Prof. Dr. B. Kugelmann Florian Perner Institut für Mathematik und Informatik Universität Greifswald

Nichtlineare Optimierung

Übung 2

- 1. Gegeben sei die Menge $\mathcal{X} := \{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 : 0 \leqslant x_1^2 \leqslant x_2 \} \subset \mathbb{R}^2 \text{ mit } x^* = (1,1).$ Bestimmen Sie den Tangentialkegel $\mathcal{T}(\mathcal{X}, x^*)$ im Punkt x^* .
- 2. a) Zeigen Sie: Für eine stetig differenzierbare Funktion $f:X\longrightarrow \mathbb{R},\ X$ konvex, gilt:

$$f$$
 ist konvex $\iff \forall x, y \in X : f(x) \ge f(y) + \nabla f(y)(x-y)$

b) Betrachte die quadratische Funktion

$$f(x) := \frac{1}{2}x^T Q x + c^T x + \gamma$$

mit $Q \in \mathbb{R}^{n \times n}$ symmetrisch, $c \in \mathbb{R}^n$ und $\gamma \in \mathbb{R}$.

Zeigen Sie:

f ist konvex $\iff Q$ ist positiv semi-definit und f ist streng konvex $\iff Q$ ist positiv definit.

- 3. Zum Lemma von Farkas:
 - a) (Wiederholung) In welchem Zusammenhang steht das Skalarprodukt zweier Vektoren u, v mit dem Winkel $\triangleleft(u, v)$ zwischen den beiden Vektoren?
 - b) Sei A=(1,-2). Skizzieren Sie die Menge $M:=\{d\in\mathbb{R}^2:Ad\leqslant 0\}$.
 - c) Für welche $b \in \mathbb{R}^2$ gilt die Aussage 2.15(b), d.h. für alle $d \in M$ soll $b^T d \leq 0$ gelten. Vergleichen Sie mit Aussage 2.15(a) des Lemmas.
 - d) Wie ist die Situation für $A = \begin{pmatrix} 1 2 \\ 2 & 0 \end{pmatrix}$?