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In diesen Ausarbeitungen zu einem Proseminarvortrag soll auf die Eigen-
schaften reguldrer und ordnungsbeschrankter Operatoren im Sinne eines halb-
geordneten Vektorraumes eingegangen werden. Dariiber hinaus wird auf das
Theorem von Riesz-Kantorovich hingearbeitet, welches hinreichende Bedin-
gungen angibt, damit der halbgeordnete Vektorraum der ordnungsbeschrank-
ten Operatoren zu einem Riesz-Raum wird.

Dieser Text orientiert sich inhaltlich am Abschnitt 1.1 aus [ABOG].
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1 Regulare und Ordnungsbeschrinkte Operatoren

1.1 Grundlegende Eigenschaften

Ein Netz {2, }aca aus einem Riesz-Raum wird als fallend (symbolisch geschrieben z,, |)
bezeichnet, wenn o = f impliziert z, < zg. Die Notation z, | x bedeutet, dass z, |
und inf,cq x, = x gleichzeitig gelten. Analog sind die Symbole z, T und z, T x zu
verstehen. Jeder Riesz-Raum FE tragt die Eigenschaft archimedisch zu sein, wenn fiir
eine fallende Folge {x;}icn, mit dem n-ten Glied z,, = %x, die Eigenschaft %m 10in
fur jedes x € E* gilt. Alle Funktionenrdume, also insbesondere die L,-Rédume, mit der
punktweisen Ordnung sind archimedisch.

Theorem 1.1.1 (Kantorovich). Seien E und F' jeweils Riesz-Rdaume, wobei F' archimedisch
ist. Des Weiteren wird angenommen, dass T: ET — F* eine additive Abbildung darstellt,
also T(x +vy) = T(x) + T(y) gilt fir alle x,y € Et. Es existiert dann genau eine Fort-
setzung der Abbildung T zu einem positiven Operator T:E— F', welche gegeben ist durch

T(x)=T(z*)—T(x") fiir alle x € E. (1)



Beweis. Sei T: ET — F7T eine additive Abbildung. Man betrachtet die Abbildung
S: E — I, welche definiert ist durch

S(z) =T(z") —T(z") firr alle z € E. (2)

Die Abbildung T als additive Abbildung besitzt die Eigenschaft, dass 7'(0) = 0. Sei
r # 0 mit z € ET, dann folgt damit, dass = = 0. Damit hat man S(x) = T'(x) fir
alle x € ET. Die Abbildung S stellt demnach eine Fortsetzung der Abbildung T von FE
nach F' dar, welche sogar linear ist, was im Folgenden gezeigt werden soll. Sei jedoch
zunnéichst S: E — F eine andere lineare Fortsetzung der Abbildung 7', dann gelten
folgende dquivalente Umformungen fiir alle x € E

S(z) =St —a7) (E ist Riesz-Raum)
= S(x*) = S(z7) (S ist eine lineare Abbildung)
=T(z") = T(z~) (S ist eine Fortsetzung von T)
= S(z*)— S(xz7) (S ist eine Fortsetzung von T)
= S(x) (nach Definition von S). (3)

Daraus folgt, dass S = S. Somit stellt S die einzig mégliche lineare Fortsetzung von T
dar. Damit ist die Eindeutigkeit von S gezeigt. Es soll nun gezeigt werden, dass .S sich
als Abbildung additiv und homogen verhalt.

Angenommen x € E lasst sich darstellen als © = 21 — 29, wobei x1, x5 € ET, dann gilt

S(z) =T (x1) — T(xs). (4)

Um dies einzusehen, sei # € E fest und man nimmt an, dass x = 27 — 2~ = 21 — 25 mit
T1,T9 € ET. Es gilt dann 2% + 29 = 1 + 2~ und mit Hilfe der Additivtat von T erhalt
man

Txt)+T(xe) =T(x" +x3) =T (1 +27) =T(x1) + T(z7) (5)
oder
S(x)=T(x") —T(x™) =T(x1) — T(x2). (6)

Fir z,y € E gelten folgende dquivalente Umformungen

Sz+y)=S((z"—z7)+ " —y7)) (E ist Riesz-Raum)
=5(($++y+) (90 +y )
=T((z"+y")—T((z~ +y")) (E* ist Kegel und (4) gilt)
=T +Twy") T )—T(y") (T ist additiv auf ET)
= |T(a*) = T()| + [T = T(y)]
= S(z) + S(y) (nach Definition von S). (7)



Damit ist die Additivtat von S gezeigt. Es verbleibt die Homogenitat von S zu zeigen.
Hierzu folgt aus @ mittels Induktion, dass

S(nz) = nS(z) fur alle x € E, n € N. (8)

Sei nun n € N, dann gilt

S(x)=29 (ﬁx) =95 (n (lx)) nsS (%x) fur alle z € E, n € N, (9)

n

was aquivalent ist zu
1S(x) = S(+x) fir alle z € E, n € N. (10)
Mit Hilfe von (8) und folgt nun, dass
S(rz) =rS(z) firallez € E, r € Q. (11)
Dariiber hinaus gilt fiir eine additive Abbildung S: £ — F und z € E
S(0)=S(x—z)=95@+(-1)z) =S(x) + S(—x), (12)

was dquivalent ist zu

— S(z) = S(—=). (13)

