

n!
σ?n = etσ? .

Theorem 6. Let B be a Hopf algebra and L generator of an additive deformation. Then
it is a Hopf deformation and the deformed antipodes are given by

St = S ? e−tσ? .

Proof. We have to check (7), so we calculate

µt ◦ (id⊗St) ◦∆(a) = etL? ? µ(a(1) ⊗ S(a(2)))e−tσ? (a(3))

= etL? (a(1) ⊗ S(a(4)))a(2)S(a(3))e−tσ? (a(5))

= etL? (a(1) ⊗ S(a(2)))e−tσ? (a(3))1

= etσ? (a(1))e−tσ? (a(2))1
= δ(a)1.

The second equality in (7) follows in the same manner.
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4.4 Constant antipodes in the cocommutative case
Lemma 6. We have

∂σ = L+ L ◦ (S ⊗ S) ◦ τ.

Proof.

∂σ(a⊗ b) = δ(a)σ(b)− σ(ab) + σ(a)δ(b)
= δ(a)L(S(b(1))⊗ b(2))− L(S(a(1)b(1))⊗ a(2)b(2))

+ L(S(a(1))⊗ a(2))δ(b)
= δ(a)L(S(b(1))⊗ b(2))− L(S(b(1))S(a(1))⊗ a(2)b(2))

+ L(S(a(1))⊗ a(2))δ(b)
= L(S(b)⊗ S(a))− L(S(a(1))⊗ a(2)b) + δ(b)L(S(a(1))⊗ a(2))
= L(S(b)⊗ S(a)) + L(a⊗ b),

where in the fourth equality we used

0 = ∂L(S(b(1))⊗ S(a(1))⊗ a(2)b(2))
= δ(b(1))L(S(a(1))⊗ a(2)b(2))− L(S(b(1))S(a(1))⊗ a(2)b(2))

+ L(S(b(1))⊗ S(a(1))a(2)b(2))− L(S(b(1))⊗ S(a(1)))δ(a(2)b(2))
= L(S(a(1))⊗ a(2)b)− L(S(b(1))S(a(1))⊗ a(2)b(2))

+ δ(a)L(S(b(1))⊗ b(2))− L(S(b)⊗ S(a))

and in the last equality

0 = ∂L(S(a(1))⊗ a(2) ⊗ b)
= δ(a(1))L(a(2) ⊗ b)− L(S(a(1))a(2) ⊗ b)

+ L(S(a(1))⊗ a(2)b)− L(S(a(1))⊗ a(2))δ(b)
= L(a⊗ b)− δ(a)L(1⊗ b)

+ L(S(a(1))⊗ a(2)b)− L(S(a(1))⊗ a(2))δ(b).

Theorem 7. Let B be a Hopf algebra, L generator of an additive deformation.
If σ = σ ◦ S, then

L̃ = L− 1
2
∂σ

is the generator of a Hopf deformation with constant antipodes, i.e.

µ̃t ◦ (S ⊗ id) ◦∆ = 1δ = µ̃t ◦ (id⊗S) ◦∆.

Proof. We can write

L =
1
2

(L+ L ◦ (S ⊗ S) ◦ τ)︸ ︷︷ ︸
:=L1

+
1
2

(L− L ◦ (S ⊗ S) ◦ τ)︸ ︷︷ ︸
:=L2

Then we have L1 = ∂ σ2 and σ2 = L2 ◦ (S ⊗ id) ◦∆ = 0, since

L ◦ (S ⊗ S) ◦ τ ◦ (S ⊗ id) ◦∆ = L ◦ (id⊗S) ◦ (S ⊗ S)τ ◦∆
= L ◦ (S ⊗ id) ◦∆ ◦ S
= σ ◦ S = σ.

14



Lemma 7. If B is cocommutative, we have

σ = σ ◦ S.

Proof. We calculate

σ ◦ S = −L ◦ (S ⊗ id) ◦∆ ◦ S
= −L ◦ (S ⊗ id) ◦ (S ⊗ S) ◦∆op

= −L ◦ (S2 ⊗ S) ◦∆op

= −L ◦ (id⊗S) ◦∆
= σ.

So when deforming a cocommutative Hopf algebra one can always find an equivalent
deformation, such that St = S for all t ∈ R.

