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Abstract

Due to limited financial means, biodiversity conservation programs often need to prioritize
the species to conserve. Two indices used in this matter are the Shapley Value and the
Fair Proportion Index. Both are based on phylogenetic trees and aim at quantifying the
importance of a taxon to overall biodiversity. While the Shapley Value reflects the average
biodiversity contribution of a species, the Fair Proportion Index lacks a biological link to
conservation, but is significantly easier to calculate and has been preferred in practice.
Depending on the definition of the Shapley Value, the two indices are either identical or
highly correlated, in which case the (modified) Shapley Value can be derived from the
Fair Proportion Index. This allows for a less complex calculation and makes computation
feasible even for large trees. Despite the strong link between the two measures, the ranking
order of taxa provided by the modified Shapley Value and the Fair Proportion Index can
differ for non-ultrametric trees, calling for further analysis before choosing the taxa to
conserve.
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1 Introduction

1 Introduction

Due to limited resources, biological conservation has to prioritize the species to conserve.
Instead of conserving as many taxa as possible, it has been argued to consider overall
biodiversity and aim at minimizing its future loss. Based on phylogenetic trees, several
indices have been developed in order to indicate a taxon’s importance to biodiversity and
thus to provide a prioritization criterion.
In this thesis we focus on the Shapley Value and the Fair Proportion Index, two distinct-

iveness indices recently studied in the literature (Haake et al. [6], Hartmann [7], Fuchs
and Jin [5]). Our aim is to analyse these indices, study their relationship and present a
way of computing them.
The Shapley Value, which originates in cooperative game theory, is complex to under-

stand and calculate. Still, as it reflects the average contribution a species makes to total
diversity, it is biologically highly justified to use.
The Fair Proportion Index, on the other hand, lacks a biological motivation, but is far

more easy to understand and calculate. Therefore it has been used in practical applica-
tions, e.g. the EDGE project.
The two indices are, however, closely related. Depending on the definition of the Shapley

Value, they are either identical (original Shapley Value) or strongly correlated, becoming
equivalent in the limit (modified Shapley Value). Proof for this was given by (Fuchs and
Jin [5]) and (Hartmann [7]) and will be illustrated in this work.
In case of the modified Shapley Value we additionally ask the question, whether it will

always find the same ranking order of taxa as the Fair Proportion Index and how this is
influenced by the shape of the phylogenetic tree.
Finally, we focus on the computation of both indices and include two programs,

shapley.pl and diversity_indices.pl, which can be used to calculate the Shapley
Value and/or the Fair Proportion Index for the taxa of a given phylogenetic tree.

1



2 Biodiversity and Conservation

2 Biodiversity and Conservation

2.1 Definition of Biodiversity

According to the Convention on Biological Diversity (CBD)

‘ “Biological diversity” means the variability among living organisms from all
sources, including, inter alia, terrestrial, marine and other aquatic ecosystems
and the ecological complexes of which they are part; ’ (on Biological Diversity
[12])

This definition includes three levels of diversity: diversity within species, between species
and of ecosystems (on Biological Diversity [12]). Moreover, biodiversity can be interpreted
in reference to genetic or molecular differences. Depending on the point of view, different
aspects might be of interest, thus leading to different definitions of biodiversity. Whereas
biodiversity in Ecology could mean species richness and abundance in certain habitats,
the same term could refer to allelic diversity in Molecular Biology. Therefore

‘ A definition of biodiversity that is altogether simple, comprehensive, and
fully operational (...) is unlikely to be found.’ (Noss [11])

Not only does the understanding of biodiversity vary, but also the methods used to
measure the variability among species. An intuitive approach would be to simply describe
the differences among species by measuring and comparing traits such as body size, respir-
ation type (anaerobic vs. aerobic) or reproduction process. The general problem with this
approach is its tendency to be biased as the ‘difference among species will strongly depend
on the choice of traits measured’ (Vellend et al. [15]). Furthermore, not all criteria are
applicable to all species, e.g. one can only compare the type of respiration among species,
which are actually using respiration (and not fermentation). This motivates a more gen-
eral approach based on DNA-sequence data. Phylogenetic biodiversity aims at quantifying
differences among species by evaluating their evolutionary history and relationships.

2.2 Phylogenetic Approach to Conservation Biology

Phylogenetic trees, which can be reconstructed from DNA-sequence data, reflect the evol-
utionary relationships among its leaves, i.e. different species. The phylogenetic distance
between two species (measured by the number of different nucleotides in the underlying
DNA-sequence) can be interpreted as an estimate of the amount of time since their di-
vergence, i.e. the amount of time they have evolved independently (Vellend et al. [15]).
In order to quantify the evolutionary distinctness of single species or the phylogenetic
diversity of a group of species within a phylogenetic tree, several metrics have been intro-
duced. An overview of these can be found in (Vellend et al. [15]). Based on these metrics,

2



2 Biodiversity and Conservation

simple indices and algorithms have been developed in order to prioritize the taxa to con-
serve, given limited resources. The idea behind this is, not only to conserve the greatest
number of taxa possible, but to take taxon distinctness into account and minimize the
future loss of biodiversity (Vellend et al. [15], Hartmann and Steel [8]).
In the following, two of these indices, the Shapley Value and the Fair Proportion Index,

will be further described and analysed.
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3 The Shapley Value

3 The Shapley Value

3.1 The Shapley Value in Game Theory

In game theory the Shapley Value is an important concept for cooperative games, where
a cooperative game consists of a set of players N = {1, 2, . . . , n} and a characteristic
function ν : 2N → R, that assigns a value to every subset of N . The subsets of N are
called coalitions (the subset consisting of all players is called the grand coalition) and the
function value of ν is called the worth of the coalition. As some players might be more
important to the coalition than others, the question arises, how the total worth of the
coalition should be distributed among them.
The Shapley Value provides a “fair” solution to this problem. Given a cooperative game

(N, ν) the Shapley Value for player i can be calculated as follows:

ϕi(N, ν) =
1

n!

∑
S⊆N
i∈S

(s− 1)!(n− s)!(ν(S)− ν(S − i)) (3.1)

where s = |S| is the size of the coalition S and n = |N | is the total number of players.
This value can be interpreted as the expected marginal contribution of player i (see Haake
et al. [6]).

The Shapley Value fulfils four axioms (see Haake et al. [6]):

1. Efficiency. The sum of the individual Shapley Values equals the worth of the grand
coalition: ∑

i∈N

ϕi(N, ν) = ν(N)

2. Symmetry. If two players i and j play the same role in the game, meaning

ν(S ∪ i) = ν(S ∪ j)

for every subset S ⊆ N neither containing i nor j, then ϕi(ν) = ϕj(ν).

3. Dummy Axiom. The Shapley Value of a player i, who is not adding worth to any
coalition it joins, i.e. ν(S ∪ {i}) = ν(S) for all coalitions S, is zero.

4. Additivity. Given to cooperative games (N, ν) and (N,ω) with the same set of
players N and characteristic functions ν and ω, the Shapley Value for the game
(N, ν + ω) is the sum of the Shapley Values of the individual games:

ϕi(ν + ω) = ϕi(ν) + ϕi(ω) for all i ∈ N

4



3 The Shapley Value

3.2 The Shapley Value in Phylogenetics

3.2.1 Phylogenetic Diversity

One of the metrics introduced to measure the diversity present in a tree (see 2.2), is called
Phylogenetic Diversity (PD).