Also gilt sogar fur alle r € Q.
S ist sogar monoton, das heifit wenn x < y, dann S(z) < S(y) fir x,y € E. Man
nimmt hierzu an, dass fir z,y € E, x > y. Damit ist x —y € E™, also hat man

S(x) y)+y)

(x —
(x—y))+S(y) (nach (7))
(z—y)+S(y) (S=Tauf ET)

S
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Man betrachtet nun ein festes z € ET und sei A > 0. Wahlt man zwei Folgen von
rationalen Zahlen {r,},eny und {t,}neny mit der Eigenschaft r, T A und ¢, | A, dann gilt
rnx < Ar < t,x fir alle n € N. Mit Hilfe dieser Aussage und der Monotonie von S
impliziert dies

rS(2) @ S(rz) 2 S0w) 2 S(taz) @ 1,8(x) fiir alle n € N, (15)

Des Weiteren hat man fiir m € N, dass ein N € N existiert, so dass fiir alle n > N gilt

(tn = N)S(z) < (L) S(x) = 0, fir m — oo, (16)

Und analog fir die Folge {7, }neny hat man fir ein m’ € N, dass ein N € N existiert, so
dass fur alle n > N

(A—=rp)S(z) < (%) S(x) — 0, fir m' — oco. (17)



Die Grenziibergénge in und existieren, da nach S monoton ist und damit
S(z) > 0 und dariiber hinaus ist nach Annahme der Riesz-Raum F' archimedisch. Damit
hat man nun

Lim rnS(z) = Lim t,S(z) = AS(z). (18)

Wenn man also den Limes fiir n — oo in betrachtet, dann werden die Abschédtzungen
durch Gleichheit ersetzt und man hat damit gezeigt, dass

S(Az) = A\S(z) fir A\ >0, r € BT, (19)
Schlussendlich wird nun angenommen, dass A € R und z € E, dann gilt
S(Az) =Szt —z7) =St + (=N)z")

SOz + S(—(Az7))

S(at) — S(ha)

AS(zt) — AS(z7)

M) = T(a)]

AS(x).

(20)

Damit ist gezeigt, dass S homogen ist und aus der Montonie von S schlussfolgert man,
dass S ein positiver Operator ist. m

Mit dem Theorem ist klar, dass fiir eine Abbildung 7" : Et — F'* eine eindeutige
Fortsetzung zu einem postiven Operator T:E = F genau dann existiert, wenn 7T ad-
ditiv auf ET ist. Dies bedeutet, dass ein positiver Operator bereits dadurch vollstandig
charakterisiert ist, wie dieser auf dem positiven Kegel seines Definitionsbereiches wirkt.

Wir vereinbaren in diesem Text, dass Operatoren als Abbildungen zwischen Vektorrau-

men, immer als lineare Abbildungen aufzufassen sind. Es kann eingesehen werden, dass
die auf der Menge L(E, F'), wobei

L(E,F):={T: E— F: T ist Operator}, (21)
definierte Halbordnung
S <T:<= T - S ist ein positiver Operator <= S(x) < T(z) fiir alle z € E* (22)

vertraglich ist mit den Vektorraumoperationen auf £(F,F). Damit wird £(E,F) zu
einem halbgeordneten Vektorraum.

Um zu zeigen, unter welchen Umstdnden L(F, F') selbst wieder zu einem Riesz-Raum
wird, soll eine Aussage iiber eine sogenannte Zerlequngseigenschaft in einem Riesz-Raum
E bereit gestellt werden.

Theorem 1.1.2 (Zerlegungseigenschaft). Sei E ein Riesz-Raum, n € N und es mdge
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E so gewdhlt werden kann, dass |x;| > 0 fir jedes i € {1,...,n}.



.....

dass fur alle n € N die Aussage

Zyz

=1

= I{witicq,.my C L x:in/\WE{l,...,n}:|xi|§|yi| (23)

=1

(n) o] <

gilt:
e n = 1: In diesem Fall ist nichts zu zeigen, setze x; := x.

e n — n+ 1: Man nimmt an, dass die Aussage fiir ein n € N bereits bewiesen ist. Sei
nun |z < |y; + -+ Yn + Yns1| = |Tn + Yns1l, wobei g, :=y1 + -+ + yp, dann setzt
man Ty, = [z V (= |Fn])] A [0l

Es soll |Z,| berechnet werden.

] = &5 +

AL - (24)
= ({lz vV (=17 D] A 7]} V 0) + (= {2 V (=|7nD] A 7]} V 0)
Fir ;7 erhédlt man nach folgenden dquivalenten Umformungen
=A{[z V (=|7.])] V O} A{|gs]| VO} (Distributivitit von V und A)
={zV[(—|7n]) V O]} A |7n] (Assoziativitat fir V)
= (xV0) A |
< [l (25)

Die Assoziativitétseigenschaft fir V kann [DP02, Theorem 2.9] entnommen werden
und die Distributivitdt von V und A wird in [AB0G, Theorem 1.8] bewiesen. Fiir #,,
gelten analoge Schritte

{[(=2) AMgul] V (=g} VO (JABOG, Theorem 1.3 (1)]
(—x) Agnl] V{(=|7n]) V 0}  (Assoziativitat fir V)

