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Significance Statement

The sequencing of genomes of interest has become more and more practicable also to individual
research groups, who have not specialized on genome annotation. The structural annotation of
protein coding genes is a necessary step for most downstream analysis and the choice of methods
significantly impacts annotation quality and completeness.

AUGUSTUS is a tool for gene structure prediction that has been used in numerous genome anno-
tation projects and cited more than a thousand times. It is also part of many genome annotation
pipelines. Reasons for the popularity of AUGUSTUS are an outstanding accuracy in its field and
free availability. In this protocol we strive to give a concise overview of data preparation and
execution steps, including some advanced/optional protocols.

1 Abstract

AUGUSTUS is a tool for finding protein coding genes and their exon-intron structure in genomic
sequences. It does not necessarily require additional experimental input as it can be applied in
so-called ab initio mode. However, extrinsic evidence from various sources such as transcriptome
sequencing or the annotations of closely related genomes can be integrated in order to improve the
accuracy and completeness of the annotation. AUGUSTUS can be applied to single genomes, or si-
multaneously to several aligned genomes. Here, we describe steps required for training AUGUSTUS
for the annotation of individual genomes and the steps to do the actual structural annotation.
Further, we describe the generation and integration of evidence from various sources of extrinsic
evidence.
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Introduction

AUGUSTUS (Hoff and Stanke, 2013; König et al., 2016; Stanke et al., 2008, 2006a,b, 2004) is a
tool for finding protein coding genes and their exon-intron structure in genomic sequences. For
application to genomes, it requires species-specific parameters for its underlying hidden Markov
model (HMM) or conditional random field (CRF) before it will achieve high accuracy when applied
to a novel genome. Training AUGUSTUS is a supervised procedure, i.e. some set of protein coding
and non-coding sequences must be identified in genomic sequences of the target species before the
training step. In this protocol, we describe four approaches to achieve this (see Figure 2 on page
60):

1. Short read RNA-Seq data (e.g. Illumina or short 454 reads) can be aligned individually to
the target genome to obtain spliced read information (e.g. using STAR (Dobin et al., 2013),
GSNAP (Wu and Nacu, 2010) or Tophat2 (Daehwan et al., 2013)). The gene prediction tool
GeneMark-ET (Lomsadze et al., 2014) has a self-training procedure that refines its parameters
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according to spliced read information; subsequently, GeneMark-ET produces a set of predicted
genes that can be filtered for those that are supported by RNA-Seq data (Alternate Protocol
1).

2. Full length protein sequences of the target species or a close relative can be aligned to the
genome using an aligner that produces valid gene structures, e.g. GenomeThreader (Gremme,
2013a) or Scipio (Keller et al., 2008) (Alternative Protocol 2).

3. Expressed Sequence Tags (ESTs), cDNA sequences or longer 454 reads can be aligned to
the genome (e.g. using GMAP (Wu and Watanabe, 2005) and BLAT (Kent, 2002)) and
subsequently be assembled into transcripts with putative open reading frames (e.g. using
PASA (Haas et al., 2003), Alternate Protocol 3).

4. Previously existing parameter sets from other species can be used to predict genes in the target
genome with AUGUSTUS, either without adjustment or as a basis for iterative training.
The visualization of predictions facilitates the identification of a good previously existing
parameter set. On this basis, predictions can subsequently be run incorporating extrinsic
evidence with AUGUSTUS. Predictions with full support by extrinsic evidence are usually
high quality and can serve as training genes for the novel species. We call this approach
iterative training (Alternate Protocol 4).

The procedure for training AUGUSTUS for a novel species on an existing set of training gene
structures is described in Basic Protocol 7.

Once species-specific parameters are available, AUGUSTUS can be applied to a novel genome (an
overview of modes is given in Figure 1 on page 59). This can be done using the genome sequence,
alone (ab initio mode), or providing “hints” from extrinsic evidence. Transcriptome data in general
can provide evidence about the location of introns and exons. We describe the automatic generation
of hints from the following transcriptomic data sources:

1. short RNA-Seq data (e.g. Illumina reads or shorter 454 reads) (Alternate Protocol 13),

2. ESTs, longer RNA-Seq data (e.g. longer 454 reads), cDNAs (Alternate Protocol 16),

3. long read RNA-Seq reads (e.g. IsoSeq, Alternate Protocol 14.

The alignment of proteins from the target species or a close relative can provide evidence about
introns, coding sequence, and start and end positions of genes (Alternate Protocol 15).

AUGUSTUS has many options. Here, we specifically describe how to sample alternative transcripts
in ab initio mode (Alternative Protocol 12). Alternative transcripts from extrinsic evidence can be
predicted if such evidence is provided to AUGUSTUS in a hints file (Basic Protocol 18). It is possible
to combine various sources of extrinsic evidence in a single AUGUSTUS run. However, in certain
application cases, AUGUSTUS should be run several times with different evidence, leading initially
to several sets of gene structures. We explain how such gene sets can be merged, nonredundantly
(Suppl. Protocol 19). Finally, we describe data parallelization for speeding up AUGUSTUS in
Suppl. Protocol 20.

How to read commands in this protocol

Printing long commands occasionally requires an artificial linebreak. For example:
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bash input

This is a command stretching \
two lines.

The trailing backslash (\) and the initial spaces in the succeeding line need not be typed. What
you actually type can look like this:

bash input

This is a command stretching two lines.

STRATEGIC PLANNING

Two important things should be considered before beginning the annotation: the input data, and
how to document the annotation procedure.

Acquiring Input Data

The results of the structural genome annotation as well as most downstream steps, like functional
annotation and phylogenetic analyses, critically depend on the genome assembly. Even relatively
small changes to the assembly often imply that all downstream analyses have to be repeated if
only to obtain consistent results. As this is often laborious, seek to use the best possible assembly
in the first place – or – postpone some downstream analyses until the assembly and gene set are
finalized. Pirovano et al. suggest submitting the genome assembly to GenBank first, before starting
to annotate it (Pirovano et al., 2015). It is possible, that a contamination of the assembly with
foreign DNA is identified during submission and the removal of such contaminant regions would at
least require substantial coordinate changes, if not changes to gene structures as well.

Repeat Masking

Eukaryotic genomes may be very rich in repetitive elements. Repeats can severely disturb gene
prediction (e.g. predicting many copies of some transposon may lead to an extremely high number of
genes). We therefore strongly recommend that you mask any genome to be used for gene prediction
rigorously. RepeatMasker (usage is described in (Chen, 2004), Unit 4.10) is a good starting point.
Consider that you might have to create a species-specific repeat library (e.g. with RepeatScout
(Price et al., 2005)). We distinguish two implicit ways of storing the repeat locations for a genome
sequence: soft-masked and hard-masked.

In a soft-masked genomic FASTA file, all parts of the genome that are likely to be repeats are
written with lower case letters, while all other sequence parts are written in upper case letters. For
predicting genes with AUGUSTUS, it is ideal to use a soft-masked version of the genome. Most
modern transcript aligners can also handle softmasking, and it is essential to use a repeat-masked
genome for transcript alignment.
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File contents example: genome.soft-masked.fa

>contig1
AGACCTGAgagggcattggaatctTGGCCTGGAGTCCACTCAAAGGGTACATAAAC

In a hard-masked genomic FASTA file, all parts of the genome that are considered repeats are
stored as unknown nucleotides with the character N. The advantage of hardmasking is that even
software that is unable to handle soft repeat masking correctly is not disturbed by the repeats.

File contents example: genome.hard-masked.fa

>contig1
AGACCTGANNNNNNNNNNNNNNNNTGGCCTGGAGTCCACTCAAAGGGTACATAAAC

From the AUGUSTUS point of view, softmasking should be preferred since AUGUSTUS will still
be able to assess the sequence content in repetitive regions and may compensate overmasking during
gene prediction.

(Re-)Naming Sequences

File formats for handling alignment and gene prediction data need to refer to the names of sequences.
In FASTA format, sequence names are stored in the fasta header. There is no strict definition of
how long or how complex a FASTA header may be and for many purposes, it may be helpful to
have a very descriptive header. In terms of alignment and gene prediction, it is more advantageous
to work with short and simple sequence names. In particular, you should avoid the occurence of
whitespaces and special characters in the header.

File contents example: sequence_with_complex_header.fa

>P01013 GENE X PROTEIN (OVALBUMIN-RELATED) | SOME MORE INFORMATION
QIKDLLVSSSTDLDTTLVLVNAIYFKGMWKTAFNAEDTREMPFHVTKQESKPVQMMCMNNSFNVATLPAE

File contents example: sequence_with_simple_header.fa

>seq1
QIKDLLVSSSTDLDTTLVLVNAIYFKGMWKTAFNAEDTREMPFHVTKQESKPVQMMCMNNSFNVATLPAE

Inspect all your FASTA files before using them for gene prediction for the nature of their FASTA
headers. If headers are complex, change them. You can use e.g. the script http://bioinf.
uni-greifswald.de/bioinf/downloads/simplifyFastaHeaders.pl to produce a new file with
simple headers and a mapping table with old and new headers.

bash input

simplifyFastaHeaders.pl in.fa prefix out.fa header.map

http://bioinf.uni-greifswald.de/bioinf/downloads/simplifyFastaHeaders.pl
http://bioinf.uni-greifswald.de/bioinf/downloads/simplifyFastaHeaders.pl
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Documenting the Annotation Procedure

Firstly, expect that any critical command line or processing step needs to be repeated at a (possibly
much) later point in time for a number of reasons. New data could be added later, e.g. when
additional RNA-Seq libraries or protein sequences of another close relative become available or
when an error was made or a suboptimal option was chosen and it becomes apparent only later. Or
a new program or program version is used, e.g. another protein spliced alignment program. Also,
plan for the possibility that somebody else may need to repeat the work – or – perform similar
work on another data set. Comment what you do for yourself and for others.

Anticipating such repetitions, one should document all steps in a way such that the annotator
requires not much “manual” work. Then the time for the update is mostly dominated by the time
to wait for the computer(s) to finish. One way to do this is to copy any executed command into a
text file (actually, a shell script) and to comment it using #. For example, such a documentation
file could look like this

File contents example: metaparopt.sh

# Tue Apr 17, 2018
mkdir try1; cd try1
BONAFIDE_DIR1=/path/to/training/data/version1
ln -s $BONAFIDE_DIR1/buggenes.1234.gb train.gb
ln -s $BONAFIDE_DIR1/buggenes.345.gb test.gb
# optimize meta parameters
optimize_augustus.pl --species=bug --cpus=4 --kfold=8 train.gb > optimize.out
# final training with optimized meta parameters
etraining --species=bug train.gb
# make a test prediction to assess accuracy
augustus --species=bug test.gb > test.opt.out

and a repeated analysis could be performed after minimal changes to above documentation file
(e.g. changing try1 to try2). In fact, if above commands are stored in a text file metaparopt.sh it
can be invoked as a shell script with the commands

bash input

chmod +x metaparopt.sh
metaparopt.sh
# or
bash metaparopt.sh

For more tips on how to organize one’s data and programs we refer the reader to Noble (2009).

Necessary Resources

Hardware

The protocols below are in principle executable on a modern desktop computer with 8 GB RAM
(exception: RNA-Seq alignment with e.g. the tool STAR requires at least 10 x GenomeSize bytes
RAM) and little more hard drive space than required to hold the input data (e.g. genome and
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RNA-Seq data). In particular for genome sizes in the multi-gigabase range, we recommend a
workstation with at least 8 or more compute cores or a compute cluster. The overall running times
are dominated by the time to run alignments and the time to run AUGUSTUS. For example,
aligning the example Illumina data from Alternate Protocol 1 to the given genomic sequence with
STAR takes ∼6 minutes on an Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz with 8 cores; if
you choose a slower aligner, runtime will be higher. Expect single-species gene predictions with
AUGUSTUS to take in the order of 3 days per Gb of genome if performed on a single CPU core,
if the hints (evidence) are already prepared.

Software

All commands and software calls in this book chaper have been tested with the Linux bash shell.
They may not be compatible with other operating systems.

Described protocols require the gene prediction software AUGUSTUS. Obtain the most recent re-
lease of AUGUSTUS from the developers’ website http://bioinf.uni-greifswald.de/augustus
by typing:

bash input

wget http://bioinf.uni-greifswald.de/augustus/binaries/augustus.current.tar.gz

Extract augustus.current.tar with:

bash input

tar -xvf augustus.current.tar.gz

Continue with installation instructions provided in file augustus/README.TXT.

Please note that “AUGUSTUS” consists of several binaries in augustus/bin/ (executable tool files,
e.g. augustus, etraining, joingenes, bam2hints) and a number of perl scripts in augustus/scripts/.
Sources of the main components of AUGUSTUS are located in augustus/src/, sources of auxillary
tools (such as joingenes) are located in augustus/auxprogs/. Depending on your system config-
uration, you may have to pay some attention to compilation of the tools in augustus/auxprogs/.
The auxiliary programs have individual compilation instructions extending augustus/README.TXT.
Not all auxiliary programs may be needed for a given application. Third party software require-
ments are explicitely listed above each protocol.

Training AUGUSTUS

AUGUSTUS is a gene prediction tool that utilizes either a generalized hidden-Markov model (gen-
eralized HMM) or semi-Markov conditional random field (CRF) (Stanke and Borodovsky, 2018)
to identify protein-coding genes and their structure in a given genome sequence. The HMM is the
default model and used in most of this chapter. In Alternate Protocol 9 we describe how to make
use of the CRF model. Both models are probabilistic and the models have very roughly 10 000 pa-
rameters. The parameters are estimated (in a so-called supervised fashion) from genome sequences

http://bioinf.uni-greifswald.de/augustus
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with bonafide reference gene structures (the training set). To achieve accurate gene prediction, the
parameters should match the target species (see next paragraph). Each parameter set is stored in a
subfolder of the directory augustus/config/species/. The AUGUSTUS release already contains
many pre-trained parameter sets. We highly recommend using a pre-trained parameter set if one
is available for your target species, or a closely related one.

It is not necessary to train AUGUSTUS specifically and individually for each target species. A
cross-species application may work fine when parameters were trained on one species, say species
A, and are applied to predict genes in the genome of another species, say, species B. As a rule
of thumb, retraining for B is not necessary if A and B are so closely related that their genomes
can be aligned with each other at least in most coding regions (e.g. the average protein sequence
alignment has > 70% identities, as in human and mouse, for example). Table 1 on page 57 shows
an example of the loss of accuracy in cross-species training.

AUGUSTUS requires supervised training, i.e. it needs a set of reliable training gene structures
including a flanking, non-coding region at both ends. The file format used for training AUGUSTUS
is a strict GenBank flatfile format:

File contents example: train.gb

LOCUS 2R_5065592-5067680 2089 bp DNA
FEATURES Location/Qualifiers

source 1..2089
mRNA complement(join(838..872,937..1252))

/gene="1110_t"
CDS complement(join(838..872,937..1252))

/gene="1110_t"
BASE COUNT 660 a 396 c 350 g 683 t
ORIGIN

1 tcctagtcat gtgaatacca aagcttttcc catctgttgt tttggtcttt gcgtcaaaca
(...)

