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Chapter 1

Introduction

Nothing in biology makes sense except in the light of evolution.

Theodosius Dobzhansky

The Universe is a grand book which cannot be read until one first learns
to comprehended the language and become familiar with the characters
in which it is composed. It is written in the language of mathematics.

Galileo Galilei

Configurations of nodes and connections occur in many applications of real world
problems, they are modeled by combinatorial structures which are usually called
graphs. The script attempts to describe the world of graph theory with emphasis on
counting of specific kinds of graphs, and in particular trees. A specific focus will be
given to its applications in biology.1

Graphs lend themselves as natural models of transportation as well as commu-
nication networks. They are among the most basic of all mathematical structures.
Correspondingly, they have many different versions, representations and incarnations.
The fact is that graph theory serves as a mathematical model for any system involving
a binary relation.
Numerous challenging problems in graph theory have attracted the attention and
imagination of scientists in the area of ”network science”, where a network will be
a graph with some additional properties. In particular, we restrict the structure of
the graph, label some vertices, give graphs an order, consider collection of trees, add
functions on graphs, . . ..

Trees were first used in 1847 by Kirchhoff in his work on electrical networks. They
were later redeveloped and named by Cayley in order to enumerate different isomers

1Networks cover a wide range in form of metabolic networks, protein-protein interactions, genetic
regulatory networks, food webs and several more, compare [179].
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of specific chemical molecules. Since that time, enumerative methods for counting
various classes of graphs, including trees, have been developed, but are still far from
completely scientific.

As it became accepted that evolution was to be understood in terms of Mendelian
genetics and Darwinian natural selection, so too it became clear that this understand-
ing could not be sought only at a qualitative level.2 A fundamental problem is the
reconstruction of species’ evolutionary past, which is called the phylogeny of those
species. The underlying principle of phylogeny is to try to group ”living entities”
according to their level of similarity. Trees are widely used to represent evolutionary
relationships.3 In biology, for example, the dominant view of the evolution of life is
that all existing organisms are derived from some common ancestor and that a new
species arises by the splitting of one population into two or more populations that do
not cross-breed, rather than from the mixing of two populations into one. Here, the
high level history of life is ideally organized and displayed as a tree. This was already
seen by Darwin in 1859, [63]:

The affinities of all the beings of the same class have sometimes been
represented by a great tree. I believe this simile largely speaks the truth.
The green and budding twigs may represent existing species; and those
produced during each former year may represent the long succession of
extinct species... The limbs divided into great branches, and these into
lesser and lesser branches, were themselves once, when the tree was small,
budding twigs; and this connexion of the former and present buds by
ramifying branches may well represent the classification of all extinct and
living species in groups subordinate to groups... From the first growth of
the tree, many a limb and branch has decayed and dropped off, and these
lost branches of various sizes may represent those whole orders, families,
and genera which have now no living representatives, and which are known
to us only from having been found in a fossil state... As buds give rise by
growth to fresh buds, and these, if vigorous, branch out and overtop on
all a feebler branch, so by generation I belive it has been with the great
Tree of Life, which fills with its dead and broken branches the crust of
the earth, and covers the surface with its ever branching and beautiful
ramifications.

Darwin spoke of ”descent with modification”, which is the central phrase of biological
evolution, it refers to a genealogical relationship of species through time. These
relationships are described in a phylogenetic tree, which can therefore be thought
of as a central metaphor for evolution, providing a natural and meaningful way to
order data and containing an enormous amount of evolutionary information within
its branches.4

2Nowak [181]: ”Evolution has became a mathematical theory.”
3Thorley and Page [185]: ”The holy grail of phylogenetics is the reconstruction of the one true

tree of life.”
4Note that in Darwin’s fundamental book The origin of species [63] there is exactly one figure,
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Note, that there are several difficulties. Darwin’s evolutionary tree is neither obvious,
nor easy to find. In a letter to Huxley he wrote: ”The time will come, I believe,
though I shall not live to see it, when we shall have fairly true genealogical trees of
each great kingdom of Nature.” The main problem is that all known exact algorithms
need exponential time; frequently more time than that taken by the evolutionary
processes themselves.5

Moreover, we should note that the collection of all living entities is much more difficult,
Doolittle [68]:

It has been argued that the ”Tree of Life” is perhaps really a ”Web of
Life”, as mechanisms such as hybridization, recombination and swapping
of genes probably play a role in evolution.

In the widest sense, a classification scheme may represent simply a convenient
method for organizing a large set of data so that the retrieval of information may be
made more efficiently. In this sense, classification is the beginning of all science.6

A classification is the formal naming of a group of individuals N .7 The following
statements are pairwise equivalent.

• C is a classification for N .

• C represents a rooted N -tree.

• C consists of a series of partitions for N which become finer and finer.

More and more discrete structures are used in genetics, biochemistry, evolution, agri-
culture, experimental design and other parts of modern biology. Here, the results
are very powerful and the research frontier are perhaps more accessible than in some
more traditional areas of applied mathematics.8

We will embed this question in the context of counting graphs in general. It is
not the purpose of this script to provide a complete survey of counting methods for
trees and related networks, but it should summarizes all facts which are important in
biological applications. In particular, we will focus on the counting of specific classes

and this shows the description of the evolutionary history by a tree.
Historically, this was a new idea: The concept of species having a continuity through time was
only developed in the late 17th century; higher life forms were no longer thought to transmute into
different kinds during the lifetime of an individual. It took over 150 years from the development of
this concept before a rooted tree was proposed by Darwin.

5Penny [189]: ”The real evolution runs faster than the calculation can follow it.” But nature
- Performs many computations in parallel; and
- Does not check all possibilities.

6Classifications has played a central role in other fields too. In particular, the classification of the
elements in the periodic table, given by Mendeleyev 150 years ago, has had a profund impact on the
understanding of the structure of atoms. Another example in astronomy is the classification of stars
in the Hertzsprung-Russel plot, which has strongly affected theories of stellar evolution.

7Everitt [81]: ”Naming is classifying.”
8To radically simplify, in the cases, human beings and behaviour may be classified into classes

named by low, medium and high.
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of graphs, which are used in phylogeny. On the other hand, the present script will dis-
cuss several relatives which are counts specific structures in graph theory. All needful
terms and definitions will be included. Often several different solutions to the same
problem will be provided so that the reader has an opportunity to become acquainted
with a variety of methods.

There is something to be said for regarding enumerative methods in mathemati-
cal sciences. Although Euler counted certain types of graphs, the major activity in
graphical enumeration launched in the mid of 19’th century, starting with Kichhoff’s
matrix-tree theorem and Cayley’s spanning tree enumeration. In further investiga-
tions of discrete objects this question are become more and more interest. Discrete
Mathematics is devoted to the study of discrete objects, these are a finite or countable
set of distinct and unconnected elements; which are separated and discontinuous. It
is used whenever objects are counted, when relationships between finite or countable
sets are studied, and when processes involving a finite number of steps are analyzed.
A main reason for the growth of the importance of discrete mathematics is that infor-
mation can be stored and manipulated by computing machines in a discrete fashion.
Graph counting is a well-established subject in discrete mathematics, but it is more
than only simple enumeration, it also include

• Questions whether certain objects exist. More exactly, for a problem Π with S
as set of solutions

1. Decide whether S = ∅ or not.

2. Find a member of S.

3. Find all members of S.

4. Calculate |S|.

There are the following implications:

3 ⇒
{

4
2

}
⇒ 1.

Furthermore there is the interest to solve these questions algorithmically.

• Generally speaking, optimization is concerned with finding an object that fulfills
some predetermined requirements and minimizes one or more given objective
functions. This is quite common model which covers a wide variety of prob-
lems.
Combinatorial reasoning underlies all considerations of discrete programming
problems: Analysis of the speed and logical structure of problems entails com-
binatorial mathematics.

• Combinatorics is the ”Art of Counting”.
Many of the problems can be phrased in the form ”How many ways...?”, ”Does
there exist an object such that...?” or ”Can we construct... ?”

11



Combinatorics is a modern mathematical field, which now has rapidly increas-
ing research activity with applications in many areas of science. More and more
combinatorial structures are used in genetics, biochemistry, evolution, agricul-
ture, experimental design and other parts of modern biology. Here, the results
are very powerful and the research frontiers are perhaps more accessible than
in some more traditional areas of applied mathematics.

• Knowing the number of graphs with a particular property may enable to es-
timate the length of an algorithmic calculation. Here we describe the bor-
der between linear, quadratic, cubic, . . ., polynomial, exponential and super-
exponential growing of (time-) amount to deal with graphs and to understand
the complexity of algorithms.9 Moreover, the investigations about counting
graphs are interesting in view of the ”borderline” between P and NP.
In particular, counting graphs and trees are helpful to see why the reconstruction
of evolutionary processes are hard in the sense of complexity.

• Counting problems are closely associated with probability. Indeed, any problem
of the kind ”How many objects are there which . . .” has the closely related form
”What fraction of all objects . . .”, which in turn can be posed as ”What is the
probability that a randomly chosen object . . .?” when expressed in terms of the
theory of probability. In this sense Laplace defined probability.
There is a deep interplay between graph enumeration and the theory of ran-
dom graphs. Here the asymptotic behavior of the counting functions plays an
important role.

• It will be give the possibility to introduce qualitative parameters in graph theory.
In particular, we can exactly describe what terms ”dense”, ”sparse”, ”rare” and
”almost all/no” does mean.
On the other hand, we must be carefully, what we consider: Concrete objects
or structural properties. In other terms, what we count: Distinguished graphs
or isomorphic classes.10

• We also investigate graph theory as a part of geometry and topology. In view of
the description of relations and polyhedra as specific graphs it will be possible
to count such objects.

The present script will reflect about all of these topics.
For readers which are interested in further facts about counting, generating and stor-
ing graphs and trees we give a list of books which continue our considerations and
give several new hints and investigations. In particular:

1. Harary: Graph Theory; [121].11

9For centuries almost all mathematicians believed that any mathematical problem could be solved
using an algorithm. However, this view has been questioned over the course of time as more and more
problems have arisen for which no algorithmic solution has been found or for which the algorithms
are too difficult to deal.

10For instance, for 10 vertices the number of unlabeled trees is 106, but there are 100 millions of
labeled trees.

11Including a big list of references about counting graphs.

12



2. Harary, Palmer: Graphical Enumeration; [122].12

3. Martin: Counting: The Art of Enumerative Combinatorics; [173].

4. Stanley: Enumerative Combinatorics; vol 1 and 2, [226], [227].

We will only use methods which are present in the first classes of undergraduate
studies. Further studies need more mathematics than are given here; in particular
methods of higher algebra, which are beyond the scope of the present script13, see
the pioneering work by Polya [192].
A background in in elementary set theory, mathematical logic, linear algebra, proba-
bility theory and calculus is assumed. If several facts about discrete and combinatorial
mathematics are not present for the reader, this book includes an appendix with the
most of the important results in short reviews.14 Additionally, we will give references
for further reading.
As an textbook the present script contains several exercises, but there are vast differ-
ences in level of these questions: a) Exercises which are straightforward from the text;
b) Problems which need a longer discussion; and c) Open tasks. Many enumerating
problems are still unsolved.

The present script originates from lectures, seminars, and exercises given by the
author at Greifswald University (Germany), the University of Bielefeld (Germany),
the Massey University, Palmerston North (New Zealand) and the University of Sci-
ence, Hanoi (Vietnam). It is the extended version of the book ”Counting Graphs -
An Introduction with specific Interest in Phylogeny” [55].

I hope the present book, as a mixture of textbook, handbook and monograph, will
be balanced in the sense of understanding and research interest.
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Almost nothing in this script is original, except perhaps by mistake. The author
accepts full responsibility for any mistakes that may have occur. He is absolutely

12Which is the mostly devoted monograph about determining the number of graphs until today.
13although we will give several hints of this approach
14In a restricted sense the present script can be read as an introduction into Discrete Mathematics

with focus in Graph Theory.
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interested in all hints which decrease the number of errors, which show new facts and
exercises, and which give further applications.15

15the reader can understand each mistake as a subtle form of an exercise.

14



Chapter 2

Sets

Set theory, founded by Cantor in the second half of the 19th century, has profoundly
transformed mathematics. It is the foundation of modern mathematics.

2.1 Basics

A set is a collection of distinct objects. Usually, but not exclusive, we refer to the
objects in a set as the elements. If S is a set and x is an element which belongs to S,
we write x ∈ S. A set S′ is a subset of a set S, written S′ ⊆ S, if every element of
S′ is also an element of S. A proper subset is a subset with fewer elements than the
whole set. Two sets S and S′ are equal if they contain the same elements. In other
words

S = S′ if and only if S ⊆ S′ and S′ ⊆ S. (2.1)

Two sets with no common elements are called disjoint.
The empty set ∅ containing no element. The empty set is subset of any set S:

∅ ⊆ S. (2.2)

The proof of this observation is not so simple. Do you see why?

In general, one cannot list the elements of a, in particular infinite, set. Nor it is
practical to list the elements of a very large finite set. To determine a set of either
kind we specify a property P shared by all of its elements and not belonging to any
element not in the set:

S = {x ∈ U : x satisfies P}. (2.3)

Then S designate the set of all elements for which the property P is true. P is called
the defining property. Then the logical universe of discourse defines the set by all
objects which posses an attribute.
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With |S| we denote the number of elements of the set S. We can count the elements
of S by finding a bijection (a one-to-one map) between S and {1, . . . , n}.1
At first several simple facts about counting of sets: Let R and S be sets in a universe
U .

|Sc| = |U | − |S|.

|R \ S| = |R| − |R ∩ S|.

|R ∪ S| = |R|+ |S| − |R ∩ S|.

|R4S| = |R ∪ S| − |R ∩ S| = |R|+ |S| − 2|R ∩ S|.
Consider the power set of a set:

P(S) = {S′ : S′ ⊆ S}. (2.4)

Each subset S′ of a set S = {x1, . . . , xn} can be uniquely described by a 0/1-sequence
b1, . . . , bn of length n:

bi =
{

1 : xi ∈ S′

0 : otherwise

Obviously, there are 2n such sequences. This implies that the power set P(X) contains
more elements than the set X itself.

Observation 2.1.1 |P(S)| = 2|S|.

2.2 Infinite Sets

The concept of infinity has always fascinated philosophers and theologians, but that
was avoided or met with open hostility throughout most of the history of mathemat-
ics. Only within the last two centuries mathematicians dealt with it head on and
accepted infinity as a number.
How can we count the elements of an infinite set? We have to compare the sets; that
means we ask for a bijective mapping between these sets.

One dogma that we have to brush aside is the statement ”A part is less than the
whole”. This is indisputably true for finite sets, but it loses its force when we try to
apply it to infinite sets. Consider the following mapping:

f : IN → IN : n 7→ 2n. (2.5)

This sets up a one-to-one correspondence between the set of natural numbers and
a proper part of this set: the set of even numbers, which was already observed by
Galilei.2 In about 1888 Dedekind introduced the concept of infinite sets by the fol-
lowing definition.

1Here we assume that S is a finite set; later we will discuss the counting of infinite sets.
2Here is the story of Hilbert’s hotel: It is a hotel with an infinite number of rooms. All the rooms

are full, but more guests are waiting outside. We amke space by the following operation: the guest
occupying room 1 moves to room 2, the occupant from room 2 moves to room 4, and so on, all the
way down the line, an infinite number of newcomer can be placed in the empty rooms.
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An infinite set is as one that can be placed into a one-to-one correspon-
dence with a proper subset of itself.

2.3 Transfinite numbers

At the end of the 19th century Cantor developed the idea of levels of infinity. To
carry a notion of equal size of two finite or infinite sets X and Y we define that this
is given if a bijective mapping from X onto Y exists. In other terms, the elements
of X and Y may be paired with each other in such a way that to each element of X
there corresponds one and only one element of Y and vice versa. This notation for
finite sets coincides with the ordinary notation of equality of numbers. It is a straight
foreward generalization for infinite sets.

Since the notion of equal size is an equivalence relation, we can associate a number,
called cardinal number, with every class of equal-sized sets.3 The cardinal numbers
of infinite sets are called transfinite numbers.
To compare transfinite numbers, we define for two sets X and Y that the number of
elements in X is less than or equal the number of elements in Y , written |X| ≤ |Y | if
there is a subset Y ′ of Y such that X and Y ′ are of equal size.
The following theorem is crucial, well-known in common sense, but not simple to
prove, compare [6].

Theorem 2.3.1 Let X and Y be sets. Then it holds

a) |X| ≤ |Y | or |Y | ≤ |X|.

b) (Cantor-Bernstein) If |X| ≤ |Y | and |Y | ≤ |X|, then |X| = |Y |.

