Dr. Maha Youssef


Dr. Maha Youssef

Institut für Mathematik und Informatik
Walther-Rathenau-Str. 47
17489 Greifswald


Telefon +49 3834 420 4660


Research Interests

  • Numerical Methods for PDEs.
  • Machine Learning for Parametric Differential Equations.
  • Stochastic differential equations.
  • Approximation theory.



  • M. Youssef: “Poly-Sinc Collocation Method for Solving Coupled Burgers' Equations With a Large Reynolds number”, New Methods in Numerical Analysis, Springer, 2019.
  • M. Youssef, G. Baumann: “Troesch’s problem solved by Sinc methods”, Mathematics and Computers in Simulation 162, 31–44, 2019.
  • M. Youssef, R. Pulch: “Poly-Sinc Solution of Stochastic Elliptic Differential Equations”, https://arxiv.org/abs/1904.02017, 2019.
  • M. Youssef, G. Baumann: “Weighted Lagrange Interpolation Using Orthogonal Polynomials: Stenger's Conjecture, Numerical Approach”, http://arxiv.org/abs/1910.08387, 2019.
  • M. Youssef: “Poly-Sinc Approximation Method”, PhD thesis, German University in Cairo, Postgraduate Journal, 2017.
  • M. Youssef, G. Baumann: “On Bivariate Poly-Sinc Collocation Applied to Patching Domain Decomposition”, Applied Mathematical Sciences, 11(5), pp. 209-226, (2017).
  • M. Youssef, G. Baumann: “Collocation Method to Solve Elliptic Equations, Bivariate Poly-Sinc Approximation”, Journal of Progressive Research in Mathematics (JPRM), ISSN: 2395-0218, 7(3), pp. 1079-1091 (2016).
  • M. Youssef, H. A. El-Sharkawy, G. Baumann: “Lebesgue Constant Using Sinc Points”, Advances in Numerical Analysis, 2016, Article ID 6758283, 10 pages, (2016). http://dx.doi.org/10.1155/2016/6758283.
  • M. Youssef, H. A. El-Sharkawy, G. Baumann: “Multivariate Poly-Sinc Approximation, Error Estimation and Lebesgue Constant”, Journal of Mathematics Research, Canadian Center of Sc. and Ed., 8(4), (2016). http://dx.doi.org/10.5539/jmr.v8n4p118
  • M. Youssef, G. Baumann: “Solution of Lane-Emden Type Equations Using Polynomial-Sinc Collocation Method”, Int. Sc. Jr., Journal of Math., 2(1), (2015).
  • M. Youssef, G. Baumann: “Solution of Nonlinear Singular Boundary Value Problems Using Polynomial-Sinc Approximation”, Commun. Fac. Sci. Univ. Ank. Series A1, 63(2), pp. 41-58, (2014).
  • F. Stenger, M. Youssef and J. Niebsch “Improved Approximation via Use of Transformations“ Multiscale Signal Analysis and Modeling, Eds. X.Shen and A.I.Zayed, New York, Springer, pp. 25-49, (2013).

siehe auch Professur für Angewandte Mathematik