2041 ttttaattaa aaaattaact taataataat tctcattatt ttggagagg
//

The AUGUSTUS package contains the script gff2gbSmallDNA.pl for converting GTF or GFF3
format into GenBank format. If a GenBank flatfile was constructed with this script, the LOCUS line
describes the genomic location from which the training gene structure was excised (here sequence 2R,
genomic start position 5065592, end position 5067680). Subsequently, the sequence length (here
2089 bp) and sequence type (for training AUGUSTUS always DNA) are displayed. The source
sequence goes from position 1 to 2089 (which is the sequence length); an mRNA with two exons is
annotated on the reverse strand. In the given example, the exons are identical to the CDS features,
below, i.e. no untranslated regions are annotated in the mRNA feature. The BASE COUNT lists the
sequence nucleotide composition. After the ORIGIN line, the DNA sequence begins. It ends before
the // tag. The programs for training AUGUSTUS are adapted to this particular GenBank flatfile
format and GenBank files that deviate from above format may cause problems.

An absolute minimum for acceptable performance are 200 gene structures for training. The more
genes the training set comprises the better, however the incremental benefit of additional genes is
small at 1000 genes already. As a rule of thumb, if you have more than 1000 genes, then rather
prefer quality (fewer false annotations) over quantity. It is also important that the number of
multiexon genes is large. These are needed to train the intron recognizer. The gene structures of
these genes should be as accurate as possible. However, it is not necessary that they are 100%
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correct, neither does the annotation have to be necessarily complete. It is more important that the
start codon is correctly annotated than that the stop codon is correctly annotated.

For quality control, you should always keep a certain number of training gene structures that you
will not use for training AUGUSTUS. We call this set of genes the test set. After each training
step, you can apply AUGUSTUS to this test set with the new parameters and measure prediction
accuracy by comparing prediction and annotation. We recommend to use at least 200 genes for
testing, if a sufficient number of other genes remains for training.

For training AUGUSTUS, first execute etraining on the training gene set (see Basic Protocol 7).
Subsequently, execute optimize_augustus.pl (see Suppl. Protocol 8). Optionally, try whether
CRF training with etraining improves prediction accuracy (see Alternate Protocol 9).

Alternate Protocol 1—Generating Training Gene Structures from Short Read
RNA-Seq Data

The following protocol is suitable for generating training gene structures from a genome file and
short read RNA-Seq data, e.g. Illumina paired-end data or short 454 reads. The RNA-Seq data
should be from the target species (cross species alignments can only be expected to work satisfac-
torily if the two species are highly similar, e.g. with a few percent differences in the genome).

Please be aware that the BRAKER pipeline (http://bioinf.uni-greifswald.de/augustus/
binaries/BRAKER2.tar.gz) automates training GeneMark-ET and AUGUSTUS with short read
RNA-Seq data. We will not describe the usage of BRAKER in this protocol, but you might want
to consider running BRAKER instead of performing the steps listed here manually.

Required Software:

• RNA-Seq aligner, e.g. STAR (https://github.com/alexdobin/STAR)1

• Samtools (https://sourceforge.net/projects/samtools/files/)

• GeneMark-ET (http://opal.biology.gatech.edu/GeneMark/)

• BRAKER (http://bioinf.uni-greifswald.de/augustus/binaries/BRAKER2.tar.gz, you
do not need to configure the full BRAKER installation; the scripts required in this protocol
are located in folder braker/scripts/)

Files:

• Genome file in FASTA format; for demonstration purposes, you can use the file
BRAKER2examples/genome.fa containing chromosome 2R of D. melanogaster :

bash input

wget http://bioinf.uni-greifswald.de/augustus/binaries/BRAKER2examples.tar.gz
tar -zxf BRAKER2examples.tar.gz
ln -s BRAKER2examples/genome.fa genome.fa

• File with RNA-Seq reads in FASTQ format, for demonstration purposes you can use the file
rgasp_fly_2R.fastq which contains RNA-Seq reads of D. melanogaster from the RGASP

1Other RNA-Seq aligners, e.g. GSNAP or Tophat2 work similarly well for this protocol

http://bioinf.uni-greifswald.de/augustus/binaries/BRAKER2.tar.gz
http://bioinf.uni-greifswald.de/augustus/binaries/BRAKER2.tar.gz
https://github.com/alexdobin/STAR
https://sourceforge.net/projects/samtools/files/
http://opal.biology.gatech.edu/GeneMark/
http://bioinf.uni-greifswald.de/augustus/binaries/BRAKER2.tar.gz
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assessment (Steijger et al., 2013) that map to the above mentioned genome file (when mapped
with tophat2):

bash input

wget http://bioinf.uni-greifswald.de/augustus/binaries/tutorial/data/\
rgasp_fly_2R.fastq.gz

ln -s rgasp_fly_2R.fastq.gz rnaseq.fastq.gz

Protocol:

1. Use a repeat-masked genome when aligning RNA-Seq reads. For aligning RNA-Seq reads to
a genome file, build a STAR index:

bash input

mkdir star_genome
STAR --runMode genomeGenerate --genomeDir star_genome --genomeFastaFiles genome.fa

This command produces an index for running the alignment with STAR in the directory
star_genome. Use the option --runThreadN INT to set the number of threads available on
your system.

2. Align RNA-Seq reads (FASTQ format, gzipped) to genome file:

bash input

STAR --genomeDir star_genome --readFilesIn rnaseq.fastq.gz \
--readFilesCommand zcat

Option --runThreadN INT will speed up the alignment process. The command produces an
alignment output file Aligned.out.sam.

3. Convert the sam file to bam format

bash input

samtools view -Sb Aligned.out.sam > Aligned.out.bam

4. Optional: Sorting bam file (this may be a strict requirement if you use a different aligner).

bash input

samtools sort -n Aligned.out.bam > Aligned.out.s.bam
samtools sort Aligned.out.s.bam > Aligned.out.ss.bam

If you skip this step to minimize runtime (e.g. because you are working with STAR, which
produces a sorted output), please create the following softlink instead:

bash input

ln -s Aligned.out.bam Aligned.out.ss.bam
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5. Optional: Filtering bam file

RNA-Seq alignment data is potentially noisy, i.e. it may contain many alignments that are
rather coincidental. To eliminate some of that noise, you can apply a filter with the program
filterBam from the AUGUSTUS package to the alignment (bam) file before converting it to
hints.

(a) Begin with the file Aligned.out.ss.bam from step 4. Then, you will filter the aligned
reads for those that map to one position in the genome only (--uniq).

bash input

filterBam --uniq --in Aligned.out.ss.bam --out Aligned.out.ssf.bam

If you are using paired end RNA-Seq data, you may filter for those reads where both in
a pair map to the genome with options --paired --pairwiseAlignment.

(b) If you are working with paired end data, a sorting step is required (the command given
here will overwrite the original Aligned.out.ss.bam file from step 4):

bash input

samtools sort Aligned.out.ssf.bam -o Aligned.out.ss.bam

If you are working with unpaired data, skip the sorting step, remove the original file
Aligned.out.ss.bam, and create a softlink from the Aligned.out.ssf.bam to
Aligned.out.ss.bam:

bash input

rm Aligned.out.ss.bam
ln -s Aligned.out.ssf.bam Aligned.out.ss.bam

6. Extract intron information from bam file:

bash input

bam2hints --intronsonly --in=Aligned.out.ss.bam --out=introns.gff

The following lines show an example of the file introns.gff, which we also refer to as a
hints file. This file will be used in training (this section) and for prediction later on (Section:
Prediction Using Extrinsic Evidence).

File contents example: introns.gff

2R b2h intron 336478 343473 0 . . mult=3;pri=4;src=E
2R b2h intron 336480 343473 0 . . mult=11;pri=4;src=E
2R b2h intron 336482 343473 0 . . mult=2;pri=4;src=E
2R b2h intron 336658 427382 0 . . pri=4;src=E

7. Most RNA-Seq data is by nature unstranded, i.e. it is unclear from which strand an aligned
read stems. We try to guess the correct strand by using genomic splice site information (and
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discard all reads that do not have appropriate splice site information):

bash input

filterIntronsFindStrand.pl genome.fa introns.gff --score > introns.f.gff

This produces a file introns.f.gff that contains strand information and the information of
how many reads map to a particular splice site.

8. Run unsupervised GeneMark-ET training and prediction to generate template genes for train-
ing AUGUSTUS:

bash input

gmes_petap.pl --verbose --sequence=genome.fa --ET=introns.f.gff

Use option --cores=N for parallelization. Use option --soft_mask 1000 if the genome is
soft-masked. This command may be time consuming, it takes about 6 minutes on a Intel(R)
Core(TM) i7-7700K CPU @ 4.20GHz with 8 cores when using the example data (3.1 GB
Illumina reads, 25 MB genome file). It produces an output file genemark.gtf that contains
ab initio gene predictions by GeneMark-ET.

9. Next we will filter the GeneMark-ET predictions for those that have support in all introns by
RNA-Seq data (single exon genes will be selected randomly in an appropriate proportion):

bash input

filterGenemark.pl --genemark=genemark.gtf --introns=introns.f.gff

This produces several files, among them genemark.f.good.gtf, which contains those Gene-
Mark genes that have support by RNA-Seq alignments (and some single exon genes).

In order to make this protocol compatible with other protocols in this protocol, we link this
file to bonafide.gtf:

bash input

ln -s genemark.f.good.gtf bonafide.gtf

10. AUGUSTUS requires not only information about the coding sequence, but also about the
non-coding sequence. We provide information about non-coding sequence in the flanking
region of genes in the GenBank flatfile. The flanking region should not be chosen too short.
On the other hand, setting it to maximum length may increase the runtime of training a
lot. As a rule of thumb, you may use half of the mRNA size. Compute this value e.g. with
computeFlankingRegion.pl:

bash input

computeFlankingRegion.pl bonafide.gtf

The output will look similar to this:
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bash output

The flanking_DNA value is: 1094 (the Minimum of 10 000 and 1094)

We are looking for the number 1094, which will be used in the next step.

11. Convert all GeneMark gene structures to GenBank flatfile format. Whenever two neighboring
genes are separated by fewer than 2*flanking_DNA bases, the end of the flanking DNA of
both is set to the midpoint between the two genes. Therefore, we do not use the filtered
GeneMark gene structures here, because by using all of them we exclude potentially coding
regions from the flanking region of AUGUSTUS training genes, which will increase specificity
of AUGUSTUS:

bash input

gff2gbSmallDNA.pl genemark.gtf genome.fa 1094 tmp.gb

12. Filter those genes that are in the “good” file bonafide.gtf from tmp.gb and store them in
a file bonafide.gb:

bash input

filterGenesIn_mRNAname.pl bonafide.gtf tmp.gb > bonafide.gb

The file bonafide.gb can serve as an input to the protocol for eliminating redundant training genes
in Suppl. Protocol 6.

Alternate Protocol 2—Generating Training Gene Structures from Proteins

The protocol described here is suitable for generating training gene structures from a genome file
and a protein sequence file. Proteins may originate from the same species as the genome or from
a very closely related species (rule of thumb: at least 90% identity of aligned orthologs). You
need to choose an aligner that will not only accurately align the sequences, but also produce valid
full-length gene structures with correct splice sites (e.g. GenomeThreader or Scipio). Here, we use
GenomeThreader because it is faster.

Required software:

• GenomeThreader (http://genomethreader.org/)

• startAlign.pl from BRAKER (http://bioinf.uni-greifswald.de/bioinf/braker)

Required files:

• Genome file in FASTA format; for demonstration purposes, you can use the file
chr1to3.fa (containing chromosomes 1 to 3 of the Rattus norvegicus genome):

http://genomethreader.org/
http://bioinf.uni-greifswald.de/bioinf/braker
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bash input

wget http://bioinf.uni-greifswald.de/augustus/binaries/example-data-webserver/\
chr1to3.fa
ln -s chr1to3.fa genome.fa

• File with protein sequences in FASTA format; for demonstration purposes you can use the
file rattusProteinsChr1to3.fa:

bash input

wget http://bioinf.uni-greifswald.de/augustus/binaries/example-data-webserver/\
rattusProteinsChr1to3.fa

ln -s rattusProteinsChr1to3.fa proteins.fa

Protocol:

1. Align protein sequences to target genome with GenomeThreader. startAlign.pl will call
GenomeThreader with certain parameters and handle parallelization:

bash input

startAlign.pl --genome=genome.fa --prot=protein.fa --prg=gth

Specify the number of cores with --CPU=INT (it will use at most as many cores as there are
genome sequences, though).

The command will produce an output file align_gth/gth.concat.aln that will later serve
as basis for training gene structure generation.

2. Convert align_gth/gth.concat.aln to GTF format:

bash input

gth2gtf.pl align_gth/gth.concat.aln bonafide.gtf

3. Compute a flanking region length for training gene structures in GenBank flatfile format
(compare to step 10 in Alternate Protocol 1):

bash input

computeFlankingRegion.pl bonafide.gtf

4. Convert genome file and GenomeThreader gtf training gene file to GenBank flatfile format
for training AUGUSTUS (10000 here is the flanking region size):

bash input

gff2gbSmallDNA.pl bonafide.gtf genome.fa 10000 bonafide.gb

The file bonafide.gb can serve as an input to the protocol for postprocessing of training genes in
Suppl. Protocol 6.
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Alternate Protocol 3—Generating training gene structures from ESTs

The protocol described here is suitable for generating training gene structures from expressed
sequence tags (ESTs) and the matching genome.

Required software:

• PASA v2.2.0 (https://pasapipeline.github.io/#A_obt_pasa)

• MySQL

• Perl module DBD::mysql

• GMAP (http://research-pub.gene.com/gmap/)

• BLAT (http://hgwdev.cse.ucsc.edu/~kent/src/blatSrc35.zip)

• FASTA general sequence alignment utility
(http://faculty.virginia.edu/wrpearson/fasta/CURRENT/)

Required files:

• Genome file in FASTA format; for demonstration purposes you can use the file
augustus/examples/autoAug/genome.fa

• File with ESTs in FASTA format; for demonstration purposes you can use the file
augustus/examples/autoAug/cdna.fa

Protocol:

1. Clean your transcript sequences for PASA:

bash input

seqclean cdna.fa

This command produces a number of output files, most importantly the file
cdna.fa.clean.