We call sets with as many elements as the set of natural numbers countable. A
countable set is the smallest of the infinite sets:

Lemma 2.3.2 Any infinite set contains a countable set.
3But note, that the set of all sets does not exists. The original paradox was given by Russel in

1901. Consider
R = {x : x is a set with x /∈ x}. (2.6)

Then it holds
R ∈ R if and only if R /∈ R. (2.7)

Russel [208]:

In terms of classes the contradiction appears even more extraordinary. A class as one
may be a term of itself as many. Thus the class of all classes is a class; the class of
all the terms that are not men is not a man, and so on. Do all the classes that have
this property form a class? If so, it is as one a member of itself as many or not? If it
is, then it is one of the classes which, as ones, are not members of themselve as many,
and vice versa. Thus we must conclude again that the classes which as ones are not
members of themselve as many do not form a class - or rather, that they do not form
a class as one, for the argument cannot show that they do not form a class as many.
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Proof. We can select a countable subset from an infinite set S in the following
way: Take any element x0 from S. Clearly, we have not exhausted the elements of S
with the selection of x0, so we can proceed to select a second element x1. After that
we select a third element x2 and so on. We have thus extracted from S a countable
subset of indexed element. 2

Example 2.3.3 The set Γ of integers is countable, since the function f : IN → Γ is
one-to-one and onto:

f(n) =
{
−n

2 : n even
n+1

2 : otherwise

It is more difficult to show that the rational numbers are also countable. Obviously
this is paradoxical: Between any two rational numbers we can still find infinitely many
rational numbers. So it is quite unclear how we should go about numbering them.
First we prove that IN2 is countable. Consider the following tabulation, which is
called Cantor’s first diagonal principle.

x \ y 0 1 2 3 4 . . .

0 0 1 3 6 10 . . .
1 2 4 7 11 16 . . .
2 5 8 12 17 23 . . .
3 9 13 18 24 31 . . .
4 14 19 25 32 40 . . .
...

...
...

...
...

...

That means at first we count all pairs (x, y) with x + y = 0, then all pairs with
x + y = 1, then with x + y = 2, and so on. The pair (x, y) lies in position number x
between (0, x + y) and (x + y, 0). Before (0, x + y) we have exactly

1 + 2 + . . . + (x + y) =
(x + y)(x + y + 1)

2

pairs. Hence,

Theorem 2.3.4 The function

c : (x, y) 7→ (x + y)(x + y + 1)
2

+ x, (2.8)

called the Cantor function, is a bijective mapping from IN2 onto IN .

The inverse functions for c are not so easy to find. For n = c(x, y) we define
x = l(n) and y = r(n), understanding as

x = left of n and (2.9)
y = right of n, (2.10)
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such that n = (l(n), r(n)). That means

2n = (x + y)(x + y + 1) + 2x.

In view of 2.3.4 we have

8n + 1 = 4 · 2n + 1
= 4 · ((x + y)(x + y + 1) + 2x) + 1
= 4 · ((x + y)2 + 3x + y) + 1
= (2x + 2y)2 + 12x + 4y + 1,

such that
8n + 1 = (2x + 2y + 1)2 + 8x (2.11)

and
8n + 1 = (2x + 2y + 3)2 − 8y − 8. (2.12)

Hence,
2x + 2y + 1 ≤ b

√
8n + 1c < 2x + 2y + 3, (2.13)

or, equivalently,

x + y + 1 ≤ b
√

8n + 1c+ 1
2

< x + y + 2. (2.14)

This implies

x + y + 1 =
⌊
b
√

8n + 1c+ 1
2

⌋
. (2.15)

Compared with 2.3.4 this equation gives us

Corollary 2.3.5 The functions

l(n) = x = n− 1
2

⌊
b
√

8n + 1c+ 1
2

⌋⌊
b
√

8n + 1c − 1
2

⌋
(2.16)

r(n) = y =
⌊
b
√

8n + 1c+ 1
2

⌋
− l(n)− 1 (2.17)

are the inverse mappings of the Cantor function c.

As an exercise discuss all these questions for the following function from IN2 onto
IN .

x \ y 0 1 2 3 4 . . .

0 0 2 4 6 8 . . .
1 1 5 9 13 17 . . .
2 3 11 19 27 35 . . .
3 7 23 39 55 71 . . .
...

...
...

...
...

...
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With 2.3.4 in mind, we have several considerations. For instance, the set of all rational
numbers is countable. But we count tuples of natural numbers:

Corollary 2.3.6 For any integer n ≥ 2 there exist a bijective mapping c(n) from INn

onto IN .

Proof. Let c be a bijective mapping from IN2 onto IN , compare 2.3.4. We create
c(n) by the following recursive equations:

c(2) = c, (2.18)
c(n)(x1, . . . , xn) = c(n−1)(c(x1, x2), x3, . . . , xn), (2.19)

n = 3, 4, . . ..
The inverse functions l and r by using 2.3.5. For

c(n)(x1, . . . , xn) = x

we have

xn = r(x)
xn−1 = r ◦ l(x)

...
x2 = r ◦ l ◦ · · · ◦ l(x)
x1 = l ◦ l ◦ · · · ◦ l(x).

2

2.4 Words

An alphabet A is a nonempty and finite set of distinguished letters (or symbols).
Important examples of alphabets are:

• A = {0, 1} is an alphabet which plays a central role in coding theory. Moreover,
we consider a word of 0’s and 1’s as a description of some individual, perhaps a
genetic sequence in which each entry may take on one of two possible values.

• The English language needs 26 letters: A,B,...,Y,Z, and a letter for the empty
space. German needs several letters more: Ä, Ö, Ü, ß. More generally

alphabet language # letters

ASCII Computer 128
Cyrillic Russian 32
Latin German a,...,z,ä,ö,ü,ß 30
Latin English a,...,z 26
Greek Greek α,...,ω 24
Hebrew ℵ,... 22
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• A = {a, c, g, t} is the alphabet which codes the nucleotides of a DNA molecule,
where a stands for adenine, c for cytosine, g for guanine and t for thymine. A
similar alphabet, namely A = {a, c, g, u} is used for the nucleotides of RNA,
where u codes for uracil.
Derived from this alphabet there is a binary alphabet A′ = {r, y} in which r
codes for a purine (a or g), and y codes for a pyrimidine (c or t).

• The amino acids commonly found in proteins are coded by the alphabet A =
{ala, arg, . . . , val}, where the letters abbreviate the amino acids alanine, argi-
nine,...,valine. In the usual genetic code |A| = 20 amino acids are coded:

One-letter code Three-letter code Name

1 A ala alanine
2 C cys cysteine
3 D asp aspartic acid
4 E glu glutamatic acid
5 F phe phenylalanine
6 G gly glycine
7 H his histidine
8 I ile isoleucine
9 K lys lysine
10 L leu leucine
11 M met methionine
12 N asn asparagine
13 P pro proline
14 Q gln glutamine
15 R arg arginine
16 S ser serine
17 T thr threonine
18 V val valine
19 W trp tryptophan
20 Y tyr tyrosine

A word (also called a sequence, a string) over an alphabet A is a finite sequence of
letters from A. The length |w| of the word w is the number of letters composing it.
We additionally define an empty word λ of length 0.4

Note that the description of a word contains a left-to-right order of the letters. We
4Fitch [86] gives the following exemplary genome sizes written in its length base pairs (bp):

Domain Organism Size (bp)

Viruses HIV 9 · 103

Bacteria E. coli 4 · 106

Eukaryotes mammals 3 · 109

Roughly speaking, the order of genome sizes is kbp, Mbp and Gbp for Viruses, Prokarya and Eukarya,
respectively.
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will write w = a1a2 . . . an for a word w consisting of the letters a1, a2, . . . an in this
order.5

We say that two words w = a1a2 . . . an and w′ = b1b2 . . . bm over the same alphabet
are equal, and we write w = w′, if n = m and ai = bi for all i = 1, . . . , n.
Let w = a1a2 . . . an and w′ = b1b2 . . . bm be two words over the same alphabet A.
The concatenation of w and w′, written ww′, is the word a1a2 . . . anb1b2 . . . bm over
A. Hence, |ww′| = |w|+ |w′|. Moreover, we will write wk = w . . . w︸ ︷︷ ︸

k−times

and w0 = λ for

each word w.
An denotes the set of all words over A with length exactly n. Clearly, An is a finite
set:

Theorem 2.4.1 |An| = |A|n.

On the other hand, we consider the set

A? =
⋃
n≥0

An, (2.20)

which contains all words over the alphabet A.
Equipped with concatenation as a binary operation it satisfies the following properties:

Closure: For all v, w ∈ A?, vw ∈ A?;

Associativity: For all u, v, w ∈ A?, (uv)w = u(vw);

Identity: For the unity λ it holds that for any v ∈ A? it is vλ = λv = v.

(Usually a set with such a operation is called a semigroup.)

Theorem 2.4.2 For any alphabet A the set A? is infinite, but countable.6

Proof. To see the countableness, we give a method to count the words. First count
the word λ, then the members of A itself, then the words of length 2, and so on. More
precisely, let A = {a1, . . . , an}, then

5The Central Dogma of Molecular Biology describes the interaction of these polymers:

DNA acts as a template to replicate itself;
DNA is also transcribed into RNA; and
RNA is translated into protein.

More precisely,

• Integral form: DNA makes RNA makes protein.

• Differential form: Changed DNA can make changed protein.

For instance human insulin is composed by two words (chains):

A: gly ile val glu gln cys cys thr ser ile cys ser leu tyr glu leu glu asn tyr cys asn.

B: phe val asn gln his leu cys gly ser his leu val glu ala leu tyr leu val cys gly glu arg gly phe phe
tyr thr pro lys thr.

6Also for a one-element alphabet A = {|}: A? = {λ, |, ||, |||, |4, |5, . . .}.
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IN A?

0 λ
1 a1

2 a2

...
...

n an

n + 1 a1a1

n + 2 a1a2

...
...

2n a1an

2n + 1 a2a1

2n + 2 a2a2

...
...

3n a2an

3n + 1 a3a1

...
...

n2 + 1 ana1

...
...

n2 + n anan

n2 + n + 1 a1a1a1

...
...

2

If there is an order < of the letters in A, the set A? is endowed with the following
linear order <L of the words, which is called the lexicographic order: For two words
w = a1a2 . . . an and w′ = b1b2 . . . bm we define w <L w′ if

1. n < m and a1 = b1, . . . , an = bn; or

2. a1 = b1, . . . , ak = bk for k < n,m and ak+1 < bk+1.

We write w ≤L w′ if w <L w′ or w = w′.7

All the sets we have constructed so far have been countable. This naturally leads
us to ask whether all infinite sets are countable. But the situation turns out to be
more complicated than that; uncountable sets exist, and of more than one cardinality.
First we show, using Cantor’s second diagonal principle

Theorem 2.4.3 The set of all (infinite) binary sequences is not countable.

7Note that this order is fundamentally different from the order which we used to count A?. For
instance there are infinitely many words between a1 and a2.
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Proof. Assume that there is a counting of {0, 1}∞ given by the following double
infinite array:

IN {0, 1}∞

0 b00, b01, b02, b03, . . .
1 b10, b11, b12, b13, . . .
2 b20, b21, b22, b23, . . .
3 b30, b31, b32, b33, . . .
...

...

The sequence b0, b1, b2, . . . with bi = 1− bii cannot be in this table. 2

2.5 Functions

The essence of mathematics resides in its freedom.

Georg Cantor

Let X and Y are nonempty sets. F(X, Y ) denotes the collection of all functions
f : X → Y .
Not hard to see:

Theorem 2.5.1 For finite sets X and Y we have

|F(X, Y )| = |Y ||X|. (2.21)

2.5.1 justifies the notation Y X = F(X, Y ).8

Theorem 2.5.2 The set F(X, Y ) contains more elements than X whenever Y con-
tains at least two elements.9

Proof. First we show that there are as many functions in F(X, Y ) as elements in
X. Consider for each x0 ∈ X the function f [x0] defined by

f [x0](x) =
{

y1 : x = x0

y2 : otherwise

8A function
f : {0, 1}n → {0, 1} (2.22)

is called a Boolean function. Since |{0, 1}n| = 2n we find by 2.5.1 that the number of Boolean
functions increase astronomically, namely superexponentially:

|F({0, 1}n, {0, 1})| = 22n
(2.23)

9The proof will show that this assertion is true for finite and infinite sets X.
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where y1 and y2 are distinct elements of Y .
If x0 6= x1 then f [x0] 6= f [x1].
Now assume that there is a bijective mapping

x ∈ X 7→ f [x] ∈ F(X, Y ). (2.24)

Choose yx ∈ Y such that yx 6= f [x](x). The function f defined by

f : x 7→ yx, (2.25)

cannot be one of the function f [x]. 2

As an exercise show that the power set P(X) contains more elements than X.
Consequently, a largest cardinal number, both finite and transfinite, does not exist,
see

X,P(X),P(P(X)),P(P(P(X))), . . . . (2.26)

With this in mind the cardinal number of all subsets of a countable set, which is a
set of size ℵ0 is a bigger form of infinity. Furthermore, we have an infinite sequence
of bigger and bigger infinite numbers:

ℵ0, 2ℵ0 , 22ℵ0
, 222ℵ0

, . . . . (2.27)

The next bigger number after ℵ0 Cantor called ℵ1.

ℵ1 ≤ 2ℵ0 . (2.28)

Cantor believed that ℵ1 was identical with the size of the real numbers, which means
that in (2.28) equality holds. This is Cantor’s continuum hypothesis, which is equiv-
alent to saying that there is no infinite set with a cardinality between that of the
integers and the reals; in other words the number of real numbers is the next ”level”
of infinity above the countable sets. In 1940 Gödel showed that Cantor’s guess can
never be disproved from the other axioms of mathematics. In 1963 Cohen showed
that it could not proved either. That means, that the continuum hypothesis is nei-
ther true nor false, but undecidable, that means independent from the other axioms
of set theory.

2.6 Discrete Mathematics

Roughly speaking: Mathematics can be concerned as the essentially scientific part of
any thoery. When investigating a ”real world problem” we make a lot of assumptions.
The logical combination of these assumptions yields hints to the solution of the prob-
lem. Mathematics gives the possibility to order and to verify scientific facts.
Discrete mathematics devoted to the study of discrete objects, these are

• a finite or countable set of distinct and unconnected elements; which are
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• separated and discontinuous.

Discrete mathematics is used whenever objects are counted, when relationships be-
tween finite or countable sets are studied, and when processes involving a finite number
of steps are analyzed.
To justify this view we prove the invariance of the class of countable sets under count-
ing.

Theorem 2.6.1 Let S1, S2, . . . be a countable number of finite sets, then the union
S =

⋃
i Si is finite or countable.

Proof. We define sets R1, R2, . . . where Ri contains the elements of Si which do
not belong to preceding sets, that means

R1 = S1 (2.29)
Ri = Si \ (S1 ∪ S2 ∪ . . . ∪ Si−1) (2.30)

for i ≥ 2. Then the Ri are disjoint and
⋃

i Ri = S.
Let

Ri = {bi1, bi2, . . . , bimi}. (2.31)

If S = {bij} is infinite, then we define a bijective function f from S onto the natural
numbers by

f(bij) = m1 + m2 + . . . + mi−1 + j. (2.32)

2

Theorem 2.6.2 A countable union of countable sets is countable.

Proof. Let S1, S2, . . . be a countable number of countable sets, and suppose that
ai1, ai2, . . . are the elements of Si. We define sets R2, R3, R4, . . . as follows:

Rk = {aij : i + j = k}. (2.33)

Observe that each Rk is a finite set and⋃
k

Rk =
⋃
i

Si. (2.34)

Then we apply 2.6.1. 2
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Chapter 3

Selecting objects

The study of ways of choosing (= selecting) and arranging objects from a given
collection and the study of other kinds of problems relating to counting the number
of ways to do something are key questions in discrete mathematics.

Consider a set of n objects. How many ways are there of selecting k, 0 ≤ k ≤ n,
from these? We will distinguish two kinds of choosing:

• ordered or unordered;

• repetitions allowed or not.

This gives us four distinct questions.

3.1 The number of subsets

As introductory example choose two elements from {1, 2, 3, 4}, where we respect its
order, but ignore repetitions:

1,2 1,3 1,4
2,1 2,3 2,4
3,1 3,2 3,4
4,1 4,2 4,3

More systematically, first recall that there are n! = n · (n − 1) · (n − 2) · · · 2 · 1 ways
to place n objects in a linear arrangement. If we select only k objects, we start with
n possibilities and count down k numbers, the last one will be n− k + 1. Hence, we
have the following theorem.

Theorem 3.1.1 The number of subsets with k ordered elements of a set with n ele-
ments is

n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
. (3.1)
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From this we can easily derive one of the most important counting results.

