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In diesen Ausarbeitungen zu einem Proseminarvortrag soll auf die Eigen-
schaften regulärer und ordnungsbeschränkter Operatoren im Sinne eines halb-
geordneten Vektorraumes eingegangen werden. Darüber hinaus wird auf das
Theorem von Riesz-Kantorovich hingearbeitet, welches hinreichende Bedin-
gungen angibt, damit der halbgeordnete Vektorraum der ordnungsbeschränk-
ten Operatoren zu einem Riesz-Raum wird.
Dieser Text orientiert sich inhaltlich am Abschnitt 1.1 aus [AB06].
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1 Reguläre und Ordnungsbeschränkte Operatoren

1.1 Grundlegende Eigenschaften
Ein Netz {xα}α∈A aus einem Riesz-Raum wird als fallend (symbolisch geschrieben xα ↓)
bezeichnet, wenn α � β impliziert xα ≤ xβ. Die Notation xα ↓ x bedeutet, dass xα ↓
und infα∈A xα = x gleichzeitig gelten. Analog sind die Symbole xα ↑ und xα ↑ x zu
verstehen. Jeder Riesz-Raum E trägt die Eigenschaft archimedisch zu sein, wenn für
eine fallende Folge {xi}i∈N, mit dem n-ten Glied xn = 1

n
x, die Eigenschaft 1

n
x ↓ 0 in E

für jedes x ∈ E+ gilt. Alle Funktionenräume, also insbesondere die Lp-Räume, mit der
punktweisen Ordnung sind archimedisch.

Theorem 1.1.1 (Kantorovich). Seien E und F jeweils Riesz-Räume, wobei F archimedisch
ist. Des Weiteren wird angenommen, dass T : E+ → F+ eine additive Abbildung darstellt,
also T (x + y) = T (x) + T (y) gilt für alle x, y ∈ E+. Es existiert dann genau eine Fort-
setzung der Abbildung T zu einem positiven Operator T̃ : E → F , welche gegeben ist durch

T̃ (x) = T (x+)− T (x−) für alle x ∈ E. (1)
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Beweis. Sei T : E+ → F+ eine additive Abbildung. Man betrachtet die Abbildung
S : E → F , welche definiert ist durch

S(x) = T (x+)− T (x−) für alle x ∈ E. (2)

Die Abbildung T als additive Abbildung besitzt die Eigenschaft, dass T (0) = 0. Sei
x 6= 0 mit x ∈ E+, dann folgt damit, dass x− = 0. Damit hat man S(x) = T (x) für
alle x ∈ E+. Die Abbildung S stellt demnach eine Fortsetzung der Abbildung T von E
nach F dar, welche sogar linear ist, was im Folgenden gezeigt werden soll. Sei jedoch
zunnächst S̃ : E → F eine andere lineare Fortsetzung der Abbildung T , dann gelten
folgende äquivalente Umformungen für alle x ∈ E

S̃(x) = S̃(x+ − x−) (E ist Riesz-Raum)
= S̃(x+)− S̃(x−) (S̃ ist eine lineare Abbildung)
= T (x+)− T (x−) (S̃ ist eine Fortsetzung von T )
= S(x+)− S(x−) (S ist eine Fortsetzung von T )
= S(x) (nach Definition von S). (3)

Daraus folgt, dass S̃ = S. Somit stellt S die einzig mögliche lineare Fortsetzung von T
dar. Damit ist die Eindeutigkeit von S gezeigt. Es soll nun gezeigt werden, dass S sich
als Abbildung additiv und homogen verhält.
Angenommen x ∈ E lässt sich darstellen als x = x1 − x2, wobei x1, x2 ∈ E+, dann gilt

S(x) = T (x1)− T (x2). (4)

Um dies einzusehen, sei x ∈ E fest und man nimmt an, dass x = x+ − x− = x1 − x2 mit
x1, x2 ∈ E+. Es gilt dann x+ + x2 = x1 + x− und mit Hilfe der Additivtät von T erhält
man

T (x+) + T (x2) = T (x+ + x2) = T (x1 + x−) = T (x1) + T (x−) (5)

oder

S(x) = T (x+)− T (x−) = T (x1)− T (x2). (6)

Für x, y ∈ E gelten folgende äquivalente Umformungen

S(x+ y) = S((x+ − x−) + (y+ − y−)) (E ist Riesz-Raum)
= S((x+ + y+)− (x− + y−))
= T ((x+ + y+))− T ((x− + y−)) (E+ ist Kegel und (4) gilt)
= T (x+) + T (y+)− T (x−)− T (y−) (T ist additiv auf E+)
=
[
T (x+)− T (x−)

]
+
[
T (y+)− T (y−)

]
= S(x) + S(y) (nach Definition von S). (7)
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Damit ist die Additivtät von S gezeigt. Es verbleibt die Homogenität von S zu zeigen.
Hierzu folgt aus (7) mittels Induktion, dass

S(nx) = nS(x) für alle x ∈ E, n ∈ N. (8)

Sei nun n ∈ N, dann gilt

S(x) = S
(
n
n
x
)

= S
(
n
(

1
n
x
)) (8)= nS

(
1
n
x
)

für alle x ∈ E, n ∈ N, (9)

was äquivalent ist zu
1
n
S(x) = S( 1

n
x) für alle x ∈ E, n ∈ N. (10)

Mit Hilfe von (8) und (10) folgt nun, dass

S(rx) = rS(x) für alle x ∈ E, r ∈ Q+. (11)

Darüber hinaus gilt für eine additive Abbildung S : E → F und x ∈ E

S(0) = S(x− x) = S(x+ (−1)x) = S(x) + S(−x), (12)

was äquivalent ist zu
− S(x) = S(−x). (13)

Also gilt (11) sogar für alle r ∈ Q.
S ist sogar monoton, das heißt wenn x ≤ y, dann S(x) ≤ S(y) für x, y ∈ E. Man

nimmt hierzu an, dass für x, y ∈ E, x ≥ y. Damit ist x− y ∈ E+, also hat man

S(x) = S((x− y) + y)
= S((x− y)) + S(y) (nach (7))
= T ((x− y)) + S(y) (S = T auf E+)
≥ S(y). (14)