2. Prepare a configuration file for running PASA. Start by copying the
pasa.alignAssembly.Template.txt file from $PASAHOMA/pasa_conf to your working direc-
tory:

bash input

cp $PASA_HOME/pasa_conf/pasa.alignAssembly.Template.txt alignAssembly.config

3. Edit the file alignAssembly.config as follows (e.g. using any common text editor like gedit
or pluma or emacs):

File contents example: alignAssembly.config

MYSQLDB=sample_mydb_pasa
validate_alignments_in_db.dbi:--MIN_PERCENT_ALIGNED=0.8
validate_alignments_in_db.dbi:--MIN_AVG_PER_ID=0.9
subcluster_builder.dbi:-m=50

https://pasapipeline.github.io/#A_obt_pasa
http://research-pub.gene.com/gmap/
http://hgwdev.cse.ucsc.edu/~kent/src/blatSrc35.zip
http://faculty.virginia.edu/wrpearson/fasta/CURRENT/
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4. Run PASA using the following command2:

bash input

Launch_PASA_pipeline.pl -c alignAssembly.config -C -R -g genome.fa \
-t cdna.fa.clean -T -u cdna.fa --ALIGNERS blat,gmap

Use the option --CPU INT for parallelization.

Among other files, this will produce sample_mydb_pasa.assemblies.fasta and
sample_mydb_pasa.pasa_assemblies.gff3 that we will use in the next step.

5. Call open reading frames (ORFs) in PASA assemblies as follows:

bash input

pasa_asmbls_to_training_set.dbi --pasa_transcripts_fasta \
sample_mydb_pasa.assemblies.fasta --pasa_transcripts_gff3 \
sample_mydb_pasa.pasa_assemblies.gff3

This produces a file sample_mydb_pasa.assemblies.fasta.transdecoder.cds
with potential training gene ORFs and a sister file with the same ORFs in GFF3 format
(sample_mydb_pasa.assemblies.fasta.transdecoder.gff3).

6. Create a list of complete ORFs:

bash input

grep complete sample_mydb_pasa.assemblies.fasta.transdecoder.cds | perl -pe \
’s/>(\S+).*/$1/’ > complete.orfs

The file complete.orfs will look similar to this:

File contents example: complete.orfs

asmbl_102|m.7
asmbl_113|m.123
(...)

7. Find the complete ORFs in the file sample_mydb_pasa.assemblies.fasta.transdecoder.gff3,
keep only the exon and CDS entries; rename exon entries to have the same identifier as CDS
entries:

bash input

grep -F -f complete.orfs \
sample_mydb_pasa.assemblies.fasta.transdecoder.genome.gff3 | grep -P \
"(\tCDS\t|\texon\t)" | perl -pe ’s/cds\.//; s/\.exon\d+//;’ \
> trainingSetComplete.gff3

8. Sort the training gene candidates:
2Troubleshooting PASA error message DBI connect(’:localhost # or server.com’,’pasa-all’,...) failed: delete the #

or server.com from $PASA_HOME/pasa_conf/conf.txt if you want to work with localhost.
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bash input

mv trainingSetComplete.gff3 trainingSetComplete.temp.gff3
cat trainingSetComplete.temp.gff3 | perl -pe ’s/\t\S*(asmbl_\d+).*/\t$1/’ \

| sort -n -k 4 | sort -s -k 9 | sort -s -k 1,1 > trainingSetComplete.gff3

In order to make this protocol compatible with other protocols in this protocol, we link this
file to bonafide.gtf:

bash input

ln -s trainingSetComplete.gff3 bonafide.gtf

9. Follow steps 3 and 4 of Alternative Protocol 2.

The resulting file bonafide.gb can serve as an input to the protocol for postprocessing of training
genes in Suppl. Protocol 6.

Alternate Protocol 4—Generating Training Gene Structures from Iterative Gene
Prediction

This protocol describes a method to construct a training set using AUGUSTUS itself and extrinsic
evidence data. In summary, AUGUSTUS is used to predict genes with already existing species-
specific parameters (from another species) using extrinsic evidence. Then the predictions are filtered
to obtain training genes (see block D in Figure 2 on page 60).

Required files:

• File with genome sequence in FASTA format,

• File with extrinsic evidence hints for gene prediction in GFF format.

In principle you can use all file combinations listed in Section: Prediction Using Extrinsic Evidence
for generating hints files from extrinsic evidence, e.g. the files for generating RNA-Seq hints for
D. melanogaster in Alternate Protocol 1.

Protocol:

1. Find an appropriate existing AUGUSTUS parameter set.

Tip: Cross-species training, in which the parameters estimated from one species are used to
predict genes in another, may give acceptable results. If the two species are close, it may
not be necessary to have a separate parameter set (example: human and mouse). As a rule
of thumb - if large parts of the genomes are alignable then it is not necessary to retrain.
Prediction on the zebrafish genome with human parameters results roughly in a loss of 8
percent points on exon level sensitivity (from 80%). If all available parameters are from very
distant species only, one may have to try a few. The closest species does not necessarily give
the best results.

Run AUGUSTUS with a few existing parameter sets:
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bash input

for s in nasonia tribolium2012 parasteatoda honeybee1
do

augustus --species=$s chr2L.sm.fa --softmasking=on --predictionEnd=1000000 \
> aug.$s.1-1M.gff &

done

Above command will run AUGUSTUS in the background with four different para-
meter sets on the first megabase of chr2L of Drosophila melanogaster. The species selection
is just an example. For Drosophila and many other insects there are already parameter sets
(in this case fly), which we chose to ignore for the purpose of this protocol. The options
--predictionEnd and --predictionStart can be used to cut out a window for prediction.
We do this here to save time and as we will only visually inspect a small region. The files
aug.nasonia.1-1M.gff, aug.tribolium2012.1-1M.gff, aug.parasteatoda.1-1M.gff and
aug.honeybee1.1-1M.gff now contain the coordinates and protein sequences of predicted
genes.

File contents example: aug.nasonia.1-1M.gff

(...)
chr2L AUGUSTUS gene 6693 9276 0.51 + . g1
chr2L AUGUSTUS transcript 6693 9276 0.51 + . g1.t1
chr2L AUGUSTUS start_codon 6693 6695 . + 0 transcript_id "g1.t1"; gene_id "g1";
chr2L AUGUSTUS intron 6809 7573 0.94 + . transcript_id "g1.t1"; gene_id "g1";
chr2L AUGUSTUS intron 8117 8192 1 + . transcript_id "g1.t1"; gene_id "g1";
chr2L AUGUSTUS intron 8590 8667 1 + . transcript_id "g1.t1"; gene_id "g1";
chr2L AUGUSTUS CDS 6693 6808 0.57 + 0 transcript_id "g1.t1"; gene_id "g1";
chr2L AUGUSTUS CDS 7574 8116 0.96 + 1 transcript_id "g1.t1"; gene_id "g1";
chr2L AUGUSTUS CDS 8193 8589 1 + 1 transcript_id "g1.t1"; gene_id "g1";
chr2L AUGUSTUS CDS 8668 9276 1 + 0 transcript_id "g1.t1"; gene_id "g1";
chr2L AUGUSTUS stop_codon 9274 9276 . + 0 transcript_id "g1.t1"; gene_id "g1";
# protein sequence = [MMKRDRFYWDKNDRSRERSGLNFTLTKMLAIQNGGGMKSNREENPRLNKYRRVDNSY (...)

2. Visualize alignments and gene predictions in a browser. For the purpose of this protocol
we will assume that the extrinsic evidence data is RNA-Seq alignment data in bam-format
(e.g. produced by hints from RNA-Seq generation in Alternate Protocol 13). Here, we will
use the UCSC genome browser, which conveniently already exists for the genome assembly
that we use (dm6). There will usually be no browser for a new genome, but nevertheless
the UCSC genome browser may be used to display the genome and other tracks using Track
Hubs. Make "big" indexed files:

bash input

echo "chr2L 23513712" > chrom.sizes # size of chromosomes
mv Signal.Unique.str1.out.wig rnaseq.wig # rename for convenience
mv Aligned.sortedByCoord.out.bam rnaseq.bam
wigToBigWig rnaseq.wig chrom.sizes rnaseq.bw
bamtools index -in rnaseq.bam # index required by UCSC browser
scp rnaseq.bw rnaseq.bam rnaseq.bam.bai \

user@server:~/public_html/ # copy to publicly accessible web space

The data is now web-accessible through an URL, for example, the URL could be http:

http://hgwdev.cse.ucsc.edu/~mario/tutorial2015/results/
http://hgwdev.cse.ucsc.edu/~mario/tutorial2015/results/
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//hgwdev.cse.ucsc.edu/~mario/tutorial2015/results/. The UCSC browser will load
the parts requested through browsing only. Create a custom track file:

bash input

echo "browser hide all" > customtrack
echo "track name=\"STAR RNA-Seq alignments\" type=bam visibility=4 \

bigDataUrl=http://hgwdev.cse.ucsc.edu/~mario/tutorial2015/results/rnaseq.bam" \
>> customtrack

echo "track name=\"STAR coverage\" type=bigWig visibility=2 \
bigDataUrl=http://hgwdev.cse.ucsc.edu/~mario/tutorial2015/results/rnaseq.bw" \
>> customtrack

for s in nasonia tribolium2012 parasteatoda honeybee1; do
echo "track name=\"AUGUSTUS $s abinitio\" db=dm6 visibility=3" >> customtrack
grep -P "AUGUSTUS\t(CDS|exon)\t" aug.$s.1-1M.gff \

>> customtrack # use only the relevant coordinate lines
done

A format example of file customtrack is shown in shown below:

bash input

grep -B 1 -A 2 track customtrack

bash output

browser hide all
track name="STAR RNA-Seq alignments" type=bam visibility=4 \

bigDataUrl=http://hgwdev.cse.ucsc.edu/~mario/tutorial2015/results/rnaseq.bam
track name="STAR coverage" type=bigWig visibility=2 \

bigDataUrl=http://hgwdev.cse.ucsc.edu/~mario/tutorial2015/results/rnaseq.bw
track name="AUGUSTUS nasonia abinitio" db=dm6 visibility=3
chr2L AUGUSTUS CDS 6693 6808 0.57 + 0 transcript_id "g1.t1"; gene_id "g1";
chr2L AUGUSTUS CDS 7574 8116 0.96 + 1 transcript_id "g1.t1"; gene_id "g1";
chr2L AUGUSTUS CDS 995604 995891 0.59 + 0 transcript_id "g159.t1"; gene_id "g159";
track name="AUGUSTUS zebrafish abinitio" db=dm6 visibility=3
chr2L AUGUSTUS CDS 7574 8116 0.98 + 1 transcript_id "g1.t1"; gene_id "g1";
chr2L AUGUSTUS CDS 8193 8589 0.85 + 1 transcript_id "g1.t1"; gene_id "g1";
chr2L AUGUSTUS CDS 957279 957449 1 + 0 transcript_id "g135.t1"; gene_id "g135";
track name="AUGUSTUS tomato abinitio" db=dm6 visibility=3
chr2L AUGUSTUS exon 6486 6808 . + . transcript_id "g1.t1"; gene_id "g1";
chr2L AUGUSTUS CDS 6591 6808 0.76 + 0 transcript_id "g1.t1"; gene_id "g1";

This is a format that the UCSC Genome Browser understands. The first line tells it to hide
the existing tracks. The first two track lines refer to the RNA-Seq tracks and specify the
URL where the data lies. The AUGUSTUS tracks are included in the file as they are small
enough.

Next:

(a) open the browser for Drosophila melanogaster
(http://genome.ucsc.edu/cgi-bin/hgTracks?db=dm6),

(b) click on "add custom tracks" or "manage custom tracks",

http://hgwdev.cse.ucsc.edu/~mario/tutorial2015/results/
http://hgwdev.cse.ucsc.edu/~mario/tutorial2015/results/
http://genome.ucsc.edu/cgi-bin/hgTracks?db=dm6
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(c) upload the file customtrack and

(d) click on the link in the column "Pos" in the table of custom tracks.

For demonstration purposes, you find a previously prepared custom track at
http://genome.ucsc.edu/cgi-bin/hgTracks?db=dm6&hgt.customText=http://hgwdev.cse.
ucsc.edu/~mario/tutorial2015/results/customtrack.gz.

The UCSC Genome Browser group has an excellent help page for setting up UCSC custom
tracks.

Browse the predictions and alignments and pick a parameter set for which the genes match
the evidence best. Let us assume here that the nasonia parameter set is best.

3. Predict the genes again using the best parameters and available hints as described in Basic
Protocol 18, step 3. This results in a file augustus.hints.gff. This file contains gene
structures and also a summary for each transcript as to how well it matches the evidence:

File contents example: augustus.hints.gff
...
chr2L AUGUSTUS transcript 11215 17136 1 - . g2.t1
...
# Evidence for and against this transcript:
# % of transcript supported by hints (any source): 100
# CDS exons: 8/8
# W: 8
# CDS introns: 7/7
# E: 7

4. Filter for genes with 100% support. Be aware: We are likely to introduce a bias when we
restrict ourselves to this set, e.g. to the highly expressed genes. Also, we are introducing
a bias towards genes that fit the previous model well. We apply the following very simple
filter: Select all transcripts that are fully supported by evidence. Here we are working with
RNA-Seq data. We choose to use genes that are in every intron supported by an exactly
matching RNA-Seq alignment gap and that have some coverage in every exon:

bash input

cat augustus.hints.gff | perl -ne ’if (/\ttranscript\t.*\t(\S+)/){$tx=$1;} \
if (/transcript supported.*100/) {print "$tx\n";}’ | tee supported.lst | wc -l

5. Compute flanking region size (see also step 10 in Alternate Protocol 1):

bash input

grep -P "\tAUGUSTUS\t" augustus.hints.gff > augustus.hints.gtf
computeFlankingRegion.pl augustus.hints.gtf

6. Create a training set containing only the supported genes:

http://genome.ucsc.edu/cgi-bin/hgTracks?db=dm6&hgt.customText=http://hgwdev.cse.ucsc.edu/~mario/tutorial2015/results/customtrack.gz
http://genome.ucsc.edu/cgi-bin/hgTracks?db=dm6&hgt.customText=http://hgwdev.cse.ucsc.edu/~mario/tutorial2015/results/customtrack.gz
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bash input

gff2gbSmallDNA.pl --good=supported.lst augustus.hints.gff genome.fa 1094 \
bonafide.gb

The file bonafide.gb can serve as an input to the protocol for postprocessing of training genes in
Suppl. Protocol 6. For compatibility with this section create the followig softlink:

bash input

ln -s augustus.hints.gtf bonafide.gtf

Supplemental Protocol 5—Preparing UTR training examples

A species-specific parameter set for AUGUSTUS may optionally contain parameters for predicting
untranslated regions (UTRs). Such parameters are of particular importance for the integration
of transcriptome data into gene prediction. Coverage information of RNA-Seq data will not only
cover coding regions, but also UTRs. The absence of UTR parameters during gene prediction with
such data may lead to false positive coding sequence prediction in longer UTRs because coverage
exceeds the coding sequence and stretches into UTRs.

Training genes with UTRs can in principle be generated from aligned gene expression data, such as
ESTs, RNA-Seq, or Iso-Seq. The pipeline augustus/scripts/AutoAug.pl provides an interface for
generating UTR training examples from ESTs. However, this method is currently neither suitable
for unassembled RNA-Seq alignment data (since not necessarily any single read spans a complete
UTR), nor for assembled RNA-Seq data (because assembly will collapse the information of the point
at which most reads end into a single transcript). We intend to publish a method for automatically
generating UTR training examples from RNA-Seq data soon. At this point in time, you will have
to accomplish this task manually or with external software.