5 Examples
Example 1. In this example we realize the algebra of the quantum harmonic oscillator as
the essentially only nontrivial additive deformation of the ∗-Hopf algebra of polynomials
in adjoint commuting variables C [x, x∗] with comultiplication and counit defined via

∆(xε) = xε ⊗ 1 + 1⊗ xε and δ(xε) = 0,

where ε ∈ {1, ∗}.
Proposition. Let L be an abelian Lie algebra, i.e. [a, b] = 0 ∀a, b ∈ L and consider
the universal enveloping Hopf algebra U(L). In the case where L is of finite dimension
n this is just the polynomial algebra in n commuting indeterminates. For two addi-
tive deformations µ(1)

t , µ
(2)
t of U(L) with generators L1, L2 the following statements are

equivalent:

1. L1 − L2 is a coboundary i.e. the two deformations differ by a trivial deformation

2. µ(1)
t (a⊗ b− b⊗ a) = µ

(2)
t (a⊗ b− b⊗ a) for all a, b ∈ L, t ∈ R

3. L1(a⊗ b− b⊗ a) = L2(a⊗ b− b⊗ a) for all a, b ∈ L, t ∈ R

Proof. For any additive deformation of U(L) we have

µt(a⊗ b) = µ ? etL? (a⊗ b)
= µ⊗ etL? (a⊗ b⊗ 1⊗ 1 + a⊗ 1⊗ 1⊗ b+ 1⊗ b⊗ a⊗ 1 + 1⊗ 1⊗ a⊗ b)
= ab+ tL(a⊗ b)1

as L is normalized. From this the equivalence of 2 and 3 follows directly and to show
that 1 is equivalent to 3 it suffices to show that L is a coboundary iff L(a⊗ b− b⊗a) = 0
for all a, b ∈ L, since we set L = L1 − L2.

So let L be a coboundary, i.e. L = ∂ψ. It follows that

L(a⊗ b− b⊗ a) = −ψ(ab− ba) = 0,

since L is abelian.
Now let L(a⊗ b− b⊗ a) = 0 for all a, b ∈ L. Choose a basis of L and introduce any

ordering on this bases. Then expressions of the form a1 . . . an with a1 ≤ · · · ≤ an form a
basis of U(L) define

ψ(a1 . . . an) :=

{
L(a1 . . . an−1 ⊗ an) with a1 ≤ · · · ≤ an if n ≥ 2
0 else.
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We write L̃ = L + ∂ψ and µ̃t = µ ? etL̃? . Now an easy induction on n shows that
µ̃

(n)
t (a1 . . . an) = a1 . . . an for a1 ≤ · · · ≤ an. But from the equivalence of 2 and 3 we

know that µt is commutative so we get µt = µ for all t ∈ R. So L̃ = L+ ∂ψ = 0 and L
is a coboundary.

It follows that a deformation of C [x, x∗] is determined up to a trivial deformation by
the value of L(x⊗x∗−x∗⊗ y) = µ1(x⊗x∗−x∗⊗x). In case of a ∗-deformation L must
be hermitian, so this is a real number. Choosing different constants here corresponds to
a rescaling of the deformation parameter t so we assume L(x⊗ x∗ − x∗ ⊗ y) = 1. There
is also a canonical representative for the cohomology class of the generator for which the
antipodes are constant. Choosing L(x⊗ x∗) = −L(x∗ ⊗ x) = 1

2 one gets σ = 0.
One gets a well defined ∗-algebra isomorphism from the algebra generated by a, a†

and 1 with the relation aa† − a†a = 1 to the deformation of the polynomial algebra
(C [x, x∗] , µ1) by setting Φ(a) = x and Φ(a†) = x∗. In this sense the quantum harmonic
oscillator algebra is the only nontrivial additive deformation of the polynomial algebra
in two commuting adjoint variables.

In the last three examples we take as Hopf algebra the group algebra CG over a group
G. We identify linear functionals on CGk with functions on Gk for k ∈ N. For grouplike
a, b ∈ B we have

µt(a⊗ b) = etL(a⊗b)ab.

