Übungen Lineare Algebra und Analytische Geometrie II Blatt 7

SoSe 2017

(Abgabe am 26.5. in den Übungen; alternative Möglichkeit:

Briefkästen von Malte Kunath und Darvin Mertsch bis 26.5., 10 Uhr)

1. (4 Punkte)

Sei $\mathcal V$ ein Vekrorraum über dem Körper $\mathbb K$ und sei $\mathcal U$ ein Untervektorraum von $\mathcal V.$

(a) Zeigen Sie, dass es einen Untervektorraum \mathcal{W} von \mathcal{V} gibt, so dass

$$\mathcal{V} = \mathcal{U} \oplus \mathcal{W}$$
.

- (b) Ist der Vektorraum \mathcal{W} aus (a) durch \mathcal{U} eindeutig bestimmt? Erläutern Sie Ihre Antwort.
- (c) Nun sei \mathcal{V} ein unitärer Raum. Zeigen Sie, dass für den Lotraum \mathcal{U}^{\perp} des Untervektorraumes \mathcal{U} gilt: $\mathcal{V} = \mathcal{U} \oplus \mathcal{U}^{\perp}$.
- (d) Zeigen Sie, dass es in (c) einen eindeutig bestimmten Endomorphismus f von \mathcal{V} gibt mit: $f^2 = f$, $f^* = f$ und bild $f = \mathcal{U}$.

2. (4 Punkte)

Gegeben seien die Untervektorräume V_1, \ldots, V_l des endlich-dimensionalen Vektorraumes V. Es sei V die direkte Summe der V_i , d. h. $V = V_1 \oplus \cdots \oplus V_l$. Zeigen Sie, dass gilt:

$$\dim \mathcal{V} = (\dim \mathcal{V}_1) + \cdots + (\dim \mathcal{V}_l).$$

3. (4 Punkte)

Für $A \in \mathcal{M}(n; \mathbb{K})$ definieren wird den Endomorphismus ad A des \mathbb{K} -Vektorraumes $\mathcal{M}(n; \mathbb{K})$ durch

$$(\operatorname{ad} A)(B) = AB - BA; \ B \in \mathcal{M}(n; \mathbb{K}).$$

Zeigen Sie:

(a) Wenn A nilpotent ist, so auch ad A.

(b) Ist $\{v_1, \ldots, v_n\}$ eine Basis von \mathcal{V} aus Eigenvektoren für A, so wird durch

$$F_{ij}v_k = \delta_{jk}v_i$$

eine Basis $\{F_{ij} \mid i, j = 1, ..., n\}$ von $\mathcal{M}(n; \mathbb{K})$ aus Eigenvektoren für ad A gegeben. Schließen Sie daraus, dass ad A diagonalisierbar ist, wenn A es ist.

4. (4 Punkte)

Für zwei Vektorräume \mathcal{V}_1 und \mathcal{V}_2 betrachten wir ein Tripel $(\mathcal{V}, \iota_1, \iota_2)$ bestehend aus einem Vektorraum \mathcal{V} und Monomorphismen $\iota_1 : \mathcal{V}_1 \to \mathcal{V}$ und $\iota_2 : \mathcal{V}_2 \to \mathcal{V}$, so dass die folgende "universelle Eigenschaft" erfüllt ist: Für jeden weiteren Vektorraum \mathcal{W} und zwei lineare Abbildungen $R_1 : \mathcal{V}_1 \to \mathcal{W}$ und $R_2 : \mathcal{V}_2 \to \mathcal{W}$ gibt es genau eine lineare Abbildung $R : \mathcal{V} \to \mathcal{W}$ mit $R_1 = R \circ \iota_1$ und $R_2 = R \circ \iota_2$.

- (a) Zeigen Sie, dass das Tripel $(\mathcal{V}_1 \oplus \mathcal{V}_2, \kappa_1, \kappa_2)$, wobei κ_1 und κ_2 jeweils die kanonischen Identifikationen von \mathcal{V}_1 und \mathcal{V}_2 mit einem Untervektorraum von $\mathcal{V}_1 \oplus \mathcal{V}_2$ bezeichnen, die obige universelle Eigenschaft besitzt.
- (b) Zeigen Sie, dass je zwei Tripel, die die obige universelle Eigenschaft besitzen, "isomorph" sind.