Man betrachtet nun ein festes x ∈ E+ und sei λ ≥ 0. Wählt man zwei Folgen von
rationalen Zahlen {rn}n∈N und {tn}n∈N mit der Eigenschaft rn ↑ λ und tn ↓ λ, dann gilt
rnx ≤ λx ≤ tnx für alle n ∈ N. Mit Hilfe dieser Aussage und der Monotonie von S
impliziert dies

rnS(x) (11)= S(rnx)
(14)
≤ S(λx)

(14)
≤ S(tnx) (11)= tnS(x) für alle n ∈ N. (15)

Des Weiteren hat man für m ∈ N, dass ein N ∈ N existiert, so dass für alle n ≥ N gilt

(tn − λ)S(x) ≤
(

1
m

)
S(x)→ 0, für m→∞. (16)

Und analog für die Folge {rn}n∈N hat man für ein m′ ∈ N, dass ein N ∈ N existiert, so
dass für alle n ≥ N

(λ− rn)S(x) ≤
(

1
m′

)
S(x)→ 0, für m′ →∞. (17)
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Die Grenzübergänge in (16) und (17) existieren, da nach (14) S monoton ist und damit
S(x) ≥ 0 und darüber hinaus ist nach Annahme der Riesz-Raum F archimedisch. Damit
hat man nun

lim
n→∞

rnS(x) = lim
n→∞

tnS(x) = λS(x). (18)

Wenn man also den Limes für n→∞ in (15) betrachtet, dann werden die Abschätzungen
durch Gleichheit ersetzt und man hat damit gezeigt, dass

S(λx) = λS(x) für λ ≥ 0, x ∈ E+. (19)

Schlussendlich wird nun angenommen, dass λ ∈ R und x ∈ E, dann gilt

S(λx) = S(λ(x+ − x−) = S(λx+ + (−λ)x−)
(7)= S(λx+) + S(−(λx−))
(13)= S(λx+)− S(λx−)
(19)= λS(x+)− λS(x−)
(2)= λ

[
T (x+)− T (x−)

]
(2)= λS(x).

(20)

Damit ist gezeigt, dass S homogen ist und aus der Montonie von S schlussfolgert man,
dass S ein positiver Operator ist.

Mit dem Theorem 1.1.1 ist klar, dass für eine Abbildung T : E+ → F+ eine eindeutige
Fortsetzung zu einem postiven Operator T̃ : E → F genau dann existiert, wenn T ad-
ditiv auf E+ ist. Dies bedeutet, dass ein positiver Operator bereits dadurch vollständig
charakterisiert ist, wie dieser auf dem positiven Kegel seines Definitionsbereiches wirkt.
Wir vereinbaren in diesem Text, dass Operatoren als Abbildungen zwischen Vektorräu-

men, immer als lineare Abbildungen aufzufassen sind. Es kann eingesehen werden, dass
die auf der Menge L(E,F ), wobei

L(E,F ) := {T : E → F : T ist Operator} , (21)

definierte Halbordnung

S ≤ T :⇐⇒ T − S ist ein positiver Operator ⇐⇒ S(x) ≤ T (x) für alle x ∈ E+ (22)

verträglich ist mit den Vektorraumoperationen auf L(E,F ). Damit wird L(E,F ) zu
einem halbgeordneten Vektorraum.
Um zu zeigen, unter welchen Umständen L(E,F ) selbst wieder zu einem Riesz-Raum

wird, soll eine Aussage über eine sogenannte Zerlegungseigenschaft in einem Riesz-Raum
E bereit gestellt werden.

Theorem 1.1.2 (Zerlegungseigenschaft). Sei E ein Riesz-Raum, n ∈ N und es möge
gelten, dass |x| ≤ |y1 + · · · + yn| für x ∈ E, {yi}i∈{1,...,n} ⊆ E. Daraus folgt die Existenz
von {xi}i∈{1,...,n} ⊆ E mit der Eigenschaft x = x1 + · · · + xn und |xi| ≤ |yi| für jedes i ∈
{1, . . . , n}. Des Weiteren gilt für den Spezialfall x ≥ 0, dass die Menge der {xi}i∈{1,...,n} ⊆
E so gewählt werden kann, dass |xi| ≥ 0 für jedes i ∈ {1, . . . , n}.
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Beweis. Es soll für x ∈ E, {yi}i∈{1,...,n} ⊆ E durch vollständige Induktion gezeigt werden,
dass für alle n ∈ N die Aussage

(n) |x| ≤
∣∣∣∣∣
n∑
i=1

yi

∣∣∣∣∣⇒ ∃ {xi}i∈{1,...,n} ⊆ E : x =
n∑
i=1

xi ∧ ∀i ∈ {1, . . . , n} : |xi| ≤ |yi| (23)

gilt:

• n = 1: In diesem Fall ist nichts zu zeigen, setze x1 := x.

• n→ n+ 1: Man nimmt an, dass die Aussage für ein n ∈ N bereits bewiesen ist. Sei
nun |x| ≤ |y1 + · · ·+ yn + yn+1| = |ỹn + yn+1|, wobei ỹn := y1 + · · ·+ yn, dann setzt
man x̃n := [x ∨ (−|ỹn|)] ∧ |ỹn|.
Es soll |x̃n| berechnet werden.

|x̃n| = x̃+
n + x̃−n

= ({[x ∨ (−|ỹn|)] ∧ |ỹn|} ∨ 0) + (−{[x ∨ (−|ỹn|)] ∧ |ỹn|} ∨ 0)
(24)

Für x̃+
n erhält man nach folgenden äquivalenten Umformungen

x̃+
n = {[x ∨ (−|ỹn|)] ∨ 0} ∧ {|ỹn| ∨ 0} (Distributivität von ∨ und ∧)

