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Motivation

investigate noncommutative notions of independence using an algebraic
approach

for d,m € N define category algP, , of (d, m)-algebraic quantum
probability spaces [MS17]*

model independence by so called universal products

Muraki has shown 3 only 5 normal universal products in algP, j, i.e.
objects are algebras &/ equipped with ¢ € &7*

What about a d-tuple of linear functionals? What about an m-fold free
product of &77?

reasons why we should study such structures are e.g. bifreeness
(d=1,m =2) [Voild], c-freeness (d = 2,m = 1) [BS91] and
bimonotonic independence of type II (d = 1,m = 2) [GHS17] [Gerl7]

1S. Manzel and M. Schiirmann. “Non-commutative stochastic independence and
cumulants”. In: Infin. Dimens. Anal. Quantum Probab. Relat. Top. 20.2 (2017),
pp. 1750010, 38.
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Notational conventions

e for m € N set [m] := {1,...,m}
e set of all linear functionals of vector space V' denoted by V*
e S(V) for symmetric tensor algebra of C-vector space V

o if o/ is unital algebra and f: V — & is linear map with
f@)fly) = fy)f(z) fa. z,y € V, then S(f): S(V) - & is unique
unital algebra homomorphism s.t. S(f) oty = f.

o let V,W be C-vector spaces and g: V — W linear map, we put
S(g) :==S(tw og): S(V) »> S(W)

e all algebras of consideration are in particular C-vector spaces,
associative but not necessarilly unital

e free product of algebras?




Digression: Free product of algebras

o for arbitrary index set I define
Ar:={e=(c)iem €I™ | mEN,ep #epr1,k=1,...,m—1}
e given family of vector spaces (V;)ier, for € € Ay set
Ve=Vo®--@ Ve,
e given family of algebras (%% );c1r we set
L= =
iel ecAg

with multiplication given by

AR Qe b1 ® - @by ifem # 61
al®"'®ambl®"'®bn ifEm:51

(@1 ® - @am) (1@ - Qbn) 1= {
Sy cals
e Ll is coproduct in category alg, i.e. for (2%):cr C Obj(alg), o/ € Obj(alg)
and family of morphisms (f;: &% — & ):cr exists unique morphism
Ler fi: I_IZ.EF% — o/ such that Ler fiovi = fi. Moreover

X; Y;
| !
I—liel Xi l—'ie] Yi
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Definition 1 (Category alg,,)
e objects of category alg,, are ordered pairs (7, (,Qi(i))ie[d]) with
following properties
i.) 4/ is an associative algebra
ii.) Vi € [m]: & is a subalgebra of </
#4.) finite family (ﬂi(i))ie[m] freely generates o/, i.e. the algebra
homomorphism from uie[m] () — o defined by
eDa1® --Qan>ar-an €I
is bijection
e morphisms j € Morph,, ((#,(B'"))icim)), (¢, (' D)ic(my)) fullfill the
following
iv.) j € Morph,, (%, )
v.) Yk € [m]: j(BKR) C o)




Definition 2 (Category algP, , [MS17, Sec. 2])

e objects of algP,  are triples (<, (D) icimy, (np(i))ie[d]), wherein
(e, (/D)iem)) € Obj(alg,,) and (p*)ie(a) € (77)?

e for morphisms _ _ _ _
j € Morph, e, ((&, (B)icimpy, @ )ici): (7, (A D)icpmy, (0D)icia))
of algPy ,, we demand

Z) J € Morphalgm (%,ﬂ)

i.) Vi€ [d: o™ oj =),

Remark 1 there exist well known isomorphisms

Homa (VY €) 2 (Home(V;, ©))* = Home(V, C%)
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Definition 3 (u.a.u.-product in algP, )

e universal product in the category algP, ., is bifunctor © of the form
Obj(algPy ,  algPy ) 3 (4, (A )icim), 1) (. (A5 )icpm), 02)
o (00, (A U A st ip1 © 2) € Obi(algP )

Morph,e, ey (((Z1,01), (%2, 02))), (4, 01), (9, ¢2)) ) 3 (i1, 2)
— j1Ujs € Morphalgpdym((%ﬁ U B, 1 @ o), (9 U, o1 © 2))

®:

e universal product in algP, , is called unital if
Vield,Vje 2] : (g1 O 502)“) oL = apy)

e universal product in algP, , is called associative if

((901 O p2) ® 803) = (901 O (p2© 503)).

product having all these 3 properties is abbreviated by u.a.u.-product

-3
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e tensor category is category € with bifunctor X: € x € — €, that is
associative up to natural isomorphism, and an object E that is both a
left and right identity for X. coherence conditions ensure that all
relevant diagrams commute