Theorem 3.1.2 The number of subsets containing k elements of a set with n ele-
ments is

n(n− 1) · · · (n− k + 1)
k!

=
n!

k!(n− k)!
. (3.2)

Proof. In 3.1.1 we counted ordered subsets. If we want to know the number of
unordered subsets, then every subset was counted exactly k! times, namely all pos-
sible orderings of the elements. So we have to divide this number by k! to get the
assertion. 2

As an example choose two elements from {1, 2, 3, 4}:

1,2 1,3 1,4
2,3 2,4

3,4

The number defined in 3.1.2 is such an important quantity that there is a special
notation for it: (

n

k

)
=

n!
k!(n− k)!

, (3.3)

read ”n choose k”. These numbers are also called binomial coefficients; we will later
see why.1 In view of 3.1.1 we will write

(
X
k

)
for the collection of all subsets of X with

exactly k elements. This gives for the power set

P(X) =
|X|⋃
k=0

(
X

k

)
. (3.4)

3.2 Selections with Repetitions

Recall what we discussed until now for selecting k objects from a set of n:

ordered unordered

no repetitions n!
(n−k)!

(
n
k

)
repetitions allowed nk ?

As an example choose ordered two elements from {1, 2, 3, 4} where repetitions are
allowed:

1Of course, for a calculation of a simple binomial coefficients it is not pleasant to use this formula;
better: (n

k

)
=

n

k
·

n− 1

k − 1
·

n− 2

k − 2
· · ·

n− k + 1

1
.
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1,1 1,2 1,3 1,4
2,1 2,2 2,3 2,4
3,1 3,2 3,3 3,4
4,1 4,2 4,3 4,4

Finally, ”?” means that we have to determine the number of ways these are to choose
k objects from n, where repetitions are allowed, but where order does not matter.
As an example choose two elements from {1, 2, 3, 4}:

1,1 1,2 1,3 1,4
2,2 2,3 2,4

3,3 3,4
4,4

More systematically,

Theorem 3.2.1 The number of unordered choices of k from n, with repitiotions al-
lowed is (

n + k − 1
k

)
=
(

n + k − 1
n− 1

)
. (3.5)

Proof. Any choice will consist of x1 choices of the first object, x2 choices of the
second object, and so on, where the condition x1 + . . . + xn = k is satisfied.
We can represent such collection x1, . . . , xn of integers by a binary sequence:

0, . . . , 0︸ ︷︷ ︸
x1−times

, 1, 0, . . . , 0︸ ︷︷ ︸
x2−times

, 1, 0, . . . , 0︸ ︷︷ ︸
x3−times

, 1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
xn−times

(3.6)

In this representation there will be n − 1 times the digit 1 and k times the digit 0,
and so each sequence will be of length n + k− 1, containing exactly k 0s. Conversely,
any such sequence corresponds to a nonnegative integer solution of x1 + . . .+xn = k.
The k 0s can be in any of the n + k− 1 positions, so the number of such sequences is(
n+k−1

k

)
. 2

From the first fact in the proof we get

Theorem 3.2.2 The number of solutions for the equation x1 + . . . + xn = k in
nonnegative integers xi equals (

n + k − 1
k

)
. (3.7)

3.3 The Principle of Inclusion and Exclusion

Consider an experiment with specific garden plots have to be treated with lime,
potash, urea and phosphate. According to the design, 32 plots are to be treated
with just one of the individual chemicals and perhaps some others, 16 plots are to
be treated with a pair of chemicals and perhaps some others, eight are to be treated
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with three of the chemicals and perhaps another, and four are to be treated with all
four chemicals. How many plots are needed if none are to receive no treatment at all?

Suppose some event can occur in α ways and a second event can occur in β ways,
and suppose both events cannot occur simultaneously. Then both events can occur
in α + β ways. More generally, if Ei, i = 1, . . . , n, are n events such that no two of
them can occur at the same time, and that if Ei can occur in αi ways, then one of
the events can occur in α1 + α2 + . . . + αn ways. In other terms,

Observation 3.3.1 (The addition principle)
For a collection of pairwise disjoint sets the following holds:

|S1 ∪ . . . ∪ Sn| = |S1|+ . . . + |Sn|. (3.8)

Remember that the addition principle tells us that the size of the union of a
collection of disjoint sets is the sum of the sizes of the sets. To determine the size of
a union of overlapping sets, we clearly must use information about the way the sets
overlap.
Consider two sets S1 and S2. Note that if we add |S1| and |S2|, we include the size
of S1 ∩ S2 twice in this sum. So we get the formula

|S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2|. (3.9)

Similar for three sets: In the sum |S1|+ |S2|+ |S3| an element of S1 ∩ S2 is included
at least twice; an element of S1 ∩ S2 ∩ S3 three times. Hence,

|S1 ∪ S2 ∪ S3| = |S1|+ |S2|+ |S3|
−|S1 ∩ S2| − |S1 ∩ S3| − |S2 ∩ S3|
+|S1 ∩ S2 ∩ S3|. (3.10)

A formula such as 3.10 is called an inclusion-exclusion formula, and we can generalize
it to:

Theorem 3.3.2 Let S1, . . . , Sn be a collection of sets. Then

|
n⋃

i=1

Si| =
n∑

i=1

|Si| −
∑

1≤i<j≤n

|Si ∩ Sj |

+
∑

1≤i<j<k≤n

|Si ∩ Sj ∩ Sk| ∓ . . .− (−1)n|
n⋂

i=1

Si|. (3.11)

Corollary 3.3.3 Let S1, . . . , Sn be subsets of a finite set S. Then the number of
elements of S that are in none of the subsets is

|S|−
n∑

i=1

|Si|+
∑

1≤i<j≤n

|Si∩Sj |−
∑

1≤i<j<k≤n

|Si∩Sj∩Sk|± . . .+(−1)n|
n⋂

i=1

Si|. (3.12)
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Proof. Since

|Sc
1 ∩ Sc

2 ∩ . . . ∩ Sc
n| = |S| − |S1 ∪ S2 ∪ . . . ∪ Sn| (3.13)

the equation follows by 3.3.2. 2

A very useful generalization of 3.3.2 is the principle of inclusion-exclusion (PIE):

Theorem 3.3.4 Let U be a set of objects, called the universe, and let P1, . . . , Pr

be a collection of properties which the elements of U may or may not have. Let
N(i, j, . . . , s) denote the number of elements of U which possess the properties Pi, Pj , . . . , Ps

(and possibly some others as well). Then the number of elements of U having none
of those properties is

|U | −
r∑

i=1

N(i) +
∑

1≤i<j≤r

N(i, j)

−
∑

1≤i<j<k≤r

N(i, j, k)± . . . + (−1)rN(1, 2, . . . , r). (3.14)

Proof. Consider Si = {x ∈ U : x possess Pi}. Then N(i, . . . , s) = |Si ∩ . . . ∩ Ss|
holds and (3.14) is the same as 3.3.3. 2

We want to emphasize an important logical point about applying this formula. To
use it in a counting problem, one must select a universe and a collection of subsets in
that universe such that the elements to be counted are the subset of elements in the
universe that are in none of the given subsets. That is, the given subsets represent
properties not satisfied by the elements being counted.
For many applications the quantity N(i, j, . . . , s) depends only from the number of
properties which possess, and we get

Theorem 3.3.5 Let U be a set of objects, called the universe, and let P1, . . . , Pr be a
collection of properties which the elements of U may or may not have. Let Nk denote
the number of elements of U which posssess k of the properties. Define N0 = |U|.
Then the number of elements of U having none of those properties is

r∑
k=0

(−1)k

(
r

k

)
Nk. (3.15)

3.4 Counting functions

Recall that F(X, Y ) denotes the collection of all functions f : X → Y . We have
already count the cardinality of this set: |F(X, Y )| = |Y ||X|. We will generalize the
observation 2.5.1 for several collections of F(X, Y ). Consider f ∈ F(X, Y ), and let
|X| = m and |Y | = n. The image of the function f is the set of elements of Y which
actually arise as a value f(x) for some x ∈ X:

imf = {y ∈ Y : y = f(x) for some x ∈ X}. (3.16)
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For each function f the image is a nonempty subset of Y . How many of these functions
have an image of size k?

• If f takes on precisely k values then X can be partitioned into k parts X1, . . . , Xk,
where Xi consists of those elements of X which are mapped onto the ith mem-
ber of imf .
A partition of X into k parts can be done in S(m, k) ways, where S(m, k)
denotes the Stirling number of the second kind, which counts the number of
partitioning a set of m elements into k parts.

• We have to choose the image of f in Y .
This can be done in

(
n
k

)
ways.

• We have to pair off each Xi with one of the members of imf .
This can be done in k! ways.

Altogether, we obtain

Theorem 3.4.1 The number of functions f : X → Y where |X| = m, |Y | = n and
|imf | = k equals

S(m, k) ·
(

n

k

)
· k!. (3.17)

Thus, since k can take any value from 1 to n, and using 2.5.1 we get

Corollary 3.4.2 The number of functions f : X → Y where |X| = m and |Y | = n
equals

|F(X, Y )| = nm =
n∑

k=1

S(m, k) ·
(

n

k

)
· k!. (3.18)

Now we consider specific classes of functions.
A function f ∈ F(X, Y ) is called a surjection if each element of Y belongs to the
image of f . Fonto(X, Y ) denotes the set of all surjections from X onto Y . Of course
this set is empty if m < n.
A surjection f is characterized by the condition imf = Y .
A 1-1 function is called an injection, and F1−1(X, Y ) denotes the set of all injections
from X into Y . Of course this set is empty if m > n. An injection is characterized
by the condition |imf | = |X|.
Recall that a function f is called a bijection if f is both, a surjection and an injection.
Fbi(X, Y ) denotes the set of all bijections from X onto Y . Of course this set is empty
if m 6= n.
Altogether, as a special case of 3.4.2 we obtain

Theorem 3.4.3 Consider two sets X and Y with m and n elements, respectively.

a) Assume that m ≥ n. The number of surjections from X onto Y equals

|Fonto(X, Y )| = n! · S(m,n). (3.19)
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b) Assume that m ≤ n. The number of injections from X into Y equals

|F1-1(X, Y )| = n!
(n−m)!

. (3.20)

c) Assume that m = n. The number of bijections from X onto Y equals

|Fbi(X, Y )| = n!. (3.21)

Let f : X → Y be a surjection, then if each element of Y occurs as the image f(x)
of some element x ∈ X. Let the universe be given by

U = {f : X → Y = {y1, . . . , yn}},

where |X| = m. How many surjections are there in U? First, it is easy to see that

|U| = nm. (3.22)

Let Pi be the property: yi is not in the image of f , i = 1, . . . , n. Then, in view of
2.5.1,

N(i) = (n− 1)m, (3.23)

since each of the m elements of X can be mapped onto any of the n−1 other elements
of Y . Because this is independent of the choice of yi we get N1 = (n−1)m. Similarly,
Nk = (n− k)m. Then we can apply 3.3.5:

n∑
k=0

(−1)k

(
n

k

)
Nk = nm − n(n− 1)m +

(
n

2

)
(n− 2)m ∓ . . . + (−1)n(n− n)m.

Hence,

Theorem 3.4.4 Consider two sets X and Y with m and n elements, respectively.
The number of surjections from X onto Y equals

|Fonto(X, Y )| =
n−1∑
k=0

(−1)k

(
n

k

)
(n− k)m. (3.24)

One immediate consequence of this result is a formula for the Stirling number of
the second kind, see K.3.2.
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Chapter 4

Networks

4.1 Graphs

We have to introduce several knowledge of graphs and networks.1 A graph G is
defined to be a pair (V,E) where

• V is a nonempty and finite set of elements, called vertices, and

• E is a finite family of elements which are unordered pairs of vertices, called
edges.

The notation e = uv means that the edge e joins the vertices u and v. In this case,
we say that u and v are incident to this edge and that u and v are the endvertices
of e. Two vertices u and v are called adjacent in the graph G if uv is an edge of G.
Different edges e1 = vw and e2 = vw are called multiple or parallel edges. A graph
with multiple edges is called a multigraph. Any graph is also a multigraph.2

N(v) = NG(v) denotes the set of all vertices adjacent to the vertex v. This set of all
neighbors is called the neighborhood of v.
For a vertex v of a graph G the degree gG(v) is defined as the number of edges which
are incident to v. If G has no parallel edges, then the cardinality of N(v) = NG(v) is
the degree of the vertex v:

g(v) = gG(v) = |NG(v)|. (4.1)

If we sum up all the vertex degrees in a graph, we count each edge exactly twice, once
from each of its endvertices. Thus,

Observation 4.1.1 In any graph G = (V,E) the equality∑
v∈V

gG(v) = 2 · |E| (4.2)

1Since the terminology of graph theory is not standard, the reader may find some differences
between terms used here and in other texts.

2In any case, we assume that u 6= v, that means we do not admit loops.
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holds. Particularly, in every graph the number of vertices with odd degree is even.

A graph G is said to be a complete graph if any two vertices are adjacent. A
complete graph with n vertices has exactly(

n

2

)
=

n(n− 1)
2

(4.3)

edges, and each vertex is of degree n− 1.
Let V1 and V2 be two sets with n1 and n2 elements, respectively. The complete
bipartite graph Kn1,n2 is defined by

Kn1,n2 = (V1 ∪ V2, {vw : v ∈ V1, w ∈ V2}). (4.4)

The complete bipartite graph Kn1,n2 has n1 + n2 vertices and n1 · n2 edges.
In general a graph G = (V,E) is called bipartite if it is possible to split V into subsets
V1 and V2 such that every edge joins a vertex of V1 to a vertex of V2. In other terms,
a graph is bipartite if and only if one can color the set of vertices such that the two
endvertices of an edge have different colors. The following theorem should be an
exercise for the reader.

Theorem 4.1.2 A graph is bipartite if and only if it contains no cycle of odd length.

QD denotes the D-dimensional hypercube. That is the graph whose set of vertices
consists of all binary vectors from {0, 1}D, with an edge joining two vectors if and
only if they differ in exactly one coordinate.3

Observation 4.1.3 We may also define the hypercube QD inductively by letting Q0

be a single vertex and then obtaining QD by taking two copies of QD−1 and joining
corresponding vertices.

For practice the reader should prove the following facts.4

Theorem 4.1.4 The hypercube QD has the following properties:

a) QD has 2D vertices and D · 2D−1 edges;

3The hypercube and its relatives play an important role in coding theory, see [217], and in the
theory of molecular evolution, see [70] and [256].
As sequence data became readily available, the biological units are written in words constructed from
the letters corresponding either to amino acids, which generate proteins, or to nucleotides forming
DNA or RNA molecules. By comparing such words one can construct evolutionary (phylogenetic)
trees showing how closeness of the words in the tree corresponds to the closeness of the unit. First, it
was used by Fitch and Margoliash in their landmark paper [84] from 1967 dealing with cytochrome c
sequences. As the basic idea, they construct a metric space which forms a model for the phylogeny.
Further suggested by Fitch [85] in 1971, and explicitly written by Foulds et al. [91] in 1979. Unfor-
tunately, this idea does not give a simple method. (And seems to have been rather forgotten in the
field of biology after tree-building program packages became widely available.) Compare Bern and
Graham [26].

4Hint: For the statement given in a) use 4.1.3 and solve the recurrence f(D) = 2·f(D−1)+2D−1.
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b) the hypercube is regular, that means each vertex in QD has degree D;

c) QD is bipartite.

Let G = (V,E) be a graph. Then G′ = (V ′, E′) is called a subgraph of G if V ′ is
a subset of V and E′ is a subset of E such that any edge in E′ joins vertices from V ′.
In other terms,

V ′ ⊆ V (4.5)

and

E′ ⊆ E ∩
(

V ′

2

)
. (4.6)

In the case V ′ = V we call G′ a spanning subgraph.

Let W ⊆ V be a set of vertices, then

G[W ] = (W,E ∩
(

W

2

)
) (4.7)

is called the induced subgraph of W in G = (V,E), that means all edges of G that
connect vertices of W are also edges of G[W ].
When modifying a graph G = (V,E), to delete an edge e means simply to remove e
from E:

G− e = (V,E \ {e}). (4.8)

However, to delete a vertex v, one must remove v from V and all edges that are
incident to v:

G− v = G[V \ {v}]. (4.9)

4.2 Multigraphs

The term graph, as the name of a system of points and lines, came from the phrase
graphic notation, first introduced in chemistry by Frankland, and adopted by Crum
Brown in 1884. Each atom of a chemical structure is represented by the vertex of
a multigraph and each atomic bonds are represented by edges. The degree of the
vertices represent the valences of the atoms. For instance

atom abbreviation valence

carbon C 4
oxygen O 3
nitrogen N 2
hydrogen H 1.