Here, we describe how to obtain a training file or genes with UTRs in GenBank flatfile format from
gtf format. The gtf file must contain CDS features for all genes and should in addition contain 5’-
and 3’-UTR features for a number of genes. Format example (contents of columns 2, 6, and 8 are
irrelevant, but included to conform to the gtf format):

File contents example: genes_with_utrs.gtf

s1 manual 5’-UTR 2530693 2530700 . + 0 gene_id "g1.t1"; transcript_id "g1";
s1 manual 5’-UTR 2530735 2530772 . + 0 gene_id "g1.t1"; transcript_id"g1";
s1 AUGUSTUS CDS 2530773 2530830 . + 0 gene_id "g1.t1"; transcript_id "g1";
s1 AUGUSTUS CDS 2530893 2531019 . + 2 gene_id "g1.t1"; transcript_id "g1";
s1 AUGUSTUS CDS 2531114 2531422 . + 1 gene_id "g1.t1"; transcript_id "g1";
s1 AUGUSTUS CDS 2531483 2531588 . + 1 gene_id "g1.t1"; transcript_id "g1";
s1 manual 3’-UTR 2531592 2531937 . + 0 gene_id "g1.t1"; transcript_id "g1";

For obtaining good UTR parameters, you should have at least 200 training gene structures with
both 3’- and 5’-UTR features.

Required files:

• A genome file in FASTA format, e.g. genome.fa:
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bash input

wget http://bioinf.uni-greifswald.de/augustus/binaries/\
example-data-utr-training/genome.fa.gz
gunzip genome.fa.gz

• A file with gene structures including UTRs in GTF format, e.g. genes_with_utrs.gtf:

bash input

wget http://bioinf.uni-greifswald.de/augustus/binaries/\
example-data-utr-training/genes_with_utrs.gtf.gz
gunzip genes_with_utrs.gtf.gz

The example files listed above consist of chromosome ch2R from Drosophila melanogaster and
corresponding annotated NCBI genes obtained from the UCSC genome browser.

Protocol:

1. In case the file genes_with_utrs.gtf does not exclusively contain genes that have both 5’-
and 3’-UTR present, you should first identify those genes that have both features:

bash input

cat genes_with_utrs.gtf | perl -ne ’ \
if(s/.*\t(\S+UTR)\t.*transcript_id \"(\S+)\".*/$2\t$1/){print $_;}’ \
| sort -u | perl -ne ’@t = split(/\t/); split; print "$t[0]\n" \
if ($g eq $t[0]); $g = $t[0];’ > bothutr.lst

The file bothutr.lst contains the IDs of transcripts that have both UTRs:

File contents example: bothutr.lst

NM_001014500.3.t1
NM_001014501.3.t1
NM_001014502.2.t1
(...)

2. Subsequently, convert gtf and FASTA-file to GenBank flatfile format for training AUGUSTUS,
keeping only those genes in the final output that are in the file bothutr.lst:

bash input

gff2gbSmallDNA.pl genes_with_utrs.gtf genome.fa 1000 --good=bothutr.lst \
bonafide.utr.gb

Determination of flanking region size (here 1000bp) is described in Alternate Protocol 1, step
10.
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Supplemental Protocol 6—Removing Redundant Gene Structures

Training gene structures (generated from any source) may be redundant on amino acid level. Non-
redundancy is important if you plan to use part of it for training and another part for assessing
prediction accuracy. If genes with an almost identical amino acid sequence are annotated in two
different sequences, then delete one copy. We recommend the following criterion: No two genes in
the set are more than 80% identical on the amino acid level. The non-redundancy is very important
to avoid overfitting during optimize_augustus.pl. It is of course also very important if you want
to test the accuracy on a test set.

Required software:

• NCBI-Blast+ (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/)

Required files:

As input, you can use any training gene set bonafide.gtf or bonafide.gb from previous sections.

Protocol:

1. Generating a protein FASTA file matching bonafide.gb GenBank file. If you obtain
this file by other means, you can skip to step 2.

(a) Depending on the way that you generated the file bonafide.gb, you might have fewer
genes in bonafide.gb than in bonafide.gtf. At first, we will pull the transcript names
of training genes from bonafide.gb:

bash input

cat bonafide.gb | perl -ne ’if(m/\/gene=\"(\S+)\"/){ \
print "\"".$1."\"\n";}’ | sort -u > traingenes.lst

The output will contain the strings that are used as transcript names in the
bonafide.gtf file from which bonafide.gb was originally generated, with quotation
marks:

File contents example: traingenes.lst

"NC_000069.5_t_gene97_mRNA105"
"NC_000069.5_t_gene98_mRNA106"
(...)

(b) Next, we isolate the genes in traingenes.lst from bonafide.gtf:

bash input

grep -f traingenes.lst -F bonafide.gtf > bonafide.f.gtf

If all genes from bonafide.gtf are present in bonafide.gb, you can skip the two steps
above and simply create a softlink from bonafide.gtf to
bonafide.f.gtf:

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
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bash input

ln -s bonafide.gtf bonafide.f.gtf

(c) Convert training gene structure gtf file and FASTA file to a FASTA file containing protein
sequences. You can use the script gtf2aa.pl from AUGUSTUS/scripts for this. Note
that this script uses only the standard translation table. However, this might not have
too negative effects even if the target species actually uses a different genetic code table
since the only operation that will be performed with the amino acid file is a BLAST
process with the purpose of identifying sequence redundancy:

bash input

gtf2aa.pl genome.fa bonafide.f.gtf prot.aa

The output file prot.aa is in FASTA format:

File contents example: prot.aa

>NC_000069.5_t_gene97_mRNA105
CQLICEKPFLEIDDAMRSFAEKVFASEVKDEGGRHEISPFDVDEICPISLHEMQAHIFHMENLSMDGRRKRRF
(...)

2. Next, BLAST all training gene amino acid sequences against themselves and output only
those protein sequences that are less than 80% redundant with any other sequence in the set:

bash input

aa2nonred.pl prot.aa prot.nr.aa

This is a computationally expensive step, it may take hours or even days on a single core.
Adjust the number of cores available on your machine with --cores=INT.

The output file prot.nr.aa consists of protein sequences in FASTA format.

3. In file prot.nr.aa, we will now find a nonredundant subset of genes. Delete the leading >
characters of their names and store them in a file nonred.lst:

bash input

grep ">" prot.nr.aa | perl -pe ’s/>//’ > nonred.lst

The format of nonred.lst is:

File contents example: nonred.lst

NC_000068.6_t_gene170_mRNA187
NC_000069.5_t_gene130_mRNA140
(...)

4. For filtering the file bonafide.gb, we will need a list with loci names instead of gene names.
Therefore, we parse corresponding loci names and gene names from bonafide.gb and store
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them in a file loci.lst:

bash input

cat bonafide.gb | perl -ne ’
if ( $_ =~ m/LOCUS\s+(\S+)\s/ ) {

$txLocus = $1;
} elsif ( $_ =~ m/\/gene=\"(\S+)\"/ ) {

$txInGb3{$1} = $txLocus
}
if( eof() ) {

foreach ( keys %txInGb3 ) {
print "$_\t$txInGb3{$_}\n";

}
}’ > loci.lst

The format of loci.lst is:

File contents example: loci.lst

NC_000069.5_t_gene138_mRNA148 NC_000069.5_139311597-139314090
NC_000068.6_t_gene89_mRNA98 NC_000068.6_77128981-77131243
(...)

The left entry is a gene name, followed by a tabulator, the right entry is the corresponding
locus name.

5. loci.lst now contains all loci in bonafide.gb. Next, we find those loci that correspond to
genes in nonred.lst and store them in nonred.loci.lst:

bash input

grep -f nonred.lst loci.lst | cut -f2 > nonred.loci.lst

The format of nonred.loci.lst is:

File contents example: nonred.loci.lst

NC_000068.6_77128981-77131243
NC_000067.5_75207158-75211273
(...)

6. Filter bonafide.gb to keep only those loci that are contained in nonred.loci.lst:

bash input

filterGenesIn.pl nonred.loci.lst bonafide.gb > bonafide.f.gb

7. Optional: To check how many genes were filtered out, run:

bash input

grep -c LOCUS bonafide.gb bonafide.f.gb
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The output could be similar to this:

bash output

bonafide.gb:558
bonafide.f.gb:515

In this example, 43 of the original training genes were discarded due to sequence redundancy
on amino acid level.

8. As a preparation for the next part of this protocol (Basic Protocol 7), move bonafide.f.gb
to bonafide.gb (overwriting bonafide.gb):

bash input

mv bonafide.f.gb bonafide.gb

Basic Protocol 7—Training AUGUSTUS for a New Species

In this section, we describe how to generate and optimize species-specific parameters for AUGUSTUS
on the basis of a training gene file in GenBank flatfile format.

Required files:

• The input needs to be in compatible GenBank flatfile format (see beginning of Training
AUGUSTUS). For demonstration purposes, we will here use the file bonafide.gb from Al-
ternative Protocol 2 after processing according to Suppl. Protocol 6.

Protocol:

1. Create template parameter files for the new species. Let us assume your species is called bug:

bash input

new_species.pl --species=bug

This command creates a directory called bug under $AUGUSTUS_CONFIG_PATH and therein the
following files:

bash input

ls $AUGUSTUS_CONFIG_PATH/species/bug

bash output

bug_metapars.cfg
bug_metapars.cgp.cfg
bug_metapars.utr.cfg
bug_parameters.cfg
bug_weightmatrix.txt
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2. Optional: In case the organism has a non-standard translation code, AUGUSTUS can be
told to use a different translation table, in particular one with a different set of stop codons.
This is useful for a small number of species such as Tetrahymena thermophilia, in which some
codons translate to a different amino acid than usual. If you train AUGUSTUS for such a
species, set the variable translation_table in the parameter file of your species (if that
would be the case for species bug, that would be the file bug_parameters.cfg of which an
example is shown Suppl. Protocol 8.

Furthermore, adjust the stop codon probabilities in the same config file. In the case of
Tetrahymena, where taa and tag are coding for glutamine (Q), the parameter file would
contain the following entries:

File contents example: tetrahymena_parameters.cfg

translation_table 6
/Constant/amberprob 0 # Prob(stop codon = tag),

# if 0 tag is assumed to code for amino acid
/Constant/ochreprob 0 # Prob(stop codon = taa),

# if 0 taa is assumed to code for amino acid
/Constant/opalprob 1 # Prob(stop codon = tga),

# if 0 tga is assumed to code for amino acid

Choose the translation table number according to table 2. translation_table=1 is the
default value, the standard known from text books and has standard stop codons taa, tga,
tag. If you have a species with the standard genetic code you need not do anything.

3. The tool etraining creates/updates parameter files for exon, intron and intergenic region in
the parameter directory of your species, e.g. $AUGUSTUS_CONFIG_PATH/species/bug. It will
generate or update the files

• bug_exon_probs.pbl

• bug_igenic_probs.pbl

• bug_intron_probs.pbl

Results of our first two runs of etraining will not serve the purpose of actually train-
ing AUGUSTUS but (a) to adjust the parameter stopCodonExcludedFromCDS in the file
bug_parameters.cfg correctly and (b) to remove erroneous gene structures that are impos-
sible to predict for AUGUSTUS (this will keep error log files small, later).

Some tools and databases consider the stop codon to be part of the coding sequence (CDS),
some do not, resulting in a 3 bp difference in the position of the end coordinate. The parameter
stopCodonExcludedFromCDS sets this choice, both when reading input for training and when
creating output during prediction. If you do not know which standard your training set
adheres to, a convenient way is to try it out by letting etraining report corresponding
errors. Run etraining:

bash input

etraining --species=bug bonafide.gb &> bonafide.out
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Count how many times the output file bonafide.out contains the expression
Variable stopCodonExcludedFromCDS set right that is actually part of an error message:

bash input

grep -c "Variable stopCodonExcludedFromCDS set right" bonafide.out

bash output

33

We need to compare this number of errors to the total number of training genes in order to
assess whether those 33 genes are a minority or a majority of all genes:

bash input

grep -c LOCUS bonafide.gb

bash output

558

This will produce the number of training gene structures in bonafide.gb, in this case 558.
Compared to this number, 33 is a minority and we do not need to change the parame-
ter stopCodonExcludedFromCDS. If a majority of genes reported the error “Terminal exon
doesn’t end in stop codon. Variable stopCodonExcludedFromCDS set right?”, the
file bug_parameters.cfg must be edited as follows:

File contents example: bug_parameters.cfg

(...)
stopCodonExcludedFromCDS true # default value was originally false
(...)

Next, you identify all those training genes that still report errors after correctly setting
stopCodonExcludedFromCDS. These are genes that do not adhere to the standard, e.g. be-
cause they have an in-frame stop codon, or the splice site pattern is not gt-ag or they are
syntactically incorrect (e.g. exons of negative length). Genes that produce such an error can
in principle be partially used for training. However, usually it is not worthwhile to keep a
small percentage of such "bad" training genes. Note, however, that this is a point where you
can detect systematic errors in training set construction; for example, when bonafide.gb
was constructed with a genome and gff file that do not match (e.g. because the assembly
has been updated). Another reason for getting a suspiciously high percentage of genes with
errors may be that the program that generated training gene structures does not adhere to
the format standard or admits in-frame stop codons by design. In such cases, it is advisable
to “manually” check a sample of simple gene structures with errors in order to find the reason.

Run etraining again and search those sequences that lead to errors:
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bash input

etraining --species=bug bonafide.gb 2>&1 | grep "in sequence" | \
perl -pe ’s/.*n sequence (\S+):.*/$1/’ | sort -u > bad.lst

Now, remove the bad genes from bonafide.gb:

bash input

filterGenes.pl bad.lst bonafide.gb > bonafide.f.gb

Make sure you still have a sufficient amount of training genes to proceed with training
AUGUSTUS:

bash input

grep -c LOCUS bonafide.gb bonafide.f.gb

This might e.g. produce the following output:

bash output

bonafide.gb:558
bonafide.f.gb:352

If you are satisfied with the number of 352, move the file bonafide.f.gb to
bonafide.gb to proceed with this demonstration:

bash input

mv bonafide.f.gb bonafide.gb

4. Create a holdout test set.

bash input

randomSplit.pl bonafide.gb 200
mv bonafide.gb.test test.gb
mv bonafide.gb.train train.gb

These commands will randomly partition the file bonafide.gb with trusted annotated genes
into a test set test.gb with 200 genes and a training set train.gb with the remaining genes
for the purpose of later accuracy evaluation. The idea is that the genes in test.gb are neither
used for parameter estimation nor for meta parameter optimization in order to avoid a bias,
e.g. through overfitting.

