Übungen Lineare Algebra und Analytische Geometrie II Blatt 4

SoSe 2017

(Abgabe 4.5.2017 in der Vorlesung)

1. (4 Punkte)

Geben Sie alle möglichen Jordanschen Normalformen einer 4×4 -Matrix an, wenn angenommen wird, dass die Matrix nur den Eigenwert 2 besitzt. Nennen Sie für jede Möglichkeit die Dimension des Eigenraumes.

2. (4 Punkte)

Bestimmen Sie das Minimalpolynom der folgenden Matrizen (siehe Beispiele Ende des 1. Semesters):

(a)
$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ -1 & 1 & 2 & 1 \\ -1 & 1 & 0 & 3 \end{pmatrix}$$
 (b)
$$\begin{pmatrix} 9 & -7 & 0 & 2 \\ 7 & -5 & 0 & 2 \\ 4 & -4 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

3. (4 Punkte)

Bestimmen Sie das Minimalpolynom einer schiefsymmetrischen 3×3 -Matrix. Dabei heißt eine Matrix $A \in \mathcal{M}_n(\mathbb{R})$ schiefsymmetrisch, wenn gilt $A^T = -A$.

4. (4 Punkte)

Für $n \in \mathbb{N}$ bezeichne L_n die Matrix aus $\mathcal{M}_n(\mathbb{K})$ mit

$$(L_n)_{ij} = \begin{cases} 0 & \text{für } i \ge j \text{ und } i \le j-2\\ 1 & \text{für } i = j-1. \end{cases}$$

Weiterhin sei \mathcal{A} die Menge aller Matrizen $A \in \mathcal{M}_n(\mathbb{K})$, für die Zahlen $a_1, \ldots, a_n \in \mathbb{K}$ existieren, so dass

$$a_{ij} = 0$$
 für $i > j$
 $a_{i,i} = a_1, \dots, a_{i,n} = a_{n+1-i}$ für $i = 1, \dots, n$.

Zeigen Sie

- (a) $\mathbb{K}[L_n] = \mathcal{A}$
- (b) Für je zwei Matrizen $A, B \in \mathcal{A}$ gilt: AB = BA.