[
= [(=2) A lga]] VO
= [(—x) VO] A |Fn] (Distributivitdt von V und A)
=2~ A |Gl
< [Gnl- (26)

Mit =z, < %, < &} erhalt man nun aus und —|Un] < Zn < |Yn|. Es
gilt also Z,, < |g,| und —Z, < |7,| und somit nach Definition des Supremums
|Zn| = Zn V (—T0) < |G-

Es konnte also gezeigt werden, dass |Z,| < |g,| (und das 0 < z,, < x, wenn x positiv
ist). Damit gilt aufgrund der Induktionsannahme, dass eine Folge {z;}ic1,.ny C F

.....



existiert, fiir welche gilt, dass z,, = >_;"; ;. Setzt man nun z,.; = v — Z,, dann
verbleibt zu zeigen, dass |z,41| < |yn+1|. Betrachte hierzu folgende Umformungen

—_——
Tnp1 =& = 2V (=[Gul)] A (Gl

—(z =)V (z — |gl) (27)
— o= @V (= l3D)] V (@ = |ga])
= [+ (=) A lgaD] V (& = |Ga])

0A (2 + (5] V (@ = |Gl

Mit Hilfe einer Dreiecksungleichung (etwa in [AB06, Theorem 1.9]) gewinnt man die
Abschitzung [7] < [ + ynrl < [u] + [y, Woraus folgt —|gal — lynsa] < 7 <
|Gn| + |Yns1|- Damit erhdlt man nun

—|yns1] = (= |Yns1]) A0 < (2+|7n|) AO

(27)
> T4l (28)

*
SOV (2 —[nl) SOV |ynt1] = [Yntal-

Wobei in (%) die Distributivitdt von V und A und die Definition des Infimums

in (27) verwendet wurde. Man entnimmt (28], dass einerseits z,+1 < |ynt1| und

andererseits |y, 11| > —x,11 gilt und damit insgesamt also |2, 1| = T V(—2p11) <

—
N

|Ynt1]-
Daher gilt die Aussage (n) fiir alle n € N. O

1.2 Die Riesz-Kantorovich—Formeln

Auf L(E, F) wurde eine Halbordnung erkldrt und damit ist es sinnvoll den Begriff des
Modulus eines Operators zu definieren.

Definition 1.2.1. Fir einen Operator T: E — F, wobei E,F jeweils Riesz-Rdume
darstellen, sagt man, dass der Modulus fiir T genau dann existiert, wenn

T|:=TV(-T) (29)

existiert—in dem Sinne, dass |T'|, dass Supremum der Menge { T, =T } im Raum L(E, F)
15t.

Es wird nun ein Fall angegeben, in dem der Modulus eines Operators existiert.

Theorem 1.2.1. SeiT: E — F' ein Operator, wobei E/, F' jeweils Riesz-Rdaume sind und
fir jedes x € Et maoge sup{ |Ty|: |y| < x} in F existieren, dann existiert auch |T| und

T (z) = sup{ [Tyl |y| < =} (30)
gilt fir alle v € E*.



Beweis. Man definiert zunichst S: ET — F* durch S(z) = sup{ |Ty|: ly| < x } fir jedes
r € ET. Wenn |y| < z impliziert dies, dass |+y| = |y| < x. Des Weiteren hat man
T(+y) = £Ty < |Ty|, also gilt fir jedes x € E*

§'(x) =sup{Ty: |yl <z} <sup{|Ty|: [y| <z} = S(x). (31)

Damit ist klar, dass S’(z) existiert, da nach Voraussetzung S(z) existiert. Andererseits
gilt nach Definition des Supremums, dass fiir jedes x € ET und y € E, mit y < |z,
Ty < S'(z) und T(—y) = =Ty < S'(x), also |Ty| = (Ty) V (=Ty) < S'(z) und damit
S(x) < 5'(x). Insgesamt kann man festhalten, dass S(z) = S'(x) fir jedes x € ET.

Die Behauptung ist nun, dass S additiv ist. Dies soll im Folgenden gezeigt werden.
Hierfir betrachtet man u,v € ET. Falls |y| < w und |z| < v, dann gilt mit Hilfe der
Dreiecksungleichung |y + z| < |y| + |z| < v+ v, und mit Hilfe der Linearitidt von T erhalt
man T'(y) + T(z) = T(y + z) < S(u + v). Bildet man nun das Supremum auf der linken
Seite der Gleichung, dann erhalt man S(u) 4+ S(v) < S(u + v).

Andererseits gilt im Falle |y| < w4 v nach Theorem dass y1,y> € E existieren
mit der Eigenschaft

yil < u,lye| < vund y = yi + yo. (32)

Dann gilt weiter T'(y) = T (y1)+ 7 (y2) < S(u)+S(v), woraus folgt, dass S(u+v) < S(u)+
S(v) und insgesamt S(u +v) = S(u) + S(v). Mit Hilfe der Aussage des Theorems [1.1.1]
definiert S einen positiven Operator S: E — F, welcher der Einfachheit wegen wieder
durch S bezeichnet werden soll.