= {x ∨ [(−|ỹn|) ∨ 0]} ∧ |ỹn| (Assoziativität für ∨)
= (x ∨ 0) ∧ |ỹn|
= x+ ∧ |ỹn|
≤ |ỹn|. (25)

Die Assoziativitätseigenschaft für ∨ kann [DP02, Theorem 2.9] entnommen werden
und die Distributivität von ∨ und ∧ wird in [AB06, Theorem 1.8] bewiesen. Für x̃−n
gelten analoge Schritte

x̃−n = {[(−x) ∧ |ỹn|] ∨ (−|ỹn|)} ∨ 0 ([AB06, Theorem 1.3 (1)]
= [(−x) ∧ |ỹn|] ∨ {(−|ỹn|) ∨ 0} (Assoziativität für ∨)
= [(−x) ∧ |ỹn|] ∨ 0
= [(−x) ∨ 0] ∧ |ỹn| (Distributivität von ∨ und ∧)
= x− ∧ |ỹn|
≤ |ỹn|. (26)

Mit −x̃−n ≤ x̃n ≤ x̃+
n erhält man nun aus (25) und (26) −|ỹn| ≤ x̃n ≤ |ỹn|. Es

gilt also x̃n ≤ |ỹn| und −x̃n ≤ |ỹn| und somit nach Definition des Supremums
|x̃n| = x̃n ∨ (−x̃n) ≤ |ỹn|.
Es konnte also gezeigt werden, dass |x̃n| ≤ |ỹn| (und das 0 ≤ x̃n ≤ x, wenn x positiv
ist). Damit gilt aufgrund der Induktionsannahme, dass eine Folge {xi}i∈{1,...,n} ⊆ E
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existiert, für welche gilt, dass x̃n = ∑n
i=1 xi. Setzt man nun xn+1 = x − x̃n, dann

verbleibt zu zeigen, dass |xn+1| ≤ |yn+1|. Betrachte hierzu folgende Umformungen

xn+1 = x− [
=:c︷ ︸︸ ︷

x ∨ (−|ỹn|)] ∧ |ỹn|
= x− (c ∧ |ỹn|)
= x+ ((−c) ∨ (−|ỹn|))
= (x− c) ∨ (x− |ỹn|)
= [x− (x ∨ (−|ỹn|))] ∨ (x− |ỹn|)
= [x+ ((−x) ∧ |ỹn|)] ∨ (x− |ỹn|)
= [0 ∧ (x+ |ỹn|)] ∨ (x− |ỹn|).

(27)

Mit Hilfe einer Dreiecksungleichung (etwa in [AB06, Theorem 1.9]) gewinnt man die
Abschätzung |x| ≤ |ỹn + yn+1| ≤ |ỹn| + |yn+1|, woraus folgt −|ỹn| − |yn+1| ≤ x ≤
|ỹn|+ |yn+1|. Damit erhält man nun

−|yn+1| = (−|yn+1|) ∧ 0 ≤ (x+|ỹn|) ∧ 0
(27)
≤ xn+1

(∗)
≤ 0 ∨ (x− |ỹn|) ≤ 0 ∨ |yn+1| = |yn+1|.

(28)

Wobei in (∗) die Distributivität von ∨ und ∧ und die Definition des Infimums
in (27) verwendet wurde. Man entnimmt (28), dass einerseits xn+1 ≤ |yn+1| und
andererseits |yn+1| ≥ −xn+1 gilt und damit insgesamt also |xn+1| = xn+1∨(−xn+1) ≤
|yn+1|.
Daher gilt die Aussage (n) für alle n ∈ N.

1.2 Die Riesz-Kantorovich–Formeln
Auf L(E,F ) wurde eine Halbordnung erklärt und damit ist es sinnvoll den Begriff des
Modulus eines Operators zu definieren.

Definition 1.2.1. Für einen Operator T : E → F , wobei E,F jeweils Riesz-Räume
darstellen, sagt man, dass der Modulus für T genau dann existiert, wenn

|T | := T ∨ (−T ) (29)

existiert—in dem Sinne, dass |T |, dass Supremum der Menge {T,−T } im Raum L(E,F )
ist.

Es wird nun ein Fall angegeben, in dem der Modulus eines Operators existiert.

Theorem 1.2.1. Sei T : E → F ein Operator, wobei E,F jeweils Riesz-Räume sind und
für jedes x ∈ E+ möge sup{ |Ty| : |y| ≤ x } in F existieren, dann existiert auch |T | und

|T | (x) = sup{ |Ty| : |y| ≤ x } (30)

gilt für alle x ∈ E+.
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Beweis. Man definiert zunächst S : E+ → F+ durch S(x) = sup{ |Ty| : |y| ≤ x } für jedes
x ∈ E+. Wenn |y| ≤ x impliziert dies, dass |±y| = |y| ≤ x. Des Weiteren hat man
T (±y) = ±Ty ≤ |Ty|, also gilt für jedes x ∈ E+

S ′(x) = sup{Ty : |y| ≤ x } ≤ sup{ |Ty| : |y| ≤ x } = S(x). (31)

Damit ist klar, dass S ′(x) existiert, da nach Voraussetzung S(x) existiert. Andererseits
gilt nach Definition des Supremums, dass für jedes x ∈ E+ und y ∈ E, mit y ≤ |x|,
Ty ≤ S ′(x) und T (−y) = −Ty ≤ S ′(x), also |Ty| = (Ty) ∨ (−Ty) ≤ S ′(x) und damit
S(x) ≤ S ′(x). Insgesamt kann man festhalten, dass S(x) = S ′(x) für jedes x ∈ E+.
Die Behauptung ist nun, dass S additiv ist. Dies soll im Folgenden gezeigt werden.

