Central Limit Theorem for General Universal Products

Philipp Varšo

Institute of Mathematics and Computer Science, University Greifswald, Germany philipp.varso@uni-greifswald.de

Introduction

We discuss noncommutative notions of independence using an algebraic approach, which essentially defines for $d, m \in \mathbb{N}$ the category of (d, m)-algebraic quantum probability spaces (\mathscr{A}, φ) , notated by $\mathsf{algP}_{\mathsf{d.m}}$ (see Def. 1). Furthermore, this category is equipped with a so-called universal, unital, associative product, for short u.a.u.-product (see Def. 2) and we obtain a tensor category. This framework has been introduced by Schürmann [1] for a unified approach to cumulants and covers in particular the well known independence of tensor, boolean, free, monotonic and antimonotonic. Muraki [2] has shown that these are the only so called normal u.a.u.-products in $\mathsf{algP}_{1,1}$, i.e. objects in this category are a pair of an algebra \mathscr{A} and $\varphi \in \mathscr{A}^*$. But we can also model independence in quantum probability, if we assume that φ is a d-tuple of linear functionals $\varphi^{(i)}$ on \mathscr{A} and the algebra \mathscr{A} is structured as an m-fold free product of subalgebras $\mathscr{A}^{(i)} \subseteq \mathscr{A}$. There are good reasons, why to investigate such objects, as concepts of bifreenes^[3] (d = 1, m = 2), c-freenes^[4] (d=2, m=1) and recently investigated bimonotonic idependence of type $II^{[5],[6]}$ (d=1, m=2) show. Within this concept of (d, m)-independence we want to present a general version of central limit theorem.

Setting the stage

Definition 1 (Category of (d, m)-algebraic quantum probability spaces [1]) Consider a category C

whose objects are a triple $(\mathscr{A}, (\mathscr{A}^{(k)})_{k \in [d]}, (\varphi^{(\ell)})_{\ell \in [m]})$ with following properties

i.) A is an associative algebra

ii.) \mathscr{A} is ismorphic to the free product $\bigsqcup_{k\in[m]}\mathscr{A}^{(k)}$ and $\forall k\in[m]:\mathscr{A}^{(k)}$ is a subalgebra of \mathscr{A}

 $iii.) \forall \ell \in [d]: \varphi^{(\ell)}$ is a linear functional on \mathscr{A}

Moreover, assume that the morphisms $j \in \mathsf{Morph}_{\mathsf{C}}(\mathscr{B}, \psi), (\mathscr{A}, \varphi))$ of such category fullfill

 $(iv.) j \in \mathsf{Morph}_{\mathsf{alg}}(\mathscr{B}, \mathscr{A})$

 $(v.) \forall k \in [m]: j(\mathscr{B}^{(k)}) \subseteq \mathscr{A}^{(k)}$

 $vi.) \forall \ell \in [d] : \varphi^{(\ell)} \circ j = \varphi^{(\ell)}$

Such a category is called category of (d, m)-algebraic quantum probabilty spaces, denoted by $\mathsf{algP}_{\mathsf{d.m}}$.

Definition 2 (u.a.u.-product in algP_{d,m} [1]) A universal product in the category $algP_{d,m}$ is a bifunctor • of the form

$$\odot \colon \left\{ \begin{array}{l} \mathsf{Obj}(\mathsf{algP}_{\mathsf{d,m}} \times \mathsf{algP}_{\mathsf{d,m}}) \ni \left((\mathscr{A}_1, (\mathscr{A}_1^{(i)})_{i \in [m]}, \varphi_1), (\mathscr{A}_2, (\mathscr{A}_2^{(i)})_{i \in [m]}, \varphi_2) \right) \\ \mapsto \left(\mathscr{A}_1 \sqcup \mathscr{A}_2, (\mathscr{A}_1^{(i)} \sqcup \mathscr{A}_2^{(i)})_{i \in [m]}, (\varphi_1 \odot \varphi_2) \right) \in \mathsf{Obj}(\mathsf{algP}_{\mathsf{d,m}}) \\ \mathsf{Morph}_{\mathsf{algP}_{\mathsf{d,m}} \times \mathsf{algP}_{\mathsf{d,m}}} \left(\left((\mathscr{B}_1, \psi_1), (\mathscr{B}_2, \psi_2) \right)), \left((\mathscr{A}_1, \varphi_1), (\mathscr{A}_2, \varphi_2) \right) \right) \ni (j_1, j_2) \\ \mapsto j_1 \sqcup j_2 \in \mathsf{Morph}_{\mathsf{algP}_{\mathsf{d,m}}} \left((\mathscr{B}_1 \sqcup \mathscr{B}_2, \psi_1 \odot \psi_2), (\mathscr{A}_1 \sqcup \mathscr{A}_2, \varphi_1 \odot \varphi_2) \right) \end{array} \right.$$