Um einzusehen, dass S das Supremum der Menge {7, —T } ist, betrachtet man ein
r € ET. Esgilt, dass Tz < |Tz| € {|Ty|: ly| < x}, dann Tz < Sz und T(—z) =
Tz < |Tz| € {|Ty|: ly| <z}, dann —Tx < Sz. Da dies fir alle z € ET gilt, erhélt
man 7' < S und =7 < § im Raum L(F, F'). Weiterhin nimmt man an, dass £7" < R fiir
ein R € L(F, F) und damit wird R zu einem positiven Operator. Sei x € E™T fest. Falls
ly| <z, dann gilt

Ty=Ty" =Ty~ < Ry"+ Ry = R|y| < Rx (33)

und dies ergibt die gewiinschte Abschatzung

Sz < Rx fiir jedes x € ET, (34)

woraus folgt
S =TV (-T) im Raum L(E, F). (35)
Damit ist gezeigt, dass S das Supremum der Menge { T, —T'} ist. m

Falls der Modulus eines Operators T: E — F existiert, gilt eine niitzliche Abschétzung,
die nachvollzogen werden soll. Sei z € E™, so gilt folgende Abschéitzung

Tz| = (Tz) V [—(Tx)] <|T|(z) = |T|(|z|) fir alle z € E*. (36)



Sei nun x € E, dann gilt eine analoge Abschétzung

+ ) + - + - .
|Tx| =|Tat—Ta™| < [Tz |+|Tz~| < |T|(a)+|T|(z7) = |T|(|z]) fir allex € E. (37)

In (x) wurde die Eigenschaft der Dreiecksungleichung verwendet.
Seien x und y zwei Vektoren aus einem Riesz-Raum F mit x < y, dann bezeichnet das
Ordnungsintervall [z, y| eine Teilmenge aus E auf folgende Weise

[Ty ={zeE:x<z<y}. (38)

Eine Teilmenge A eines Riesz-Raumes wird als von oben beschriankt bezeichnet, wenn
ein z existiert mit der Eigenschaft y < x fiir alle y € A. Analog definiert man eine von
unten beschriankte Menge A eines Riesz-Raumes, wenn x existiert mit der Eigenschaft
y > z fir alle y € A. Eine Teilmenge A eines Riesz-Raumes heifit ordnungsbeschriankt,
wenn sie von unten und von oben beschrinkt ist, was dquivalent ist zu der Aussage, dass
sie in einem Ordnungsintervall enthalten ist.

Definition 1.2.2. Ein Operator T: E — F zwischen zwei Riesz-Rdaumen E, F, wird als
ordnungsbeschrankt bezeichnet, falls dieser ordnungsbeschrinkte Mengen aus E auf
ordnungsbeschrankte Mengen aus F' abbildet.

Der Vektorraum aller ordnungsbeschrinkten Operatoren von E nach F wird als L,(E, F)
geschrieben.

Ein Operator T': E — F' zwischen zwei Riesz-Rédumen besitzt die Eigenschaft regular
zu sein, wenn sich dieser als Differenz zweier positiver Operatoren ausdriicken lasst. Dies
ist dquivalent zu der Aussage, dass ein positiver Operator S existieren moge, mit der
Eigenschaft 7' < S im Sinne der Halbordnung auf £(E, F').

Wie dem Beweis des Theorems zu entnehmen ist, ist jede positive Abbildung
insbesondere monton und damit ist jeder positive Operator sogar ordnungsbeschréankt.
Damit ergeben sich folgende Inklusionen fiir Vektorrdume, falls £,(E, F) den Vektorraum
aller reguldren Operatoren bezeichnet

L.(E,F)C Ly(E,F)C L(E,F). (39)

Die Teilrdume L, (£, F') und L, (E, F') erben in nattrlichweise die Halbordnung des Raumes
L(E, F) und werden somit ebenfalls zu halbgeordneten Vektorraumen.

Es soll nun ein Beispiel angegeben werden, welches zeigt, dass die Inklusion £, (F, F') C
Ly (E, F) auch echt sein kann.

Beispiel 1.2.1. Gegeben sei der Operator T: C[—1,1] — C[—1,1], welcher fiir jedes
f € C[—1,1] definiert ist durch

A1) = £(sin 1) — f(sin (¢ + 1)) fir 0 < ¢ < 1und [T](0)=0 (40

Zunachst soll der Operator auf seine Wohldefiniertheit hin untersucht werden. Es soll
iiberprift werden, ob T'f im Punkt t; = 0 stetig ist. Sei ¢ > 0. Nach dem Satz von
Heine ist f auf [—1, 1] sogar gleichméafBig stetig, und somit existiert ein § > 0, sodass fiir



beliebige z,y € [—1, 1] mit |z — y| < ¢ entsprechend |f(x) — f(y)| < € gilt Dariiber hinaus
gilt die hilfreiche Abschitzung [sin § — sin(t + )| < [¢| ﬂ Mit Hilfe dieser Abschatzung
und der gleichméfigen Stetigkeit von f auf [—1, 1], erhdlt man fiir € > 0 und |¢| < 0

A1) ~ [TAO)] = |f(sin 7) — £(sin (1 + 1)) 0
= |f(x(®) - f(u(0)] (41)

<e&.