Hierfür betrachtet man u, v ∈ E+. Falls |y| ≤ u und |z| ≤ v, dann gilt mit Hilfe der
Dreiecksungleichung |y+ z| ≤ |y|+ |z| ≤ u+ v, und mit Hilfe der Linearität von T erhält
man T (y) + T (z) = T (y + z) ≤ S(u + v). Bildet man nun das Supremum auf der linken
Seite der Gleichung, dann erhält man S(u) + S(v) ≤ S(u+ v).
Andererseits gilt im Falle |y| ≤ u + v nach Theorem 1.1.2, dass y1, y2 ∈ E existieren

mit der Eigenschaft
|y1| ≤ u, |y2| ≤ v und y = y1 + y2. (32)

Dann gilt weiter T (y) = T (y1)+T (y2) ≤ S(u)+S(v), woraus folgt, dass S(u+v) ≤ S(u)+
S(v) und insgesamt S(u + v) = S(u) + S(v). Mit Hilfe der Aussage des Theorems 1.1.1
definiert S einen positiven Operator S̃ : E → F , welcher der Einfachheit wegen wieder
durch S bezeichnet werden soll.
Um einzusehen, dass S das Supremum der Menge {T,−T } ist, betrachtet man ein

x ∈ E+. Es gilt, dass Tx ≤ |Tx| ∈ { |Ty| : |y| ≤ x }, dann Tx ≤ Sx und T (−x) =
−Tx ≤ |Tx| ∈ { |Ty| : |y| ≤ x }, dann −Tx ≤ Sx. Da dies für alle x ∈ E+ gilt, erhält
man T ≤ S und −T ≤ S im Raum L(E,F ). Weiterhin nimmt man an, dass ±T ≤ R für
ein R ∈ L(E,F ) und damit wird R zu einem positiven Operator. Sei x ∈ E+ fest. Falls
|y| ≤ x, dann gilt

Ty = Ty+ − Ty− ≤ Ry+ +Ry− = R|y| ≤ Rx (33)

und dies ergibt die gewünschte Abschätzung

Sx ≤ Rx für jedes x ∈ E+, (34)

woraus folgt

S = T ∨ (−T ) im Raum L(E,F ). (35)

Damit ist gezeigt, dass S das Supremum der Menge {T,−T } ist.

Falls der Modulus eines Operators T : E → F existiert, gilt eine nützliche Abschätzung,
die nachvollzogen werden soll. Sei x ∈ E+, so gilt folgende Abschätzung

|Tx| = (Tx) ∨ [−(Tx)] ≤ |T |(x) = |T |(|x|) für alle x ∈ E+. (36)
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Sei nun x ∈ E, dann gilt eine analoge Abschätzung

|Tx| = |Tx+−Tx−|
(∗)
≤ |Tx+|+|Tx−|

(36)
≤ |T |(x+)+|T |(x−) = |T |(|x|) für alle x ∈ E. (37)

In (∗) wurde die Eigenschaft der Dreiecksungleichung verwendet.
Seien x und y zwei Vektoren aus einem Riesz-Raum E mit x ≤ y, dann bezeichnet das

Ordnungsintervall [x, y] eine Teilmenge aus E auf folgende Weise

[x, y] := { z ∈ E : x ≤ z ≤ y }. (38)

Eine Teilmenge A eines Riesz-Raumes wird als von oben beschränkt bezeichnet, wenn
ein x existiert mit der Eigenschaft y ≤ x für alle y ∈ A. Analog definiert man eine von
unten beschränkte Menge A eines Riesz-Raumes, wenn x existiert mit der Eigenschaft
y ≥ x für alle y ∈ A. Eine Teilmenge A eines Riesz-Raumes heißt ordnungsbeschränkt,
wenn sie von unten und von oben beschränkt ist, was äquivalent ist zu der Aussage, dass
sie in einem Ordnungsintervall enthalten ist.

Definition 1.2.2. Ein Operator T : E → F zwischen zwei Riesz-Räumen E,F , wird als
ordnungsbeschränkt bezeichnet, falls dieser ordnungsbeschränkte Mengen aus E auf
ordnungsbeschränkte Mengen aus F abbildet.
Der Vektorraum aller ordnungsbeschränkten Operatoren von E nach F wird als Lb(E,F )

geschrieben.

Ein Operator T : E → F zwischen zwei Riesz-Räumen besitzt die Eigenschaft regulär
zu sein, wenn sich dieser als Differenz zweier positiver Operatoren ausdrücken lässt. Dies
ist äquivalent zu der Aussage, dass ein positiver Operator S existieren möge, mit der
Eigenschaft T ≤ S im Sinne der Halbordnung auf L(E,F ).
Wie dem Beweis des Theorems 1.1.1 zu entnehmen ist, ist jede positive Abbildung

insbesondere monton und damit ist jeder positive Operator sogar ordnungsbeschränkt.
Damit ergeben sich folgende Inklusionen für Vektorräume, falls Lr(E,F ) den Vektorraum
aller regulären Operatoren bezeichnet

Lr(E,F ) ⊆ Lb(E,F ) ⊆ L(E,F ) . (39)

Die Teilräume Lr(E,F ) und Lb(E,F ) erben in natürlichweise die Halbordnung des Raumes
L(E,F ) und werden somit ebenfalls zu halbgeordneten Vektorräumen.
Es soll nun ein Beispiel angegeben werden, welches zeigt, dass die Inklusion Lr(E,F ) ⊆
Lb(E,F ) auch echt sein kann.

Beispiel 1.2.1. Gegeben sei der Operator T : C[−1, 1] → C[−1, 1], welcher für jedes
f ∈ C[−1, 1] definiert ist durch

[Tf ](t) = f
(

sin 1
t

)
− f

(
sin

(
t+ 1

t

))
für 0 < |t| ≤ 1 und [Tf ](0) = 0 (40)

Zunächst soll der Operator auf seine Wohldefiniertheit hin untersucht werden. Es soll
überprüft werden, ob Tf im Punkt t0 = 0 stetig ist. Sei ε > 0. Nach dem Satz von
Heine ist f auf [−1, 1] sogar gleichmäßig stetig, und somit existiert ein δ > 0, sodass für
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beliebige x, y ∈ [−1, 1] mit |x− y| < δ entsprechend |f(x)− f(y)| < ε gilt Darüber hinaus
gilt die hilfreiche Abschätzung |sin 1

t
− sin(t + 1

t
)| ≤ |t| 1. Mit Hilfe dieser Abschätzung

und der gleichmäßigen Stetigkeit von f auf [−1, 1], erhält man für ε > 0 und |t| < δ

|[Tf ](t)− [Tf ](0)| =
∣∣∣f( sin 1

t

)
− f

(
sin

(
t+ 1

t

))
− 0

∣∣∣
= |f(x(t))− f(y(t))|
< ε.