5. Train parameters on the basis of train.gb (this ensures that the holdout test set was not
used to estimate parameters):

bash input

etraining --species=bug train.gb &> etrain.out
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6. Adjust stop codon frequencies: the file etrain.out reports the frequencies of different stop
codons observes in the training gene set.

bash input

tail -6 etrain.out | head -3

bash output

tag: 1042 (0.244)
taa: 1579 (0.37)
tga: 1647 (0.386)

Open the file bug_parameters.cfg in a text editor and adjust the stop codon frequency lines
according to the output for etraining:

File contents example: bug_parameters.cfg

/Constant/amberprob 0.244 # Prob(stop codon = tag)
/Constant/ochreprob 0.37 # Prob(stop codon = taa)
/Constant/opalprob 0.386 # Prob(stop codon = tga)

7. Run AUGUSTUS with newly trained parameters:

bash input

augustus --species=bug test.gb > test.out

This command will predict the genes on the set of test genomic sequences, compare the
predictions to the reference annotation in test.gb and report accuracy values. The accuracy
values at the end can look like this (shortened):

File contents example: test.out

******* Evaluation of gene prediction *******
| sensitivity | specificity |

nucleotide level | 0.975 | 0.89 |

| sensitivity | specificity |
exon level | 0.839 | 0.775 |

transcript | #pred | #anno | TP | FP | FN | sensitivity | specificity |
gene level | 236 | 200 | 106 | 130 | 94 | 0.53 | 0.449 |

These numbers mean, for example, that of the 200 genes, 106 were predicted exactly (true
positives: all boundaries, no missing or extra exons), 83.9% of the exons were predicted
correctly (both boundaries) and 77.5% of the predicted exons were exactly as in the reference
annotation. Tip: A common mistake can be discovered, if the gene level accuracy is 0 or
very close to 0 and the exon level accuracy is reasonably high, say 60% or more. In this case,
a likely explanation is that the test.gb and augustus disagree with regard to whether the
stop codon is considered to be part of the CDS or not. In this case, change the setting of the
variable stopCodonExcludedFromCDS and rerun above test.
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Supplemental Protocol 8—Meta Parameter Optimization

This section describes an optional but recommended step: meta parameter optimization with
optimize_augustus.pl. etraining estimates typically in the order of 10 000 parameters. Among
these are for example the probability of the nucleotide A at the first position in a codon, if the
four preceeding nucleotides were GTGC; and the probability that an internal CDS has length 57
or a probability of a specific pentamer pattern around an acceptor splice site. The number of
parameters, their meaning or the estimation approach are actually controlled by a smaller number
of meta parameters that is in the dozens. An example of such a meta parameter is the length of the
patterns, i.e. for example whether to consider pentamers, hexamers or heptamers around acceptor
splice sites. Another example are meta parameters that influence the smoothing of empirical
distributions like length distributions.

The meta parameters are stored along other settings in the file bug_parameters.cfg in this example
where the species is called “bug”. An excerpt of such a parameters file is shown in figure 3.
For a given choice of meta parameters, the above introduced program etraining estimates the
parameters. The default meta parameters may not quite be optimal for any genome and training
set. For example, this could be because the branch point region may be more or less informative
or longer or shorter depending on the species; or, because the optimal value of meta parameters
related to smoothing depends on the training set size.

The script optimize_augustus.pl seeks to improve the setting of meta parameters with an it-
erative heuristic that changes the meta parameters in bug_parameters.cfg whenever a setting
reaches a better prediction accuracy.

1. Run optimize_augustus.pl:

bash input

optimize_augustus.pl --species=bug --kfold=8 train.gb > optimize.out

Specify the number of available cores with --cpus INT.

The command shown above individually varies each meta parameter specified in the file
bug_metapars.cfg in the range and order specified in the same file. For further information
on the format, the user is referred to the instructions in the metapars.cfg file. For each new
combination of parameters, it performs a k-fold cross-validation, i.e. it randomly partitions
train.gb in k similarly sized parts, called buckets. In each iteration, it takes each bucket
once as a validation set to estimate accuracy after training was performed on the union of
all other buckets with the current meta parameters setting. These k training and validation
steps can be done in parallel (--cpus specifies the number of threads to use and is best set
to be an integral fraction of k). The results from the cross-validation are averaged over the
k predictions and weighted averaged over the sensitivity and specificy on the base, exon and
transcript level to form a single target value to maximize. Optimization stops when

• the specified number of optimization rounds (each meta parameter is optimized once per
round) is reached (default: 5 rounds),

• in any round the target could not be improved at all, or,

• the impatient user interrupts the optimization.



1. ABSTRACT AUGUSTUS

Meta parameter optimization has the potential to improve the accuracy (target value) by a
few percent points and the improvement can be expected to diminish with the optimization
rounds. As this protocol can be time-consuming, a user may choose to interrupt the opti-
mization. Improvements are saved to the respective parameters.cfg file right after they were
found. In any case, the user is required to perform a final training after this optimization
step (step 2).

Tip: If above step takes longer than a few CPU core days, it may be because of one of the
two reasons. Firstly, the intergenic regions flanking the genes may be very large and could
then be shortened. Secondly, the number of training genes may be very large (say, many
thousands). In that case, the optimization can potentially be sped up a lot at no significant
accuracy loss using the option --onlytrain=onlytrain.gb as follows:

bash input

randomSplit.pl train.gb 300
optimize_augustus.pl --species=bug train.gb.test --onlytrain=train.gb.train

The first command randomly partitions the training genes in train.gb such that the out-
put file train.gb.test contains 300 genes and the output file train.gb.train contains all
remaining genes, provided that train.gb contains more than 300 genes. The subsequent
optimize_augustus.pl command can be much faster for large training sets as the most
time-consuming prediction step is performed on a smaller number of genes, here 300.

2. Perform the final training:

bash input

etraining --species=bug train.gb

After improved meta parameters have been found in step 1 above this second step estimates
the corresponding parameters on the complete training set. It is much quicker than step 1
and should not be omitted. There is a potential risk that this step 2 is forgotten because
augustus may be used without it. However, in this case the parameters from the last training
are used, which are based on only a fraction of about k− 1/k of the training set and quite
possibly with a bad choice of the last meta parameter to be optimized. Therefore, the user
is requested not to forget this step.

3. Measure the accuracy (again) on the test set:

bash input

augustus --species=bug test.gb > test.opt.out

See the last step in Basic Protocol 7 for an explanation.

Alternate Protocol 9—CRF-Training

By default, etraining estimates the parameters of a so-called hidden-Markov model (HMM). That
is a probabilistic model that assigns a probability PHMM

θ (G,S) to all possible gene structures G and
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all possible genome sequences S. θ is the collection of parameters that are stored in the respective
subdirectory of config/species for the species. When the parameters of AUGUSTUS are trained
with etraining and the option --CRF=on, a so-called conditional random field (CRF) is trained.
This is another probabilistic model PCRF

θ (G |S) of the conditional probability of any gene structure
G given a genome sequence S. In contrast to the HMM, the CRF does not model the distribution
of genome sequences. This is not necessary as a genome sequence is always given as input. This
fact makes it easier to perform a so-called conditional training whose objective is – simply speaking
– to find parameters θ that make the true gene structure the most likely given the input genome,
rather than making a realistic model of the distribution of G and S. Readers with an interest in
the theoretical background are referred to the book chapter (Stanke and Borodovsky, 2018).

From a user standpoint, the following facts are important: The CRF can be significantly more
accurate than the HMM. However, the training is less robust, i.e. errors in the training set can
decrease the accuracy for a CRF more than for a HMM. Errors in the training set could, for
example, be training sequences that contain unannotated genes or exons, e.g. in the flanking region
of another gene (false negatives). For this reason, the more robust HMM training is the default and
users have to explicitly request the CRF training, which also takes longer. Whether etraining
is run with --CRF=on or not (equivalent to --CRF=off) does not influence, how AUGUSTUS is
executed later. The command lines are not affected. Actually, internally even the same function is
used to estimate a gene structure (via Ĝ = argmaxGP (G |S)).

The current human parameters that are distributed with AUGUSTUS were trained with the fol-
lowing command:

bash input

etraining --species=human train.1784.gb --CRF=on --CRF_N=2 --UTR=off

Here, train.1784.gb is a training set of 1784 randomly chosen human RefSeq gene structures
and sequences from GenBank. When using CRF training on a high-quality training set of Homo
sapiens (human), the gene level sensitivity of ab initio predictions is 19% for CRF training versus
14.5% for HMM training. Above command line for CRF training took 7h on a single core machine.
This compares to less than a minute of running time of etraining in the standard HMM mode.
For users with a highly accurate training set we recommend trying above CRF training as well as
HMM training and comparing the ab initio accuracies of both.

Supplemental Protocol 10—UTR Training

UTR parameters are not required for gene prediction with AUGUSTUS. When integrating expres-
sion data, the accucary of AUGUSTUS may benefit from UTR parameters, though (reduction of
false positive CDS feature prediction in long UTRs).

1. Create a holdout test set:

bash input

randomSplit.pl bonafide.utr.gb 200
mv bonafide.utr.gb.test test.gb
mv bonafide.utr.gb.train train.gb
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2. Measure initial accuracy without UTR parameters:

bash input

augustus --species=bug test.gb > test.noUtr.out

The file test.noUtr.out holds gene prediction accuracy before UTR parameter optimization
in file test.gb with parameters for species bug.

3. Optimize UTR parameters:

bash input

optimize_augustus.pl --species=bug --rounds=3 train.gb \
--UTR=on --metapars=$AUGUSTUS_CONFIG_PATH/species/bug/bug_metapars.utr.cfg \
--trainOnlyUtr=1

Use the option --cpus=INT for parallelization.

Tip: If the number of training genes is very large, this step will take a long time. In that
case, the optimization can potentially be sped up a lot at no significant accuracy loss using
the option --onlytrain=onlytrain.gb as follows (compare step 1 in Suppl. Protocol 8):

bash input

randomSplit.pl train.gb 200
optimize_augustus.pl --species=bug --rounds=3 train.gb.test --UTR=on \

--metapars=$AUGUSTUS_CONFIG_PATH/species/bug/bug_metapars.utr.cfg \
--trainOnlyUtr=1 --onlytrain=train.gb.train

4. Test accuracy with UTR parameters:

bash input

augustus --species=bug test.gb --UTR=on --print_utr=on > test.utr.out

5. Compare accuracy with (test.utr.out) and without UTR parameters (test.noUtr.out) to
check whether UTR parameters improve prediction accuracy. If you make a general decision
for gene prediction with UTRs, you may edit the following lines in file
$AUGUSTUS_CONFIG_PATH/bug/bug_parameters.cfg:

File contents example: bug_parameters.cfg

(...)
print_utr on
UTR on
(...)

The option print_utr determines the way UTR exons are reported in the output (explicit
as UTR, or implicit as exon), UTR determines whether UTRs are predicted. If set in the
parameter file, you do not need to specify those options, when calling AUGUSTUS anymore.
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Predicting Genes with AUGUSTUS

Basic Protocol 11—Ab Initio Prediction

This section describes the structural genome annotation process when no evidence is used (other
than the genome, of course). Furthermore, it introduces output options that are also available in
prediction modes other than ab initio. Protocols for genome annotation using other evidence are
described in Section: Prediction Using Extrinsic Evidence below.

Required files:

• Soft-masked genome file in FASTA format; for demonstration purposes, you can use the file
augustus/examples/autoAug/genome.fa

• Parameter files that are suitable for the target genome (see training above). We will here use
caenorhabditis as example, for which the parameters are avaiblabe in the distribution (in
augustus/config/species/caenorhabditis/).

Protocol

1. Ab initio predict the genes:

bash input

augustus --species=caenorhabditis genome.fa > augustus.gff

File contents example: augustus.gff

# start gene g7
chrI AUGUSTUS gene 59438 60095 0.18 - . g7
chrI AUGUSTUS transcript 59438 60095 0.18 - . g7.t1
chrI AUGUSTUS tts 59438 59438 . - . transcript_id "g7.t1"; gene_id "g7";
chrI AUGUSTUS 3’-UTR 59438 59458 0.78 - . transcript_id "g7.t1"; gene_id "g7";
chrI AUGUSTUS stop_codon 59459 59461 . - 0 transcript_id "g7.t1"; gene_id "g7";
chrI AUGUSTUS single 59459 60046 0.66 - 0 transcript_id "g7.t1"; gene_id "g7";
chrI AUGUSTUS CDS 59459 60046 0.66 - 0 transcript_id "g7.t1"; gene_id "g7";
chrI AUGUSTUS start_codon 60044 60046 . - 0 transcript_id "g7.t1"; gene_id "g7";
chrI AUGUSTUS 5’-UTR 60047 60095 0.23 - . transcript_id "g7.t1"; gene_id "g7";
chrI AUGUSTUS tss 60095 60095 . - . transcript_id "g7.t1"; gene_id "g7";
# protein sequence = [MGQETMLINTEPQKTSDSTPTASYLRQWQQDIERKVGRIEIVAEKQYRMQKKLDGLEQKLDKNA
# EKSDVNQAKLESLLEQVMQQITKNNQSSSTAEQENKRLTSRKPVRNAVTRGRNSAEQGDDGYFGEDPLLANQDRLFGDDTKWDD
# NGLPEHLIHWDGYETNEQTKEALWDTAERQRVINETVKSMEPFDGSP]
# end gene g7
###

This excerpt from the output describes an unspliced gene on the reverse strand. tts and
tss stand for transcription termination/start site, respectively. The numbers in the sixth
colum specify the probability of the feature that is specified in the line. For example, in
the AUGUSTUS model, there is a 66% probability that a coding exon goes exactly from
position 59459 to position 60046 on the reverse strand of chrI. This file is in gene feature
format (GFF). This format is defined e.g. under https://www.ensembl.org/info/website/
upload/gff.html and relatively loose, i.e. programs like AUGUSTUS have much freedom

https://www.ensembl.org/info/website/upload/gff.html
https://www.ensembl.org/info/website/upload/gff.html
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for concrete choices like the feature names in the third column or what to put into the last
column.

Alternatively, the more standardized gff3 format (http://gmod.org/wiki/GFF3) can be ob-
tained, e.g. with

bash input

augustus --species=caenorhabditis genome.fa --gff3=on \
--outfile=augustus.gff3 --errfile=augustus.err

Above command line also demonstrates a way to specify standard output and standard er-
ror files rather than using output redirection (with “>”). This can be useful when output
redirection is not possible or convenient, e.g. for a job submission engine that is used to run
many such commands in parallel.

File contents example: augustus.gff3

chrI AUGUSTUS gene 59438 60095 0.18 - . ID=g7
chrI AUGUSTUS transcript 59438 60095 0.18 - . ID=g7.t1;Parent=g7
chrI AUGUSTUS transcription_end_site 59438 59438 . - . Parent=g7.t1
chrI AUGUSTUS three_prime_utr 59438 59458 0.78 - . Parent=g7.t1
chrI AUGUSTUS stop_codon 59459 59461 . - 0 Parent=g7.t1
chrI AUGUSTUS CDS 59459 60046 0.66 - 0 ID=g7.t1.cds;Parent=g7.t1
chrI AUGUSTUS start_codon 60044 60046 . - 0 Parent=g7.t1
chrI AUGUSTUS five_prime_utr 60047 60095 0.23 - . Parent=g7.t1
chrI AUGUSTUS transcription_start_site 60095 60095 . - . Parent=g7.t1

AUGUSTUS has many useful options that are described in the augustus/README.TXT file..
Here, we describe some of the most frequently used options:

• You can specify which features shall be reported in the output file: --introns=on/off,
--start=on/off, --stop=on/off, --cds=on/off, --codingseq=on/off,
--protein=on/off.