Damit ist gezeigt, dass T'f an der Stelle Null tatsdachlich stetig ist. Fir die iibrigen
0 < |t| < 1 ergibt sich diese Aussage, dass die Verkniipfung stetiger Funktionen wieder
eine stetige Funktion ist und insgesamt ist demnach T'f € C[—1, 1] fiir jedes f € C[—1,1].

Sei nun g € [-1,1] = {f € C[-1,1]: —1 < f < 1}. Hierfiir gilt die folgende
Abschatzung

Tg= g(sin 1) — g(sin (t + 1))
<1 (-1) (42)
=2-1.
Analoges gilt fir die Abschatzung nach unten und somit erhélt man
T[-1,1] € 2[-1,1]. (43)

Fiir g1,9, € C[-1,1] sei A= {f € C[-1,1]: s < f < g2 }. A ist ordnungsbeschrankt.
Nach dem Satz vom Minimum und Maximum einer stetigen Funktionen auf einer kom-
pakten Menge, gilt fir ein f € C[—1,1], dass ein A > 0 existiert mit der Eigenschaft
|f| < A1. Daher gilt A C A[—1,1]. Aus schlussfolgert man, dass das Bild von
A[—1,1] unter T"in [ := 2A\[—1, 1] enthalten ist. Das Bild von A unter 7" ist wiederum in
I enthalten und da eine A eine beliebige ordnugsbeschrankte Menge ist, stellt 7" demnach
einen ordnungsbeschrankten Operator dar.

Die Behauptung ist nun, dass T jedoch kein reguldrer Operator ist. Als Widerspruch
wird angenommen, dass ein positiver Operator S: C[—1,1] — C[—1, 1] existiert, so dass
T < S. Es soll gezeigt werden, dass fiir jedes 0 < f € C[—1, 1] gilt

[SF](0) > F(¢) fiir alle t € [~1,1] (44)

Um dies zu zeigen, wird ein 0 < f € C[—1,1] herangezogen und sei 0 < ¢ < 27. Des
Weiteren setzt man fiir jedes n € N ein ¢, = 1/(c + 2mn), wobei gilt ¢, — 0, wann
immer n — o0o. Als néchster Schritt soll ein g, € C[—1,1] mit 0 < g, < f so gewéhlt
werden, dass g, (sinc) = f(sinc) und g,(sin(c +t,)) = 0 gilt. Da jeder positive Operator
insbesondere homogen ist, gilt folgende Abschétzung fiir alle n € N

[SF1(tn) = [Sgn](tn) = [T'gn](tn)
= gn(sin(c + 2mn)) — gn(sin(t, + ¢ + 2mn))

= gn(sinc) — g, (sin(c +t,)) = f(sinc).

(45)

!Diese Abschéitzung ist etwa fiir ¢ > 0 folgendermafien einzusehen (und ¢ < 0 dann analog); [sin(t+ 1) —

1 1 1
sin 1| = |1 coswda| < 177 |cos x| da < le‘ ldr =t
t t t



Nimmt man nun den Grenzwert n — oo in und nutzt aus, dass Sf € C[—1, 1], dann
gilt [Sf](0) > f(sinc) fir alle 0 < ¢ < 27 und ist damit gezeigt.

Fir jedes n € N betrachtet man eine Partitionierung P, = {ag,a1,...,a, } des In-
tervalls [—1,1] in n Teilintervalle. Fiir jedes i € {1,2,...,n} soll ein f; € C[—1,1] so
beschaffen sein, dass 0 < f; < 1, wobei f; Null auBerhalb des Intervalls (a;_1, a;) ist und
fi((aj—1 —a;)/2) = 1. Zieht man die Tatsache hinzu, dass Z;l fi; <1, dann folgt damit,

dass
(144)

151)(0) > [s(iﬁ-)](m ~SUSHO) S 0. (46)

i=1
Da fir alle n € N giiltig ist, stellt dies einen Widerspruch zu der Annahme der
Eigenschaft von S als positiven Operator dar, welcher insbesondere monoton ist. O

In dem néchsten Beispiel soll gezeigt werden, dass nicht jeder reguldre Operator einen
Modulus besitzen muss.

Beispiel 1.2.2. Sei ¢ der Riesz-Raum aller konvergenten Folgen mit Werten aus R, also
¢ = {{z;}ien: lim, o z, existiert in R}. Es sollen die beiden Operatoren S,T: ¢ — ¢
betrachtet werden, definert durch

Tp_1 Wwenn n gerade,
(T({zi}ien))n = { (47)
Tpi1 wenn n ungerade
und
Tp_1 wenn n gerade,
(S{wi}ien))n = { ' (48)
Tn wenn n ungerade

fir alle n € N. Damit lasst sich ein Operator R: ¢ — ¢ konstruieren, in dem Sinne
R=5—T, damit ist

0 wenn n gerade,

(R({zi}tien))n = { (49)

Tpi1 — T, Wenn n ungerade

fiir alle n € N. Der Operator R ist reguldr, da S und T positive Operatoren sind.