(41)

Damit ist gezeigt, dass Tf an der Stelle Null tatsächlich stetig ist. Für die übrigen
0 < |t| ≤ 1 ergibt sich diese Aussage, dass die Verknüpfung stetiger Funktionen wieder
eine stetige Funktion ist und insgesamt ist demnach Tf ∈ C[−1, 1] für jedes f ∈ C[−1, 1].
Sei nun g ∈ [−1,1] = { f ∈ C[−1, 1] : − 1 ≤ f ≤ 1 }. Hierfür gilt die folgende

Abschätzung

Tg = g
(

sin 1
t

)
− g

(
sin

(
t+ 1

t

))
≤ 1− (−1)
= 2 · 1.

(42)

Analoges gilt für die Abschätzung nach unten und somit erhält man
T [−1,1] ⊆ 2[−1,1]. (43)

Für g1, g2 ∈ C[−1, 1] sei A = { f̃ ∈ C[−1, 1] : g1 ≤ f̃ ≤ g2 }. A ist ordnungsbeschränkt.
Nach dem Satz vom Minimum und Maximum einer stetigen Funktionen auf einer kom-
pakten Menge, gilt für ein f ∈ C[−1, 1], dass ein λ > 0 existiert mit der Eigenschaft
|f | ≤ λ1. Daher gilt A ⊆ λ[−1,1]. Aus (43) schlussfolgert man, dass das Bild von
λ[−1,1] unter T in I := 2λ[−1,1] enthalten ist. Das Bild von A unter T ist wiederum in
I enthalten und da eine A eine beliebige ordnugsbeschränkte Menge ist, stellt T demnach
einen ordnungsbeschränkten Operator dar.
Die Behauptung ist nun, dass T jedoch kein regulärer Operator ist. Als Widerspruch

wird angenommen, dass ein positiver Operator S : C[−1, 1] → C[−1, 1] existiert, so dass
T ≤ S. Es soll gezeigt werden, dass für jedes 0 ≤ f ∈ C[−1, 1] gilt

[Sf ](0) ≥ f(t) für alle t ∈ [−1, 1] (44)
Um dies zu zeigen, wird ein 0 ≤ f ∈ C[−1, 1] herangezogen und sei 0 < c < 2π. Des
Weiteren setzt man für jedes n ∈ N ein tn = 1/(c + 2πn), wobei gilt tn → 0, wann
immer n → ∞. Als nächster Schritt soll ein gn ∈ C[−1, 1] mit 0 ≤ gn ≤ f so gewählt
werden, dass gn(sin c) = f(sin c) und gn(sin(c+ tn)) = 0 gilt. Da jeder positive Operator
insbesondere homogen ist, gilt folgende Abschätzung für alle n ∈ N

[Sf ](tn) ≥ [Sgn](tn) ≥ [Tgn](tn)
= gn(sin(c+ 2πn))− gn(sin(tn + c+ 2πn))
= gn(sin c)− gn(sin(c+ tn))︸ ︷︷ ︸

=0

= f(sin c).
(45)

1Diese Abschätzung ist etwa für t > 0 folgendermaßen einzusehen (und t < 0 dann analog); |sin(t+ 1
t )−

sin 1
t | = |

∫ t+ 1
t

1
t

cos x dx| ≤
∫ t+ 1

t
1
t

|cos x| dx ≤
∫ t+ 1

t
1
t

1 dx = t

9



Nimmt man nun den Grenzwert n→∞ in (45) und nutzt aus, dass Sf ∈ C[−1, 1], dann
gilt [Sf ](0) ≥ f(sin c) für alle 0 < c < 2π und (44) ist damit gezeigt.
Für jedes n ∈ N betrachtet man eine Partitionierung Pn = { a0, a1, . . . , an } des In-

tervalls [−1, 1] in n Teilintervalle. Für jedes i ∈ { 1, 2, . . . , n } soll ein fi ∈ C[−1, 1] so
beschaffen sein, dass 0 ≤ fi ≤ 1, wobei fi Null außerhalb des Intervalls (ai−1, ai) ist und
fi((ai−1−ai)/2) = 1. Zieht man die Tatsache hinzu, dass

∑n

i=1 fi ≤ 1, dann folgt damit,
dass

[S1](0) ≥
[
S
( n∑
i=1

fi
)]

(0) =
n∑
i=1

[Sfi](0)
(44)
≥ n . (46)

Da (46) für alle n ∈ N gültig ist, stellt dies einen Widerspruch zu der Annahme der
Eigenschaft von S als positiven Operator dar, welcher insbesondere monoton ist.

In dem nächsten Beispiel soll gezeigt werden, dass nicht jeder reguläre Operator einen
Modulus besitzen muss.