Definition 1. Let T be a rooted phylogenetic tree with leaf set N . For a subset S ⊆ N

of taxa the PD is calculated by summing up the branch lengths of the phylogenetic tree
containing S and the root (i.e. the sum of branch lengths in the smallest spanning tree
containing S and the root).

Example 1. Consider the following phylogenetic tree:

2

A

1

B

1

C

3

Fig. 1: PD - rooted tree

Here the phylogenetic diversity is given by:

PD(∅) = 0

PD(A) = 1 + 2 = 3

PD(B) = 1 + 2 = 3

PD(C) = 3

PD(AB) = 1 + 1 + 2 = 4

PD(AC) = 1 + 2 + 3 = 6

PD(BC) = 1 + 2 + 3 = 6

PD(ABC) = 1 + 1 + 2 + 3 = 7

Remark. Definition 1 holds for rooted phylogenetic trees. In case of unrooted phylo-
genetic trees, the PD of a subset of taxa S is the sum of branch lengths in the minimal
spanning tree connecting those leaves. The PD of single taxa is defined as zero.

Example 2. Considering the tree above as unrooted the PD changes to:

5



3 The Shapley Value

B

A

C

1

1

5

Fig. 2: PD - unrooted tree

PD(∅) = PD(A) = PD(B) = PD(C) = 0

PD(AB) = 2

PD(AC) = 6

PD(BC) = 6

PD(ABC) = 7

3.2.2 Definition and Interpretation of the Shapley Value

As introduced by (Haake et al. [6]), an unrooted phylogenetic tree T can be associated
with a cooperative game (N, νT ), called the phylogenetic tree game. In this context N
represents the set of leaves of the tree, i.e. the species and νT maps every subset S ⊆ N

of taxa to the sum of the edge weights of the spanning tree connecting the members in S.
This concept can be generalized to be applicable to both rooted and unrooted phylo-

genetic trees by claiming νT (S) = PD(S) for any subset S ⊆ N . Plugging this into (3.1)
leads to the following definition:

Definition 2. Let T be a phylogenetic tree with leaf set N and let PD(S) denote the
phylogenetic diversity of S ⊆ N . Then the Shapley Value for a taxon a is defined as

φ(a) =
1

n!

∑
S⊆N
a∈S

(|S| − 1)!(n− |S|)!(PD(S)− PD(S \ {a})), (3.2)

where n = |N | and S denotes a coalition of species including taxon a and the sum runs
over all such coalitions possible. 1

The Shapley Value of a taxon can be seen as the ‘average diversity the species can be
expected to add to a group that it joins’ (Haake et al. [6]), i.e. the expected contribution
to total PD. So if one species, say a, obtains a higher Shapley Value than another species,
b, i.e. φ(a) > φ(b), then species a may contribute more diversity to a group of species than
b (Haake et al. [6]). Therefore the Shapley Value provides a sensible ranking criterion to
be used in conservation prioritization.

1A “biological” derivation of this formula, independent from game theory, can be found in (Hartmann
[7][2.2]).

6



3 The Shapley Value

Besides this general interpretation of the value itself, it is also possible to motivate the
Shapley axioms in a biological context (see 3.1).

Efficiency simply implies that the total diversity in the tree will be distributed among its
leaves. Thus the Shapley Value of a taxon describes its contribution to total PD and
therefore answers the question of how important this species is for diversity (Haake
et al. [6]).

Symmetry means that two species playing the same role in a tree and thus contributing
equally to total diversity, should also be ranked equally, what seems like a plausible
feature.

The Dummy Axiom does not have a meaning in case of phylogenetic trees as every spe-
cies i adds at least the worth of its pending edge to a coalition it joins, since we can
assume that edge weights are non-negative and non-zero. The former holds, because
edge weights either represent the passage of time or some kind of evolutionary dis-
tance between species, both of which are non-negative. If edge weights were allowed
to be zero, the two species on either side of these edges would be the same, which
is not possible. Therefore every species must add to the PD of a coalition it joins,
meaning that there are no dummy species. For the hypothetical case of species not
adding diversity to any coalition, this axiom is still reasonable.

For Additivity suppose you are given a set of nucleotide sequences of length 200 for a set
of species N . The observed distance (also p-Distance) between two species i and j
is then given by the relative frequency of nucleotide differences. This distance can
be used to reconstruct a phylogenetic tree (note that in practice it is better to use
corrected distances). Assuming the sequence is split by half, both the first and the
last 100 positions can be used to construct trees and thus tree games (N, ν1) and
(N, ν2), respectively. Then the Shapley Value of the game (N, ν1 + ν2) is the sum
of the individual games. This seems appropriate, since if the observed distances
in both halves of the sequence ‘arise from a tree metrics on the same topological
tree, then the sum game will arise from the tree reconstructed’(Haake et al. [6])
from the whole sequence. This scenario serves an illustration of the additivity of the
Shapley Value in case both sequence parts originate in the same tree topology. It is,
however, possible that reconstructing trees from both halves of the sequences leads
to two different topologies. In this case the Additivity Axiom lacks the interpretation
indicated above (example taken from (Haake et al. [6])).

3.2.3 Two versions of the Shapley Value

The Shapley Value is calculated in different ways in the literature, depending on whether
the singleton set S = {a} is included in (3.2) or not. To avoid confusion let the following

7



3 The Shapley Value

notation be introduced:

φ(a) =

S̃V (a) if claimed |S| ≥ 2

SV (a) else

and refer to S̃V (a) as the modified Shapley Value in contrast to the ordinary Shapley
Value SV (a).

Remark. SV (a) can easily be calculated from S̃V (a) and the other way round:

SV (a) = S̃V (a) +
PD(a)

n
(3.3)

Proof. Consider the contribution of the singleton set {a} to SV (a):
By definition this is

1

n!

(
(1− 1)!(n− 1)!(PD(a)− PD(∅))

)
=

(n− 1)!

n!
PD(a)

=
PD(a)

n
.

As S̃V (a) “lacks” this contribution it is

S̃V (a) = SV (a)− PD(a)

n

Remark. (Fuchs and Jin [5]) provide a slightly different formula for calculating SV (a)

from S̃V (a). They argue that it can be calculated by using the depth of a in T , where
the depth is defined as the number of edges on the path from a to the root:

SV (a) = S̃V (a) +
depth(a)

n

This only holds if the sum of all edge lengths on the path from a to the root is the same
as the number of edges on this path, because then and only then PD(a) ≡ depth(a). One
may consider this a special case, but an easy example would be a tree, where all edges are
defined to be of length one. Nonetheless this formula will not be used in the following.

8



3 The Shapley Value

Note that the modified Shapley Value does not fulfil the Efficiency Axiom (3.1) as

n∑
i=1

S̃V (i) =
n∑
i=1

(
SV (i)− PD(i)

n

)
=

n∑
i=1

SV (i)−
n∑
i=1

PD(i)

n

= PD(N)−
n∑
i=1

PD(i)

n

6= PD(N).