• --predictionStart=A, --predictionEnd=B allows prediction in a range from A to B
in the sequence(s).

• --UTR=on/off influences whether untranslated regions are predicted in addition to the
coding sequence. This works only for those species for which the UTR model was trained.

• --strand=both/forward/reverse: by default, genes are reported on both strands, but
you can alter this to predict only in the forward or reverse strand.

• --genemodel=partial, --genemodel=intronless, --genemodel=complete,
--genemodel=atleastone or --genemodel=exactlyone:

– partial: allow prediction of incomplete genes at the sequence boundaries (default)

– intronless: only predict single-exon genes like in prokaryotes and some eukaryotes

– complete: only predict complete genes

– atleastone: predict at least one complete gene

– exactlyone: predict exactly one complete gene

http://gmod.org/wiki/GFF3
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2. The protein sequences of all predicted genes can be obtained with:

bash input

getAnnoFasta.pl augustus.gff

This command creates a file augustus.aa in FASTA format like this:

File contents example: augustus.aa

>g7.t1
MGQETMLINTEPQKTSDSTPTASYLRQWQQDIERKVGRIEIVAEKQYRMQKKLDGLEQKLDKNAEKSDVNQAKLESLL
EQVMQQITKNNQSSSTAEQENKRLTSRKPVRNAVTRGRNSAEQGDDGYFGEDPLLANQDRLFGDDTKWDDNGLPEHLI
HWDGYETNEQTKEALWDTAERQRVINETVKSMEPFDGSP

If the option --codingseq=on was used to call AUGUSTUS to produce augustus.gff,
the coding DNA sequence is output in addition to the amino acid sequence. In this case,
getAnnoFasta.pl creates a second file augustus.codingseq with the complete coding se-
quences like this:

File contents example: augustus.codingseq

>chrI.g7.t1
atgggtcaggagactatgctcatcaacacggagccgcaaaaaacttcggattccacaccgacagcatcgtatctg ...

Obtaining the coding sequences is e.g. necessary for analyzing selection (e.g. for computing
dN/dS), or for transcriptome expression quantification from RNA-Seq.

Alternate Protocol 12: Sampling Alternative Gene Structures

With the basic protocol described above, the most likely gene structure is found for each input
sequence. In this alternate protocol we describe how this gene set can be extended to additionally
include genes or transcript variants that are not included in the most likely gene structures but that
are also fairly likely alternatives (Stanke et al., 2006a). Obtaining alternatives is not the typical
objective when obtaining a best possible genome annotation for publication. However, there are
several reasons why this alternative protocol can be useful:

• In the context of individual genes of high importance manual inspection of a gene structure
may be justified. Sampling may then provide alternative transcripts that could be manually
interpreted for plausibility, e.g. in a manual comparative analysis.

• The gene set with alternatives has a higher sensitivity (recall, number of true positives). The
lower specificity (and more false positives) can be less of an issue, e.g. when an additional
filter like a homology search is applied to the gene set or when false negative genes are more
problematic than false positives for a given application.

• The coding sequences can serve as a more inclusive database against which spectra from
tandem mass spectrometry (MSMS) can be queried (Castellana et al., 2008).

1. In order to predict genes with alternatives in ab initio mode, run the following command:
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bash input

augustus --species=caenorhabditis --alternatives-from-sampling=on \
--minexonintronprob=0.08 --minmeanexonintronprob=0.4 --maxtracks=3
genome.fa > augustus.gff

Here, minexonintronprob and minmeanexonintronprob are threshold parameters between
0 and 1 to filter out transcripts with low (mean) exon and intron probabilities. maxtracks is
an upper limit for the number of transcripts that span any given genome position with the
effect that a genome browser can in principle place the predicted transcripts in such a way
that maxtracks rows are sufficient. The command line shown above is referred to as Option
2 in Figure 4 and Table 3 on page 59, which show an example output and the transcript
numbers for a few settings of these parameters.

Prediction Using Extrinsic Evidence

This section describes the structural genome annotation process when experimental evidence is
used to identify (parts of) gene structures, to uncover alternative splicing or to overall improve
annotation quality.

Preparing Hints

Hints are extrinsic evidence about the location and structure of genes. Each hint is local informa-
tion, associated with a particular genome region and specified in a particular GFF format. When
predicting genes, AUGUSTUS can incorporate these hints, which will change the likelihood of
gene structure candidates. It will tend to predict gene structures that are in agreement with the
hints. Here, we describe how to automatically generate hints in the correct format from RNA-Seq,
IsoSeq, protein sequence and EST data. However, other sources of extrinsic evidence are possible,
too, e.g. MSMS data can be used to predict reading frames correctly, or the similarity of genome
sequences with those of closely related genomes can be used to improve exon-intron structures.

Grouping Hints

Each hint can be given a group name, by specifying group=groupname; or grp=groupname; in the
last column for the hint in the GFF file. In the case of alignments of longer sequences like IsoSeq
(Alternate Protocol 14), proteins (Alternate Protocol 15) or ESTs, this should be used to group
together all the hints coming from the alignment of the same sequence to the genome. For example,
if an EST with the name est_xyz aligns to the genome with one gap suggesting an intron then the
hints resulting from that alignment could look like this:

File contents example: hints.gff

HS04636 blat2hints exonpart 500 599 . + . group=est_xyz; source=E
HS04636 blat2hints intron 600 700 . + . group=est_xyz; source=E
HS04636 blat2hints exonpart 701 900 . + . group=est_xyz; source=E
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Grouping tells AUGUSTUS that hints belong together. Ideally, all hints of a group are obeyed by
a predicted transcript or the whole group of hints is ignored when making the prediction. When
predicting alternative splicing (Basic Protocol 18 below), such grouping can prevent the prediction
of incorrect alternative splicing variants that are chimeric mixtures of several local splicing alter-
natives but not supported by any alignment. If for any hint in a group no valid gene structure
can exist that satisfies the hint, then the whole hint group is discarded as unsatisfiable. This can,
for example, happen if the first and last two bases of an intron hint do not satisfy the splicing
consensus (GT/AG or GC/AG) or if there is no open reading frame covering the range of a hint
that suggests a coding exon in a certain region.

Prioritizing Groups

Hints or hint groups can be given a priority by specifying priority=n; or pri=n in the last column
in the hint GFF file. For example:

File contents example: hints.gff

HS04636 blat2hints exonpart 500 599 . + . priority=2; src=E
HS04636 blat2hints intron 550 650 . + . priority=5; src=mRNA

When two hints or hint groups contradict each other, the hints with the lower priority number are
ignored. This is useful if, for a specific genome, several sources of hints are available, where one
source should be trusted when in doubt. For example, if a genome has already a trusted but partial
annotation, the exons, coding sequences and introns of this partial annotation could be given as
hints with high priority. At the same time, further hints, say from protein alignments (Alternate
Protocol 15), could be input as well, but with a lower priority.

Alternate Protocol 13—Generating Hints from RNA-Seq Data

RNA-Seq alignments against the genome contain two types of features that are potentially helpful
for gene prediction:

1. Spliced alignments of reads give information about the possible location of introns,

2. coverage (i.e. how many reads are aligned to a particular position in the genome) gives infor-
mation about the possible location of exons.

While the integration of spliced read (intron) information usually works well, the integration of
coverage (exonpart) information is not trivial. The problem is that coverage may not only be high
in CDS regions, but also in UTRs and in partially retained introns. If you do not have UTR
parameters for your target species, we recommend that you do not use coverage information in the
gene prediction step.

Required file:

• RNA-Seq to genome alignments in bam format. A suitable example file is e.g. produced in
steps 4 and 5 in Alternate Protocol 1 (Aligned.out.ss.bam).

Protocol:
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1. For generation of intron hints from spliced read information, please follow the first six steps
in Alternate Protocol 1. The resulting file introns.gff contains hints from spliced RNA-Seq
reads.

2. Optional: exonpart hints

(a) Begin with the file Aligned.out.ss.bam from step 4 or step 5 in Alternate Protocol 1.
Convert this file to wiggle format:

bash input

bam2wig Aligned.out.ss.bam > rnaseq.wig

(b) Convert the wiggle file to hints for AUGUSTUS:

bash input

cat rnaseq.wig | wig2hints.pl --width=10 --margin=10 --minthresh=2 \
--minscore=4 --prune=0.1 --src=W --type=ep \
--UCSC=unstranded.track --radius=4.5 --pri=4 --strand="." \
> rnaseq.gff

When using this type of hints, remember to call AUGUSTUS with the option --UTR=on.

Alternate Protocol 14—Generating Hints from IsoSeq Data

Below, we describe a protocol for the identification of new mouse isoforms using single molecule
Pacific Bioscience (PacBio) RNA-Seq reads. For clarity these command lines are without parallel
execution. However, you can easily split the genome by chromosomes and run alignments in parallel.
The tested input consisted of circular consensus sequences (ccs) that often constitute near-full length
transcripts and needed not be corrected using other short read data, although we suspect this may
improve mapping accuracy. In this protocol, the input genome is hard-masked, i.e. in genome.fa,
nucleotides that are part of repetitive sequence elements are substituted by the letter N; however,
the protocol also works with soft-masked genomes.

Required software:

• GMAP (http://research-pub.gene.com/gmap/)

Required files:

• Genome file in FASTA format (preferrably soft-masked).

• File with IsoSeq data in FASTA format. IsoSeq must be error-corrected, e.g. by alignment of
Illumina reads. Otherwise, no (or very few) alignments will be reported in this protocol.

Protocol:

1. Prepare a GMAP index and align reads to genome:

http://research-pub.gene.com/gmap/
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bash input

mkdir gindex
gmap_build -D gindex/ -d rat genome.fa
gmap -D gindex/ -d rat isoseq.fa --min-intronlength=30 --intronlength=500000 \

--trim-end-exons=20 -f 1 -n 0 > gmap.psl

The option -n 0 to gmap lets it report only the alignment(s) with maximal score, no subop-
timal alignments.

2. Convert the output of GMAP to hints for AUGUSTUS:

bash input

cat gmap.psl | sort -n -k 16,16 | sort -s -k 14,14 | perl -ne \
’@f=split; print if ($f[0]>=100)’ | blat2hints.pl --source=PB \
--nomult --ep_cutoff=20 --in=/dev/stdin --out=isoseq.gff

Alternate Protocol 15—Generating Hints from Protein Data

Protein to genome alignments can aid the prediction of CDS - including the correct reading frame,
start- and stop-codon positions - and the prediction of introns. Suitable hints for AUGUSTUS
can be generated by various protein to genome alignment tools. In general, there are tools that
produce alignments with a high specificity at the expense of sensitivity (e.g. GenomeThreader
(Gremme, 2013b)) and more sensitive but less specific tools (e.g. Exonerate (Slater and Birney,
2005)). The optimal choice of alignment tools depends on the number of proteins and on the degree
of relatedness of proteins and genome, and on the available computational resources (e.g. Exonerate
is slow in comparison to other aligners, and will require data parallelization).

If the number of proteins to be aligned is ’small’ and source proteins originate from a species that
is rather closely related to the target genome species, most spliced alignment tools will produce
results that serve well for gene prediction with AUGUSTUS in reasonable computational time.

However, if the degree of relatedness between source proteins and target genome is larger, you should
be aware that some tools - such as GenomeThreader - will only report very reliable alignments, and
other tools - such as Exonerate - may additionally report a large number of short and unspecific
alignments that may not aid gene prediction. It is possible to adapt the parameters for hints
integration with AUGUSTUS to both types of alignment results. Running AUGUSTUS with a
huge number of hints requires memory (RAM) in a dimension that may not be justified for the
task of gene prediction. It is possible to collapse redundant hints, but spurious hints may still lead
to a significant memory requirement.

Generally, we recommend using an aligner with a high specificity rather than an aligner with a high
sensitivity, in particular if you are aligning more than one proteome to the target genome.

Required software:

• Protein to genome alignment tool, e.g. GenomeThreader
(http://genomethreader.org/) or Exonerate
(https://www.ebi.ac.uk/about/vertebrate-genomics/software/exonerate)

http://genomethreader.org/
https://www.ebi.ac.uk/about/vertebrate-genomics/software/exonerate
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• startAlign.pl and align2hints.pl from BRAKER
(http://bioinf.uni-greifswald.de/bioinf/braker)

Required files:

• Genome file in FASTA format

• File with protein sequences in FASTA format

For demonstration purposes, you can use the same files as in Alternative Protocol 2 on page 13.

Protocol:

1. Align protein sequences to target genome with startAlign.pl. This script will call the
specified alignment tool with data parallelization and custom parameters that are suitable
for using produced alignments for predicting genes with AUGUSTUS. Specify parameter
--CPU=INT for parallelization, note that startAlign.pl will use at most as many cores as
there are genomic sequences:

bash input

startAlign.pl --genome=genome.fa --prot=protein.fa --prg=gth

The option --prg specifies the aligner to be called, gth is the executable file of GenomeThreader.
Alternatively, you could specify exonerate. If you choose to run Exonerate, we strongly rec-
ommend a multi-core machine for speeding up the alignment process.

Above command will produce a file align_toolname/toolname.concat.aln, e.g. if you ran
startAlign.pl with --prg=gth, the output file will be align_gth/gth.concat.aln.

2. Convert the alignment output to a hints file:

bash input

align2hints.pl --in=align_gth/gth.concat.aln --out=prot.hints --prg=gth

Since output formats of alignment tools differ, you need to specifiy an aligner that was
used for generating the output with --prg=aligner. align2hints.pl is compatible with
GenomeThreader, Exonerate, Spaln, GEMOMA, and Scipio.

By default, align2hints.pl will produce intron, start-codon, stop-codon, and
CDSpart hints from protein alignments. CDSpart hints are hints for CDS, including the
reading frame, that were trimmed for several nucleotides at both ends. Using CDSpart hints
instead of exact CDS hints gives more flexibility to AUGUSTUS for predicting an agreeing
gene structure.

align2hints.pl has several options worth noting:

• If you use Exonerate to produce the alignments, you should specify
--genome_file=genome.fa, otherwise no start-codon hints will be produced.

• --maxintronlen=n (default 350000) and --minintronlen=n (default 41) define the max-
imum and minimum length of intron hints. If, for example, your species is known to
have longer introns, you might want to adapt the appropriate parameter accordingly.

http://bioinf.uni-greifswald.de/bioinf/braker
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Alternate Protocol 16—Generating Hints from ESTs and Medium Size RNA-Seq
Reads

ESTs and medium size RNA-Seq reads (>∼450 nt) are suitable for generating intron, exonpart
(sometimes abbreviated as “ep”) and exon hints.