Beispiel 1.2.2. Sei c der Riesz-Raum aller konvergenten Folgen mit Werten aus R, also
c = { {xi}i∈N : limn→∞ xn existiert in R }. Es sollen die beiden Operatoren S, T : c → c
betrachtet werden, definert durch

(T ({xi}i∈N))n =

xn−1 wenn n gerade,
xn+1 wenn n ungerade

(47)

und

(S({xi}i∈N))n =

xn−1 wenn n gerade,
xn wenn n ungerade

(48)

für alle n ∈ N. Damit lässt sich ein Operator R : c → c konstruieren, in dem Sinne
R = S − T , damit ist

(R({xi}i∈N))n =

0 wenn n gerade,
xn+1 − xn wenn n ungerade

(49)

für alle n ∈ N. Der Operator R ist regulär, da S und T positive Operatoren sind.
Mittels Widerspruchsbeweis soll gezeigt werden, dass der Modulus des regulären Opera-

tors R nicht existieren kann. Angenommen, der Modulus von R existiert. Man betrachtet
den positiven Operator Pn : c→ c definiert durch

(Pn({xi}i∈N))m =

0 wenn m = n,

xm sonst
(50)

für alle n,m ∈ N. Mit der Abschätzung ±R ≤ |R|P2n ≤ |R| erhält man |R|P2n = |R|
für jedes n ∈ N. Dies bedeutet nichts anderes als, dass für das Bild unter |R| für jedes
Element aus c die geraden Einträge gerade Null sind. Andererseits gilt für die Folgen
{en}n∈N = {δin}n∈N mit i ∈ N und e = (1, 1, . . . ) aus c und mit Hilfe von

−R({en}n∈N) ≤ |R|({en}n∈N) ≤ |R|e , (51)

10



dass die ungeraden Einträge von |R|e alle größer oder gleich 1 sind. Damit liegen zwei
Teilfogen von |R|e vor, die gegen unterschiedliche Zahlen aus R konvergieren und damit
|R|e /∈ c. Daher kann |R| nicht existieren, wie oben angenommen.

Im folgenden sollen wichtige Begriffe bereitgestellt werden, um zu ergründen, wann
unter der Halbordnung auf L(E,F ) dieser selbst zu einem Riesz-Raum wird.
Wie [LZ71, Theorem 1.2] zu entnehmen ist, gilt für halbgeordnete Vektorräume, dass

sie Dedekind-vollständig sind genau dann, wenn für jede nach oben beschränkte Teil-
menge das Supremum existiert. Nach [LZ71, Theorem 23.2] ist ein Riesz-Raum genau
dann Dedekind vollständig, wenn 0 ≤ xα ↑ ≤ x die Existenz von supα∈A xα impliziert.
Als Spezialfall einer abzählbaren Indexmenge A = N wird ein Riesz-Raum als Dedekind-
σ-vollständig bezeichnet genau dann, wenn aus 0 ≤ xn ↑ ≤ x die Existenz von supn∈N xn
folgt (siehe auch [LZ71, Theorem 23.2]) und damit impliziert die Dedekind-Vollständigkeit
die Dedekind-σ-Vollständigkeit. Aus der Diskussion nach [LZ71, Theorem 23.2] ist er-
sichtlich, dass sich aus der Dedekind-σ-Vollständigkeit eines Riesz-Raumes die archimedis-
che Eigenschaft ergibt.
Es sollen zwei Beispiele diskutiert werden, die einen Raum auf seine Dedekind-Voll-

ständigkeit hin überprüfen.

Beispiel 1.2.3. Der Riesz-Raum C[−1, 1] ist nicht Dedekind-σ-vollständig. Dies ist klar,
da man eine wachsende Funktionenfolge {fn}n∈N aus C[−1, 1] so angeben kann, welche
punktweise auf dem Intervall [−1, 1

2) gegen 1 konvergiert und auf dem Intervall [1
2 , 1]

punktweise gegen 0 konvergiert. Also etwa

fn(x) =


1 falls − 1 ≤ x ≤ 1

2 −
1
n
,

−n
(
x− 1

2

)
falls 1

2 −
1
n
< x < 1

2 ,

0 falls 1
n
≤ x ≤ 1.

(52)

Dann gilt 0 ≤ fn ↑≤ 1, die Folge {fn}n∈N besitzt jedoch kein Supremum in C[−1, 1].

Beispiel 1.2.4. Der Raum L1 ist Dedekind-vollständig.
Sei (Ω,F , µ) ein Maßraum und sei L1 = L1(F , µ) die Menge aller numerischen, mess-

baren Funktionen f : Ω→ R̄ := R ∪ {−∞,∞}, für die gilt∫
Ω
|f | dµ <∞ . (53)

Solche f sind nach [Sch11, Lemma 8.2.7] µ-fast überall endlich. Nimmt man an, dass
0 ≤ fα ↑≤ g in L1, dann ist nach der Monotonie des Integrals die Familie {Aα}α∈A mit

Aα :=
∫

Ω
fα dµ (54)

monoton wachsend und es gilt

Aα ≤
∫

Ω
g dµ =

∫
Ω
|g| dµ <∞ für alle α ∈ A. (55)
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Und somit existiert S := supα∈AAα als endliche Zahl in R. Sei nun {fαn}n∈N ⊆ {fα}α∈A,
wobei gesetzt wird

Aαn :=
∫

Ω
fαn dµ. (56)

Damit gilt Aαn ↑ S. Das Supremum f0(x) := supn∈N fαn(x) ist nach [Sch11, Fol-
gerung 7.1.4] eine µ-messbare Funktion und da nach f0(x) = supn∈N|fαn| ≤ g und Mono-
tonie des Integrals supn∈N fαn insbesondere µ-integrierbar ist, kann man mit Hilfe des
Satzes über majorisierte Konvergenz schlussfolgern (etwa [Sch11, Satz 8.3.9])∫

Ω
f0 dµ =

∫
Ω

sup
n∈N

fαn dµ = sup
n∈N

∫
Ω
fαn dµ = sup

n∈N
Aαn = S <∞. (57)

Betrachtet man für jedes B ∈ F und α ∈ A, dann gelten auch die bisherigen Aussagen
für {f̃α}α∈A mit f̃α := fαχB für alle α ∈ A, also insbesondere 0 ≤ f̃α ↑≤ g in L1. Somit
erhält man folgende Abschätzung für jedes α ∈ A∫

B
fα dµ =

∫
Ω
fαχB dµ =

∫
Ω
f̃α dµ =: Ãα

≤ sup
α∈A

Ãα =: S̃

(57)=
∫

Ω
f̃0 dµ =

∫
Ω
f0χB dµ

=
∫
B
f0 dµ .