Mittels Widerspruchsbeweis soll gezeigt werden, dass der Modulus des reguldren Opera-
tors R nicht existieren kann. Angenommen, der Modulus von R existiert. Man betrachtet
den positiven Operator P,: ¢ — ¢ definiert durch

0 wenn m =n,

(Pn({xi}ieN))m = { (50)

T, SONSE

fir alle n,m € N. Mit der Abschatzung £R < |R|P,, < |R| erhilt man |R|Ps, = |R)|
fir jedes n € N. Dies bedeutet nichts anderes als, dass fiir das Bild unter |R| fir jedes
Element aus ¢ die geraden Eintrage gerade Null sind. Andererseits gilt fiir die Folgen
{€n}nen = {din}neny mit i € Nund e = (1,1,...) aus ¢ und mit Hilfe von

— B({en}tnen) < [R|[({en}nen) < |Re, (51)

10



dass die ungeraden Eintrége von |R|e alle grofier oder gleich 1 sind. Damit liegen zwei
Teilfogen von |R|e vor, die gegen unterschiedliche Zahlen aus R konvergieren und damit
|R|e ¢ c. Daher kann | R| nicht existieren, wie oben angenommen. O

Im folgenden sollen wichtige Begriffe bereitgestellt werden, um zu ergriinden, wann
unter der Halbordnung auf £(FE, F') dieser selbst zu einem Riesz-Raum wird.

Wie [LZT71, Theorem 1.2] zu entnehmen ist, gilt fiir halbgeordnete Vektorraume, dass
sie Dedekind-vollstandig sind genau dann, wenn fiir jede nach oben beschrankte Teil-
menge das Supremum existiert. Nach [LZ71, Theorem 23.2] ist ein Riesz-Raum genau
dann Dedekind vollsténdig, wenn 0 < z, T < z die Existenz von sup,cq . impliziert.
Als Spezialfall einer abzéhlbaren Indexmenge 2 = N wird ein Riesz-Raum als Dedekind-
o-vollstandig bezeichnet genau dann, wenn aus 0 < z,, 1 < x die Existenz von sup,,cy Z»
folgt (siehe auch [LZ71), Theorem 23.2]) und damit impliziert die Dedekind-Vollsténdigkeit
die Dedekind-o-Vollstandigkeit. Aus der Diskussion nach |[LZ71, Theorem 23.2] ist er-
sichtlich, dass sich aus der Dedekind-o-Vollstandigkeit eines Riesz-Raumes die archimedis-
che Eigenschaft ergibt.

Es sollen zwei Beispiele diskutiert werden, die einen Raum auf seine Dedekind-Voll-
standigkeit hin tiberprifen.

Beispiel 1.2.3. Der Riesz-Raum C[—1, 1] ist nicht Dedekind-o-vollstandig. Dies ist klar,
da man eine wachsende Funktionenfolge {f,}nen aus C[—1,1] so angeben kann, welche
punktweise auf dem Intervall [—1,1) gegen 1 konvergiert und auf dem Intervall [1, 1]
punktweise gegen 0 konvergiert. Also etwa

1 falls—lﬁxﬁ%—%,

) falls 3 — X <z < 3, (52)
0 fallsigxgl.

-
—~
=
I
[

S
—~
&
|
N =

Dann gilt 0 < f,, 1< 1, die Folge { f,, }nen besitzt jedoch kein Supremum in C[—1,1]. O

Beispiel 1.2.4. Der Raum L ist Dedekind-vollsténdig.
Sei (€2, F, u) ein Mafiraum und sei L; = L;i(F, ) die Menge aller numerischen, mess-
baren Funktionen f: 2 — R :=R U { —o0, 00 }, fiir die gilt

/Q|f|du<oo- (53)

Solche f sind nach [Schlll Lemma 8.2.7] p-fast iiberall endlich. Nimmt man an, dass
0 < fo1<gin Ly, dann ist nach der Monotonie des Integrals die Familie {A,}ocq mit

A, = /Q fodu (54)

monoton wachsend und es gilt

AQS/gd,u:/|g|d,u<oo fir alle o € 2. (55)
Q Q

11



Und somit existiert S := sup,q Ao als endliche Zahl in R. Sei nun {f,, tnen C { fataen,
wobei gesetzt wird

A,, = /Qfom dy. (56)

Damit gilt A,, T S. Das Supremum fo(z) := sup,ecy fa,(z) ist nach [Schlll Fol-
gerung 7.1.4] eine p-messbare Funktion und da nach fo(z) = sup,ey|fa,| < g und Mono-
tonie des Integrals sup,cy fa, insbesondere p-integrierbar ist, kann man mit Hilfe des
Satzes tiber majorisierte Konvergenz schlussfolgern (etwa [Schlll Satz 8.3.9])

/ fodp = / sup fo, dip =sup | fo, dp=supA,, =S < oo. (57)
Q Q2 neN neN JQ

neN

Betrachtet man fir jedes B € F und a € 2, dann gelten auch die bisherigen Aussagen
fir {fo}aca mit f, := foxp fir alle a € A, also insbesondere 0 < f, 1< g in Ly. Somit
erhdlt man folgende Abschatzung fir jedes a € A
/ Jadp = / Jaxs dp = / fad,u = Aa
B Q e

<sup A, =: S
ac

57) ~
/deN:/fOXBdM
Q Q

Z/Bfodﬂ-

Insgesamt gilt somit also fiir jedes a € 2

(58)

[ fudu< [ fodp (59)

und nach [Sch11l Lemma 9.2.4] folgt daraus f, < fo p-fast iiberall. Da die Abschiatzung
fo < sup,eq fo nach Definition von f, trivialerweise gilt, erhalt man etwa mit Hilfe
von insgesamt sup,cy fo = fo € Li. Dies entspricht dem Nachweis der Dedekind-
Vollstadnigkeit von L. O

Es soll nun die tiefliegende Eigenschaft gezeigt werden, in welchem Fall Ly(E, F') zu
einem Riesz-Raum wird. Dies fithrt auf die Formeln von Riesz-Kantorovich.