A universal product in $\mathsf{algP}_{\mathsf{d,m}}$ is called unital if for any $(\mathscr{A}_i, \varphi_i) \in \mathsf{Obj}(\mathsf{algP}_{\mathsf{d,m}})$ following equation is satisfied

 $\forall i \in [d], \forall j \in [2] : (\varphi_1 \odot \varphi_2)^{(i)} \circ \iota_j = \varphi_j^{(i)},$

where $\iota_j : \mathscr{A}_j \to \mathscr{A}_1 \sqcup \mathscr{A}_2, j \in [2]$ are the canonical embeddings. Furthermore, a universal product in $\mathsf{algP}_{\mathsf{d.m}}$ is called associative if for all $(\mathscr{A}_i, \varphi_i) \in \mathsf{Obj}(\mathsf{algP}_{\mathsf{d.m}}), i \in [3]$ holds

$$((\varphi_1 \odot \varphi_2) \odot \varphi_3) = (\varphi_1 \odot (\varphi_2 \odot \varphi_3)).$$

A unital, associative, universal product in the category $\mathsf{algP}_{\mathsf{d.m}}$ is abbreviated by u.a.u.-product.

By stripping away the functional φ for an object $(\mathscr{A}, \varphi) \in \mathsf{Obj}(\mathsf{algP}_{\mathsf{d.m}})$ and only demanding the conditions iv.) and v.) of Definition 1 we can define in a natural manner the category alg_m . Assuming that a u.a.u.product in the category $\mathsf{algP}_{\mathsf{d.m}}$ is given, this in a canonical way induces a binary operation on the dual space using the above bifunctor and then projecting onto the 2nd component, i.e.

$$\odot : \left((\mathscr{A}_1)^* \right)^d \times \left((\mathscr{A}_2)^* \right)^d \ni (\varphi_1, \varphi_2) \mapsto \pi_2 \left((\mathscr{A}_1, \varphi_1) \odot (\mathscr{A}_2, \varphi_2) \right) \in \left((\mathscr{A}_1 \sqcup \mathscr{A}_2)^* \right)^d,$$

with properties similar from Definition 2. Furthermore, our interest lies in a subcategory of alg_m .

Definition 3 (The category $alg_{\mathsf{m}}^{\mathbb{N}_0}$) Consider a category C , where for each $(\mathscr{A}, (\mathscr{A}^{(i)})_{i \in [m]}) \in \mathsf{Obj}(\mathfrak{C})$, it holds that it also an element of $Obj(alg_m)$ and

$$\forall k \in [m] \exists \text{a family of subspaces } \left((\mathscr{A}^{(k)})^{\langle \alpha \rangle} \right)_{\alpha \in \mathbb{N}_0} : \mathscr{A}^{(k)} = \bigoplus_{\alpha \in \mathbb{N}_0} (\mathscr{A}^{(k)})^{\langle \alpha \rangle}.$$

Moreover, each $j \in \mathsf{Morph}_{\mathfrak{C}}(\mathscr{B}, \mathscr{A})$ is also an element of $\mathsf{Morph}_{\mathsf{alg}_{\mathsf{m}}}(\mathscr{B}, \mathscr{A})$ and is also homogeneous restricted to $\mathscr{B}^{(k)}$ for all $k \in [m]$. We denote such catgory by $\mathsf{alg}_{\mathsf{m}}^{\mathbb{N}_0}$.