(58)

Insgesamt gilt somit also für jedes α ∈ A∫
fα dµ ≤

∫
f0 dµ (59)

und nach [Sch11, Lemma 9.2.4] folgt daraus fα ≤ f0 µ-fast überall. Da die Abschätzung
f0 ≤ supα∈A fα nach Definition von f0 trivialerweise gilt, erhält man etwa mit Hilfe
von (57) insgesamt supα∈A fα = f0 ∈ L1. Dies entspricht dem Nachweis der Dedekind-
Vollstädnigkeit von L1.

Es soll nun die tiefliegende Eigenschaft gezeigt werden, in welchem Fall Lb(E,F ) zu
einem Riesz-Raum wird. Dies führt auf die Formeln von Riesz-Kantorovich.

Theorem 1.2.2 (Riesz-Kantorovich). Seien E und F zwei Riesz-Räume, wobei F Dedekind
vollständig ist, dann wird Lb(E,F ) zu einem Dedekind vollständigen Riesz-Raum. Die
Verbandsoperationen genügen folgenden Eigenschaften

|T |(x) = sup{ |Ty| : |y| ≤ x } (60a)
[S ∨ T ](x) = sup{S(y) + T (z) : y, z ∈ E+ und y + z = x } , und (60b)
[S ∧ T ](x) = inf{S(y) + T (z) : y, z ∈ E+ und y + z = x } (60c)

für alle S, T ∈ Lb(E,F ) und x ∈ E+.
Zusätzlich gilt Tα ↓ 0 im Vektorraum Lb(E,F ) genau dann, wenn Tα(x) ↓ 0 im Riesz-
Raum F für jedes x ∈ E+.
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Beweis. Sei T ∈ Lb(E,F ). Da T ordnungsbeschränkt und F Dedekind-vollständig ist,
existiert

sup{ |Ty| : |y| ≤ x } = sup{Ty : |y| ≤ x } = supT [−x, x] (61)

in F für jedes x ∈ E+. Nach Theorem 1.2.1 existiert demnach |T | und darüber hinaus
gilt hierfür

|T |(x) = sup{ |Ty| : |y| ≤ x } (62)

für jedes x ∈ E+.
Nach [AB06, Theorem 1.7] gilt für zwei Elemente x, y aus einem Riesz-Raum

x ∨ y = 1
2(x+ y + |x− y|) x ∧ y = 1

2(x+ y − |x− y|) . (63)

Damit ist klar, dass ein halbgeordneter Vektorraum genau dann einen Riesz-Raum darstellt,
wann immer |x| = x∨(−x) für jeden Vektor x existiert. In diesem Sinne wird also Lb(E,F )
zu einem Riesz-Raum, da |T | für jedes T ∈ Lb(E,F ) existiert.
Seien nun S, T ∈ Lb(E,F ) und x ∈ E+. Für y, z ∈ E+ gilt y+z = x genau dann, wenn

insbesondere ein |u| ≤ x existiert mit der Eigenschaft y = 1
2(x+u) und z = 1

2(x−u). Mit
den Formeln aus (63), welche Gültigkeit in einem Riesz-Raum besitzen, folgt damit

[S ∨ T ](x) = 1
2(Sx+ Tx+ |S − T |x)

= 1
2(Sx+ Tx+ sup{ (S − T )u : |u| ≤ x }

= 1
2 sup{Sx+ Su+ Tx− Tu : |u| ≤ x }

= sup{S
(

1
2(x+ u)

)
+ T

(
1
2(x− u)

)
: |u| ≤ x }

= sup{S(y) + T (z) : y, z ∈ E+ und y + z = u }.

(64)

Analog erhält man mit inf(−A) = − supA, wobei −A := {−a : a ∈ A } (siehe auch
[AB06, Theorem 1.3]),

[S ∧ T ](x) = 1
2(Sx+ Tx− |S − T |x)

= 1
2(Sx+ Tx− sup{ (S − T )u : |u| ≤ x }

= 1
2(Sx+ Tx+ inf{ (T − S)u : |u| ≤ x }

= 1
2 inf{Tx+ Tu+ Sx− Su : |u| ≤ x }

= inf{T
(

1
2(x+ u)

)
+ S

(
1
2(x− u)

)
: |u| ≤ x }

= inf{T (y) + S(z) : y, z ∈ E+ und y + z = u }
= inf{S(y) + T (z) : y, z ∈ E+ und y + z = u }.

(65)

Nun soll gezeigt werden, dass Lb(E,F ) Dedekind vollständig ist. Da bereits gezeigt
wurde, dass Lb(E,F ) einen Riesz-Raum bildet, reicht es aus anzunehmen, dass 0 ≤ Tα ↑
≤ T in Lb(E,F ) gilt. Dies ist äquivalent zu der Aussage, dass 0 ≤ Tα(x) ↑≤ T (x) für
jedes x ∈ E+. Da per Voraussetzung der Riesz-Raum F jedoch Dedekind vollständig ist,
impliziert dies, dass S(x) := supα∈A Tα(x) für jedes x ∈ E+ existiert. Damit hat man
Tα(x) ↑ S(x) für jedes x ∈ E+. Für alle α ∈ A gilt Tα(x + y) = Tα(x) + Tα(y) und
im Sinne der Ordnungskonvergenz erkennt man mit Hilfe von [LZ71, Theorem 16.1 (1)],
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dass S : E+ → F+ zu einer additiven Abbildung wird und demnach definiert S nach
Theorem 1.1.1 einen positiven Operator, der von E nach F abbildet, also insbesondere
S ∈ Lb(E,F ). Damit ist klar, dass Tα ↑ S gilt, denn wann immer Tα ≤ T , gilt S(x) =
supα∈A Tα(x) ≤ T (x) für jedes x ∈ E+ und somit supα∈A Tα = S in Lb(E,F ), womit
gezeigt ist, dass Lb(E,F ) als Riesz-Raum Dedekind vollständig ist.
Die letzte Aussage des Theorems folgt direkt aus der Definition der Halbordnung auf
Lb(E,F ) und wird analog zu der eben bewiesenen Teilaussage gezeigt.