The impact of the different versions of the Shapley Value will be discussed in more detail
later, when compared with the Fair Proportion Index.

3.2.4 Example: Five-leaf-tree

Example 3. The tree in Fig.3 is used in (Hartmann [7]) to demonstrate the calculation
of PD and the Fair Proportion Index. Here it is also used as an example for calculating
the Shapley Value.
The Shapley Value for taxon b is calculated as follows:

SV (b) =
1

5!

∑
S,b∈S

(|S| − 1)!(5− |S|)!(PD(S)− PD(S \ {b}))

=
1

5!

[
(1− 1)!(5− 1)!(4− 0)

+ (2− 1)!(5− 2)!
(
(6− 4) + (8− 4) + (8− 4) + (8− 4)

)
+ (3− 1)!(5− 3)!

(
(10− 8) + (10− 8) + (10− 8)

+ (9− 5) + (10− 6) + (10− 6)
)

+ (4− 1)!(5− 4)!
(
(11− 7) + (12− 10) + (12− 10) + (11− 9)

)
+ (5− 1)!(5− 5)!(13− 11)

]
=

1

120

[
96 + 84 + 72 + 60 + 48]

=
360

120

= 3

Analogously one calculates:
SV (c) = 3 , SV (d) = 21

6
, SV (e) = 21

6
, SV (f) = 22

3

For the modified Shapley Value we have:
S̃V (b) = 21

5
, S̃V (c) = 21

5
, S̃V (d) = 111

30
, S̃V (e) = 111

30
, S̃V (f) = 113

15

9



3 The Shapley Value

This small example shows that the calculation of the Shapley Value takes some ef-
fort as 2n−1 (or 2n−1 − 1 for the modified Shapley Value) subsets S ⊆ N containing the
taxon in question have to be considered.
This motivates the introduction of the Fair Proportion Index, which is significantly

easier to calculate and yet a suitable prioritization criterion.

10



4 The Fair Proportion Index

4 The Fair Proportion Index

4.1 Definition and Example

The idea of the Fair Proportion Index (FP) is to divide the phylogenetic diversity of a
rooted tree among its leaves. For each edge the edge length is distributed equally among
the taxa descending from that edge or in other words ‘each taxon descendant from an
edge is allocated an equal proportion of that edge length’ (Hartmann [7]).

Definition 3. Let λe denote the edge weight of edge e. Then the Fair Proportion Index
for a taxon a can be calculated as follows:

FP (a) =
∑
e

λe
De

, (4.1)

where the sum runs over all edges e on the path from a to the root and De denotes the
number of leaves descendent from that edge.

This method may seem a sensible way to divide the evolutionary history of a tree, but in
contrast to the Shapley Value it lacks a biological interpretation (Hartmann [7]). However,
the great advantage over the Shapley Value is its easy calculation. And as will be discussed
later, the Fair Proportion Index provides a measure equal or strongly related to the
Shapley Value (depending on which version of the Shapley Value is used), which justifies
its use in prioritization.

Example 4. Calculation of the Fair Proportion Indices for “Hartmann’s Example Tree”
(see Fig.3) yields:

FP (b) = FP (c) =
2

1
+

2

2
= 3

FP (d) = FP (e) =
1

1
+

1

2
+

2

3
= 21

6

FP (f) =
2

1
+

2

3
= 22

3

Note that the sum of these values 2 · 3 + 2 · 21
6
+ 22

3
= 13 equals the sum of edge lengths

in the tree, i.e. the total PD.
More generally, the Fair Proportion Index fulfils the Efficiency Axiom introduced in (3.1),
since each edge weight is distributed equally among the descending taxa. Thus, when
summing over the FP for all taxa, the terms 1/De cancel out and we obtain the sum of all
edge weights or in other words the total PD.
The attentive reader may also have observed the equivalence of the FP -indices to the

SV -values calculated above (see 3.2.4). Table 1 summarises these results.

11



4 The Fair Proportion Index

taxon FP SV S̃V

b 3 3 21
5

c 3 3 21
5

d 21
6

21
6

111
30

e 21
6

21
6

111
30

f 22
3

22
3

113
15

Table 1: Summary Example 5-leaf tree

2

b

2

c

2

2

1

d

1

e

1

f

2

Fig. 3: Hartmann’s Example Tree

4.2 The EDGE Project

An eminent example for the utilisation of the Fair Proportion Index is the “EDGE of
Existence” Project, established by the Zoological Society of London (ZLS) in 2007. This
programme aims at conserving species, ‘that are both evolutionary distinct and globally
endangered’ (Isaac et al. [9]) and therefore called “EDGE-species”. To identify those spe-
cies, “EDGE”-scores, consisting of a value for both the evolutionary distinctiveness and
the extinction risk are calculated as

EDGE = ln(1 + ED) +GE · ln(2)

= ln(1 + FP ) +GE · ln(2),

where the ED-score (Evolutionary Distinctiveness) corresponds to the Fair Proportion
Index and ‘GE is the Red List category weight [Least Concern = 0, Near Threatened and
Conservation Dependent = 1, Vulnerable = 2, Endangered = 3, Critically Endangered =
4]’ (Isaac et al. [9]).
This approach, which combines the species’ importance to phylogenetic diversity (as

indicated by the Fair Proportion Index ) with their risk of extinction, has so far produced
priority lists for amphibians, mammals, corals and birds, which can be downloaded from
http://www.edgeofexistence.org/about/edge_science.php .
In case of the mammalians, (Isaac et al. [9]) state, that ‘the 100 highest-ranking species

represent a high proportion of total mammalian diversity and include many species not
usually recognised as conservation priorities’.
This shows, that although at first sight the Fair Proportion Index lacks a biological

motivation or interpretation, it is an important tool to use. Additionally, given the strong
link between it and the Shapley Value, which will be discussed in the following, it can be
argued, that the biological interpretation of the latter also holds for the Fair Proportion
Index.

12
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5 Relationship between the Fair Proportion Index and the Shapley Value

5 Relationship between the Fair Proportion Index and

the Shapley Value

As mentioned in (3.2.3), there are different versions of the Shapley Value in the literature,
depending on whether the singleton set {a} is included in its calculation or not.
The Shapley Value was first introduced for unrooted phylogenetic trees by (Haake et al.
[6]). For unrooted trees, however, the modified Shapley Value and the ordinary Shapley
Value are the same as the contribution of the single set {a} to φ(a) equals zero

1

n!

(
(1− 1)!(n− 1)!(PD(a)− PD(∅))

)
=

1

n!

(
0! · (n− 1)! · (0− 0)

)
= 0

and it therefore doesn’t make a difference if one claims |S| ≥ 2 or not. All the same, at
some stage (Haake et al. [6][p.490]) states |S| ≥ 2.
This might be the reason, why (Hartmann [7]), who further analysed the Shapley Value
for rooted phylogenetic trees, also claims |S| ≥ 2 in a proof. As discussed before, this
does make a difference here, thus leading to the modified Shapley Value S̃V .
The definition of the Shapley Value in (Hartmann [7]), however, does not make it clear if
this modification was intended.

When examining the relationship between the Fair Proportion Index, which is only defined
for rooted trees, and the Shapley Value, one has to differentiate between the two versions
of the latter. In the following we will first compare the Fair Proportion Index to the
original and afterwards to the modified Shapley Value.