Thus the corresponding vertices in the associated graphs have similar degrees.
As example we consider the Kekule’s structure which are the atomic structure of
molecules.
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• Water: ({H1,H2, O}, {H1O,H2O}).

• Amino acids: is a multigraph G = (V,E) with an α-carbon atom Cα such that
G− Cα has four components:

(i) The amino-group ({H1,H2, N}, {H1N,H2N}).
(ii) The carboxy-group ({C,O1, O2,H}), {CO1

1, CO1
2, CO2, C2H}.

(iii) A single hydroxy atom H.
(iv) The residue, which give the amino acid its name.

• A hydrocarbon is a compound formed from hydrogen atoms and carbon atoms.

• A benzene molecule C6H6 has double bonds for some pairs of its atoms, so it
is modeled by a multigraph: Six carbon atoms forms a cycle, alternating by
parallel edges; each carbon atom is adjacent with a hydrogen atom.

• A benzenoid system is a connected collection of benzene molecules in such a way
that two benzene molecules are either disjoint or have one common edge. To
each benzenoid system we can assign a benzenoid graph taking the vertices of
benzenes as the vertices of the graph, and the sides of benzenes as its edges. This
graph is planar, 2-connected, bipartite, and all internal regions are hexagons.

With help of our graph-theoretical concepts we can discuss which molecule structures
can theoretically exists, and in how many ways.

4.3 Graph partitioning

The problem of graph partitioning is to divide the set of vertices into a several number
of (disjoint) parts of a given size such that the number of edges connecting vertices
of different parts is minimized. This number is called the cut-size.5

At first note that there are many ways for dividing, see C.3.1:

Observation 4.3.1 Let G = (V,E) be a graph with n vertices. Let ni be positive
integers with n1 + . . . + nk = n, then the number of partitioning V equals

n!
n1! · n2! · · ·nk!

. (4.10)

This implies that solving the problem of graph partitioning by simple enumerating
is not an efficient approach. This remains true in the simplest case k = 2, the so-called
bi-section problem. The number of edges connecting vertices of different parts is at
most n1 · n2 It is not hard to see that for given positive and even integers n1 and n2

with n: + n20n, the maximum cut-size is achieved if and only if

n1 = n2 =
n

2
.

In view of I.2.1 we obtain that the number is a very rapidly growing function:
5This is a first approach to the problem of classification.
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Theorem 4.3.2 The number to divide a graph of n vertices in two parts of nearly
equal parts is roughly

n!
(n/2)!2

≈
√

2
π

2n

√
n

.

Now we go back to our optimization version. We create a simple heuristic algo-
rithm which for te bisection problem.

Algorithm 4.3.3 (Kernighan, Lin [150]) Let G = (V,E) be a graph with n vertices.
Let n1 and n2 be given, n: + n2 = n. Then split V in the following way:

1. Divide V into two parts V1 and V2 of the required size n1 and n2 in any way
you like6;

2. For each pair v and v′ of vertices whereby v lies in one part and v′ in the other
calculate how much the cut-size between the parts would change if interchanging
v and v′;
If no pair reduces the cut-size, then STOP;
Otherwise, find the pair that reduces the cut size by the largest amount and swap
the pair of vertices and repeat the process.

4.4 Connected graphs

A chain is a sequence v1, e1, v2, e2, v3, ..., vm, em, vm+1 of edges and vertices of G such
that the edge ei is incident to the vertices vi and vi+1 for any index i = 1, ...,m.
A chain in which each vertex appears at most once is called a path; more exactly,
the path interconnecting the vertices v1 and vm+1. Then the number m denotes the
length of the path. It is important to understand that the length of a path is the
number of its edges. A single vertex is a path of length 0.
A cycle is a chain with at least one edge and with the following properties: No edge
appears twice in the sequence and the two endvertices of the chain are the same. A
graph which does not contain a cycle is called acyclic.

I. A key notion in graph theory is that of a connected graph. It is intuitively clear
what this should mean: A graph G = (V,E) is called a connected graph if for any
two vertices there is a path (or, equivalently, a chain) interconnecting them. Clearly,

Observation 4.4.1 The relation ”There is a path in G connecting v and v′” is an
equivalence relation on V × V .

The equivalence classes of this relation divide V into subsets, which induce con-
nected subgraphs of G. These classes are called the connected components, or briefly
the components of the graph G. A component is a maximal subgraph that is con-
nected. A connected graph has exactly one component. Of course, the number of
components is an integer between 1 and the number of vertices. In any textbook of
graph theory we find the following facts:

6Maybe randomly.
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Theorem 4.4.2 Let G = (V,E) be a graph with n = |V | vertices and c components.
Then

n− c ≤ |E| ≤ (n− c)(n− c + 1)
2

=
(

n− c + 1
2

)
. (4.11)

In particular, a connected graph has at least n − 1 and at most
(
n
2

)
edges. Con-

versely,

Corollary 4.4.3 Let G = (V,E) be a graph with n vertices. If

|E| >
(

n− 1
2

)
, (4.12)

then G is connected.

A vertex v of a graph G = (V,E) is called an articulation of G if G−v = G[V \{v}]
is disconnected.
An edge e of a graph G = (V,E) is called a bridge if G − e = (V,E \ {e}) contains
one component more than G.

Observation 4.4.4 An edge e of a connected graph G is a bridge if and only if e
does not lie in a cycle of G.

As an exercise prove the following fact.

Theorem 4.4.5 Let G = (V,E) be a graph, and let δ(G) be the minimum degree in
G:

δ(G) = min{gG(v) : v ∈ V }. (4.13)

If

δ(G) ≥ |V | − 1
2

, (4.14)

then G is connected.

Let G = (V,E) be a graph. The complement Gc of G is the graph with the same
set V of vertices, such that two vertices are adjacent in Gc if and only if they are not
adjacent in G: Gc = (V,

(
V
2

)
\ E). Of course, (Gc)c = G.7

For a graph G = (V,E) and its complement Gc = (V,E′) it holds

|E|+ |E′| =
(
|V |
2

)
. (4.15)

Theorem 4.4.6 Any graph and its complement cannot both be disconnected.
7This would not be the case for multigraphs.
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Proof. Let G be a disconnected graph. Suppose that v and v′ are two vertices of
Gc, the complement of G.
If v and v′ belong to different components of G, then both are adjacent in Gc.
If v and v′ belong to the same component of G, say H. Let w be a vertex of some
other component, say H ′ of G. By definition, both v and w, and v′ and w are adjacent
in Gc. In either case, v is connected to v′ by a path in Gc. Thus Gc is connected. 2

II. A graph G = (V,E) is called k-connected if for each pair of different vertices
v and v′ there are k pairwise vertex-disjoint paths interconnecting v and v′, k ≥ 0.

Remark 4.4.7 A graph is k-connected if and only if k is the minimum number of
vertices whose removal results in a disconnected or trivial graph.

The proof one can find in any textbook of graph theory.

Let G be a k-connected graph with n vertices and minimum degree δ(G). Then
it holds k ≤ δ(G) and the number of edges is at least kn/2.8

We generalize 4.4.5 to the following result.

Theorem 4.4.9 Let G = (V,E) be a graph with n vertices. Let k be an integer with
1 ≤ k ≤ n− 1. If

δ(G) ≥ n + k − 2
2

, (4.16)

then G is k-connected.9

Proof. If G is the complete graph Kn, then G is k-connected.
Assume, that G is not complete, and G is not k-connected. Then there exists a set
V ′ with p < k vertices of G such that G[V \ V ′] is disconnected.
Let G1 be a component of G[V \ V ′] with a minimum number of vertices. Since,

8In particular, 2-connected graphs play an important role.

Theorem 4.4.8 Let G be a graph with at least three vertices. Then the following statements are
pairwise equivalent:

• The graph G is 2-connected.

• G does not contain an articulation.

• For any two vertices of G, there is a cycle containing both.

• For any vertex and any edge of G, there is a cycle containing both.

• For any two edges of G, there is a cycle containing both.

9A deep generalization of this theorem for k = 2, which we can find in any text book of graph
theory, is given by

Theorem 4.4.10 (Dirac) Let G = (V, E) be a graph with n vertices. If for each vertex v g(v) ≥ n
2

holds, then G is Hamiltonian, that means there is a cycle containing all vertices of G.
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G[V \ V ′] contains n− p vertices, G1 has at most (n− p)/2 members. If v is a vertex
of G1, then v is adjacent only to vertices of V ′ or other vertices of G1. Consequently,

gG(v) ≤ p +
n− p

2
− 1 =

n + p− 2
2

<
n + k − 2

2
,

which contradicts the hypothesis. 2

4.5 Degree sequences

A sequence g1, g2, . . . , gn of nonnegative integers is called graphical if there is a graph
with n vertices v1, v2, . . . , vn such that g(vi) = gi for i = 1, . . . , n. Of course there is
the question of whether a given sequence is graphical or not.

Firstly, in view of 4.1.1, the sum of degrees in any graph must be an even number.
Secondly,

Theorem 4.5.1 A graph contains at least one pair of vertices whose degrees are
equal.

Proof. Suppose that the graph G has n vertices. Then there appear to be n pos-
sible degree values, namely 0, 1, . . . , n− 1. However, there cannot be both a vertex of
degree 0 and a vertex of degree n− 1. Hence the n vertices of G can realize at most
n− 1 values for the degrees. Consequently, the assertion. 2

But all these conditions are not sufficient. (Example?)10,11

A complete answer to the problem of characterizing the graphical sequences is
given by the following theorem.

Theorem 4.5.3 (Erdös, Gallai, [78]) A non-increasing sequence

S : g1 ≥ g2 ≥ . . . ≥ gn (4.19)
10Remember that we assume that there are no loops in the graph. On the other hand, allowing

loops, we have the following result, which is an exercise for the reader.

Observation 4.5.2 A sequence
S : g1, g2, . . . , gn (4.17)

of nonnegative integers is graphical if and only if the sum of S is even.

11When we are interested in the degree sequence of a connected graph, we have to add the condi-
tions gi ≥ 1 for i = 1, . . . , n (obviously); and

n∑
i=1

gi ≥ 2(n− 1), (4.18)

paying attention to 13.1.2 and 4.6.2.
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of nonnegative integers is graphical if and only if

n∑
i=1

gi ≡ 0(mod 2), (4.20)

and
r∑

i=1

gi ≤ r(r − 1) +
n∑

i=r+1

min{r, gi} (4.21)

for every integer r with 1 ≤ r ≤ n− 1.

For a proof compare [25] or [121].

A much more algorithmically approach is introduced by the following theorem.

Theorem 4.5.4 (Hakimi) A non-increasing sequence

S : g1 ≥ g2 ≥ . . . ≥ gn, (4.22)

where n ≥ 2 and g1 ≥ 1, is graphical if and only if the sequence

S′ : g2 − 1, g3 − 1, . . . , gg1+1 − 1, gg1+2, . . . , gn (4.23)

is graphical.

Proof. Assume that S′ is graphical. This means there is a graph

G′ = (V ′ = {v2, . . . , vn}, E′)

with n− 1 vertices and with S′ as its degree sequence:

gG′(vi) =
{

gi − 1 : 2 ≤ i ≤ g1 + 1
gi : g1 + 2 ≤ i ≤ n.

A new graph G can be constructed in the following way: G = (V ′ ∪ v1, E) with

E = E′ ∪ {v1vi : 2 ≤ i ≤ g1 + 1}.

Then gG(vi) = gi for each vertex vi of G; hence S is graphical.

Conversely, assume that S is a graphical sequence.
Among all graphs with n vertices with degree sequence S, let G = ({v1, . . . , vn}, E)
be one of them such that the sum of the degrees of the vertices adjacent to v1 is a
maximum. We will verify that in G the vertex v1 must be adjacent to g1 vertices
having degrees g2, . . . , gg1+1.
Suppose the converse fact, that means v1 is not adjacent to vertices having degrees
g2, . . . , gg1+1. Then there must exist two vertices vj and vk with gj > gk such that
v1 is adjacent to vk but not to vj . Since g(vj) > g(vk), there must be some vertex
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vr adjacent to vj , but not to vk. Removing the edges v1vk and vjvr and adding the
edges v1vj and vrvk produces a graph H that has the degree sequence S, but the sum
of the degrees of the vertices adjacent to v1 is larger than that in G, a contradiction
to the property of G.
Thus, the vertex v1 must be adjacent to g1 vertices having degrees g2, . . . , gg1+1. Then
the graph G− v1 has degree sequence S′; hence S′ is graphical. 2

Reading 4.5.4 carefully we see that S′ is obtained from S by deleting the first
number g1 and subtracting 1 from exactly the next g1 numbers. The sequence S′ is
shorter and some numbers are smaller. This immediately gives

Algorithm 4.5.5 Let
S : g1, g2, . . . , gn

be a sequence of nonnegative integers.
The following algorithm decides whether S is graphical:

1. If S contains a number exceeding n− 1, then S is not graphical;
Otherwise continue;

2. If all integers in S are 0, then S is graphical;
If S contains a negative integer, then S is not graphical;
Otherwise continue;

3. Sort S into a non-increasing sequence S;

4. Delete the first number, say g, from S;
Subtract 1 from the next g numbers in S;
Return to step 2.

As an exercise decide whether the following sequences are graphical:
0, 0, 1, 3, 3, 3, 4, 4, 5, 5;
7, 6, 1, 0, 0, 2, 2, 2; and
3, 3, 1, 1.
If the answer is ”yes”, find a graph with this degree sequence.

Altogether, there are algorithms which decide in linear time whether a given se-
quence is graphical or not. On the other hand, to describe all possible graphs with a
given sequence or the number of such graphs are, in general, hard problems. Later in
the present script we will answer several subquestions.

4.6 Trees and forests

A tree is defined to be a connected graph without cycles.

A vertex with degree one is called a leaf. A vertex in a tree that is not a leaf is
called an internal vertex.
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Theorem 4.6.1 Each tree with more than one vertex has at least two leaves.

Sketch of the proof. Consider a longest path in the tree. Its endvertices must be
leaves. 2

The following theorem establishes several of the most useful characterizations of
a tree. Each contributes a deeper understanding of the structure of this basic type of
graphs. In our further investigations we will use these equivalences permanently.

Theorem 4.6.2 Let G = (V,E) be a graph with n vertices, where n > 1.12 Then the
following properties are pairwise equivalent (and each characterizes a tree):

• G is connected and has no cycles.

• G is connected and contains exactly n− 1 edges.

• G has exactly n− 1 edges and has no cycles.

• G is maximally acyclic; that means G has no cycles, and if a new edge is added
to G, exactly one cycle is created.

• G is minimally connected; that means G is connected, and if any edge is re-
moved, the remaining graph is not connected.

• Each pair of vertices of G is connected by exactly one path.

Proof. We will only show that a tree with n vertices has n− 1 edges. The remain-
ing statements should be exercises for the reader.

The proof uses induction. A tree with exactly two vertices has one edge; the result
follows for n = 2.
Assume that the result is true for all trees with less than n vertices. Consider a tree T
with n vertices. In view of 4.6.1 T contains a leaf v. Obviously T−v is a tree with n−1
vertices, and by the induction hypothesis, with n−2 edges. Thus T has n−1 edges. 2

As a consequence of our considerations, we are interested in the distribution of
vertices of a given degree in a tree. Let T = (V,E) be a tree with n vertices. ni

denotes the number of vertices of degree i and ∆ = ∆(T ) the maximum degree in T :

∆(T ) = max{gT (v) : v ∈ V }. (4.24)

Then, of course,
n1 + n2 + . . . + n∆ = n. (4.25)

In view of 4.1.1 and 4.6.2, we have

n1 + 2 · n2 + . . . + ∆ · n∆ = 2|E| = 2n− 2. (4.26)

Subtracting this equation from two times (4.25) yields
12By definition a graph with one vertex and without edges is also a tree.

44



Theorem 4.6.3 It holds that

n1 = 2 +
∆(T )∑
i=3

(i− 2) · ni, (4.27)

for any tree T , where ni denotes the number of vertices of degree i and ∆(T ) is the
maximum degree in the tree.

Consequently,

a) Considering only trees without vertices of degree two, the number of internal
vertices is less than the number of leaves and a binary tree has the maximum
possible number of internal vertices for a given number of leaves.

b) Each tree T with more than one vertex has at least ∆(T ) leaves.

Another consequence is that trees can be recognized in linear time:

Observation 4.6.4 Trees can be generated recursively by appending repeatedly leaves
starting with one vertex and vice versa leads to an elimination scheme where repeatedly
leaves are deleted.

An obvious generalization: A forest is defined as a graph whose connected com-
ponents are trees. That means, in view of 4.6.2, a forest is

• an acyclic graph, or equivalently;

• a graph in which each edge is a bridge.

Observation 4.6.5 Each forest is a bipartite graph.