Theorem 1.2.2 (Riesz-Kantorovich). Seien E und F' zwei Riesz-Rdaume, wobei F' Dedekind
vollstindig ist, dann wird Ly(E, F) zu einem Dedekind vollstindigen Riesz-Raum. Die
Verbandsoperationen geniigen folgenden Eigenschaften

T|(w) = sup{ [Tyl |yl < @'} (60a)
[SVT](x) =sup{S(y) +T(2): y,z€ EY undy+ 2=z}, und (60b)
[SAT)(z) =inf{S(y)+T(2):y,2€ EY undy+z2z==x} (60c)

fir alle S,T € Ly(E,F) und x € E™.
Zusdtzlich gilt T,, | 0 im Vektorraum Ly(E, F) genau dann, wenn T,(x) | 0 im Riesz-
Raum F fiir jedes v € E*.

12



Beweis. Sei T € L,(E,F). Da T ordnungsbeschriankt und F' Dedekind-vollstandig ist,
existiert
sup{ [T'y|: [yl <} =sup{Ty: [y| <z} = sup T[—z, 7] (61)

in F' fir jedes x € E*. Nach Theorem existiert demnach |T'| und dariiber hinaus
gilt hierfiir
T (x) = sup{ [Ty|: [y| <=} (62)

fur jedes v € ET.
Nach [AB06, Theorem 1.7] gilt fiir zwei Elemente z,y aus einem Riesz-Raum

eVy=s@+tytlr—yl) zAy=z@+y—I|z—yl). (63)

Damit ist klar, dass ein halbgeordneter Vektorraum genau dann einen Riesz-Raum darstellt,
wann immer |z| = zV(—x) fiir jeden Vektor z existiert. In diesem Sinne wird also £y,(E, F)
zu einem Riesz-Raum, da |T'| fur jedes T' € Ly, (FE, F) existiert.

Seien nun S, T € Ly(E, F) und x € E*. Fur y,z € ET gilt y+ z = x genau dann, wenn
insbesondere ein |u| < x existiert mit der Eigenschaft y = (2 +u) und z = 3(z —u). Mit

2
den Formeln aus , welche Giiltigkeit in einem Riesz-Raum besitzen, folgt damit

[SVT)(z) =%(Sz+ Tz +1|S —T|z)
= 1Sz + Tz +sup{ (S — T)u: |u| <z}
= tsup{ Sz + Su+ Tz —Tu: |u| <z} (64)
= sup{S(%(m —I—u)) —i—T(%(m - u)) Cul <z}
=sup{S(y)+T(2):y,2€ EY undy+2=u}.
Analog erhdlt man mit inf(—A) = —sup A, wobei —A := {—a: a € A} (siehe auch

[AB0OG, Theorem 1.3]),

[SAT](x) =5(Sx+Tx—1|S —T|x)
(Sx+ Tz —sup{ (S —T)u: |u| <z}
(Sz+Tx+inf{ (T — S)u: ju| <z}

nf{ Tz + Tu+ Sz — Su: |u| <z} (65)
(3@+uw)+S(@—u): u <z}

=inf{T(y)+ S(2): y,2€ EX undy+z=u}

=inf{S(y) +T(2):y,z€ EX und y+ 2 =u}.

CNIR NI N N

Il
=)
=

—
~

Nun soll gezeigt werden, dass L,(E, F)) Dedekind vollstandig ist. Da bereits gezeigt
wurde, dass L,(E, F') einen Riesz-Raum bildet, reicht es aus anzunehmen, dass 0 < 7T}, 1
< T in Ly(E, F) gilt. Dies ist aquivalent zu der Aussage, dass 0 < T, (z) 1< T'(z) fur
jedes z € Et. Da per Voraussetzung der Riesz-Raum F jedoch Dedekind vollstandig ist,
impliziert dies, dass S(z) := sup,cy To(z) fur jedes z € ET existiert. Damit hat man
To(x) T S(z) fir jedes x € ET. Fiir alle o € A gilt Tp(x + y) = To(x) + To(y) und
im Sinne der Ordnungskonvergenz erkennt man mit Hilfe von [LZ71, Theorem 16.1 (1)],

13



dass S: Et — F7 zu einer additiven Abbildung wird und demnach definiert S nach
Theorem [I.1.1] einen positiven Operator, der von E nach F abbildet, also insbesondere
S € Ly(E, F). Damit ist klar, dass T, 1 S gilt, denn wann immer T, < T, gilt S(z) =
SUPpeq To(x) < T'(z) fur jedes x € ET und somit sup,eyln = S in Ly (E, F'), womit
gezeigt ist, dass L, (F, F') als Riesz-Raum Dedekind vollsténdig ist.