5.1 Equivalence of the original Shapley Value and the Fair

Proportion Index

As Table (1) suggests the original Shapley Value and the Fair Proportion Index for a
rooted phylogenetic tree T are equivalent. Mathematical proof for this equivalence is
given by (Fuchs and Jin [5]). We have

Theorem 1 (2013, Fuchs and Yin). The Fair Proportion Index and the Shapley Value
are identical, i.e.

FPT (a) = SVT (a).

Proof. In order to prove this statement, (Fuchs and Jin [5]) show that the Fair Proportion
Index and the Shapely Value can be computed by the same recursion. On this purpose
let Tl and Tr denote the left and the right subtree of the root of T and assume their size

13
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to be j and n − j, respectively. Furthermore, assume that a is in Tl and denote the left
edge incident to the root by e.

e

b a S′ S1

Tl Tr

j Taxa n− j Taxa

Fig. 4: Rooted phylogenetic tree with subtrees Tl and Tr

1. The Fair Proportion Index can be calculated recursively by

FPT (a) =
λe
j

+ FPTl(a), (5.1)

which is directly implied by its definition.

2. Likewise, for the Shapley Value we have

SVT (a) =
λe
j

+ SVTl(a). (5.2)

To see this, fix a set S ′ of taxa of Tl with a ∈ S ′.
First note that the PD of coalitions containing a and a set of taxa S1 of the right
subtree Tr can be expressed as a function of S ′, that is

PDT (S
′)− PDT (S

′ \ {a}) = PDT (S
′ ∪ S1)− PDT ((S

′ ∪ S1) \ {a}),

which holds because of the linearity of PD :

PDT (S
′ ∪ S1)− PDT ((S

′ ∪ S1) \ {a})

= PDT (S
′) + PDT (S1)− PDT (S

′ \ {a})− PDT (S1 \ {a})︸ ︷︷ ︸
PDT (S1)

= PDT (S
′)− PDT (S

′ \ {a})

Remembering the definition of the Shapley Value

SVT (a) =
1

n!

∑
S,a∈S

(|S| − 1)!(n− |S|)!(PDT (S)− PDT (S \ {a}),

this means that only terms with S = S ′ appear in the sum.
As there are

(
n−j
l

)
possibilities to choose l Taxa of Tr with l = 0, 1, . . . , n − j, the

14
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coefficient in front of PDT (S
′)− PDT (S

′ \ {a}) becomes

1

n!

n−j∑
l=0

(
n− j
l

)
((|S ′|+ l)− 1)!(n− (|S ′|+ l))!

=
1

n!

n−j∑
l=0

(
n− j
l

)
(|S ′|+ l − 1)!(n− |S ′| − l)!

=
1

n!

n−j∑
l=0

(n− j)!
l!(n− j − l)!

(|S ′|+ l − 1)!(n− |S ′| − l)!

=
(n− j)!
n!

n−j∑
l=0

(|S ′|+ l − 1)!

l!

(n− |S ′| − l)!
(n− j − l)!

=
(n− j)!
n!

(|S ′| − 1)!(j − |S ′|)!
n−j∑
l=0

(|S ′|+ l − 1)!

l!(|S ′| − 1)!

(n− |S ′| − l)!
(n− j − l)!(j − |S ′|)!

=
(n− j)!
n!

(|S ′| − 1)!(j − |S ′|)!
n−j∑
l=0

(
|S ′| − 1 + l

l

)(
n− |S ′| − l
n− j − l

)
(∗)
=

(n− j)!
n!

(|S ′| − 1)!(j − |S ′|)!
(
n

j

)
=

(n− j)!
n!

(|S ′| − 1)!(j − |S ′|)! n!

j!(n− j)!

=
(|S ′| − 1)!(j − |S ′|)!

j!

Thus, we have

SVT (a) =
1

j!

∑
S′,a∈S′

(|S ′| − 1)!(j − |S ′|)!(PDT (S
′)− PDT (S

′ \ {a})), (5.3)

where the sum runs over all taxa from Tl with a ∈ S ′. Now consider two cases:

• For S ′ 6= {a} we have

PDT (S
′)︸ ︷︷ ︸

containing edge e

−PDT (S
′ \ {a})︸ ︷︷ ︸

containing edge e

= PDTl(S
′)− PDTl(S

′ \ {a})

as the edge weight λe of e (see Fig. 4) is counted in both terms on the left-hand
side of the equation and therefore adjusts to zero.

• For S ′ = {a} we have PDT ({a}) = λe + PDTl({a}).
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Plugging this into (5.3) yields

SVT (a) =
λe
j

+
1

j!

∑
S′,a∈S′

(|S ′| − 1)!(j − |S ′|)!(PDTl(S
′)− PDTl(S

′ \ {a}))

=
λe
j

+ SVTl(a).

Consequently, the Fair Proportion Index and the Shapley Value follow the same recursion.
To make the proof complete, consider the start of the recursion T0, where T0 is a tree of
size two.
We have FPT0(a) =

λe
1
= λe = SVT0(a).

Thus, the Fair Proportion Index and the Shapley Value are the same.

Remark. The prove the identity

n−j∑
l=0

(
|S ′| − 1 + l

l

)(
n− |S ′| − l
n− j − l

)
=

(
n

j

)
(5.4)

used in (∗), first recall the following generating functions:

∞∑
n=0

(
n+ c− 1

c− 1

)
xn =

1

(1− x)c
(5.5)

∞∑
n=0

(
n+ c

c

)
xn =

1

(1− x)c+1
(5.6)

Let N = n− j and s = |S ′|. Then the generating function of the sum in (5.4) is

∞∑
N=0

N∑
l=0

(
s− 1 + l

l

)(
N + j − s− l
n− j − l

)
xN

=
∞∑
N=0

N∑
l=0

(
s− 1 + l

s− 1

)(
N + j − s− l

j − s

)
xN

=
∞∑
l=0

(
s− 1 + l

s− 1

)
xl
∞∑
N=0

(
N + j − s− l

j − s

)
xN

(5.5)
=

(5.6)

1

(1− x)s
1

(1− x)j−s+1

=
1

(1− x)j+1
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Thus, we have

∞∑
N=0

N∑
l=0

(
s− 1 + l

l

)(
N + j − s− l
n− j − l

)
xN =

1

(1− x)j+1

=
(5.6)

∞∑
N=0

(
N + j

j

)
xN

Coefficient comparison yields

N∑
l=0

(
s− 1 + l

l

)(
N + j − s− l
n− j − l

)
=

(
N + j

j

)

and by replacing s with |S ′| and N with n− j, we finally have

n−j∑
l=0

(
|S ′| − 1 + l

l

)(
n− |S ′| − l
n− j − l

)
=

(
n

j

)
.