Theorem 4.6.6 Let G be a forest with n vertices and c components. Then G contains
exactly n− c edges.

Proof. Let Gi = (Vi, Ei), i = 1, . . . , c be the components of G. Each component
is a tree, and 4.6.2 says

|Ei| = |Vi| − 1.

Summing up all equations, the addition principle gives the assertion. 2

4.7 The matrix of adjacency

Representing graphs by matrices remains important as a conceptual tool, and it helps
us bring the power of linear algebra to graph theory.

Let G = (V,E) be a graph and assume that the vertices are labeled, i.e. V =
{v1, ..., vn}, that means that A is based on an ordering chosen for the vertices. Then
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we define the matrix of adjacency A(G) = (aij)i,j=1,...,n by

aij =
{

1 : the vertices vi and vj are adjacent
0 : otherwise.

For any graph G the matrix A(G) is symmetric and

detA(G) = 0. (4.28)

For a multigraph G we similarly define the matrix of adjacency by

aij = number of edges from vi to vj . (4.29)

The number of elements in the matrix is n2.13

The matrix of adjacency contains all information about the structure of the graph.14

As an example we consider the Petersen graph

Gpetersen = ({v1, . . . , v5, w1, . . . , w5}, E)

with

E = {vivi+1 : i = 1, . . . , 4} ∪ {v5v1}
∪{viwi : i = 1, . . . , 5}
∪{w1w3, w3w5, w5w2, w2w4, w4w1}.

Or equivalently,

A(Gpetersen) =



1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1


I. Let A = (aij) be the adjacency matrix for the graph G = (V = {v1, ..., vn}, E).

Then, obviously, the equation aij = 1 means that there is a chain of length 1 from vi

to vj . Now consider the k-th power of A.

13If the number of edges is small in comparison to n2, then many of the elements are 0. Then
the amount of memory capacity is excessively big. In such a case storage by adjacency lists, where
we store with each vertex vi a list containing all vertices that are adjacent to vi, are more useful.
Compare [101].

14The adjacency matrix of a graph does depend on the labeling of the vertices; that is, a different
labeling of the vertices may result in a different matrix, but they are closely related in that one can
be obtained from the other simply by interchanging rows and columns.
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Theorem 4.7.1 Let A = A(G) = (aij)i,j=1,...,n be the adjacency matrix for the graph
G = (V = {v1, ..., vn}, E). Let

Ak = (a(k)
ij )i,j=1,...,n (4.30)

be the k-th power of A.
The coefficient a

(k)
ij is the number of different chains of length exactly k from the

vertex vi to the vertex vj.

Proof. Using induction over k.
For k = 0, 1 the assertion is obvious.
Now let k > 1.

a
(k)
ij =

n∑
l=1

a
(k−1)
il alj . (4.31)

By the induction hypothesis a
(k−1)
il is the number of different chains of length exactly

k − 1 from vi to vl. Whenever l and j are adjacent we can continue such chains to
chains of length k. 2

Hence, the graph G is connected if and only if for any pair of distinct vertices vi

and vj there is a number k = k(i, j) between 1 and n− 1 such that a
(k)
ij > 0.

II. Each (connected) graph G = (V,E) is a metric space: Note that the length of
a path is defined as the number of its edges. A distance ρ on V is given by

ρ(v, v′) = length of a shortest path between v and v′ in G, (4.32)

for two different vertices v and v′, and ρ(v, v) = 0.
The length of a shortest path between v and v′ in G can be (easily) found with an
algorithm created by Dijkstra [67].15,16 For any connected graph G = (V,E) the pair
(V, ρ) is a metric space, called the metric closure of G.17

15which is a consequence of the following principle:

Observation 4.7.2 (Bellman [21]) Let G = (V, E) be a graph, and let v and v′ be two vertices of
G. If e = wv′ is the final edge of some shortest path v, . . . , w, v′ from v to v′, then v, . . . , w (that is
the path without the edge e) is a shortest path from v to w.

16The problem of a longest path is intractable, since it is NP-complete, [97].
17We can find the metric closure in a simpler way by the following typical ”matrix” algorithm:

Algorithm 4.7.3 (Floyd [89]) Let G = (V = {v1, . . . , vn}, E) be a graph. The metric closure
Gf = (V, ρ) can be found by the following procedure:

1. for i := 1 to n do
for j := 1 to n do
if vivj ∈ E then ρ(vi, vj) := 1 else ρ(vi, vj) := ∞;

2. for i := 1 to n do
for j := 1 to n do
for k := 1 to n do
if ρ(vj , vi) + ρ(vi, vk) < ρ(vj , vk) then ρ(vj , vk) := ρ(vj , vi) + ρ(vi, vk).
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Theorem 4.7.4 Let G = (V = {v1, . . . , vn}, E) be a connected graph, let A = A(G)
be its adjacency matrix and let Ak = (a(k)

ij )i,j=1,...,n, k = 1, 2, . . .. Then

ρ(vi, vj) = min{k : a
(k)
ij > 0} (4.33)

holds true for any two distinct vertices vi and vj.

For more properties of the metric closure see [258].

III. It is an interesting topic to investigate whether other terms in linear algebra
have an graph-theoretical impact.
For instance, let A = A(G) be the adjacency matrix for the graph G = (V,E). Then

|E| =
1
2
· trace A2 (4.34)

# triangles in G =
1
6
· trace A3 (4.35)

Is there a meaning of the eigenvalues of A(G)?18

4.8 Planar graphs

Planarity asserts that it is possible to represent the graph in the plane in such a way
that the vertices correspond to distinct points and the edges to simple Jordan curves
connecting the points of its endvertices such that every two curves are either disjoint
or meet only at a common endpoint. Not each graph is planar.19

I. An embedding of a planar graph is called a plane graph. It determines a
partition of the plane into regions. Exactly one of these regions is unbounded.
The number of regions can be computed by the classical formula of Euler, which is
the earliest known equation in topology:

18The answer is ”yes”, compare [29] and [61]. In particular,

Theorem 4.7.5 Let G be a graph with n vertices, and let A(G) be its adjacency matrix.

a) All eigenvalues are real numbers.

b) Every eigenvalue λ satisfies |λ| ≤ ∆(G).

c) ∆(G) is an eigenvalue if and only if G is regular.

d) If −∆(G) is an eigenvalue then G is regular and bipartite.

e) δ(G) ≤ λmax ≤ ∆(G).

f) If G′ is a spanning subgraph of G then λmin(G) ≤ λmin(G′) ≤ λmax(G′) ≤ λmax(G).

19As contrast each graph can be embedded into the three-dimensional space IR3 such that no two
curves which are the embeddings of the edges intersect each other outside of the vertices. This is
easy to see: Arrange the vertices on a line, and consider planes through this line.
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Theorem 4.8.1 Let G = (V,E) be a connected and plane graph, and let f denote
the number of regions (including the single unbounded region) of an embedding of G
in the plane. Then

|V | − |E|+ f = 2. (4.36)

Proof. If there is a cycle, remove one edge from it. The effect is to reduce f by 1,
since two regions are amalgamated into one. So the resulting graph satisfies the same
equation. Repeat this process until no cycles remain. The final graph must be a tree,
with

|V | − |E|+ f = |V | − (|V | − 1) + 1 = 2,

paying attention 4.6.2. 2

Of course, there may be several different embeddings of a planar graph in the
plane.20 4.8.1 implies that, no matter how a connected planar graph is embedded,
the number of regions is determined.

Corollary 4.8.2 Under the assumption of 4.8.1 and assuming that |V | ≥ 3 it holds
that

|E| ≤ 3|V | − 6 and (4.37)
f ≤ 2|V | − 4. (4.38)

The first inequality can be strengthened to

|E| ≤ t

t− 2
(|V | − 2), (4.39)

where all cycles are of length at least t.

Proof. Embed G in the plane. Then there are rj regions with j edges on the
boundary. With similar arguments than for the proof of 4.1.1, we find

2|E| =
∑
j≥3

jrj ≥
∑
j≥3

3rj = 3f.

Therefore, f ≤ 2
3 |E|. Together with 4.8.1 this gives the first two inequalities.

The second part of the proof remains as an exercise for the reader.21 2

As an exercise deduce that a planar bipartite graph with n vertices has at most
2n− 4 edges.

20Embedding a graph in the plane is equivalent to embedding it on the sphere. This can be seen
with the aid of a stereographic projection.
The unbounded region in the plane correspond with the region on the sphere which includes the
”North Pole”. Consequently, each planar graph can be embedded in the plane in such a way that
any one of its regions may be made the unbounded region.

21The corollary should not be misinterpreted to mean that if |E| ≤ 3|V | − 6, then a connected
graph is planar. Many non-planar graphs also satisfy this inequality.
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Theorem 4.8.3 In each planar graph G = (V,E) there exists a vertex v with gG(v) ≤
5. In other terms, δ(G) ≤ 5.

Proof. Otherwise
2 · |E| =

∑
v∈V

gG(v) ≥ 6 · |V |,

contradicts 4.8.2. 2

Corollary 4.8.4 In any planar graph G = (V,E) the average degree is less than 6:

d̃(G) =
1
|V |

∑
v∈v

g(v) < 6. (4.40)

If the graph has the additional property that each vertex has at least the degree
three, it is easy to prove that the following inequalities are valid for the numbers
n = |V | and m = |E| for a planar graph G = (V,E) with f regions (including the
single unbounded region) in the embedding of G:

n ≤ 2
3
m, m ≤ 3n− 6, (4.41)

m ≤ 3f − 6, f ≤ 2
3
m, (4.42)

n ≤ 2f − 4, f ≤ 2n− 4. (4.43)

A planar graph G is called maximal planar, if G is planar but cannot be extended
to a larger planar graph by adding an edge. It is easy to see that the following
properties are true for any maximal planar graph G = (V,E):

a) |E| = 3|V | − 6, that means, in the first inequality of 4.8.2 holds equality.

b) G has at least three vertices of degree not exceeding 5.

And not so easy to see

c) G is 3-connected.

d) G can be embedded in the plane such that each (internal) region is a triangle.

II. A planar graph G = (V,E) is called outer-planar if it can be embedded into the
plane such that all vertices lying on the boundary of exactly one region. For practice
the reader should discuss the following results. Similar to 4.8.2 we find.

Theorem 4.8.5 It holds for any outer-planar graph G = (V,E) and its embedding
in the plane

|E| ≤ 2|V | − 3 and (4.44)
f ≤ |V | − 1. (4.45)
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For practice show that for any outer-planar graph G it holds δ(G) ≤ 3 and
d̃(G) < 4.

An outer-planar graph is called maximal outer-planar if no edge can be added
without losing outer-planarity.

Theorem 4.8.6 Let G be the embedding of a maximal outer-planar graph with at
least n ≥ 3 vertices, all lying on the exterior (unbounded) region. Then G has n − 2
interior regions.

Proof. We use induction over n.
Obviously, the theorem is true for n = 3.
Let G have n + 1 vertices and f interior regions. Clearly, G must have a vertex v
of degree 2. v lies on the boundary of the exterior region. In G − v we reduce the
number of the vertices and the number of interior regions each by exactly 1, so that
f − 1 = n− 2. Hence, the assertion. 2

The following properties are true for a maximal outer-planar graph G = (V,E):

a) |E| = 2|V | − 3, that means, in the first inequality of 4.8.5 holds equality.

b) G has at least three vertices of degree not exceeding 3.

c) G has at least two vertices of degree 2.

d) G is 2-connected.22

And not so easy to see

e) G can be embedded as a triangulation of a polygon.

Theorem 4.8.7 Consider graphs and its complements.

a) Every planar graph with at least nine vertices has a non-planar complement, and
nine is the smallest such number.

b) Every outer-planar graph with at least seven vertices has a non-outer-planar com-
plement, and seven is the smallest such number.

Proof. These results are proved by exhaustion; the upper bounds can be created
with help of (4.15) and 4.8.2 or 4.8.5, respectively. No elegant proofs are known. 2

III. For disconnected graph the situation is a little bit different. Obviously, a
graph is planar if and only if each component is planar.

Theorem 4.8.8 Let G = (V,E) be a plane graph with c components, and let f denote
the number of regions (including the single unbounded region) of an embedding of G
in the plane. Then

|V | − |E|+ f = c + 1. (4.46)

The proof remains as an exercise for the reader.
22Can an outer-planar graph be 3-connected?
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4.9 Directed graphs

For further discussions we introduce graphs whose edges are directed. This concept
of directed graphs, called digraphs, is more complicated than the concept of graphs,
since there are several new questions.

A digraph is a pair G = (V,E) consisting of a finite set V of vertices and a set
E ⊆ V × V of (ordered) pairs of vertices, which we call arcs. Hence, a digraph
G = (V,E) is essentially a relation over V , where arcs (v, v) are not allowed.
The terminology used in discussing digraphs is quite similar to that used for graphs.
Moreover, we will understand each digraph also as a graph and we will use the graph-
theoretical methods for digraphs, too.
Let G = (V,E) be a digraph. For two vertices v and v′ with e = (v, v′) ∈ E we say
that v is the immediate ancestor of v′, and v′ is the immediate successor of v and v.
Furthermore we say that v is adjacent to v′, whereas v′ is adjacent from v. The arc
e is called directed from v to v′.
The indegree gin(v) of v is the number of immediate ancestors of v and the outdegree
gout(v) of v is the number of immediate successors of v. Obviously,

g(v) = gin(v) + gout(v), (4.47)

for each vertex v in a digraph. It is easy to see that

Observation 4.9.1 For each digraph G = (V,E) it holds∑
v∈V

gin(v) =
∑
v∈V

gout(v) = |E|. (4.48)

A directed chain is a sequence

v1, (v1, v2), v2, (v2, v3), v3, . . . , vm, (vm, vm+1), vm+1

of arcs and vertices of G. A directed chain in which each vertex occurs only once is
called a directed path; more exactly, a directed path interconnecting the vertices v1

and vm+1. Then the number m denotes the length of the path. A single vertex is a
directed path of length 0.
A digraph is called strongly connected if for any pair v and v′ of distinct vertices
there is a directed path from v to v′ and also a directed path from v′ to v.

Observation 4.9.2 The relationship of being strongly connected is an equivalence
relation.

A directed cycle is a directed chain with at least one arc and with the following
properties: No arc appears twice in the sequence and the two endvertices of the chain
are the same.

Theorem 4.9.3 Every acyclic digraph contains at least one vertex of outdegree 0 and
at least one vertex of indegree 0.
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Proof. Let P be a directed path of maximum length in the digraph. Assume that
the path connects the vertices u and v. If u is adjacent from any vertex of P , then
a cycle is produced, a contradiction. If u is adjacent from a vertex w not in P , then
w, (w, u), u, P is a directed path whose length exceeds that of P , also a contradiction.
Hence gin(u) = 0.
Similarly, gout(v) = 0. 2

For a digraph G = (V,E) we have an ancestor/successor-relation: We say that
the vertex v is an ancestor for v′, and the vertex v′ is a successor of v if there is a
directed path from v to v′.

An important question is: Given a (connected) graph; is there an assignment of
directions to the edges so that the resulting digraph is strongly connected? If the
answer is positive, the graph is called orientable. Remember that an edge of a graph
is called a bridge if its removal disconnects the graph. Assume that the edge vv′ is
a bridge, and we choose the direction by (v, v′), then the vertices v and v′ cannot
be strongly connected in the digraph. Thus a graph with a bridge is not orientable.
Surprisingly the converse fact is also true.

Theorem 4.9.4 A connected graph without bridges is orientable.

Proof. Let G = (V,E) be a connected and bridgeless graph.
In view of 4.4.4 every edge of G is part of a cycle.
Let C : v1, v2, . . . , vn, v1 be a cycle of G. Then we direct its edges as follows:

i) (vn, v1);

ii) (vi, vi+1) for i = 1, . . . , n− 1;

iii) If there exists an edge joining nonconsecutive vertices of C, then choose a direction
for this edge arbitrarily.

Of course the digraph G[C] is strongly connected. If every vertex of G belongs to C,
then G is orientable.
Assume that there is a vertex of G not belonging to C. Since G is connected, there
exists a vertex w1 outside of C such that w1vj is an edge for an index j with 1 ≤ j ≤ n.
Since this edge is not a bridge, we may assume that there is a cycle C1 : w1, w2 =
vj , w3, . . . , wm, w1 of G. Then we direct the edges as follows:

i) (wm, w1);

ii) (w1, w2);

iii) (wi, wi+1) for i = 2, . . . ,m − 1 provided that the edge wiwi+1 has not already
been given a direction;

iv) If there exists an edge joining two vertices of C1 or joining a vertex of C1 to a
vertex of C, and has not yet received a direction then choose a direction for this
edge arbitrarily.
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It is not hard to see that G[C ∪C1] is strongly connected. If this digraph contains all
the vertices of G, the desired result follows immediately. Otherwise, we continue this
process. 2

Let G = (V,E) be a digraph and assume that the vertices are labeled, i.e. V =
{v1, ..., vn}. Then we define the Matrix of adjacency A(G) = (aij)i,j=1,...,n by

aij =
{

1 : there is an arc from vi to vj

0 : otherwise.