Required software:

• BLAT and pslCDnaFilter (http://hgdownload.cse.ucsc.edu/admin/exe/)

Required files:

• Genome file in FASTA format; for demonstration purposes, you can use the file
augustus/examples/autoAug/genome.fa

• File with ESTs in FASTA format; for demonstration purposes, you can use the file
augustus/examples/autoAug/cdna.fa

Protocol:

1. Align ESTs/cDNAs/medium sized RNA-Seq reads to genome using BLAT:

bash input

blat -noHead -minIdentity=92 genome.fa cdna.fa cdna.psl

2. Filter alignments to obtain those that are potentially most useful for gene prediction:

bash input

pslCDnaFilter -minId=0.9 -localNearBest=0.005 -ignoreNs -bestOverlap cdna.psl \
cdna.f.psl

This will produce a summary similar to:

bash output

seqs aligns
total: 2982 3243

drop overlap: 25 41
drop localBest: 108 199

kept: 2982 3003

and the filtered alignment file cdna.f.psl.

3. Sort filtered alignments according to start position and target sequence name:

bash input

cat cdna.f.psl | sort -n -k 16,16 | sort -s -k 14,14 > cdna.fs.psl

4. Convert psl-file to hints:

http://hgdownload.cse.ucsc.edu/admin/exe/
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bash input

blat2hints.pl --in=cdna.fs.psl --out=cdna.hints --minintronlen=35 --trunkSS

Supplemental Protocol 17 – Manual Hints

Sometimes, you want to enforce the prediction of certain gene structures, or parts of gene structures.
Provide such gene structures in a hints file, specifying the source tag M. AUGUSTUS will try to
predict genes with those exact hints unless there are no valid gene structures possible.

File contents example: hints.gff

HS04636 manual CDSpart 500 599 . + . group=gene1; source=M
HS04636 manual intron 600 700 . + . group=gene1; source=M
HS04636 manual CDSpart 701 900 . + . group=gene1; source=M

Basic Protocol 18—Running AUGUSTUS with Hints

Required files:

• Soft-masked genome file in FASTA format, e.g. genome.fa.

• Parameter files that are suitable for the target genome (see Training AUGUSTUS on training).

• One or more hints files with extrinsic evidence, e.g. hints.gff.

Protocol:

1. Concatenate all hints. If you have created more than one hints file, e.g. hints.proteins.gff
from protocol Alternate Protocol 15 and hints.rnaseq.gff from protocol Alternate Protocol
13, then join them in a single file:

bash input

cat hints.proteins.gff hints.rnaseq.gff > hints.gff

Hints from different sources can still be distinguished by augustus via the src attribute in the
last column, e.g. with src=P and src=E for hints from proteins and RNA-Seq, respectively.
An example of a hints file is shown in step 6 on page 11.

2. Set hint parameters. Start by making a copy of an extrinsic configuration file.

bash input

cp augustus/config/extrinsic/extrinsic.M.RM.E.W.P.cfg extrinsic.bug.cfg

Here, extrinsic.bug.cfg is an example name of this extrinsic configuration file. It contains
a relatively small number of parameters with which you can adjust how ’seriously’ the hints
from the different sources are taken (see step 4.). As the name hint suggests, AUGUSTUS
is, in principle, allowed to choose gene structures that contradict some of the evidence it
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is given. This is so because extrinsic evidence can also be “wrong”, e.g. protein similarity
to a particular region suggests that the region is protein-coding when, in fact, the region is
a pseudogene or the similarity occurred by chance. Another example of “wrong” evidence
is RNA-Seq from non-protein coding genes, when AUGUSTUS is set to find protein-coding
genes only.

In the example above the tokens M, RM, E, W and P stand formanual hints, hints from repeat
masking, hints from EST or RNA alignment, hints from transcriptome coverage (“wiggle”
track) and hints from protein alignments, respectively. Use an appropriate template from the
same folder that contains your extrinsic evidence sources. This specifically means that every
token after src= in hints.gff must also be listed in extrinsic.bug.cfg.

In the easiest case, extrinsic.bug.cfg needs not be changed. However, if your hints file
contains sources that are not specified in extrinsic.bug.cfg, or if AUGUSTUS appears to
make systematic errors with regard to extrinsic evidence integration (see step 4 below), this
file needs to be adjusted. Figure 5 shows an excerpt of the extrinsic config file.

3. Predict genes using hints:

bash input

augustus --species=bug \
--extrinsicCfgFile=extrinsic.bug.cfg --hints file=hints.gff \
--allow_hinted_splicesites=atac \
--softmasking=on genome.fa > augustus.hints.gff

This command finds a most likely gene structure for every sequence in the genome given the
extrinsic evidence from the hints. --allow_hinted_splicesites=atac allows AUGUSTUS
to predict also those (rare) introns that start with AT and end with AC in addition to
the GT/AG and GC/AG introns that are allowed by default. With above command, no
alternative splicing is predicted. However, the option --alternatives-from-evidence=on
makes AUGUSTUS report alternative transcripts when they are suggested by hints (Stanke
et al., 2008). This means that each gene can have more than one transcript. The grouping
of transcripts to genes is specified in the last column, but also apparent from the name,
e.g. g12.t3 refers to the third-best supported transcript of the twelfth gene.

4. Optional: Adjust hint parameters.

The example extrinsic configuration files were adjusted to work well on what we believe to
be typical hint datasets. However, this mechanism to integrate extrinsic evidence is general
and the parameters cannot be universally optimal. We therefore recommend loading the
predictions from step 3 into a genome browser as described in step 2 of Alternate Protocol 4,
together with tracks for the evidence, like alignments that were used to generate hints. For
this purpose, it is sufficient that this is done on a sample of the genome in order to visually
inspect, say, a couple of dozen genes. Potential systematic errors in the hint generation
could become apparent; for example, if RNA-Seq was aligned to a different assembly version
and thus there appears to be no clear resemblance between the positions where AUGUSTUS
predicts introns and where reads are spliced. Or, “undermasking” leads to large numbers of
regions with protein alignments that can not actually be protein-coding genes. Moreover,
the visual inspection can bring to light whether one of the two problems that can happen in
hint integration is clearly prevailing: i) the AUGUSTUS genes disagree with hints where they



1. ABSTRACT AUGUSTUS

should follow them or ii) the hints are wrong but still incorporated by AUGUSTUS into a gene
structure. An example of the first problem could be that many introns suggested by trustable
RNA-Seq alignments are not incorporated into a gene structure although biologically valid
compatible gene structures with these introns exist. In this case, the intron bonus for the
RNA-Seq source could be increased (e.g. by increasing 1e6 to 1e9 in extrinsic.bug.cfg,
cf. Figure 5). An example of the second problem could be that for the protein alignment a
too lax similarity threshold was used and – as a result – many protein homology hints suggest
that regions are coding although they are actually not. In this case, the CDSpart (and CDS)
bonus could be decreased, say from 1e5 to 1e2).

Tip: Do not be timid to first make a large change of the parameters in the right direction
(increasing or decreasing). The predictions are not very sensitive to the hint parameters and
if the effect is that the respective other problem becomes prevalent, then an intermediate
parameter value can still be searched.

It should be noted that, although it is preferable that this manual correction step is not
required (and it often can be omitted), manual inspection cannot be automatized away in
general at this point. This is so because extrinsic evidence sources are kept general and their
distribution may therefore in principle be grossly different on other data sets. For example,
if hints were generated from an existing highly complete and accurate reference annotation
of coding sequences in order to let AUGUSTUS extend UTRs to the CDS exons, then one
may want to choose a very small (and therefore effective) CDS malus in order to prevent
AUGUSTUS from predicting additional coding exons.

Supplemental Protocol 19—Joining Several Predictions

In principle, you can integrate different types of evidence in a single AUGUSTUS run. However,
sometimes you encounter scenarios where it makes sense to join several gene sets for a particular
genome, i.e. gene sets that were produced by AUGUSTUS runs with different parameter sets. The
tool joingenes was developed to join such different gene sets into one gene set.

Required files:

• Two or more files with gene predictions in GTF format.

Protocol:

1. Join two gtf files with different gene sets with joingenes:

bash input

joingenes --genesets=set1.gtf,set2.gtf,... --output=joined.gtf

If the gene sets are of different confidence, the option --priorities=pr1,pr2,... allows
prioritizing the different sets (pr1,pr2,... are positive integers).

Supplemental Protocol 20—Data Parallelization

The gene prediction problem for a large genome can be broken into smaller tasks that can be
executed in parallel on a multi-core machine or a cluster. Be aware that there are two common
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scenarios that require slightly different data handling: A genome file may contain few but very long
chromosome-style sequences (follow Suppl. Protocol 20), or a genome file may contain many short
contig- or scaffold-style sequences (follow Suppl. Protocol 21).

Required files:

• A genome file in FASTA format, e.g. genome.fa

• If applicable: a file with hints for AUGUSTUS, e.g. hints.gff

Protocol:

1. If you have a genome file with few long sequences, split the file in a way that each smaller file
contains exactly one sequence:

bash input

mkdir split
splitMfasta.pl genome.fa --outputpath=split

2. Rename the split single FASTA files according to their FASTA names:

bash input

for f in split/genome.split.*;
do

NAME=‘grep ">" $f‘; mv $f ${NAME#>}.fa
done

3. Next, we need to obtain the length of each genomic sequence. To this end, run
summarizeATGCcontent.pl:

bash input

summarizeACGTcontent.pl genome.fa > summary.out

It produces an output similar to this:

File contents example: summary.out

15072423 bases. chrI BASE COUNT 4835938 a 2695881 c 2692152 g 4848452 t
15279345 bases. chrII BASE COUNT 4878197 a 2769219 c 2762213 g 4869716 t
13783700 bases. chrIII BASE COUNT 4444651 a 2449148 c 2466334 g 4423567 t
17493793 bases. chrIV BASE COUNT 5711039 a 3034770 c 3017014 g 5730970 t
13794 bases. chrM BASE COUNT 4335 a 1225 c 2055 g 6179 t
20924149 bases. chrV BASE COUNT 6750394 a 3712061 c 3701398 g 6760296 t
17718866 bases. chrX BASE COUNT 5747199 a 3119708 c 3117874 g 5734085 t
summary: BASE COUNT 32371753 a 17782012 c 17759040 g 32373265 t
total 100286070bp
gc: 0.35439669736784%

4. The sequence file names and lengths are the basis of a file chr.lst that will later be used to
create the actual AUGUSTUS job scripts. There are two different scenarios to be considered:

• Ab initio prediction:
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bash input

grep "bases" summary.out | \
perl -pe ’s/^(\d+) bases.\s+(\S+) BASE.*/split/$2\.fa\t1\t$1/;’ \
> chr.lst

The resulting file should look like this:

File contents example: chr.lst

split/chrI.fa 1 15072423
split/chrII.fa 1 15279345

This tabular separated file in the first column contains a FASTA file name that contains
exactly one sequence, the number 1 in the second column (prediction start) in the second
column and the length of the sequence in the last column (prediction end).

• Prediction with a hints file:

bash input

grep "bases" summary.out | perl -pe \
’s/^(\d+) bases.\s+(\S+) BASE.*/split/$2\.fa\thints.gff\t1\t$1/;’ \
> chr.lst

The file will then contain a hints file in the second column and shift all other columns
to the right:

File contents example: chr.lst

split/chrI.fa hints.gff 1 15072423
split/chrII.fa hints.gff 1 15279345

5. Creating AUGUSTUS jobs. Let $augDir be the directory to which you want to write your
temporary gene predictions for genome chunks; and let $augCall be the AUGUSTUS com-
mand (e.g. augustus --UTR=on --print_utr=on
--AUGUSTUS_CONFIG_PATH=somePath/config --exonnames=on --codingseq=on
--species=yourspecies). Furthermore, it can be helpful for job monitoring to assign a job
script prefix, e.g. $myPrefix_. Again, we consider both scenarios:

• Ab initio prediction (and prediction with hints where the hints file is so small that
you do not want to partition it):

bash input

createAugustusJoblist.pl --sequences=chr.lst --wrap="#" --overlap=5000 \
--chunksize=1252500 --outputdir=$augDir/ --joblist=jobs.lst \
--jobprefix=$myPrefix_ --command "$augCall"

• Prediction with a huge hints file. If the genome is large, the corresponding hints
may be large, too. It may be helpful for speeding up job processing if AUGUSTUS
does not have to read all hints for every single subtask (However, AUGUSTUS filters
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out the hints that are not applicable to the input sequence or range.). The option
--partitionHints will split the hints file into single batches that correspond to each
input sequence file:

bash input

createAugustusJoblist.pl --sequences=chr.lst --wrap="#" --overlap=100000 \
--chunksize=1100000 --outputdir=$augDir/ --joblist=jobs.lst \
--jobprefix=$myPrefix_ --partitionHints --command "$augCall"

createAugustusJoblist.pl creates a number of AUGUSTUS job scripts for sequence seg-
ments. The segments overlap, here by 100000 bp. This overlap length should be set at least
in the order of the length of a long gene of that species. Otherwise it may happen that a gene
is not completely contained in any of the (overlapping) segments. The job scripts are named
$myPrefix_$i (where $i is the ith job). The scripts are listed in file jobs.lst (assume that
$myPrefix_ has the value aug):

File contents example: jobs.lst

aug_1
aug_2
aug_3
(...)

6. Run subtasks in parallel on a multi-core machine or cluster. There are many ways to achieve
this. Here, we illustrate two options:

(a) Multi-core machine without grid engine. GNU parallel processes a list of jobs
in parallel on a single machine. In the directory with all the sub task scripts, run:

bash input

parallel -j 8 --bar --no-notice "nice ./{}" < jobs.lst

(Replace 8 by the numbers of cores that you would like to occupy on your machine.)

(b) Cluster (or similar) with Portable Batch System (PBS). For executing on a
system such as PBS, you want to determine the number of tasks first, e.g. by counting
the number lines in jobs.lst:

bash input

wc -l jobs.lst

bash output

30

Next, you write a PBS submission script (custom tailored to your cluster’s requirements,
of course); insert the number of tasks as an end variable of the array (e.g. #PBS -t 1-30,
30 is the number of tasks, here). It could look like this:



1. ABSTRACT AUGUSTUS

File contents example: jobs.sh

#!/bin/sh
#PBS -N jobname
#PBS -l walltime=100:00:00
#PBS -t 1-30

/absolute/path/to/$myPrefix_${PBS_ARRAYID}

Make sure that the execution node knows where to find the job (e.g. by specifying an
absolute path to the job script). Submit the script, e.g. with:

bash input

qsub jobs.sh

7. After all jobs have finished, have a look at the error files in the directory $augDir/:

bash input

ls -lh $augDir/*.err

Ideally, none of the jobs produced an error and all files are empty (show the value 0 in column
5 of the output of ls). If you find error files with contents, check what went wrong before
proceeding.