5.2 Equivalence in the limit for the modified Shapley Value and

the Fair Proportion Index

As we have shown SV = FP , we can use (3.2.3) to express the relationship between the
Fair Proportion Index and the modified Shapley Value. This yields

FP (a) = S̃V (a) +
PD(a)

n
. (5.7)

One can already guess that these two indices will become equivalent in the limit n→∞,
since we have PD(a)

n
−→
n→∞

0.
(Hartmann [7]) chose a different approach to prove this. He considered the contribution

an edge emakes to themodified Shapley Value and the Fair Proportion Index, respectively.
In the limit this contribution becomes equivalent for both indices.
Let θFP (a, e) and θS̃V (a, e) denote the contribution of edge e to the Fair Proportion Index
and modified Shapley Value of taxon a, respectively. Then we have

Theorem 2 (Hartmann, 2012). In the limit n → ∞ we have θFP (a, e) = θS̃V (a, e). In
other words the contribution of edge e to the Shapley Value and FP value of taxon a

becomes equivalent.

Proof. Let λe be the edge weight of edge e and De the set of descendants. Furthermore
let J denote the set of taxa separated from a by the edge e, i.e. J = N −De (see Fig. 5)
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e

a

JDe

Fig. 5: Contribution of edge e to FP and S̃V

1. For the Fair Proportion Index the contribution of edge e is

θFP (a, e) =

 λe
|De| for a ∈ De

0 for a 6∈ De

(5.8)

2. For the modified Shapley Value of a taxon a note that an edge e only contributes
to it, if all taxa in S (i.e. all taxa a forms a coalition with) are separated from a

by this edge. That is, if S − J = {a} or in other words S = J ∪ {a}. If that is not
the case, e.g. if a forms a coalition with taxa from De, the edge e will not add extra
worth to the coalition and therefore does not contribute to S̃V (a).
As we are now considering the modified Shapley Value, we also have to claim |S| ≥ 2.
Thus, we have 2 ≤ |S| ≤ |J | + 1. For a fixed subset size |S| there are

( |J |
|S|−1

)
sets,

which fulfil this condition.
Recall the definition of the modified Shapley Value:

S̃V (a) =
1

n!

∑
|S|≥2,
a∈S

(|S| − 1)!(n− |S|)!(PD(S)− PD(S \ {a}))

The total contribution the edge e makes to this value, is its coefficient times the
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number of coalitions a adds worth to. Thus, we have

θS̃V (a, e) =
1

n!

|J |+1∑
|S|=2

(|S| − 1)!(n− |S|)!λe ×
(
|J |
|S| − 1

)

= λe

|J |+1∑
|S|=2

(|S| − 1)!(n− |S|)!
n!

|J |!
(|S| − 1)!(|J | − |S|+ 1)!

= λe

|J |+1∑
|S|=2

|J |!(n− |S|)!
(|J | − |S|+ 1)!n!

. (5.9)

As this term is independent of a, θS̃V (a, e) is the same for all taxa on the same side
of edge e.
Based on this, (Hartmann [7]) now refers to (Haake et al. [6]) and states that ‘each
edge length is shared out in its entirety amongst the taxa’, meaning that ‘λe will be
divided amongst the taxa in De’.
This, together with the fact that θS̃V (a, e) is the same for all taxa in De, yields

θS̃V (a, e) =
λe
|De|

for a ∈ De. (5.10)

Remark. This reasoning seems plausible, but actually calculating the sum in (5.9)
makes it somehow less clear. While extending the sum to include |S| = 1 (in other
words: using the original Shapley Value) yields equality right away

λe

|J |+1∑
|S|=1

|J |!(n− |S|)!
(|J | − |S|+ 1)!n!

= λe
|J |!
n!

|J |+1∑
|S|=1

(n− |S|)!
(|J | − |S|+ 1)!

= λe
|J |!
n!

|J |+1∑
|S|=1

(
n− |S|

n− |J | − 1

)
(n− |J | − 1)!

= λe
|J |!
n!

(n− |J | − 1)!

|J |+1∑
|S|=1

(
n− |S|

n− |J | − 1

)

= λe
|J |!
n!

(n− |J | − 1)!

(
n

n− |J |

)
= λe

|J |!
n!

(n− |J | − 1)!
n!

(n− |J |)!|J |!

= λe
1

n− |J |

=
λe
|De|

,
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calculation of the sum as defined in (5.9) leads to

λe

|J |+1∑
|S|=2

|J |!(n− |S|)!
(|J | − |S|+ 1)!n!

= λe

( |J |+1∑
|S|=1

|J |!(n− |S|)!
(|J | − |S|+ 1)!n!

− |J |!(n− 1)!

(|J | − 1 + 1)!n!

)
= λe

( 1

n− |J |
− 1

n

)
= λe

|J |
n(n− |J |)

.

However, (Hartmann [7]) now considers the case a 6∈ De or in other words a ∈ J .
The contribution of edge e to S̃V of a taxon in J can be calculated by substituting
n− |J | for |J | in (5.9):

θS̃V (a, e) = λe

n−|J |+1∑
|S|=2

(n− |J |)!(n− |S|)!
(n− |J | − |S|+ 1)!n!

with a 6∈ De

Considering all taxa in J , the contribution of e can be calculated by making this
substitution and summing the result over all taxa in J :

∑
a∈J

θS̃V (a, e) = λe|J |
n−|J |+1∑
|S|=2

(n− |J |)!(n− |S|)!
(n− |J | − |S|+ 1)!n!

n−|J |=|De|
= λe

|De|+1∑
|S|=2

|J ||De|!(n− |S|)!
(|De| − |S|+ 1)!n!

Finally, taking the limit, we get:

lim
n→∞

∑
a∈J

θS̃V (a, e) = λe lim
n→∞

|De|+1∑
|S|=2

|J ||De|!(n− |S|)!
(|De| − |S|+ 1)!n!

= 0 (5.11)

As all terms in the sum are positive, the sum can only converge to zero, if the
summands themselves converge to zero. Therefore, summarizing (5.10) and (5.11),
we obtain

lim
n→∞

θS̃V (a, e) =

 λe
|De| for a ∈ De

0 for a 6∈ De

(5.12)

This shows that in the limit the contribution of edge e to the modified Shapley Value
equals its contribution to the Fair Proportion Index (compare (5.8)), which we wanted to
prove.
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6 Influence of the Tree Shape

As shown above, the Fair Proportion Index and the modified Shapley Value become equi-
valent in the limit n → ∞. The following section will deal with smaller trees and try to
explore, whether the two measures always result in the same ranking order and how this
is influenced by the shape of the tree.

6.1 Ultrametric Trees

If the branch lengths of a phylogenetic tree represent the passage of time and the taxa
are all present-day species, the tree has to be ultrametric. This means that all paths from
the root ρ to a leaf are of the same length, because ρ lived at a certain time and since
then a certain amount of time has passed for all present-day species.
Recall that the modified Shapley Value of a leaf a differs from the Fair Proportion Index
by the term PD(a)/n (see 5.7). In case of an ultrametric tree, this term is the same for all
leaves, because PD(a) reflects the length of the path from a to the root.
Thus, the Fair Proportion Index and the modified Shapley Value will always result in the
same ranking order of taxa, although the numerical values for the individual taxa differ.
As an example reconsider the tree used by (Hartmann [7]) and see Table 1 and Fig. 3.