Die letzte Aussage des Theorems folgt direkt aus der Definition der Halbordnung auf
Ly (E, F) und wird analog zu der eben bewiesenen Teilaussage gezeigt. O

Falls E, F' jeweils Riesz-Raume sind, wobei F' zusatzlich Dedekind vollstédndig ist, dann
ergibt fiir jeden ordnungsbeschrankten Operator T: E — F' sofort

TH(z)=sup{Ty: 0 <y <z} und (66a)
T (x)=sup{—Ty:0<y<z} (66b)

fir jedes x € Et. Mit Hilfe von T'= T — T~ ist klar, dass £,(E, F') von positiven
Operartoren erzeugt wird und damit gilt im Falle, dass F' Dedekind vollstandig ist, dass
L(EF)=Ly,(E,F).

Als Letztes soll ein (besonders einfaches) Beispiel diskutiert werden, welches die Riesz-
Kantorovich—Formeln heranzieht, um den Modulus eines Operators zu bestimmen.

Beispiel 1.2.5. Es liege ein Mafiraum (€, F, ) vor und L; = Li(F, i) bezeichne die
Menge aller numerischen, messbaren Funktionen f:  — R, fiir die gilt

L1A1@) du(w) < oo (67)

Es soll der Operator M,.: Ly — Ly untersucht werden, wobei [M.f](w) = ¢ f(w) fur jedes
feL,weQund ceR'. Der Operator M, stellt tatsachlich eine Abbildung nach L
dar, denn fiir jedes f € Ly gilt

JIMefI) diae) = [ fef () du(e)
= ¢ [ 1£1() dp(e) (68)

< oQ.

Der Operator M, ist sogar ordnungsbeschrénkt, denn fir A = {f € L1: g1 < f < g2},
wobei g1, go € LT, gilt, dass M. A C [cgy, cgo]. In Beispielwurde gezeigt, dass fiir den
vorliegenden Mafiraum der Riesz-Raum L; Dedekind-vollstandig ist und damit sind die
Voraussetzungen fiir die Anwendung der Riesz-Kantorovich—Formeln gewéahrleistet und
man hat damit fiir g € LT

|M.|(g) = sup{ [M.f|: |f| < g}
=sup{ M.f: |f[<g}
=sup{cf: [f[<g}

)

(69)
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In (x) wurde die Aussage aus [LZ71, Theorem 13.1 (ii)] verwendet.

Es ist offensichtlich, dass dass |M.| additiv ist auf L] und da L; Dedekind-vollstadnig
ist und damit insbesondere archimedisch, existiert fiir |M,| eine eindeutige Fortsetzung,
erneut durch |M,| bezeichnet, zu einem positiven Operator auf L;, welche nach Theo-
rem gegeben ist durch

[ M|(g) = [Mcl(g") — |Mc|(g™) fiir alle g € Ly.
=cgt —cg” (70)
= Cg
Damit ist M, fir alle ¢ € L; eindeutig bestimmt. Dieses Ergebnis kann ganz einfach
iiberpriift werden, denn in diesem Spezialfall gilt insbesondere, dass
M.f =cf > —cf = —(M.f) fir alle f € L{ (71)

und damit M, > —M,.. Also erhdlt man direkt |M.| = M, und die Riesz-Kantorovich—
Formeln fithren zu dem selben Ergebnis.

Dieses Beispiel gibt Anlass z.B. den allgemeinen Multiplikationsoperator auf L; zu
betrachten. Sei hierzu etwa g € L, wobei L die Familie aller Aquivalenzklassen ist mit

L™ :={[h], € L°(F,p) | esgibt ein f € [h], N L(F)}. (72)

Die exakte Definition fiir LO(F, ) und £°(F ist [Schill, Abschnitt 7.2] zu entnehmen.
Es gilt hervorzuheben, dass ein Element g aus L*™ nur p-fast iiberall beschrankt ist. Das
heifit symbolisch ausgedriickt, dass ein ¢ € R existiert mit |g| <, ¢ und damit existiert
eine natiirliche Norm |[|.||: L® — R* mit gl = inf{c € R*: |g| <, ¢}. Damit ist
klar, dass fiir ein ¢ € L* der Operator M,: Ly — Ly mit f — gf fur alle f € L
wohldefiniert ist. Sofern g € L nur bis auf eine p-Nullmenge beschrénkt ist, liefert diese
bei der Integration keinen Beitrag, also fiir f € L; erhédlt man mit Hilfe der Monotonie
des Integrals

LMy A1) diuw) = [ [g1() dpa)
= [191@)If1(w) dn(w)

< [ 1lgllol 1) dn(e) (73)
< llgllo [ 1160) du(e)
< Q.

Es ist offensichtlich, dass M, < M. mit ¢ = ||g||~, als positiven Operator wie oben

definiert, und damit ist M, insbesondere regular und damit nach auch ordnungs-
beschrinkt. Somit gilt fiir f € LT unter Heranziehung der Riesz-Kantorovich-Formeln
|My|(f) = sup{ |Mgh|: |h| < f}
= sup{ [gh|: |h| < [}

= sup{ |g||h|: [h] < f} (74)
= |g|sup{ |h|: |h] < f}
= |glf.

15



Wie oben kann |M,| fir alle f € Ly erklirt werden. Dies soll die Ausfithrungen hierzu
beschlielen. N
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