Remark 2

i.) if ® is an u.a.u.-product in algP, , = universality condition,
i.e. for all #; € Obj(alg,,) and (&%, ¢;) € Obj(algP, ) and
ji € Morph,,, (%, 4%),i € [2] holds

alg,

©

Ve e [d]: ((wgi) o j1)ief © (¢ Oj?)ie[d]) = (p1 @ 92)Y 0 (j1 U j2)

ii.) if © is an u.a.u.-product in algP, ., then (algP, ., ®, ({0},0 — 0)) is
tensor category
Definition 4 if ® in algP, ,, and (%, (™) rca)) € Obj(alg,,), i € [2] are
given, then define for ¢; € ((@%)*)?
01O g = ((%1, (A ety 1) © (o, (%(k))ke[db@?))

where we identify ¢1 ® p2 € ((A U ;z{z)*)d




Definition 5 (Catgegory algh® and calg)?)
i.) e objects of alggO are triples (7, (W(i))ie[m]’ ((W(i))m))(i,a)e[m]xNo)
where (7, (W(l))ie[m]) € Obj(alg,,) and
Vi € [m] Ja family of subspaces ((d(i))W))aeNo, such that & () =
@a@NO ($27<i)) (@) and #® is a graded algebra

e morphisms 7 € Morphalgy0 (%, ) are elements of Morph,, (4, ) and

algp,

Jl gy, € [m] is also homogeneous

i1.) e objects of calgljll\IO are commutative, unital, No-graded algebras
e morphisms are homogeneous, unital algebra homomorphisms

Lemma 1 (alg°, 11, {0}) and (calg)®,®, ©) are tensor categories
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Proposition 1 ([MS17, Prop. 5.1]) if ® is u.a.u.-product in algP, ,
= V. € Obj(alg,,), i € [2] 3! linear mapping

Ton oty (10 )" — S(1)%! @ S ()™

such that for all ¢; € ((#4)%)",i € [d] the diagram is commutative

©
Oty ety

(o U o) S()% @ S(a)*1

@@x\ C A) ® S(p2)

Lemma 2 stated linear mappings Ugly o7, are even homogeneous
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Definition 6 (Lachs Functor, [Lac15]?)
Obj(algn®) 2 (, (7 )icimi, ()™ iy mixx0))
&: = (S, ((S(")') e, ) € Obi(calgX®)

Morph,, x (%, /) 5 j — S(j) € Morph,_,x, (S(#"), (/"))

a€Ng

Theorem 1 ([Lacl5, Thm. 5.2.4]) if ® w.a.u.-product,
go: S({0}%) — C with 90(1g((0yay) = 1, then (&,8(c®), go) is cotensor
functor

e What does this mean???

e What are the consequences???

28. Lachs. “A New Family of Universal Products and Aspects of a Non-Positive
Quantum Probability Theory”. PhD thesis. Ernst-Moritz-Arndt-Universitat Greifswald,
2015.
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Definition 7 (comonoid) if (€,X) is tensor category, a comonoid
(¢,A,0) is object with morphisms

e At ¥ >CRYE (comultiplication)
©5: ¢ —>FE (counit)

such that following diagrams commute

A A

CRE @ CRE
idﬁgﬁAl lNXid%
CR (T RE) — (CRE)RE
& X ids ide X 6§
ERE i i ¢RE

Example 1 bialgebra is comonoid in (alg;,®) and dual semigroup is
comonoid in (alg,,,L!)
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Definition 8 (cotensor functor) given (¢, X),(€',X’) tensor categories
with unit objects F and E’, then cotensor functor is triple (F, T, go), where

i.) F: € - ¢ is functor
ii.) T:F(- ® )= F(-)X F(-) is natural transformation
iii.) a morphism go: F — E’

such that coassociativity and counit diagrams commute (not given here)

F(AR (BR C)) Floas.c) F(AR B)R C)
TA,B@Cl JTAﬁB,C
F(AR B) & F(C) F(A) R F(BRC)

ide 4y B TB,cl JTA,B R ide (e

F(A) X' (F(B) B’ F(O)) - (F(A) B’ F(B)) R’ F(C)
F(A),F(B),F(C)

Theorem 2 (Cotensor functor preserves comonoids [Lacl5,
Cor. 2.3.5]) for cotensor functor (F,7T,go): (¢,K) — (¢/,K') and any
comonoid (%, A, d) in (€, K), the triple (F(%¢), T«,« o A, go o F(d)) is
comonoid in (¢, X’)
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Obj(algn®) 3 («, (7 )iepmp, (7)) i aye(mixne))
& — (S(M), ((S(%d)w)aem) € Obj(calg™?)