Lemma 1 The bifunctor \odot turns the triple $(\mathsf{alg}_{\mathsf{m}}^{\mathbb{N}_0}, \odot, (\{0\} \mapsto 0))$ into a tensor category with inclusions.

Going to commutative bialgebras

There exists a version of noncommutative central limit theorems in the case of bialgebras. Bialgebras can be seen as comonoids in the tensor category (alg_1, \otimes) of unital algebras. For the case d = m = 1 in [7, Thm. 5.2.4] Lachs has constructed a cotensor functor, which maps comonoids in the tensor category $(\mathsf{alg}^{\mathbb{N}_0},\sqcup)$, i.e. graded dual semigroups, to graded bialgebras. We try to carry over this $Lachs\ Functor$ to the case $d \neq 1$ or $m \neq 1$. Therefore we need one essential Proposition from Schürmann.

Proposition 1 (Characterization of a universal product [1, Prop. 5.1]) Let $d, m \in \mathbb{N}$ and \odot be a u.a.u-product in $\mathsf{algP}_{\mathsf{d.m}}$. Then for any algebras $\mathscr{A}_i \in \mathsf{Obj}(\mathsf{alg}_\mathsf{m}), \ i \in [2]$ there exists a unique mapping

$$\sigma_{\mathscr{A}_1,\mathscr{A}_2}^{\odot} \colon (\mathscr{A}_1 \sqcup \mathscr{A}_2)^d \to S(\mathscr{A}_1)^{\otimes d} \otimes S(\mathscr{A}_2)^{\otimes d}$$

such that

$$\forall i \in [2], \forall \varphi_i \in ((\mathscr{A}_i)^d)^* : (\varphi_1 \odot \varphi_2) = (\mathcal{S}(\varphi_1) \otimes \mathcal{S}(\varphi_2)) \circ \sigma_{\mathscr{A}_1, \mathscr{A}_2}^{\odot}.$$

Hereby $S(\cdot)$ denotes the symmetric tensor algebra and $S(\cdot)$ is the unique homomorphism from its universal property, i.e. $S(\varphi) \circ i_s = \varphi$

The Lachs Functor

Proposition 1 enables us to construct for all $d, m \in \mathbb{N}$ a cotensor functor (Lachs Functor) between $\mathsf{alg}_{\mathsf{m}}^{\mathbb{N}_0}$ and the category of graded, commutative, unital algebras $\mathsf{calg}_{1}^{\mathbb{N}_{0}}$

$$\mathfrak{S} \colon \left\{ \begin{array}{l} \mathsf{Obj}(\mathsf{alg}^{\mathbb{N}_0}_{\mathsf{m}}) \ni \left(\mathscr{A}, (\mathscr{A}^{(i)})_{i \in [m]}, ((\mathscr{A}^{(i)})^{\langle \alpha \rangle})_{(i,\alpha) \in [m] \times \mathbb{N}_0} \right) \\ \mapsto \left(\mathsf{S}(\mathscr{A}^d), \left((\mathsf{S}(\mathscr{A}^d))^{\langle \alpha \rangle} \right)_{\alpha \in \mathbb{N}_0} \right) \in \mathsf{Obj}(\mathsf{calg}^{\mathbb{N}_0}_1) \\ \mathsf{Morph}_{\mathsf{alg}^{\mathbb{N}_0}_{\mathsf{m}}}(\mathscr{B}, \mathscr{A}) \ni j \mapsto \mathsf{S}(j^d) \in \mathsf{Morph}_{\mathsf{calg}^{\mathbb{N}_0}_1}(\mathsf{S}(\mathscr{B}^d), \mathsf{S}(\mathscr{A}^d)) \end{array} \right.$$

Basically, we see the only modification of the functor \mathfrak{S} in comparison to the functor S is, that \mathfrak{S} "forgets" about the free generation of an algebra \mathscr{A} and d copies of \mathscr{A} are created. Moreover, the symmetric tensor algebra $S(\mathscr{A})^d$) is equipped with a certain \mathbb{N}_0 -gradation.