Another kind of matrix identifies the edges with its incident vertices: Let G = (V,E)
be a digraph and assume that the vertices and also the edges are labeled, i.e. V =
{v1, ..., vn} and E = {e1, ..., em}. Then we define the Matrix of incidence I(G) =
(dij)i=1,...,n,j=1,...,m by

dij =

 1 : ej = (vi, .)
−1 : ej = (., vi)

0 : otherwise

Observation 4.9.5 The sum of the entries in any column equals 0.
Conversely, each matrix in which the entries in any column are 0 except exactly one
1 and exactly one -1, is the incidence matrix of a digraph.

As an exercise discuss the interrelation between the matrix of adjacency and of
the matrix of incidence for a digraph.

4.10 Intersection graphs

Let C be a collection of nonempty sets in a universe. The intersection graph of C is
obtained by representing each set in C by a vertex and connecting two vertices by an
edge if and only if their corresponding sets intersects.
When C is allowed to be an arbitrary collection of sets, the class of graphs obtained
as intersection graphs is the class of all graphs.

Theorem 4.10.1 (Marczewski) Every graph is (isomorphic to) the intersection graph
of some collection of sets.

Proof. Let G = (V,E) be a graph.

S(v) = {{v, w} : vw ∈ E} ∪ {v}. (4.49)

It is easy to see that for different vertices v and w,

vw ∈ E if and only if S(v) ∩ S(w) 6= ∅. (4.50)

Thus G is isomorphic to the intersection graph of

C = {S(v) : v ∈ V }. (4.51)

54



2

Perhaps the most interesting applications of intersection graphs have arisen from
taking special classes of sets.

The intersection graph of a collection of intervals on a linearly ordered set (like
the real line) is called an interval graph.23,24

Given a graph G = (V,E), we shall ask whether it is isomorphic to an interval graph.
The characterization of interval graphs is not easy.
A graph G is called chordal if every cycle with at least four vertices has an edge
(called a chord) connecting two non-consecutive vertices in the cycle.25 Not hard to
see, compare [101] or [220], is the following implication.

Lemma 4.10.3 An interval graph is chordal.

A graph G = (V,E) is called transitive orientable if each edge can be assigned
a direction in such a way that the the resulting digraph G′ = (V, F ) satisfies the
following condition: (u, v) ∈ F and (v, w) ∈ F imply (u, w) ∈ F . Easy to see,
compare [101], is the following implication.

Lemma 4.10.4 The complement of an interval graph is transitive orientable.

4.10.3 and 4.10.4 provide necessary, but not sufficient, conditions for interval
graphs. Put these two properties together, we get a sufficient condition:

Theorem 4.10.5 (Gilmore, Hoffman, compare [101]) A graph G is an interval graph
if and only if G is chordal and its complement Gc is transitive orientable.

Now we go a dimension higher. Given a finite set of nonoverlapping circles in the
plane.26 Considering C as set of circles, the intersection graph of C is called a coin
graph if the intersection is only touching of the circles. The following theorem gives
a nice description.

Theorem 4.10.6 (Koebe) Every planar graph is a coin graph.

For this and related topics compare Ziegler [257].
23The intervals may be open closed, or half-open.
24Interval graphs arose from a problem of genetics as follows. On the basis of mutation data,

one can tell if two subsets of the fine structure inside the gene overlap. Is this overlap information
consistent with the hypothesis that the fine structure inside the gene is linear? More exactly, tests
can be performed to determine if two chromosomes overlap one another, and the problem is to prove
or disprove that a set of chromosomes are linked together in linear order. Construct the graph whose
edges are the pairs of overlapping chromosomes; if this graph is not an interval graph, it follows that
the chromosomes cannot be linked in linear order. For a detailed discussion compare [204].
Roberts [205] describes problems in social sciences, which are problems of seriation. The approach
starts with overlap information, where the intervals are a possible chronological order.

25The concept of chordality gives a partial answer to the question when in (4.21) equality holds:

Theorem 4.10.2 ([90] and [120]) A graph G satisfies the inequality (4.21) for g̃ = max{i : gi ≥
i− 1} with equality if and only if G itself and its complement Gc are chordal.

26We do not assume that the circles are of the same size.
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4.11 Further reading

We introduced several knowledge of graphs and networks. Graphs are among the most
basic of all mathematical structures. Consequently, there are a lot of other aspects
to consider. Further graph theoretic terminology and statements are given in most
standard textbooks, for example

1. Bang-Jensen, Gutin: Digraphs; [17].

2. Bollobas: Graph Theory; [29].

3. Chartrand, Lesniak: Graphs and Digraphs; [45].

4. Diestel: Graph Theory; [66].

5. Gross, Yellen: Graph theory and its Applications; [109].

6. Lovász, Pelikán, Vestergombi: Discrete Mathematics; [164].

For a history of the theory of graphs see Aigner [3], Prömel [195], Sachs [210], and
Sedlacek [219].
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Chapter 5

Labeled Graphs

A graph G = (V,E) is called labeled if there is a bijective mapping from V onto a set
of |V | distinct names in such a way as to be they are distinguishable from each other.

With most enumeration problems, counting the number of unlabeled things is
harder than counting the number of labeled things. So it is with graphs. This ob-
servation holds not only for graphs, but also for trees, digraphs, relations, and so
forth.

5.1 All graphs

Let us consider the problem of counting all graphs with n vertices. Such a graph has
at most

(
n
2

)
= n(n − 1)/2 edges. Hence, when we observe that each of the possible

edges is either present or absent,

Theorem 5.1.1 For enumerating graphs we obtain

a) The number of labeled graphs with n vertices and exactly m edges equals((n
2

)
m

)
. (5.1)

b) The number graph(n) of labeled graphs with n vertices equals

graph(n) = 2(n
2) =

√
2

n(n−1)
. (5.2)

As an exercise estimate the number (5.1) from above and from below, and discuss
these bounds.

To deal with graphs it is often necessary to generate these structures algorithmi-
cally. This question is closely related to the problem of counting graphs.1 To generate

1And the problem of storing a graph in a computer, compare [164].
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all labeled graphs is not hard: remember that a labeled graph is completely described
by its adjacency matrix. There is a one-to-one correspondence between labeled graphs
with n vertices and n × n symmetric binary matrices with all entries on the leading
diagonal equal to 0. Hence, we have the following optimal generating technique:

Algorithm 5.1.2 Let n be an integer greater than 1. The following procedure gen-
erates all labeled graphs with n vertices:

1. Determine b := n(n− 1)/2;

2. Initialize a = (0, . . . , 0) in {0, 1}b;

3. Assuming a is the upper half of an n× n matrix A;
complete the matrix by setting aji = aij and aii = 0, yielding the adjacency
matrix for a graph;
Set a := a + 1 (in {0, 1}b).

For more facts about generating all graphs see Nägler, Stopp [177].

G(n, m) denotes the set of all graphs with n vertices and m edges. Let S be a
set of edges of the complete graph Kn. What is the proportion of graphs in G(n, m)
which contains all the edges in S? Answer: Let |S| = q. If a graph in G(n, m) contains
S, that uses up q of its edges, so there are m − q remaining edges to place in N − q
positions, where N =

(
n
2

)
. The number of ways of doing that is(

N − q

m− q

)
=

(N − q)!
(m− q)!(N −m)!

.

Hence,

Theorem 5.1.3 The proportion of graphs in G(n, m) containing a set of q edges is(
N−q
m−q

)
|G(n, m)|

=
m · (m− 1) · · · (m− q + 1)
N · (N − 1) · · · (N − q + 1)

,

where N =
(
n
2

)
.

5.2 The number of bipartite graphs

Consider two finite and disjoint sets V1 and V2 with ni = |Vi|, i = 1, 2. Then there
are n1 · n2 possible edges interconnecting the vertices of both. In view of 2.1.1 we
obtain.

Theorem 5.2.1 There are 2n1·n2 bipartite graphs with n1 + n2 labeled vertices.

Let n be a positive integer, and k a number with 1 ≤ k ≤ n. Selecting k elements
from an n-element set creates a split (=bipartition), since are also the remaining n−k
elements are selected. Therefore,
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Theorem 5.2.2 The number of bipartite graphs for n vertices is at most

1
2

n−1∑
k=1

(
n

k

)
2k(n−k). (5.3)

Numerically,

n 1 2 3 4 5 6 7

0 2 12 80 720 9152 165312

Asymptotitally,

1
2

n−1∑
k=1

(
n

k

)
2k(n−k) ≤ 1

2

n−1∑
k=1

(
n

k

)
2n2/4 =

1
2
· 2n2/4

n−1∑
k=1

(
n

k

)

<
1
2
· 2n2/4

n∑
k=0

(
n

k

)
=

1
2
· 2n2/4 · 2n,

such that for a nonnegative integer n there are less than

2
n2
4 +n−1 = 4

√
2n2+4n−4 = (1.18920 . . .)n2+4n−4 (5.4)

bipartite graphs with n labeled vertices.
In 4.6.5 we remarked that each forest is a bipartite graph. Consequently, by estimating
the number of forests we will create lower bounds for the number of bipartite graphs.

5.3 Regular graphs

In further considerations we will count specific classes of graphs, and start with the
following concept.
A graph G = (V,E) is called regular, or more exactly regular of degree r, if each
vertex has degree exactly r, 0 ≤ r ≤ |V | − 1. The empty graph is 0-regular. A graph
which is regular of degree 1 is called a perfect matching, of degree 2 is a collection of
cycles, and of degree 3 is called a cubic graph. For practice the reader should prove
for a connected r-regular graph G:

• If r is even, then G contains no bridge.

• If r is odd, then always exists such graph with a bridge.

In view of 4.1.1 we find

Theorem 5.3.1 For a graph G = (V,E) which is regular of degree r it holds

r · |V | = 2 · |E|. (5.5)

Consequently, if r is odd then |V | must be an even number.
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It is easy to see that if r and n = |V | are not both odd and 0 ≤ r ≤ n − 1,
then always exists an r-regular graph with n vertices. The reader should prove this
statement and use the proof to show that the number of regular graphs increases at
least exponentially.
On the other hand, the number of labeled r-regular graphs is at most nrn, which is
easy to see: For each vertex we must determine r adjacent vertices. There are no
more than nr possibilities, and altogether are no more than (nr)n = nrn possible
ways to specify such a graph. The bound is essentially less than 2(n

2) if

r <
n− 1

2 · log n
.

We can estimate the number of regular graphs better, using 5.3.1 in (5.1).

((n
2

)
rn
2

)
≤ 1

e

(
e
(
n
2

)
rn
2

)rn/2

=
1
e

(
e(n− 1)

r

)rn/2

.

Hence,

Theorem 5.3.2 The number of r-regular labeled graphs with n vertices and m = r
2 ·n

edges is at most ((n
2

)
rn
2

)
≤ 1

e

√
e(n− 1)

r

rn

=
1
e

(
2em− er

r2

)m

. (5.6)

1- and 2-regular graphs are of minor interest, but 3-regular graphs will play a role
in our further investigations.

Corollary 5.3.3 The number of labeled cubic graphs with n vertices is less than

1
e
(n
√

n)n. (5.7)

5.4 The number of connected graphs

Of course, the number of connected graphs is less than the number of all graphs; and
we are interested in this fact more exactly.

Theorem 5.4.1 Denote by conn(n) the number of connected graphs with n labeled
vertices. Then

conn(n) = 2n(n−1)/2 −
n−1∑
i=1

(
n− 1

i

)
· 2i(i−1)/2 · conn(n− i). (5.8)
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Proof. We show that the sum

n−1∑
i=1

(
n− 1

i

)
· 2i(i−1)/2 · conn(n− i) =

n−1∑
i=1

(
n− 1

i

)
· graph(i) · conn(n− i) (5.9)

is the number of disconnected graphs.

A proper component of a graph has at least one and at most n− 1 vertices. Let i
be the number of vertices outside of such a component and let n − i be the number
of vertices inside, 1 ≤ i ≤ n− 1.

In view of 5.1.1, for a fixed number i there are

graph(i) = 2(i
2) = 2i(i−1)/2 (5.10)

different graphs with i vertices. We can choose(
n− 1

i

)
(5.11)

vertices. (5.10) and (5.11) together imply the assertion. 2

Another way to compute conn(n) is given by the method of generating functions,
which means that expand two series and compare the coefficients:∑

n≥1

conn(n)
xn

n!
= ln

∑
n≥0

2(n
2) xn

n!
. (5.12)

For a proof see [227].

Unfortunately, an explicit formula for the function conn is unknown, but in [122]
and [177] the number of connected labeled graphs is estimated by

Number n of vertices Number conn(n) of connected graphs

1 1
2 1
3 4
4 38
5 728
6 26,704
7 1.8662 . . . · 106

8 2.5154 . . . · 108

9 6.6296 . . . · 1010

10 3.4487 . . . · 1013

It seems that the function conn increases exponentially, and indeed this is true,
which we will prove later in a more common context: 5.8.2 and 7.3.3.

61



5.5 Eulerian and Hamiltonian graphs

I. The origin of graph theory is the so-called ”Königsberger Brückenproblem”. (In
English: The Königsberg bridge problem). In the town of Königsberg in what was
once East Prussia, the two branches of the River Pregel converge and flow through
to the Baltic Sea. Parts of the town were on an island and parts on a headland that
were both joined to the outer river banks and to each other by seven bridges. The
townspeople wanted to know if it was possible to take a walk that crossed each of the
bridges exactly once before returning to the starting point. Euler proved in 1736 that
no such walk was possible.2

More systematically, let us start with the following theorem of existence.

Theorem 5.5.1 A graph G with minimum degree δ(G) ≥ 2 has a cycle of length at
least δ(G) + 1.

Proof. Let P = {v0, v1, . . . , vn} be a path of G of maximum length. Then v0 is
adjacent only to vertices of P , since otherwise P could be lengthen.
On the other hand, v0 has at least δ(G) neighbors. Let vi be the neighbor with max-
imum index which implies i ≥ δ(G). Then C = {v0, v1, . . . , vi, v0} is such a searched
cycle. 2

Let G be a graph. A Eulerian cycle of G is defined as a cycle that uses each edge
of G exactly once.3 A graph which contains a Eulerian cycle is called a Eulerian
graph. One of the oldest combinatorial problems, accredited to Euler and written in
the terminology of graph theory, can be stated as follows: When does a multigraph
have a Eulerian chain or a Eulerian cycle?4 The answer is:

Theorem 5.5.2 (Euler) A multigraph has a Eulerian cycle if and only if it is con-
nected and all vertices have even degree.5

2In solving the problem Euler laid the foundations for what was coming as a new type of geometry,
which he called geometris situs; today called topology, with graph theory as a part. Compare [233]
or [255].

3Note that an Eulerian cycle is not a cycle in the usual sense, since it can contain a vertex more
than once. In this sense Euler’s question is essentially different from Hamilton’s problem which is
the analogous question: When does a graph contain a cycle that contains every vertex exactly once.

4This question plays an important role in computational molecular biology, namely in determining
an RNA sequence from its fragments, compare [109] and [205].

5The proof of this theorem gives a fast method to construct a Eulerian cycle explicitly:

Algorithm 5.5.3 (Hierholzer, [132], [143], [158]) Let G = (V, E) be a Eulerian (multi-) graph.
Choose a vertex v1 arbitrarily and apply the following recursive procedure Euler(G, v1):

1. Set C := v1; v := v1;

2. If gG(v) = 0 then goto 4. else let w ∈ NG(v);
choose one edge e = vw;

3. Set C := C, e, w and v := w;
Set E := E \ {e};
goto 2.;

4. Let C = v1, e1, v2, e2, . . . , vk, ek, vk+1;
For i := 1 to k do Ci := Euler(G, vi);
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Theorem 5.5.2 also has several consequences, all are exercises for the reader:

a) Any Eulerian graph is the union of cycles.

b) Any connected graph contains a chain that uses each edge exactly twice.

c) Each graph can be extended to an Eulerian graph by adding edges.

d) A multigraph has an (open) Eulerian chain if and only if it is connected and has
exactly two vertices of odd degree.