6.2 Non-ultrametric Trees

Branch lengths in a phylogenetic tree can also be interpreted as representations of evol-
utionary change instead of passage of time. In this case, the tree is not necessarily ul-
trametric, since the rate of evolutionary change can vary among different branches.
Under these circumstances it is possible to construct trees, where the ranking order

provided by the Fair Proportion Index and the modified Shapley Value differ. The tree in
Fig. 6 even causes a situation, where FP “fails” as a ranking criterion as it assigns the
same value to every leaf, whereas S̃V does find a ranking.
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3

2

A

1

B

1 C

2

D

3

Fig. 6: Non-ultrametric imbalanced tree (i)

taxon FP S̃V

A 3 1.5

B 3 1.5

C 3 1.75

D 3 2.25

Table 2: FP and S̃V for a non-ultrametric
imbalanced tree (i)

Note that this tree is highly imbalanced, which means that the leaves are not separ-
ated from the root by the same number of nodes, e.g. the lineage from the root to A or
B bifurcates two times, to C it bifurcates one time and D descends directly from the root.

However, the Fair Proportion Index and the modified Shapley Value do not necessarily
result in a different ranking order for highly imbalanced non-ultrametric trees:

D

A

C

B
E

5 3

2

7

8

10

6 5

Fig. 7: Non-ultrametric imbalanced tree (ii)

taxon FP S̃V

A 73
4

53
4

B 12 5
12

813
60

C 9 5
12

649
60

D 5 4

E 11 5
12

7 5
12

Table 3: FP and S̃V for a non-ultrametric
imbalanced tree (ii)

When looking at more balanced trees, i.e. trees, in which most lineages bifurcate the same
number of times, the ranking order of the two measures can still differ. As an example
consider the two 5-leaf trees in Fig. 8 and Fig.9.
Both trees have the same topology. Still, in the first case the ranking orders between
the Fair Proportion Index and the modified Shapley Value differ (FP regards A as more
important than D, S̃V does it the other way round), whereas the two measures lead to
the same ranking in the second tree. These examples suggest that it is hard to predict,
whether the two measures will find the same ranking order for non-ultrametric trees or
not.
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3

B

4
D

2

5

1

C

3

E

4

A

2

Fig. 8: Non-ultrametric balanced tree (i)

taxon FP S̃V

A 32
3

2 4
15

B 51
2

4 1
10

C 51
6

311
30

D 31
2

21
2

E 61
6

41
6

Table 4: FP and S̃V for a non-ultrametric
balanced tree (i)

4

B

3
D

1

2

5

C

4

E

3

A

1

Fig. 9: Non-ultrametric balanced tree (ii)

taxon FP S̃V

A 12
3

1 1
15

B 5 33
5

C 71
6

429
30

D 3 2

E 61
6

41
6

Table 5: FP and S̃V for a non-ultrametric
balanced tree (ii)
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In order to analyse this question further, random trees of different sizes were sampled,
using the programming language R (R Development Core Team [13]). In a first analysis
the branch lengths were chosen to be random integers ∈ [0, 10], in a second one integers ∈
[0, 100]. For each tree size 100 trees were generated, respectively. Then the Fair Proportion
Index and the modified Shapley Value were computed for all trees and their ranking order
was compared. Furthermore, the mean of the correlation coefficient r between the two
indices was calculated for every sample of size 100. The results can be found in Table 6
and Table 7.
Both for branch lengths in [0, 10] and in [0, 100] the outcomes are roughly the same,

which suggests that the degree of “non-ultrametricity” (see Table 8) does not influence
the relationship between the two indices. In both cases a high correlation between the
Fair Proportion Index and the modified Shapley Value can be observed, converging to one
with growing tree size. This observation coincides with the strong correlation between the
two indices for Yule trees described in (Hartmann [7]). More surprising is the fact that
at the same time the number of cases, in which both measures find the same ranking
order of taxa, decreases. So even though the indices grow more alike with increasing tree
size, they tend to rank taxa differently. So far, we could not find an explanation for this
phenomenon.

Number of taxa Same ranking
order

Different ranking
order

mean correlation
coefficient

4 66 34 0.947022

5 58 42 0.960145

6 47 53 0.975664

7 41 59 0.981419

8 33 67 0.982440

10 19 81 0.984582

15 4 96 0.990727

20 1 99 0.994788

100 0 100 0.999488

200 0 100 0.999841

Table 6: Comparison of FP and S̃V for random non-ultrametric trees with branch lengths
in [0, 10]
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Number of taxa Same ranking
order

Different ranking
order

mean correlation
coefficient

4 68 32 0.948596

5 59 41 0.975446

6 44 56 0.978429

7 40 60 0.981647

8 20 80 0.981752

10 17 83 0.989007

15 6 94 0.993010

20 3 97 0.994094

100 0 100 0.999513

200 0 100 0.999832

Table 7: Comparison of FP and S̃V for random non-ultrametric trees with branch lengths
in [0, 100]

Number of taxa Mean variance in leaf PD
for branch lengths in [0, 10]

Mean variance in leaf PD
for branch lengths in

[0, 100]

5 36.43 3916.21

10 66.68 6031.95

20 107.42 9951.78

100 218.78 19812.12

Table 8: Mean variance in leaf PD as a measure for the degree of non-ultrametricity

25



7 Computation of the Fair Proportion Index and the Shapley Value

7 Computation of the Fair Proportion Index and the

Shapley Value

After discussing the properties of the Fair Proportion Index and the Shapley Value as well
as their relationship, the following section will present a way of computing the indices using
the programming language Perl. Before going into the details of the implementation, we
introduce some general aspects concerning the computation.

7.1 Representing trees - The Newick Format

One way of representing trees in a computer-readable format, is the so called Newick tree
format. It represents trees with or without edge lengths using parentheses and commas.
To make the idea precise, consider the following example and its Newick representation:

1

A

2

B

2

2

C

1

D

1

Fig. 10: Newick rooted: ((A : 2, B : 2) : 1, (C : 1, D : 1) : 2);

This tree contains three interior nodes, which are represented by three pairs of matched
parentheses. Inside the parentheses, separated by commas, are the nodes that are direct
descendants of the interior nodes, respectively. E.g. A and B are direct descendants of
the interior node left to the root and C and D of the one right to the root. These two
interior nodes themselves are direct descendants of the root, which is represented by the
outer pair of parentheses.
Leaves are represented by their names, where a name can be a ‘any string of printable

characters except blanks, colons, semicolons, parentheses and square brackets’ (new [2])
or it may be empty. Note that is also possible to assign names to interior nodes.
Branch lengths can (but do not have to) be included in the representation by putting

a colon followed by a real number after a node.
Every tree ends with a semicolon.

When the Newick Format is used to represent an unrooted tree, an arbitrary node is
chosen as its root. Given that the tree is binary, it is still possible to distinguish between
a rooted and an unrooted tree. Whereas in a rooted binary tree all nodes, in particular
the root, have exactly two direct descendants, the arbitrary root in an unrooted binary
tree has three. All other interior nodes, however, have two direct descendants.
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3

A2

B

2

C

1

D

1

Fig. 11: Newick unrooted: ((A : 2, B : 2) : 3, C : 1, D : 1);

7.2 Calculation of the Fair Proportion Index

The Fair Proportion Index can be computed easily using its definition (see (4.1)). In
a first step, we loop over the edges in T and calculate their contribution θ(e) to the
Fair Proportion Index by dividing the edge length λe by the number of descendants
De, respectively. In a second step, we loop over the leaves of T and calculate the Fair
Proportion Index by summing up those contributions for all edges on the path from the
leaf to the root.