Falls E,F jeweils Riesz-Räume sind, wobei F zusätzlich Dedekind vollständig ist, dann
ergibt (60b) für jeden ordnungsbeschränkten Operator T : E → F sofort

T+(x) = sup{Ty : 0 ≤ y ≤ x } und (66a)
T−(x) = sup{−Ty : 0 ≤ y ≤ x } (66b)

für jedes x ∈ E+. Mit Hilfe von T = T+ − T− ist klar, dass Lb(E,F ) von positiven
Operartoren erzeugt wird und damit gilt im Falle, dass F Dedekind vollständig ist, dass
Lr(E,F ) = Lb(E,F ).
Als Letztes soll ein (besonders einfaches) Beispiel diskutiert werden, welches die Riesz-

Kantorovich–Formeln heranzieht, um den Modulus eines Operators zu bestimmen.

Beispiel 1.2.5. Es liege ein Maßraum (Ω,F , µ) vor und L1 = L1(F , µ) bezeichne die
Menge aller numerischen, messbaren Funktionen f : Ω→ R̄, für die gilt∫

Ω
|f |(ω) dµ(ω) <∞ . (67)

Es soll der Operator Mc : L1 → L1 untersucht werden, wobei [Mcf ](ω) = c ·f(ω) für jedes
f ∈ L1, ω ∈ Ω und c ∈ R+. Der Operator Mc stellt tatsächlich eine Abbildung nach L1
dar, denn für jedes f ∈ L1 gilt∫

Ω
|Mcf |(ω) dµ(ω) =

∫
Ω
|cf |(ω) dµ(ω)

= c
∫

Ω
|f |(ω) dµ(ω)

<∞.

(68)

Der Operator Mc ist sogar ordnungsbeschränkt, denn für A = { f ∈ L1 : g1 ≤ f ≤ g2 },
wobei g1, g2 ∈ L+

1 , gilt, dassMcA ⊆ [cg1, cg2]. In Beispiel 1.2.4 wurde gezeigt, dass für den
vorliegenden Maßraum der Riesz-Raum L1 Dedekind-vollständig ist und damit sind die
Voraussetzungen für die Anwendung der Riesz-Kantorovich–Formeln gewährleistet und
man hat damit für g ∈ L+

1

|Mc|(g) = sup{ |Mcf | : |f | ≤ g }
= sup{Mcf : |f | ≤ g }
= sup{ cf : |f | ≤ g }
(∗)= cg.

(69)
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In (∗) wurde die Aussage aus [LZ71, Theorem 13.1 (ii)] verwendet.
Es ist offensichtlich, dass dass |Mc| additiv ist auf L+

1 und da L1 Dedekind-vollstädnig
ist und damit insbesondere archimedisch, existiert für |Mc| eine eindeutige Fortsetzung,
erneut durch |Mc| bezeichnet, zu einem positiven Operator auf L1, welche nach Theo-
rem 1.1.1 gegeben ist durch

|Mc|(g) = |Mc|(g+)− |Mc|(g−) für alle g ∈ L1.

= cg+ − cg−

= cg

(70)

Damit ist Mc für alle g ∈ L1 eindeutig bestimmt. Dieses Ergebnis kann ganz einfach
überprüft werden, denn in diesem Spezialfall gilt insbesondere, dass

Mcf = cf ≥ −cf = −(Mcf) für alle f ∈ L+
1 (71)

und damit Mc ≥ −Mc. Also erhält man direkt |Mc| = Mc und die Riesz-Kantorovich–
Formeln führen zu dem selben Ergebnis.
Dieses Beispiel gibt Anlass z.B. den allgemeinen Multiplikationsoperator auf L1 zu

betrachten. Sei hierzu etwa g ∈ L∞, wobei L∞ die Familie aller Äquivalenzklassen ist mit
L∞ := { [h]µ ∈ L0(F , µ) | es gibt ein f ∈ [h]µ ∩ L∞(F) }. (72)

Die exakte Definition für L0(F , µ) und L∞(F ist [Sch11, Abschnitt 7.2] zu entnehmen.
Es gilt hervorzuheben, dass ein Element g aus L∞ nur µ-fast überall beschränkt ist. Das
heißt symbolisch ausgedrückt, dass ein c ∈ R+ existiert mit |g| ≤µ c und damit existiert
eine natürliche Norm ‖.‖∞ : L∞ → R+ mit ‖g‖∞ = inf{ c ∈ R+ : |g| ≤µ c }. Damit ist
klar, dass für ein g ∈ L∞ der Operator Mg : L1 → L1 mit f 7→ gf für alle f ∈ L1
wohldefiniert ist. Sofern g ∈ L∞ nur bis auf eine µ-Nullmenge beschränkt ist, liefert diese
bei der Integration keinen Beitrag, also für f ∈ L1 erhält man mit Hilfe der Monotonie
des Integrals ∫

Ω
|Mgf |(ω) dµ(ω) =

∫
Ω
|gf |(ω) dµ(ω)

=
∫

Ω
|g|(ω)|f |(ω) dµ(ω)

≤
∫

Ω
‖g‖∞|f |(ω) dµ(ω)

≤ ‖g‖∞
∫

Ω
|f |(ω) dµ(ω)

<∞.

(73)

Es ist offensichtlich, dass Mg ≤ Mc mit c = ‖g‖∞, als positiven Operator wie oben
definiert, und damit ist Mg insbesondere regulär und damit nach (39) auch ordnungs-
beschränkt. Somit gilt für f ∈ L+

1 unter Heranziehung der Riesz-Kantorovich–Formeln
|Mg|(f) = sup{ |Mgh| : |h| ≤ f }

= sup{ |gh| : |h| ≤ f }
= sup{ |g||h| : |h| ≤ f }
= |g| sup{ |h| : |h| ≤ f }
= |g|f.

(74)
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Wie oben kann |Mg| für alle f ∈ L1 erklärt werden. Dies soll die Ausführungen hierzu
beschließen.
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