Theorem 1

Consider the tensor categories ($\mathsf{alg}_{\mathsf{m}}^{\mathbb{N}_0}, \sqcup, \{0\}$) and ($\mathsf{calg}_{\mathbb{I}}^{\mathbb{N}_0}, \otimes, \mathbb{C}$), then the triple ($\mathfrak{S}, \mathcal{S}(\sigma^{\odot}), g_0$) consisting of the functor \mathfrak{S} : $\mathsf{alg}_{\mathsf{m}}^{\mathbb{N}_0} \to \mathsf{calg}_{\mathbb{I}}^{\mathbb{N}_0}$, the natural transformation $\mathcal{S}(\sigma^{\odot})$: $\mathfrak{S}(\cdot \sqcup \cdot) \Rightarrow \mathfrak{S}(\cdot) \otimes \mathfrak{S}(\cdot)$ and the map $g_0: S(\{0\}^d) \to \mathbb{C}$ with $g_0(\mathbb{1}_{S(\{0\}^d)}) = 1$ is a cotensor functor.

The situation resulting from Theorem 1 is illustrated in following diagram.

Tensor category
$$(\operatorname{alg}_{m}^{\mathbb{N}_{0}}, \odot, \{0\}) \xrightarrow{(\mathfrak{S}, \mathcal{S}(\sigma_{\mathscr{D}, \mathscr{D}}^{\odot}), g_{0})} \operatorname{Tensor category} \\ (\mathfrak{S}, \mathcal{S}(\sigma_{\mathscr{D}, \mathscr{D}}^{\odot}), g_{0}) & (\operatorname{calg}_{\mathbb{I}}^{\mathbb{N}_{0}}, \otimes, \mathbb{C}) \\ \\ \operatorname{comonoid in} & & & & & \\ \operatorname{Dual semigroup} & & & & & \\ (\mathscr{D}, \Delta, 0) & & & & & (\mathfrak{S}(\mathscr{D}), \mathcal{S}(\sigma_{\mathscr{D}, \mathscr{D}}^{\odot}) \circ \mathfrak{S}(\Delta), g_{0} \circ \mathfrak{S}(0)) \\ \end{aligned}$$

Assume \odot on alg_m is given and a comonoid $(\mathcal{D}, \Delta, \delta)$ in the category alg_m is chosen, then we define the convolution product

$$*: \left(\mathscr{D}^*\right)^d \times \left(\mathscr{D}^*\right)^d \ni (\varphi_1, \varphi_2) \mapsto \left((\varphi_1 \odot \varphi_2)^{(i)} \circ \Delta\right)_{i \in [d]} \in \left(\mathscr{D}^*\right)^d.$$

Corollary 1 The prescription $(\mathscr{D}^*)^d \ni \varphi \mapsto \mathcal{S}(\varphi) \in ((\mathcal{S}(\mathscr{D}))^*)^d$ defines an homomorphism between the monoids $((\mathscr{D}^*)^d, *)$ and $(((\mathscr{S}(\mathscr{D}))^*)^d, *)$, where * is the ordinary convolution of coalgebras.

Convolution exponential for *

If we want to define a convolution exponential for **, then a naive definition fails, because ** does not distribute over +. Looking at the characterization of weakly continuous semigroups, we can see, what might be a good definition for the convolution exponential of *. We recall that a family $(\varphi_t)_{t\in\mathbb{R}_+}\subseteq (\mathscr{D}^d)^*$ is a called a convolution semigroup on the comonoid $(\mathcal{D}, \Delta, \delta)$ if for all $s, t \in \mathbb{R}_+$ we have $\varphi_s * \varphi_t = \varphi_{s+t}$ and $\varphi_0 = \delta^d \equiv 0$. Then a convolution semigroup is said to be weakly continuous if in addition $\forall b \in$ \mathscr{D}^d : $\lim_{t\to 0^+} \varphi_t(b) = \delta^d(b) \equiv 0$.