Algorithm 1 Fair Proportion Index
1: n := number of leaves of T ;
2: for e = 1, . . . , 2n− 2 do . 2n− 2 is the number of edges
3: θ(e) := λe

De
;

4: end for
5: for l = 1, . . . , n do
6: FP (l) :=

∑
e θ(e),

7: where the sum runs over all edges e on the path from l to the root;
8: end for

7.3 Calculation of the modified Shapley Value for rooted trees

The modified Shapley Value can either be derived from the Fair Proportion Index or be
calculated directly from its definition. The latter is quite complex, thus for large trees
the former is preferable. Still we present both ways.

Using (5.7) the modified Shapley Value for a taxon a can be derived from the Fair Pro-
portion Index by subtracting PD(a)/n.

Algorithm 2 Modified Shapley Value - Version 1
1: Use Algorithm 1 to calculate FP (l) for all l ∈ N ;
2: for l = 1, . . . , n do
3: Calculate PD(l);
4: S̃V (l) = FP (l)− PD(l)

n
;

5: end for
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Calculation of the modified Shapley Value by direct use of its definition (3.2) requires
more considerations.
At first, one needs a way to represent the 2n subsets of N = {1, . . . , n}, reflecting all

possible coalitions of taxa. One possible solution is to assign a binary number of length
n to every coalition, where a 1 at position i means that taxa i is present in the coalition,
whereas a 0 denotes that it is not. E.g. for n = 3 taxa this leads to the binary numbers
000, 100, 010, 001, 110, 101, 011 and 111. Note that the digit sum of each binary number
equals the size of the coalition.
In a second step, the PD(S) has to be calculated for every coalition S ⊆ N , which is

done by summing over all edge weights λe in the minimal spanning tree containing S and
the root.
Based on this we can loop over all taxa, take into account all coalitions |S| ≥ 2 (since

we are looking for S̃V ) that contain the current taxon and calculate its modified Shapley
Value.

Algorithm 3 Modified Shapley Value - Version 2
1: n := number of leaves of T ;
2: Represent the 2n subsets of N by binary numbers;
3: for all Coalitions S do
4: Calculate PD(S) :=

∑
e λe,

5: where the sum runs over all edges e in the minimal spanning tree
6: containing the taxa in S and the root;
7: end for
8: for l = 1, . . . , n do
9: S̃V (l) := 0;
10: for all Coalitions S do
11: if l is member of S then
12: |S| := digit sum of binary number representing S;
13: S̃V (l) := S̃V (l) + (|S| − 1)!(n− |S|)!(PD(S)− PD(S \ {l}));
14: end if
15: end for
16: S̃V (l) := S̃V (l)

n!
;

17: end for

7.4 Calculation of the Shapley Value for unrooted trees

Although the definition of the Shapley Value is the same for both rooted and unrooted
trees, its computation differs. While the Shapley Value for rooted trees has to be calculated
by direct use of its definition or by derivation from the Fair Proportion Index, the Shapley
Value for unrooted trees can be calculated by considering all splits induced by the edges
of the tree. This approach is less complex than the calculation by definition and therefore
needs less computing time. This leads to the following definition (taken from Haake et al.
[6]).
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Definition 4. Let T be a phylogenetic tree with leaf set N and edge set E. For a ∈ N
and e ∈ E, the removal of edge e splits T into two subtrees. Let C(a, e) denote the set of
leaves in the subtree that contains a and let F (a, e) denote the set of leaves in the other
subtree, that is “far” from a. Let c(a, e) := C(a, e) and f(a, e) := F (a, e) be the number
of leaves in the individual sets, respectively.

Example 5. Consider the following unrooted tree:
a

b

c

d

e

Fig. 12: Splits in unrooted trees

For taxon a, we for example have C(a, e) = {a} and F (a, e) = {b, c, d}, thus c(a, e) = 1

and f(a, e) = 3 and for taxon d, we have C(d, e) = {b, c, d} and F (d, e) = {a}, thus
c(d, e) = 3 and f(d, e) = 1.
Note that we always have c+ f = n.

Based on this knowledge, the Shapley Value for a taxon a from T can be calculated as
follows:

φ(a) =
∑
e∈E

λe
f(a, e)

nc(a, e)
, (7.1)

where the sum runs over all edges of T with edge weights λe and n is the total number of
taxa (see Haake et al. [6], Martyn et al. [10]).

Example 6. Again consider the tree used by (Hartmann [7]), but think of it as unrooted
(see Fig. 13). The Shapley Value for taxon b calculates as:

4

b

2

c 2

f
2

1d

1

e 1

Fig. 13: Unrooted 5-leaf tree

φ(b) = 2 · 4

5 · 1
+ 2 · 1

5 · 4
+ 4 · 3

5 · 2
+ 2 · 1

5 · 4
+ 1 · 2

5 · 3
+ 1 · 1

5 · 4
+ 1 · 1

5 · 4
=

8

5
+

2

20
+

12

10
+

2

20
+

2

15
+

1

20
+

1

20

= 3 7
30
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Analogously we get φ(c) = 3 7
30
, φ(d) = 159

60
, φ(e) = 159

60
and φ(f) = 217

30
.

In order to compute the Shapley Value for unrooted trees, in a first step loop over all
edges e and consider the bipartition of the leaf set N into two subsets N1(e) and N2(e),
induced by the removal of e. Let n1(e) and n2(e) be the number of elements in N1(e) and
N2(e), respectively. Then use (7.1) to calculate the Shapley Value for a taxon a. Note that

f(a, e) =

n1(e) if a ∈ N2(e)

n2(e) if a ∈ N1(e)
and c(a, e) =

n2(e) if a ∈ N2(e)

n1(e) if a ∈ N1(e)
.

Algorithm 4 Shapley Value for unrooted trees
1: n := number of leaves in T ;
2: for e = 1, . . . , 2n− 3 do
3: Calculate the split of the leaf set N induced by the removal of edge e;
4: N := N1(e)

⋃
N2(e);

5: n1(e) := |N1(e)| and n2(e) := |N2(e)|;
6: end for
7: for l = 1, . . . , n do
8: SV (l) := 0;
9: for e = 1, . . . , 2n− 3 do
10: if l ∈ N1(e) then
11: f(l, e) := n2(e) and c(l, e) := n1(e);
12: else
13: f(l, e) := n1(e) and c(l, e) := n2(e);
14: end if
15: SV (l) := SV (l) + λe

f(l,e)
n·c(l,e) ;

16: end for
17: end for

7.5 Implementation

The computation of the Shapley Value and the Fair Proportion Index was done in the
programming language Perl (Version 5-14), including modules from BioPerl (Version
1.6.901-4; Stajich [14]), and tested under the Linux Distribution Linux Mint 16 Petra on
a 64-bit computer.

Modules needed to run the scripts are:

• strict (a perl pragma to restrict unsafe constructs)
• warnings (a perl pragma to control optional warnings)
• Try::Tiny (for error handling)
• Bio::TreeIO
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• Bio::Tree::Tree

• Bio::Tree::Node

The last three are part of the BioPerl package and provide some helpful tools when
dealing with phylogenetic trees. We will shortly describe their functionality.