8. Next, the gff output of all sub tasks will be merged. For this, we need files in the correct
order along sequences. One way to achieve this is to filter all output file names from the job
scripts:

bash input

for x in ‘cat jobs.lst‘
do
cat $x | perl -ne ’if(m/--outfile=(\S*) --errfile/){print $1} | \

join_aug_pred.pl > augustus.gff
done

join_aug_pred.pl cleans the redundancies that may occur from duplicated predictions in
overlapping regions. It also renames the genes sequentially so that the gene names become
globally unique. It requires that the input is given in the order such that neighboring regions
are input sequentially as is achieved by above command. It produces an output file, here
augustus.gff, that is comparable to the output of running AUGUSTUS without any data
parallelization.

Supplemental Protocol 21—Parallelization for Short Sequences

1. If you have a file with very many sequences, e.g. thousands of sequences, a solution with
one file per sequence may be inefficient. In this case, split the genome into smaller files that
contain a minimum amount of nucleotides, each:
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bash input

mkdir split
splitMfasta.pl genome.fa --outputpath=split --minsize=1000000

2. Determine the number of split genome files, e.g. run:

bash input

ls split/genome.split.*.fa | wc -l

The output could be this:

bash output

30

3. Optional: Split hints file. If the hints file is large, split it into smaller files that contain
exactly those hints that correspond to a split genome file. First, create a list of sequence
names of each split genome file:

bash input

for ((i=1; i<=30; i++));
do

fgrep ">" split/genome.split.$i.fa | perl -pe ’s/^>//’ > part.$i.lst
done

File contents example: part.1.lst

seq1
seq2
seq3

Next, identify hints that correspond to the genomic files. This could in principle be accom-
plished by a grep, but getLinesMatching.pl is more efficient:

bash input

mkdir split_hints
for ((i=1; i<=30; i++));
do

cat hints.gff | getLinesMatching.pl part.$i.lst 1 > split_hints/hints.split.$i.gff
done

4. Execute all subtasks on a multi-core machine or cluster.

(a) Multi-core machine without grid engine with GNU parallel (modify the AUGUSTUS
call to your requirements):
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bash input

seq 1 30 | parallel -j 8 --bar --no-notice "nice augustus --UTR=on \
--print_utr=on --alternatives_from_evidence=1 --extrinsicCfgFile=someFile.cfg \
--AUGUSTUS_CONFIG_PATH=somePath/config --exonnames=on --codingseq=on \
--species=yourspecies --hintsfile=split_hints/hints.split.{}.gff \
split/genome.split.{}.fa > $augDir/augustus.{}.out \
2> $augDir/augustus.{}.err"

(b) Cluster (or similar) with PBS. Prepare a submission script, e.g.:

File contents example: jobs.sh

#!/bin/sh
#PBS -N jobname
#PBS -l walltime=100:00:00
#PBS -t 1-30

augustus --UTR=on --print_utr=on --alternatives_from_evidence=1 \
--extrinsicCfgFile=someFile.cfg --AUGUSTUS_CONFIG_PATH=somePath/config \
--exonnames=on --codingseq=on --species=yourspecies \
--hintsfile=split_hints/hints.split.${PBS_ARRAYID}.gff \
split/genome.split.${PBS_ARRAYID}.fa > $augDir/augustus.${PBS_ARRAYID}.out \
2> $augDir/augustus.${PBS_ARRAYID}.err

Submit the script, e.g. with:

bash input

qsub jobs.sh

5. After all tasks have finished, check for errors as described in step 7 of the Basic Protocol.

6. Merge the AUGUSTUS output:

bash input

for (i=1; i<=30; i++);
do

cat $augDir/augustus.$i.out | join_aug_pred.pl > augustus.gff
done

Guidelines for Understanding Results

Genome Browser

We strongly recommend to visualize the predicted genes along evidence on the gene structures in a
genome browser, such as the UCSC genome browser (Casper et al., 2017), JBrowse (Skinner et al.,
2009) or Artemis (Carver et al., 2011). If AUGUSTUS was run with several settings, each prediction
can be a ’track’ on the browser. Other tracks could be for RNA-Seq alignments, for repeats, for
protein homology and for other gene sets, e.g. previously existing ones or from other structural
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genome annotation software. A short example, how the UCSC genome browser can be used to
display gene tracks is given in step 2 of protocol 7.2. However, for comprehensive instructions we
refer the reader to the chapter on the UCSC Genome Browser in a previous issue in the series
Current Protocols in Bioinformatics (Karolchik et al., 2012).

Number of Genes

There are several reasons to be cautious before using the number of predicted genes as an overall
estimate of the number of genes in the genome. One reason is, that a fractioned assembly may lead
to a siginicant proportion of genes that are truncated by the scaffold boundary. In the AUGUSTUS
numbering of genes such partial genes are counted as well and thus the number of (complete) genes
may be smaller than the overall number of reported genes. The genes with complete coding sequence
can be identified by searching for all transcripts, which have a predicted start and stop codon. An
estimate of the number of genes that the fragmented genes represent could be obtained indirectly
through their total coding sequence length, if one assumes that the partial genes have on average
the same coding sequence length as the complete ones and that the assembly is at least near-
complete. Another reason for a larger deviation from the number of predicted and actual genes can
be what we call split gene or joined gene error. A split gene error occurs when a single actual gene
is predicted as several genes and results in an overestimate of the number of genes. On the other
hand, a joined gene error occurrs when two or more genes are predicted as one gene and results in
an underestimate of the number of genes. It should be noted that above gene number deviations
can even occur if the number of predicted exons and the number of actual exons are similar, as is
frequently the case. Often, the inspection of individual suspicious gene structures using BLAST
can reveal a systematic tendency in either error.

Bad Results

The accuracy statistics of ab initio AUGUSTUS reported on an independent test set of gene struc-
tures gives an indication of the relative success of the training procedure. A successful example
is given in step 7 of section 7.7.1. The gene level accuracy can be quite low, even below 0.2, if
there is on average a large number of introns per gene and if those introns have a high variance of
intron length, as is the case in vertebrate genomes. This does not necessarily mean that the results
are unusually inaccurate. However, an exon level accuracy that is significantly below 0.7 would
suggest that something went wrong with the training. The cause of the problem could be a low
assembly quality, undetected repeats that have a sequence content similar to genes, a high error
rate in the training and test set or, in rare cases, unusual properties of the gene structures like a
nonstandard set of stop codons. In this case, we recommend to investigate these possible causes
before proceeding with evidence-based gene prediction. It is true that the predictions using hints
are likely to contain fewer errors than the ab initio predictions. However, they could then likely be
better if a remedy was applied in the first place.
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Commentary

Background Information

AUGUSTUS belongs to a class of genome annotation tools that can be described as statistical
gene finding, because probabilistic models are used at least in part to identify biological signals
and the gene structures. Other examples of such programs are GeneMark (http://opal.biology.
gatech.edu/GeneMark/), SNAP (http://github.com/KorfLab/SNAP) and Fgenesh (http://www.
softberry.com). Another class of tools for genome annotation are transcriptome reconstruction
tools, which rely on RNA-Seq or other transcriptome sequencing data and can use the genome as
guide for assembling transcripts as well, e.g. StringTie (https://ccb.jhu.edu/software/stringtie/).
A third popular class of tools for genome annotation are methods based on alignments of amino acid
sequences of previously annotated homologs, e.g. GenomeThreader (http://genomethreader.org)
and Exonerate (https://www.ebi.ac.uk/about/vertebrate-genomics/software/exonerate). Here,
the boundaries to statistical gene finding are less clear, as in presence of only remote homology
similarity finding becomes a probabilistic weighing and signal models are required to find exon
boundaries. Transcriptome reconstruction tools and most protein alignment tools do not use clade-
specific statistical models and therefore do not require training. On the other hand, they cannot
be exclusively used to obtain a whole-genome annotation, as they are by design unable to find
genes or parts of genes that are not represented in the data. The RNA-seq Genome Annotation
Assessment Project (rGASP) provided a comparison of several commonly used tools of the first two
above classes and the overall accuracy in the task of structurally annotating protein-coding genes
tended to be higher for statistical gene finders (Supplements of (Steijger et al., 2013)).

Troubleshooting

The AUGUSTUS web site at http://bioinf.uni-greifswald.de/augustus/ contains a link to
questions and answers, to further documentation and tutorials and a contact email address. AU-
GUSTUS is under ongoing development and new features are being developed. In fact, at the time
of writing this chapter a grant project has just started to improve the usability of AUGUSTUS.
From time to time users find a bug, e.g. augustus crashes on certain input. In such a case you can
help the development if you provide a small example and the command lines so the developers can
first reproduce the problem and eventually fix it.
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Tables

exon
A sensitivity specificity
zebrafish 80.2% 71.0%
chicken 73.6% 66.1%
human 71.8% 59.3%

Table 1: Ab initio accuracy after cross-species training. Genes were predicted on species B =
zebrafish, after training on species A. Accuracy was measured for predicting coding exons (CDS).
Some loss in accuracy from cross-training from mammal or bird to fish is apparent. However,
even between these distant clades foreign parameters are not useless. Sensitivity = true positives
/ actual positives, specificity = true positives / predicted positives.
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alternatives
Option

1 2 3
no 0.2 0.08 0.08 minexonintronprob

alter- 0.5 0.4 0.3 minmeanexonintronprob
natives 2 3 20 maxtracks

number of genes 227 187 187 183
number of transcripts 227 221 248 437

Table 3: The lower the thresholds minexonintronprob and minmeanexonintronprob and the
higher maxtracks, the more alternative transcripts are predicted by AUGUSTUS. The column “no
alternatives” shows the number of transcripts predicted in the example of the basic protocol above.

Figures

genome.fa
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alternative transcripts)

gene predictions
with hints “set 1”

gene predictions
with hints “set 2”
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final nonredunant
gene set

parallelization

C

Figure 1: AUGUSTUS can be run with input of a genome sequence only, making predictions ab
initio, or with extrinsic evidence in form of a hints file. In principle, transcript evidence (A) provides
information about the location of exons. Protein evidence (B) additionally provides information
about the location of coding sequences, including reading frame, and gene start and end positions.
augustus has no parallel execution mode, but data parallelization is possible. In case several
“competing” gene sets were generated for a target genome, we provide joingenes for merging
them into a final gene set (C).
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Figure 2: Illustration of workflows for training AUGUSTUS that are described in this protocol.
(A) generating training genes from RNA-Seq to genome alignments and subsequent application
of self-training GeneMark-ET (Lomsadze et al., 2014), (B) generating training genes from protein
to genome alignments, (C) generating training genes from EST/cDNA/long-454-read to genome
alignments that are converted to gene structures by transcript assembler PASA (Haas et al., 2003),
(D) generating training genes via iterative prediction and filtering based on a previously existing
AUGUSTUS parameter set and extrinsic evidence. (E) Regardless the source of training genes, they
should preferably be cleared of redundancies. (F) Training is performed by etraining. Species
specific parameters can optionally be refined by optimize_augustus.pl. In case gene models with
untranslated regions (UTRs) are available, this information can also be taken into account. The
aim of training AUGUSTUS is to produce a set of species-specific parameters for subsequently
applying AUGUSTUS to gene prediction in a target genome.
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File contents example: bug_parameters.cfg

#
# bug parameters.
#
...

stopCodonExcludedFromCDS false
# gff output options:
protein on # output predicted protein sequence
codingseq off # output the coding sequence
...
sample 100 # the number of sampling iterations
alternatives-from-sampling false # output alternative suboptimal transcripts
alternatives-from-evidence false # output alternative transcripts based on explicit

# evidence from hints
minexonintronprob 0.08 # minimal posterior probability of all (coding) exons
minmeanexonintronprob 0.4 # minimal geometric mean of the posterior probs of introns

# and exons
maxtracks -1 # maximum number of reported transcripts per gene

# (-1: no limit)

# global constants
# ----------------------------

/Constant/trans_init_window 20
/Constant/ass_upwindow_size 30
/Constant/ass_start 3
/Constant/ass_end 2
...

Figure 3: An excerpt of the configuration file for a species “bug”. This file contains set-
tings that can also be done (or overridden) on the command line, like --protein=off as well
as meta parameters for training that can be automatically set by optimize_augustus.pl like
/Constant/ass_start, the number of bases upstream of the consensus dinucleotide at the accep-
tor splice site that is considered in the pattern recognition model.

Figure 4: Alternatives from sampling. The red track shows the prediction of the basic protocol
which always predicts a single transcript for each gene. The three black tracks show predictions
from the Alternative protocol with increasing average number of transcripts per gene.
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[SOURCES]
M RM E W P

[GENERAL]
start 1 0.8 M 1 1e+100 RM 1 1 E 1 1 W 1 1 P 1 1e3
stop 1 0.8 M 1 1e+100 RM 1 1 E 1 1 W 1 1 P 1 1e3

exonpart 1 .992 .985 M 1 1e+100 RM 1 1 E 1 1 W 1 1.02 P 1 1
exon 1 0.9 M 1 1e+100 RM 1 1 E 1 1 W 1 1 P 1 1e4

intronpart 1 1 M 1 1e+100 RM 1 1 E 1 1 W 1 1 P 1 1
intron 1 .34 M 1 1e+100 RM 1 1 E 1 1e6 W 1 1 P 1 100

CDSpart 1 1 .985 M 1 1e+100 RM 1 1 E 1 1 W 1 1 P 1 1e5
CDS 1 1 M 1 1e+100 RM 1 1 E 1 1 W 1 1 P 1 1

nonexonpart 1 1 M 1 1e+100 RM 1 1.15 E 1 1 W 1 1 P 1 1

Figure 5: An excerpt of an extrinsic configuration file. In this example, each number to the right
of the column filled with Ms that is different from 1 specifies a bonus. A bonus is a relative factor
that the unnormalized joint probability of gene structure candidate gets for being compatible with
a hint of that type and source. For example, the blue 1e6 in the intron row after the source letter E
means that for each intron hint with source tag E (src=E), gene structures that have an intron with
both boundaries given as in the hint are rewarded by a factor of 106 relatively to gene structures
disregarding the intron hint. A high bonus has the effect that many of the respective hints are
respected by AUGUSTUS. The green 1.15 in the nonexonpart row after the tag RM (repeat
masking) specifies that for each nonexonpart hint, every gene structure gets a relative bonus factor
of 1.15 for each base that is not an exon and not in a repeat. This discourages – but does not
exclude – the overlap of exons and repeats. Repeat masking evidence can be given explicitly with
hints of source RM or implicitly with a soft-masked genome and the option softmasking turned
on. The number(s) immediately to the left of the M column other than 1 specifies a penalty (malus)
for gene structures with unsupported features. For example, the red .34 in the intron row means
that every intron candidate that has no intron hints supporting it is penalized by multiplying its
unnormalized probability with the factor 0.34. If you decrease this number even more (say from .3
to .001) then fewer introns unsupported by hints should be predicted. This would likely decrease
the false positive intron rate, but also more true unsupported introns would be missed. For more
information see the file config/extrinsic/extrinsic.cfg.
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