Proposition 2 (Characterization of convolution semigroup on comonoids in alg_m) Let $(\mathscr{D}, \Delta, 0)$ be a comonoid in alg_m and $(\varphi_t)_{t\in\mathbb{R}_+}\subseteq (\mathscr{D}^d)^*$ be convolution semigroup on \mathscr{D} . Following assertions are equivalent

i.) The convolution semigroup $(\varphi_t)_{t\in\mathbb{R}_+}$ is weakly continuous.

ii.) There exists a linear functional $\Psi \in (\mathscr{D}^d)^*$ such that

$$\forall t \in \mathbb{R}_+ : \varphi_t = \exp_{\star}(t \, \mathcal{D}(\Psi)) \upharpoonright_{\mathscr{D}^d} =: \exp_{\star} \Psi$$

If one of the above conditions is fullfilled, then the linear functional Ψ is uniquely determined by $(\varphi_t)_{t\in\mathbb{R}_+}$, i.e. $\forall b \in \mathscr{D}^d \colon \Psi(b) = \lim_{t \to 0^+} (\varphi_t(b)/t)$. The map $D(\Psi)$ is defined on $S(\mathscr{D}^d) = \bigoplus_{n \in \mathbb{N}_0} S^n(\mathscr{D}^d)$ by

$$D(\Psi) \upharpoonright_{S^n(\mathcal{D}^d)} := \begin{cases} 0, & \text{if } n = 0 \text{ or } n > 1 \\ \Psi, & \text{if } n = 1, \end{cases}$$

Central limit theorem

The first noncommutative version of a central limit theorem dates back to von Waldenfels [8]. We present a version, whereby its proof is reduced to the well known bialgebra case. Let V be an \mathbb{N}_0 -graded vector space and choose $z \in \mathbb{C}$. We define the linear map $S_z : V \ni v \mapsto z^{\deg v} v \in V$ for homogeneous $v \in V$.

Theorem 2

Let $d, m, \nu \in \mathbb{N}$ and \odot be universal product on $\mathsf{alg}_{\mathsf{m}}$ and assume that $\mathscr{D} \in \mathsf{Obj}(\mathsf{comon}(\mathsf{alg}_{\mathsf{m}}^{\mathbb{N}_0}))$ with induced N₀-gradation $(\mathscr{D}^{\langle \alpha \rangle})_{\alpha \in \mathbb{N}_0}$. If $\varphi \in (\mathscr{D}^d)^*$ fullfills $\varphi \upharpoonright_{(\mathscr{D}^d)^{\langle \alpha \rangle}} = 0$ for $0 \leq \alpha < \nu$, then

$$\forall b \in \mathcal{D}^d : \lim_{n \to \infty} \left(\varphi^{*n} \circ S_{n^{-\frac{1}{\nu}}} \right) (b) = (\exp_*(g_{\varphi}))(b)$$

where $g_{\varphi} \in (\mathscr{D}^d)^*$ defined by $g_{\varphi} \upharpoonright_{(\mathscr{D}^d)^{\langle \alpha \rangle}} = \varphi \upharpoonright_{(\mathscr{D}^d)^{\langle \alpha \rangle}}$ if $\alpha = \nu$ and 0 otherwise.

References

- [1] Manzel, Sarah; Schürmann, Michael: Non-commutative stochastic independence and cumulants. Infin. Dimens. Anal.
- Quantum Probab. Relat. Top. 20.2 (2017), 1750010, 38.
- [2] Muraki, Naofumi: The five independences as natural products. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6.3 (2003). [3] VOICULESCU, Dan-Virgil: Free probability for pairs of faces I. Comm. Math. Phys. 332.3 (2014), 955–980.
- [4] Bożejko, Marek; Speicher, Roland: ψ-independent and symmetrized white noises. In: Quantum probability & related topics. QP-PQ, VI,
- 219–236. World Sci. Publ., River Edge, NJ, 1991 [5] Gerhold, Malte: Bimonotone Brownian Motion. Preprint arXiv:1708.0351v1 (2017), 14 pages.
- [6] Gu, Yinzheng; Hasebe, Takahiro; Skoufranis, Paul: Bi-monotonic independence for pairs of algebras. Preprint arXiv:1708.05334v2 (2017),
- 31 pages. [7] LACHS, Stephanie: A New Family of Universal Products and Aspects of a Non-Positive Quantum Probability Theory. PhD thesis. Ernst-Moritz-Arndt-Universität Greifswald. 2015.
- [8] VON WALDENFELS, Wilhem: An algebraic central limit theorem in the anti-commuting case. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 42 (1978), 135-140.