Morph, x, (%, /) 3 j — S(j) € Morph,_,x, (S(#7), (7))

e apply scenario to (- LI -) =& ol : algh? x algho — calg]® and
G(-)®6(-)i=®0(6,8): algho x algho — calg)®

o for (S(a%bdz))dl’dﬁow(alggjo) =:8(0.0), we have
S(@®): 6(-U-)=6(-)06(-)

Theorem 3 ([Lacl5, Thm. 5.2.4]) put go: S({0}%) — C with
go(:ﬂ.s({o}d)) = ].7 then

Tensor category COtensoerunCtor Tensor category
S,S(0 ,
g, oy OSTReh0) g g )

A
|
|
|

A

|
comonoid in | comonoid in

L as subalgebra L
Dual semigroup Bialgebra

(2,A,0) (6(2),8(05,5) ° 6(A), go 0 6(0))

17/
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Recall convolution product for comonoid (4, A, d) in alg; (bialgebras)

*: B X B> (o1, p2) H(Sm@gog)oAE%’*

Definition 9 (Convolution product for ©®) given u.a.u.-product in
algP, ,, define convolution product for comonoid in (2, A, 0) in (alg,,,U) by

(55 (#)' 2 e = (00 08) < (o)

Lemma 3 prescription (29)* 3 ¢ — S(p) € (S(2%))" is homomorphism
between monoids ((24)*, %) and ((S(2%))*, %), i.e. for ¢; € (29)*, i € [2]
holds

S(p1 % p2) = S(p1) * S(2).

19/
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IDEA OF PROOF:

direct computation shows
(St 8(e2)) 01 2 ((S(01)® S(e2)) 0 8(05,2) 08(4%) o1
((sten @ S(@2)) 08055007 ) o

(2)
= (3(%) ® 5(4%’2)) 005 o0 A?

(3)
= (1 ® p2) 0 A?

= p1 % 2,

where in (1) the statement of Thm. 3, in (2) universal property of S(-) and
in (3) assertion of Prop. 1 have been used O
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e What is good definition for exponential series on ((2%)*, %)? answer is

for all b € 2¢

(oo}

(expy @) (b) == D _(D(p)™ 01.)(b),

n=0
where D(p): S(2%) — C defined on S(2%) = @, _,S™(2*) with
(2% =T

0 ifn=0o0rn>1

D(¢)lsn(gpay = {

e justified by the following:

p ifn=1.

Definition 10 (Convolution semigroup [BS05]3)
)

e if (2,A,0) is comonoid in (alg,,, ), then family (¢¢)ier, € (2% is

called a convolution semigroup on (2, A, d) if
Vs, t € Ry: s % or = pst++ and o =5=0
e convolution semigroup is weakly continuous if

Vbe 2% lim @.(b) = 6%(b) = 0.
t—>01

3A. Ben Ghorbal and M. Schiirmann. “Quantum Lévy processes on dual groups”. In:

Math. Z. 251.1 (2005), pp. 147-165.
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Theorem 4 (Characterization of convolution semigroup on
comonoid in alg,, [BS05, Thm. 4.6]) if (2,A,0) is comonoid in

(alg,, ) and (¢i)ier, C (2%)" is convolution semigroup on 2. Following
assertions are equivalent

i.) convolution semigroup (¢t)ter , is weakly continuous.
i.) 3 € (2%)* such that Vt € Ry : ¢ = exp, (tD(¥)) [,
¥ uniquely determined by (cpt)t€R+, ie.

Vbe 7: U(b) = lim “"t)fb).

t—>0+

e we obtain for ¢ € (2%)* and b € 2

oo

(expy 9)(b) = Y _(D(9)"" 01.)(b)

n=0

seems good definition!
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o if (V, (V) ,en,) is No-graded vector space and choose any z € C,
then for homogeneous v € V/

S,: Vv 298 eV

Theorem 5 (Central limit theorem for comonoids in algﬂn\j‘J
[Lac15, Thm. 7.1.2])

® © is w.a.u-product in algPy .,

e comonoid (2, A, §) in algh©) with induced No-gradation denoted by
(@m) )aeNg
e ¢ € (2% fullfills

Vo with 0 < o <v: ¢l gay =0,
vbe 7% lim (so o5 ,A) (b) = (exp (9)) ()
where g, € (2%)* defined by

[ @[(@d)(u) lf o =V
g dy(a) =
£HZD 0 otherwise
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Outlook

e try to calculate right hand side of central limit theorem, i.e.
(expy (9y))(b) for “interesting examples” of cases of u.a.u.-product,
where intersting examples are given in motivation

-
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Thank you very much for your attention!
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