Example 2. We saw that in the cocommutative case it is possible to split an additive
deformation into a trivial part and a part that corresponds to constant antipodes. But
it is still possible that the part with constant antipodes is trivial as this example shows.
Consider the 2-coboundary defined by

L(m,n) = m2n+mn2

on the group algebra of Z. In the following group elements of Z are denoted (k) to avoid
confusion with the complex number k. This is a coboundary, since L = ∂ψ where

ψ(k) = −1
3
k3

We also see that L(0, 0) = 0 and L is commuting, so L ∈ B(NC). Therefore it generates
a trivial deformation. The deformation is nonconstant, since

µt((1)⊗ (1)) = eL((1),(1))(2) = 2(2) 6= (2) = µ((1)⊗ (1)).

We calculate
σ(k) = L((k), (−k)) = −k3 + k3 = 0

for all k ∈ Z, so the antipodes are constant. Since the deformation is trivial we can
calculate the Φt.

Φt(k) = etψ(k)k = etk
3
k

The second way for calculating the St yields

St(k) = Φt ◦ S ◦ Φt(k) = etk
3
Φt(−k) = etk

3
e−tk

3
(0) = (0).

So in this situation we have S ◦ Φt = Φ−t ◦ S.
Example 3. On Zd every d× d-matrix A with complex entries defines a 2-cocycle L via

L(k, l) := kAlt

for k, l ∈ Zd, since the functions ((k1, . . . , kd), (l1, . . . , ld)) 7→ kilj define cocycles for i, j =
1, . . . , d, as is easily checked. These cocycles are of course normalized and commuting,
so they are generators of additive deformations on a cocommutative Hopf algebra. L is
hermitian iff A is hermitian. We want to apply Theorem7, so we calculate

σ(k) = L(k,−k) = −kAkt

16



and

∂
σ

2
(k, l) =

1
2

(−kAkt + (k + l)A(k + l)t − lAlt)

=
1
2

(kAlt + lAkt)

= k
A+At

2
lt

which gives

L̃(k, l) = (L− 1
2
∂σ)(k, l) = k

A−At

2
lt.

So every such cocycle is equivalent to one which comes from an antisymmetric matrix.

Example 4. Let G be a group. then CG can be turned into a ∗-Hopf algebra in a natural
way by extending the map ∗ : g 7→ g−1 antilinearly to the whole of CG. On the group
elements the involution ∗ coincides with the antipode S. Now let L be a generator of an
additive ∗-deformation, i.e. L is a normalized hermitian 2-cocycle. Then

∂
σ

2
(g, h) = (L+ L ◦ (S ⊗ S) ◦ τ)(g, h)

=
1
2

(L(g, h) + L(h∗, g∗))

=
1
2

(L(g, h) + L(g, h))

= ReL(g, h)

and consequently

L̃(g, h) = L− 1
2
∂σ(g, h)

= ImL(g, h).

So one has to consider only the case where L is purely imaginary on the group elements.

17



References
[1] Abe, E.: Hopf Algebras. Cambridge University Press, 1980.

[2] Accardi, L., M. Schürmann, and W. von Waldenfels: Quantum independent incre-
ment processes on superalgebras. Mathematische Zeitschrift, 1988.

[3] Gerhold, M.: Quanten-Lévy-Prozesse auf Deformationen von Bialgebren. Diplomar-
beit, Ernst-Moritz-Arndt-Universität Greifswald, 2009.

[4] Gerstenhaber, M.: The cohomology structure of an associative ring. The Annals of
Mathematics, 78(2):267–288, 1963.

[5] Gerstenhaber, M.: On the deformation of rings and algebras. The Annals of Math-
ematics, 79(1):59–103, 1964.

[6] Klimyk, A. and K. Schmüdgen: Quantum Groups and Their Representations.
Springer, 1997.

[7] Majid, S.: Foundations of Quantum Group Theory. Cambridge : Cambridge Uni-
versity Press, 1995.

[8] Schürmann, M.: Lévy processes on deformations of hopf algebras. In Infinite Dimen-
sional Harmonic Analysis III, pp. 277–287. World Scientific Publishing Co., 2003.

[9] Sweedler, M.: Hopf Algebras. W.A. Benjamin, Inc, 1969.

[10] Wirth, J.: Formule de Levy Khintchine et Deformations d’Algebres. PhD thesis,
Universite Paris VI, 2002.

18