The number of connected graphs we discussed above. Additionally,

Theorem 5.5.4 The number of graphs with n labeled vertices each having even degree
equals

2(n−1
2 ). (5.13)

The proof is not difficult, since the number itself suggests its method. We establish
a one-to-one correspondence between all graphs G with n−1 labeled vertices and our
graphs under consideration. In view of 4.1.1 G must have an even number of vertices
of odd degree. Next we add add a new vertex v which is connected to each of the
vertices of odd degree. This new graph has n vertices all of even degree. It is easy
to see that conversely each graph with n−1 can be obtained from an ”even” graph. 2

To combine 5.5.4 and 5.4.1 in the sense of 5.5.2 is not so simple. An explicit
formula is not known, but we may assume that the number grows exponentially, since
for a given number n there are (n− 1)!/2 many cycles, which are Eulerian graphs of
itself.

n = the number of Eulerian graphs with n vertices

3 1
4 3
5 13

On the other hand, we compute the ratio between the number given in 5.5.4 with the
number of all graphs:

2(n−1
2 )

2(n
2)

= 2(n−1
2 )−(n

2) = 2−n+1 =
2
2n

.

That means that graphs with only even degrees are rare, and consequently

Theorem 5.5.5 Almost no graph is Eulerian.6

5. Set C = C1, e1, C2, e2, . . . , Ck, ek, vk+1.

6The terms ”rare” and ”almost all/no” will be more specified later.
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But the situation is not hopeless: We can extend each graph to an Eulerian one,
that means by adding new edges we create a graph with an Eulerian cycle. Let G be
a graph with n vertices, m edges and c components. First add c − 1 edges to make
the graph connected. Now assume c = 1. Second, let W the set of all vertices with
an odd degree. In view of 4.1.1 we have that |W | = k is an even number. Then add
for each pair of vertices from W an edge connecting both. The new graph has only
vertices of even degree.7

II. Hamilton’s problem asks whether a graph contain a cycle that contains every
vertex exactly once. A graph which contains a Eulerian cycle is called a Eulerian
graph.
Although it is clear that only connected graphs can be Hamiltonian, there is no sim-
ple criterion to tell us whether or not a graph is Hamiltonian as there is for Eulerian
graphs. And indeed, no efficient algorithmic method is known to check whether a
given graph has a Hamiltonian cycle, which is no strange since Karp [147] shows that
the problem is NP-complete.8

For practice the reader should decide whether the Petersen graph Gpetersen is Hamil-
tonian; and shoulduse induction to prove that the hypercube QD contains a Hamilton
cycle.9

The number of Hamiltonian graphs is still uncounted.

5.6 RNA secondary Structure

Proteins are not laid out simply as straight chains of amino acids. The fact that they
curl and fold into complex forms plays a crucial role in determining the distinctive
biological properties of each protein. The function of a protein is furthermore a di-
rect consequence of its three-dimensional structure, shortly written by: Sequence ⇒

7There mis an optimization version of Euler’s problem making a given (connected) graph Eulerian
by adding edges, such that the total length of the graph is minimal. This problem was introduced
by the Chinese mathematician Guan [111] and later named as ”The Chinese Postman Problem”.

8To check that a graph is not Hamiltonian is often simpler. Gross, Yellen [109] describe the
following rules during a construction of a Hamilton cycle:

1. If a vertex has degree 2, then both of its incident edges must be in the cycle.

2. During the construction no cycle can be formed until all vertices have been visited.

3. If during the construction two of the edges incident on a common vertex, then all other incident
edges can be deleted.

9There is an important application of this fact in coding theory. A Gray code is a cyclic ar-
rangement of binary sequences such that any pair of adjacent sequences differ in only one position.
Example: 000 → 010 → 110 → 100 → 101 → 111 → 011 → 001 →. This sequence corresponds to a
Hamilton cycle in Q3.
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Structure ⇒ Function.10 An understanding of the structure is essential for under-
standing the behavior of the molecule.

I. Following Clote, Backofen [56] we model the secondary structure of RNA
molecules by a labeled graph G = ({v1, . . . , vn}, E) with the following properties:

(i) For any i = 1 . . . , n− 1 it holds vivi+1 ∈ E;

(ii) For any i = 1 . . . , n there exists at most one j 6= i + 1 for which vivj ∈ E;

(iii) If 1 ≤ i < k < j ≤ n, j 6= i + 1 vivj ∈ E and vkvl ∈ E, then i ≤ l ≤ j.

Define s(n) to be the number of secondary structures and let s(0) = 1. Obviously,
s(2) = 1.

Theorem 5.6.1

s(n + 1) = s(n) +
n−2∑
k=0

s(k)s(n− k − 1). (5.14)

Proof by induction on n. For the induction step we consider two subcases:
Case 1: vn+1 is not paired. In this case, there are s(n) possible structures.
Case 2: vn+1 is paired to vj for 1 ≤ j ≤ n − 1. In this case the structure can
independently formed on the former sequence {v1, . . . , vj−1} and the latter sequence
{vj+1, . . . , vn}, Thus,

s(n + 1) = s(n) +
n−1∑
j=1

s(j − 1)s(n− j)

= s(n) + s(n− 1) +
n−1∑
j=2

s(j − 1)s(n− j)

= s(n) + s(n− 1) +
n−2∑
k=1

s(k)s(n− k − 1)

= s(n) +
n−2∑
k=0

s(k)s(n− k − 1)

10We distinguish the following structural levels for proteins:

(i) The primary structure is the amino acid sequence.

(ii) The secondary structure is the arrangement of the amino acids in space.

(iii) The tertiary structure is the three-dimensional folding pattern, which is superimposed on the
secondary structure.

(iv) The quarternary structure is the composition of two or more polypeptides.

When RNA is transcribed from the DNA template, it is single stranded. The single-stranded molecule
can fold back on itself and when regions of the molecule are complementary they can become double-
stranded or helical. The pairing rules for RNA sequences are the so-called Watson-Crick-rules: a
pairs with u and c pairs with g.
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2

5.6.1 implies

s(n + 1) = s(n)− s(n− 1) +
n−1∑
k=0

s(k)s(n− k − 1). (5.15)

The last term is M.2.1, but not the same recurrence relation, since there are differ-
ent initial conditions. Additionally, there is a 1-1 correspondence between the RNA
secondary structure and well well-balanced paranthesis expression. Hence,

Theorem 5.6.2 There are exponentially many secondary structures.

As exercise the reader should find a good lower bound.

II. After counting the secondary structure we are interested in construction the
structure itself.
We add some new properties. Choose a subset of 2j points, 0 ≤ 2j < n. The 2j
points are arranged as j disjoint pairs and these pairs are connected by edges such
that

(iv) Consecutive points are never connected by an edge;

(v) Any two points connected by an edge must be separated by at least m points;11

(vi) Edges cannot intersect.

The prediction of secondary structures made by finding such structures that have the
maximum number of pairs. It can be found by a dynamic programming approach.

Algorithm 5.6.3 Let a1a2 . . . an ∈ {a, c, g, u}n be a RNA sequence. Furthermore let
m ≥ 1 be an integer and

p(i, j) =
{

1 : {ai, aj} = {a, u} or = {c, g}
0 : otherwise

Define F (i, j) = maximum number of pairs of all secondary structures over ai . . . aj.
F (1, n) can be found by the following procedure:

1. F (i, j) = 0 whenever j ≤ i + m;

2. F (i, j) = max{F (i, j−1), (F (i, k−1)+F (k+1, j−1)+1)·p(ak, aj) : 1+k+m ≤
j}.

The procedure can be performed in quadratic time. Unfortunately the algorithm
is to simple to find the real structures and more complicated algorithms must be
employed, compare [154], [247] and [248].

11These conditions are forced by biochemical facts. In particular in RNA m = 3 or = 4 is realistic.
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5.7 The number of planar graphs

We will use our knowledge about planar graphs to determine this number. We start
with the following observation: For the sum of binomial coefficients we know 2n as
upper bound. A partially better bound is given by the following formula.

Lemma 5.7.1 Let k ≤ n, then

k∑
m=0

(
n

m

)
≤
(en

k

)k

. (5.16)

Proof. (Matoušek, Nešetřil [170]) We use C.2.2:(
n

0

)
+
(

n

1

)
x +

(
n

2

)
x2 + . . . +

(
n

n

)
xn = (1 + x)n (5.17)

for all real numbers x. In particular for 0 < x < 1(
n

0

)
+
(

n

1

)
x + . . . +

(
n

k

)
xk ≤ (1 + x)n. (5.18)

Dividing this by xk we get

1
xk

(
n

0

)
+

1
xk−1

(
n

1

)
+ . . . +

(
n

k

)
≤ (1 + x)n

xk
. (5.19)

Since x < 1, (
n

0

)
+
(

n

1

)
+ . . . +

(
n

k

)
≤ (1 + x)n

xk
. (5.20)

Note that the left-hand side is independent of the value of x; in particular we can use
x = k/n which gives us

(1 + x)n

xk
=

(
1 + k

n

)n(
k
n

)k ≤
(
e

k
n

)n (n

k

)k

= ek
(n

k

)k

.

To get this result we have to apply some calculus which shows 1 + x ≤ ex, so that we
attain to the inequality (

1 + k
n

)n(
k
n

)k ≤
(
e

k
n

)n (n

k

)k

.

2

This theorem is helpful when we count graphs whose number of edges is essentially
less than

(
n
2

)
; in particular, if the order is less than quadratic.12 An example: in view

12Hence, it was and will be of interest for us to bound the number of edges depending on the
number of vertices. Theoretically, the number of edges in a graph is of quadratic order of the
number of vertices, both in the worst case 4.4.2 and in the average case 5.8.3, but, on the other
hand, Chung [49] remarked that that empirically most of the real-world graphs have the property
that the number of edges is within a constant multiple of the number of vertices.
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of 4.8.2 the number of edges in a planar graph is bounded by 3n − 6. Then in (5.1)
with k = 3n− 6

plan (n) ≤
3n−6∑
m=0

((n
2

)
m

)
≤
(

en(n− 1)
2(3n− 6)

)3n−6

≤
(

e · (n + 2)
6

)3n−6

,

paying attention 5.7.1.

Theorem 5.7.2 Let plan(n) be the number of all planar labeled graphs with n ≥ 4
vertices. Then

plan(n) ≤
(e

6
· (n + 2)

)3n−6

. (5.21)

Later we will prove that there are exponentially many trees. Since each tree is
planar, the function plan(.) cannot be less than exponentially.
On the other hand, McDiarmid et al. [171] showed that the limit

β0 = lim
n→∞

(
plan(n)

n!

)1/n

(5.22)

exists. Hence, after some simple calculation we have

Theorem 5.7.3
plan(n) ≈ β0 · β(n) · βn · n!, (5.23)

with a desired chosen subexponential function β(.), numbers β0 and β > 1.

Of course, the quantities β0, β and the function β(.) should be better estimated.
Extending techniques are introduced in [23]. Gimenez and Noy [98] showed

Theorem 5.7.4 Let plan(n) be the number of planar labeled graphs with n vertices.
Then

plan(n) ≈ β0 · n−7/2 · βn · n!, (5.24)

with β ≈ 27.22688.
Let plan-conn(n) be the number of connected planar labeled graphs with n vertices.
Then

plan-conn(n) ≈ β1 · n−7/2 · βn · n!. (5.25)

An exact and explicit formula for the number of planar graphs is not known, but
for specific cases. Remember that a maximal outer-planar graph can be embedded as
a triangulation of a polygon. Together with M.4.1 we obtain

Theorem 5.7.5 The number of maximal outer-planar graphs with n > 2 vertices
equals the (n− 2)th Catalan number, that means

Cn−2 =
1

n− 1

(
2n− 4
n− 2

)
. (5.26)

Consequently, there are at least exponentially many labeled outer-planar graphs,
which is not a surprise since we will see that there is exponential number of labeled
trees.
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5.8 Random graphs I.

Historically, counting problems have been closely associated with probability. In this
section we will see that facts from probability theory are helpful to prove results in
graph theory. The goal is to give the terms ”almost all/no” more substance.
Aigner, Ziegler [5]:

If in a given set of objects the probability that an object does not have a
certain P is less than 1, then there must exist an object with this property.

We will use different models.

I We will use uniform probability spaces. In other terms, our probability space
will be the set Gn of all labeled graphs with n vertices in which each graph is equally
likely. In view of 5.1.1 we observe

|Gn| = 2(n
2), (5.27)

such that the probability distribution for each member G ∈ Gn is given by

Pr(G) = 2−(n
2). (5.28)

Given a graph theoretic property, let pn denote the probability that a graph picked
randomly from Gn has this property. We use the following notation:

If
{

limn→∞ pn = 1
limn→∞ pn = 0

}
we say that

{
almost all
almost no

}
graphs

have the considered property.

Theorem 5.8.1 Almost all graphs have no vertex of degree 0.

Proof. There are
2(n−1

2 ) (5.29)

graphs containing one specific vertex as an isolated one. Hence, the number of graphs
in Gn containing at least one isolated vertex can be bounded by n·(5.29).
In order to prove that almost all graphs do not have any isolated vertex, we see that

n · 2(n−1
2 )

2(n
2)

=
n

2n−1
, (5.30)

tends to 0, which is obvious. 2

Asymptotically, the number of connected graphs is the same as the number of all
graphs:

Theorem 5.8.2 Almost all graphs are connected.
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Proof. Consider disconnected graphs in Gn. Each such graph contains a subset of
i ≤ bn/2c vertices in which no vertex is adjacent to any vertex outside. There are

2(i
2) · 2(n−i

2 ) = 2(
n
2)−i(n−i) (5.31)

many graphs which are disconnected because such a set of vertices. Consequently, we
can bound the number of disconnected graphs in Gn from above by

bn/2c∑
i=1

2(n
2)−i(n−i) ≤

bn/2c∑
i=1

ni2−i(n−i). (5.32)

For n sufficiently large, the largest summand on the right side is the first one. There-
fore, the sum is bounded from above by n22−n which tends to 0 fast. 2

The theorem implies that if we randomly pick up a graph from Gn it will most
likely be connected.

II Furthermore, we will describe two concepts which generalize our approaches.
Both will imply 5.8.2. For the proofs see [45] and [194].
We can describe the the underlying probability space of Gn in a different way, namely
where each term models the presence or absence of a particular edge and assume that
each edge is presented with the probability 1/2. We write this space by Gn,1/2.
The observation

Pr[G ∈ Gn,1/2] = 2−(n
2)

for every fixed graph G shows that this model is indeed just another description of Gn.

What is known about the expected number of edges in a randomly chosen graph?
Linearity of expectation implies

Theorem 5.8.3 ([194]) The expected number of edges of a random graph is

1
2

(
n

2

)
=

n(n− 1)
4

. (5.33)

Remember that each connected graph G = (V,E) is a metric space (V, ρ).

diam(G) = max{ρ(v, v′) : v, v′ ∈ V } (5.34)

defines the diameter of G.13 In other words, the diameter is the longest distance
between any two vertices in the graph. It should not be confused with the longest
path in the graph. Of course,

diam(G) ≤ |V | − 1. (5.35)

13For disconnected graphs this quantity is undefined, or ∞.
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This implies that, using the adjacency matrix, we have to check only the powers up
to k = |V | − 1 to decide whether a graph is connected or not.

In view of 4.4.6 and its proof the following fact is not a surprise14 although not
simple.

Theorem 5.8.4 Almost all graphs have diameter 2.

This theorem can be seen as the origin of the so-called ”small world phenomenon”:
any two vertices are connected by a short path, roughly spoken in many - perhaps
most - networks the typical distances between vertices are surprisingly small. Com-
pare Chung [49], Häggström [114], Kleinberg [153] or Newman [179].

III. Remember that a graph G = (V,E) is called k-connected if for each pair of
different vertices v and v′ there are k pairwise vertex-disjoint paths interconnecting
v and v′, k ≥ 0.

Theorem 5.8.5 For any fixed k > 0, almost all graphs are k-connected.

More facts we find in Harary, Palmer [122] in view of considering asymptotics.

5.9 Random graphs II.

I. To obtain a more subtle information about graphs, we refine our probability space
by introducing a parameter p with 0 < p < 1 which describes the probability of an
edge to be in a graph. In other terms, we fix not the number but the probability of
the edges. The space is written by Gn,p.

Observation 5.9.1 Consider Gn,p. Then each graph with m edges has the probability

Pr(m) = pm · (1− p)(
n
2)−m. (5.36)

The observation shows that Pr is a Bernoulli trial, which is a single experiment
with two possible outcomes: success and failure. A number of independent Bernoulli
trials describes just the standard binomial distribution.

Theorem 5.9.2 Consider Gn,p.

a) The total probability of graph with m edges equals((n
2

)
m

)
· pm · (1− p)(

n
2)−m. (5.37)

14But Gardner, [95], [96]:

Most people are very surprised when they meet a stranger, especially it far from home,
and discover that they have a friend in common.

71



b) The expected number of edges equals

p ·
(

n

2

)
. (5.38)

c) The mean degree is
(n− 1) · p. (5.39)

d) The total probability of a vertex of being connected to exactly k others equals(
n− 1

k

)
· pk · (1− p)n−1−k. (5.40)

That means, Gn,p has a binomial degree distribution.