• Bio::TreeIO

is a Parser for Tree files. It allows to read in trees from data streams and creates
Bio::Tree::TreeI objects. Bio::TreeIO supports different tree formats, of which
the Newick Format was chosen in this project.

• Bio::Tree::Tree

inherits Bio::Root::Root, Bio::Tree::TreeFunctionsI and Bio::Tree::TreeI

and allows to access several characteristics of the input tree. Methods used in this
project were:

– $tree->get_nodes() to obtain a list of all nodes in the tree
– $tree->get_root_note() to access the root of the tree
– $tree->get_leaf_nodes() to receive a list of all leaves in the tree
– $tree->get_lineage_nodes($node), which returns a full list of the ancestors

of a node

• Bio::Tree::Node

inherits Bio::Root::Root and Bio::Tree::NodeI and provides several tools to get
information about certain nodes in the tree. The methods used in this project were:

– $node->each_Descendent(), which returns a list of the direct descendants of
a node

– $node->branch_length() to obtain the edge length between a node and its
direct ancestor (note that the root node therefore does not have a value assigned
to it)

– $node->id(), which returns the human readable identifier of the node, e.g. the
species name of a leaf

– $node->is_Leaf() to check whether a node is a leaf or an internal node
– $node->get_all_Descendents(), which returns a list of all descendants of a

node (not just the direct descendants)

Based on that, we can now introduce the two Perl-scripts for computing the Shapley
Value and the Fair Proportion Index. Both are command line programs.

7.5.1 shapley.pl

shapley.pl computes the (modified) Shapley Value for both rooted and unrooted trees.
Since it uses Algorithm (3) for the former, it is not advisable to use it for large rooted
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trees. Storing the PD for all 2n subsets of N consumes a lot of memory and slows down
the performance.

The command

~$ ./shapley.pl --help

yields an overview of the possible options to be chosen when running the script:

shapley.pl

Compute the (modified) Shapley Value

for phylogenetic trees in Newick format.

Please make sure that BioPerl is installed on your machine!

SYNOPSIS:

shapley.pl --in=filename (--out=filename)

OPTIONS:

--out=filename

Generates an output file containing the computed values.

DESCRIPTION:

Example: shapley.pl --in=myTree --out=myResults

As indicated above, this program is not suitable for larger rooted trees, i.e. trees with
many taxa. The following table shows, how both computation time and memory usage
rise with growing tree size:

Number of taxa Computation Time (in sec) Memory Usage (in kb)

5 <1 264
10 <1 428
15 5 7700
20 247 241004
21 529 484632
22 1185 923404

Table 9: Performance of shapley.pl for rooted trees

The analysis was done for randomly generated trees of different sizes by use of the Perl-
module Memory::Usage. Its aim is not to provide absolute numbers for computation
time and memory usage, but to indicate an overall tendency. The results show, how
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both computation time and memory usage grow exponentially with the number of taxa,
reflecting the exponential growth of coalitions to be considered in the computation of the
Shapley Value for rooted trees.
Performing the same analysis for unrooted trees, shows that Algorithm (4) is less ex-

pensive and therefore also suitable for a great number of taxa:

Number of taxa Computation Time (in sec) Memory Usage (in kb)

20 <1 264
50 <1 396
100 <1 528
500 2 2120
1000 9 4124
2000 37 8036

Table 10: Performance of shapley.pl for unrooted trees

7.5.2 diversity_indices.pl

Depending on the options set by the user, diversity_indices.pl computes the Fair
Proportion Index and/or the Shapley Value of one or several trees. Unlike shapley.pl,
it is suited for large trees, since it uses the Algorithms (1, 2 and 4), which are not as
expensive as Algorithm (3).

The command

~$ ./diversity_indices.pl --help

yields an overview of the possible options to be chosen when running the script:

diversity_indices.pl

Compute the Fair Proportion Index and (modified) Shapley Value

for phylogenetic trees in Newick format. Note,that the FP-Index

is only defined for rooted trees, while the SV-Index can be

calculated for both rooted and unrooted trees.

Please make sure that BioPerl is installed on your machine!

SYNOPSIS:

diversity_indices.pl --in=filename (--out=filename) (--values=value)

OPTIONS:

--out=filename
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Generates an output file containing the computed values

--values=value

Choose the diversity index to calculate.

Options for value:

0 Calculation of FP

1 Calculation of SV

If the option is not chosen or used with an argument other than {0,1}

both the Fair Proportion Index and the Shapley Value will be

calculated.

DESCRIPTION:

Example: diversity_indices.pl --in=myTree --out=myResults --values=0

The following table gives an overview of the performance of diversity_indices.pl.
The analysis was done for the computation of the modified Shapley Value. As it is derived
from the Fair Proportion Index, the numbers already include the computation of the
latter. As indicated above, diversity_indices.pl is much faster than shapley.pl and
therefore should be preferred in practice.

Number of taxa Computation Time (in sec) Memory Usage (in kb)

20 <1 264
50 <1 396
100 <1 524
500 <1 1740
1000 1 3384
2000 3 6608
5000 14 16696

Table 11: Performance of diversity_indices.pl for rooted trees
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8 Discussion

Biodiversity conservation often implies deciding on the species to conserve, since resources
are limited. Two simple indices, which can be used as a guideline in the decision-making
process, are the Shapley Value and the Fair Proportion Index. Both indices indicate the
distinctiveness of a taxon and thus its importance to overall biodiversity. The Shapley
Value is difficult to calculate, but offers an appealing biological interpretation. It can be
seen as the average contribution a taxon makes to biodiversity and thus proves to be a
sensible prioritization criterion. The Fair Proportion Index, in contrast, lacks a biological
explanation, but is easier to calculate. Therefore it has been preferred to the Shapley
Value in practical applications. This practice is justified as the Fair Proportion Index
and the Shapley Value are actually the same or at least strongly correlated depending on
whether the original or modified version of the latter is used. The modified Shapley Value,
however, can be derived from the Fair Proportion Index, which allows for a less complex
computation than by direct use of its definition.
Despite the strong correlation between the Fair Proportion Index and the modified

Shapley Value, the two measures do not always result in the same ranking order of taxa.
While they naturally lead to the same ranking order in case of ultrametric trees, it is
possible to find non-ultrametric trees, in which they differ. Surprisingly, this seems to
happen the more often the larger the tree. So far, we have not found a sufficient explanation
for this phenomenon, thus it could be subject to further research. Still, it may be advisable
to not only rely on the mere ranking order provided by either the Fair Proportion Index
or the Shapley Value, but to compare the indices and examine the tree structure before
deciding on the taxa to conserve.
A more profound approach to biological conservation might also have to take into

account parameters not considered by neither the Fair Proportion Index nor the Shapley
Value, such as the variable costs involved in conserving taxa or their individual risks of
extinction. This makes the decision-making process more thorough, but also more complex
to put into practice.
Therefore the Fair Proportion Index and the Shapley Value, which can be calculated

and realized more easily, can be considered a useful, even though not exclusive, tool in
biological conservation.
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