Proof.
a) In view of (5.1) there are

((n
2)
m

)
possible graphs, each selected with equal probability.

b) Well-known for the expectation of the binomial distribution, since

(n
2)∑

m=0

mPr(m) =
(

n

2

)
p.

c) In view of 4.1.1 and b) we determine the mean degree in

(n
2)∑

m=0

2m

n
Pr(m) =

2
n

(
n

2

)
p = (n− 1)p.

d) A given vertex is adjacent with independent probability p to each other of the n−1
vertices. Thus the probability of being adjacent to a particular k other vertices and
not to any of the other n− k − 1 ones is pk · (1− p)n−1−k. There are

(
n−1

k

)
ways to

choose those k vertices. Hence, the assertion. 2

II. For further investigations we consider the following approach. Let X be a
binomially distributed random variable with parameter n and p. If the number n of
experiments is large and the number k of successes is small, then a good approximation
is given assuming that np, the expected number of successes, is a constant. This can
be seen by the following chain of equations.(

n

k

)
pk(1− p)n−k

=
n(n− 1) · · · (n− k + 1)

k!
λk

nk

(
1− λ

n

)n−k

substituting p =
λ

n

= 1 ·
(

1− 1
n

)
· · ·
(

1− k − 1
n

)
· λk

k!
·
(

1− λ

n

)n

·
(

1− λ

n

)−k

→ λk

k!
· e−λ,
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provided that n increases, p approaches 0, and λ = np = const. Consequently,

lim
n→∞,p→0,np=λ=const

(
n

k

)
pk(1− p)n−k =

λk

k!
· e−λ, (5.41)

called the Poisson distribution with parameter λ. Roughly spoken, let B(k, n, p) be
binomial distributed with the parameters n and p, then

B(k, n, p) ≈ P (k, λ), (5.42)

where P (k, λ) is Poisson distributed with parameter λ = np. This observation is very
helpful, because, in general, the quantity B(k, n, p) is hard to compute if n � 1 and
p � 1.

The Poisson distribution is often used in modelling situations in biology where
events occur infrequently. Consider the following example [56]: From many studies,
it has become clear that the rate of amino acid substitution varies between organisms
and also between protein classes. We are interested in the way how amino acid
substitution rates are computed.
Let w and w′ be two (homologous) polypeptides of the same length n. nd denotes the
number of differences between homologous acid sites; the probability p of an amino
acid substituting occuring at a given site of either w or w′ can be estimated by

p ≈ nd

n
. (5.43)

A second approximation of p can be derived by assuming that the substitution of
amino acids at a given site is a Poisson process. Let X be a random variable counting
the number of mutations over time t at fixed site for an polypeptide having substitu-
tion rate λ per site (and per year). Then

p(X = k) =
(λ · t)k

k!
e−λ·t. (5.44)

Thus the probability that no substitution occurs at a given site in w is

p(X = 0) = e−λ·t. (5.45)

Hence the probability that no substitution occurs at a given site in w and w′ is

q = e−2·λ·t. (5.46)

Since d = 2 · λ · t is the total number of substitutions occuring at a fixed site, we get

d = 2 · λ · t = − ln q. (5.47)

Together with (5.43) we find the following approximation

d ≈ − ln
(
1− nd

n

)
(5.48)
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for the protein substitution rate.

Another example is the calculation of the degree distribution of a random graph.
A given vertex in the graph is connected with independent probability p to each of
the other n− 1 vertices. Then it holds 5.9.2(d). This becomes

Corollary 5.9.3 The total probability of a vertex of being connected to exactly k
others is approximately

e−(n−1)p · ((n− 1)p)k

k!
, (5.49)

in the limit of large n.

5.10 Threshold functions

Now the properties of graphs depend on the concrete values of p. We use the following
notation: Let Q be a property of graphs. A function t(.) is called a threshold function
for Q

if
{

t(n) = o(p(n))
p(n) = o(t(n))

}
implies

{
limn→∞ Pr[Gn,p has property Q] = 1
limn→∞ Pr[Gn,p has property Q] = 0.

}
Note that not every property has a threshold function (but almost all of the interesting
properties), and that threshold functions are not unique. (Exercises)
In [45] and [194] there are little collections of threshold functions:

graph-property Q threshold function t(n)

having no isolated vertices ln n
n

is connected ln n
n

diameter 2
√

ln n
n

containing a path of length k n−(k+1)/k

containing a Hamiltonian path ln n
n

containing a triangle 1
n

containing a cycle 1
n

containing a Kr n−2/(r−1)

non-planar 1
n

Of more interest for our investigations is the following result.

Theorem 5.10.1 (Prömel, Steger [194]) The function t(n) = ln n
n is the threshold

function for the property for connectedness of graphs.

In view of the last theorems graphs are ”randomly dense”. And indeed:
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Theorem 5.10.2 Almost all graphs are non-planar.

In view of 5.7.2 this is not a surprise. For a complete proof see [45].

As strange fact it is known by Robinson, Warmald [206], [207], that for every in-
teger r ≥ 3, almost all r-regular graphs are Hamiltonian, but, surprisingly, planarity
changes the picture completely, since Richmond et al. [202] show that almost all
3-connected 3-regular planar graphs are not Hamiltonian.

Random graph theory concerns many more properties of random graphs and we
have just scratched the surface of this area. More facts we find in Bollobas [30], and
in the algorithmic sense in Mitzenmacher et al. [175].
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Chapter 6

The Number of Labeled Trees

Clearly, we have to distinguish between labeled an unlabeled trees. A tree T = (V,E)
with n vertices is called labeled if a bijective mapping from V onto the set {1, . . . , n}
of integers is given.1 On the other hand, in the case of unlabeled trees the word
”different” means non-isomorphic, and each set of isomorphic trees is counted as one.

6.1 Permutations

We start with a very simple example that we have to distinguish between permu-
tations, cycles and paths, which are as trees also linear arrangements. Let n = 3
then

class permutations (oriented) cycles cycles paths

123 123 = 231 = 312 all 123 = 321
132 132 = 321 = 213 132 = 231
213 213 = 312
231
312
321

number 6 2 1 3

Well-known

Observation 6.1.1 There are

n! = n · (n− 1) · (n− 2) · · · 2 · 1 (6.1)

permutations on n elements.
1Or onto another set of n distinguished names.
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Proof. There are n possibilities for the first place, then n− 1 for the second place,
and so on until there is just one for the last place. So we get the assertion from the
multiplication principle. 2

In general,

Theorem 6.1.2 Consider n ≥ 3 vertices. Then

a) There are (n− 1)! labeled (oriented) cycles.

b) There are (n− 1)!/2 labeled cycles.

c) There are n!/2 labeled paths.

Proof. There are (n− 1)! ways to place n objects at a round table, when we count
oriented cycles. And each cycle has two orientations.
Consider paths. We select two vertices as the leaves and order all other in any way.(

n

2

)
· (n− 2)! =

n!
2!(n− 2)!

· (n− 2)! =
n!
2

. (6.2)

2

6.2 Trees with a given degree sequence

We start counting with the number of different labeled trees and we will describe this
number in terms of the vertex degrees.

Let T = (V,E) be a tree with n vertices v1, ..., vn, and let gi = g(vi) be the degree
of each vertex vi. Then, obviously, each of the numbers gi is a positive integer, and,
in view of 4.1.1 and 4.6.2,

n∑
i=1

gi = 2n− 2. (6.3)

Conversely, by an induction argument, we find that this equality is also sufficient:

Lemma 6.2.1 Let g1, . . . , gn be a sequence of positive integers satisfying (6.3). Then
there exists a tree on n vertices with these predetermined degrees.

Proof. Let g1, . . . , gn+1 be a sequence with

n+1∑
i=1

gi = 2(n + 1)− 2 = 2n. (6.4)

Not all of the gi can be equal 1, since otherwise

n+1∑
i=1

gi =
n+1∑
i=1

1 = n + 1 < 2n.
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Not all of the gi can be greater than 1, since otherwise

2n =
n+1∑
i=1

gi ≥
n+1∑
i=1

2 = 2(n + 1).

Hence, without loss of generality, we may assume that gn+1 = 1 and gn > 1.
Define g′1, . . . , g

′
n by

g′i = gi (6.5)

for i = 1, . . . , n− 1, and
g′n = gn − 1. (6.6)

For this sequence it holds

n∑
i=1

g′i =
n−1∑
i=1

gi + (gn − 1) + (gn+1 − 1) =
n+1∑
i=1

gi − 2 = 2n− 2.

By the induction assumption there is a tree T ′ = (V ′ = {v1, . . . , vn}, E′) such that
g(vi) = g′i. Then the tree T = (V ′ ∪ {vn+1}, E′ ∪ {vnvn+1}) fulfills the assertion. 2

In view of 3.2.2 there are
(
2n−3
n−2

)
solutions of the Diophantic equation (6.3) in

positive integers. Hence, the number of different trees increases exponentially, but
not faster:

Theorem 6.2.2 Let n ≥ 2 be an integer and let g1, ..., gn be a sequence of positive
integers. When we denote by t(n, g1, ..., gn) the number of different labeled trees T =
({v1, ..., vn}, E) of n vertices with the degree sequence

gT (vi) = gi (6.7)

for i = 1, ..., n, we have

t(n, g1, ..., gn) =
(n− 2)!∏n

i=1(gi − 1)!
=
(

n− 2
(g1 − 1) . . . (gn − 1)

)
(6.8)

if (6.3) holds, and
t(n, g1, ..., gn) = 0 (6.9)

otherwise.

Proof. ([25] or [173]) In view of 6.2.1 and its proof we know that t(n, g1, ..., gn) > 0
if and only if (6.3) holds.
Without loss of generality, we may assume that

g1 ≥ g2 ≥ . . . ≥ gn.

That means: g1 = ∆(G) and gn = δ(G) = 1 and vn must be a leaf.
Let Ci be the collection of all trees T with vertices v1, . . . , vn and degrees gj = gT (vj),
such that the leaf vn is adjacent to vi. Assuming gi ≥ 2 we have

|Ci| = t(n− 1, g1, . . . , gi−1, gi − 1, gi+1, . . . , gn−1).
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Since the collection of all trees is the union of the sets Ci for gi ≥ 2 we obtain, by the
addition principle,

t(n, g1, ..., gn) =
∑
gi≥2

t(n− 1, g1, . . . , gi−1, gi − 1, gi+1, . . . , gn−1). (6.10)

Now, we use induction. The theorem is true for n = 2. Assume that n ≥ 3 and that
the theorem is true for n− 1. Then

t(n, g1, ..., gn)

=
∑
gi≥2

t(n− 1, g1, . . . , gi−1, gi − 1, gi+1, . . . , gn−1)

=
∑
gi≥2

(n− 3)!
(g1 − 1)! · · · (gi−1 − 1)!(gi − 2)!(gi+1 − 1)! · · · (gn−1 − 1)!

=
∑
gi≥2

(n− 3)!(gi − 1)
(g1 − 1)! · · · (gn−1 − 1)!

=
(n− 3)!

(g1 − 1)! · · · (gn−1 − 1)!
·
∑
gi≥2

(gi − 1)

=
(n− 2)!

(g1 − 1)! · · · (gn−1 − 1)!

=
(n− 2)!

(g1 − 1)! · · · (gn − 1)!
,

where we use C.3.2. 2

Summing up over all degree sequences satisfying (6.3), whereby

t(n) = # labeled trees , (6.11)

gives

t(n) =
∑
(6.3)

t(n, g1, ..., gn) =
∑
(6.3)

(n− 2)!∏n
i=1(gi − 1)!

= (1 + . . . + 1︸ ︷︷ ︸
n−times

)n−2 = nn−2,

by C.3.2. And we have one of the most beautiful formulas in enumerative combina-
torics:

Theorem 6.2.3 (Cayley [41]) The number of different labeled trees with n vertices
equals nn−2.

This theorem shows that the number of trees grows very rapidly in the number
of vertices. We will find the same fact in most of our considerations. This makes
exhaustive strategies handling trees using all trees infeasible for datasets involving
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more than a dozen vertices.
It should be noted that nn−2 is the number of distinct trees, but not the number of
non-isomorphic ones. This gives a new question which we will discuss later.

Now we will give a partial answer to the following problem of reconstruction: In
how many ways we can extend a subforest to a tree? For bipartitions this is easy
to answer: Two trees of a split (a bipartiton) of a set in two parts with n1 and n2

vertices, respectively, can be extended in n1 ·n2 ways to a tree for all. And in general,

Theorem 6.2.4 (Moon) Consider the complete graph Kn = (V,E) with n vertices.
Let {V1, . . . , Vc} be a partition of V with |Vi| = ni, and let Ti = (Vi, Ei), i =
1, . . . , c, be pairwise disjoint trees. Then the number of spanning trees of Kn that
have T1, . . . , Tc as subgraphs is

n1 · · ·nc · nc−2. (6.12)

Proof. If each set Vi were contracted to a vertex vi, then the number of trees T
with gT (vi) = gi is (

c− 2
(g1 − 1) . . . (gc − 1)

)
.

To each tree T correspond exactly ng1
1 · · ·ngc

c different spanning trees and consequently
the searched number equals∑(

c− 2
(g1 − 1) . . . (gc − 1)

)
· ng1

1 · · ·ngc
c = ng1

1 · · ·ngc
c · (n1 + . . . + nc)c−2.

The assertion follows. 2

6.3 The Prüfer code

Cayley’s formula yields to equally beautiful proofs drawing on a variety of combi-
natorial and algebraic techniques. Here and later, we will outline several of these
approaches.

Prüfer [196] established a bijection between trees and sequences of n− 2 integers
between 1 and n, providing a constructive proof of Cayley’s result. This bijection
can then be exploited to give algorithms for systematically generating labeled trees.
More precisely: The strategy of the proof is to establish a one-to-one correspondence
between the labeled tree and the Prüfer code, which is a sequence of length n − 2
of integers between 1 and n, with repetitions allowed; in other words, a member of
{1, . . . , n}n−2. Algorithmically this coding is described by

Algorithm 6.3.1 Let T = (V = {v1, . . . , vn}, E) be a labeled tree. Then the Prüfer
code for T can be constructed by performing the following steps:
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1. Initialize T to be the given tree;

2. For i = 1 to n− 2 do
Let v be the leaf with the smallest label;
Let si be the label of the only neighbor of v;
T := T [V \ {v}];

3. The code is (s1, . . . , sn−2).

We will now use the correspondence between Prüfer codes and labeled trees to
generate trees. We first note that the following decoding procedure maps a given
Prüfer code to a labeled tree:

Algorithm 6.3.2 A Prüfer code P is given. Then a labeled tree T = (V,E) can be
constructed by performing the following steps:

1. Initialize the list P as the input;

2. Initialize the list V as 1, . . . , n;

3. Initialize T as the forest of isolated vertices on V ;

4. For i = 1 to n− 2 do
Let k be the smallest number in list V that is not in list P ;
Let j be the first number in list P ;
Add an edge joining the vertices labeled k and j;
Remove k from list V ;
Remove the first occurrence of j from list P ;

5. Add an edge joining the vertices labeled with the two remaining numbers in the
list V .

It is not hard to see (exercise) that the decoding procedure 6.3.2 is the inverse of
the encoding procedure 6.3.1. Altogether this establishes again 6.2.3.2

In other terms, we have created a one-to-one correspondence between the set of labeled
trees and the set of Prüfer codes.

Algorithm 6.3.3 Let n be an integer with n ≥ 2. Then the following algorithm
generates all trees with n labeled vertices:

1. Generate, by simple counting, all Prüfer codes in {1, . . . , n}n−2;

2. For each code apply 6.3.2.

This procedure consumes nn−2 · O(n) = O(nn−1) time, since 6.3.2 runs in linear
time. Hence, it is an effective technique.

2For several other proofs compare [5] and [170].
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6.4 Trees with given leaves

We are interest in the number of trees with n vertices of which exactly k leaves. We
assume n > 1, such that k is a number between 2 and n− 1.

Theorem 6.4.1 tk(n) denotes the number of labeled trees with n vertices of which k
leaves, k = 2, . . . , n− 1. Then

k

n
tk(n) = (n− k)tk−1(n− 1) + ktk(n− 1), (6.13)

with the initial conditions t1(n) = tn(n) = 0, except t2(2) = 1.

Idea of the proof. Consider sets with n elements and one of these explicitly. We
distinguish two cases: It is a leaf or an internal vertex. Then we use the addition
principle. 2

Of course, in view of 6.2.3,
∑n−1

k=2 tk(n) = nn−2. We discuss several specific cases.

k = 2: We count paths.

2
n

t2(n) = (n− 2)t1(n− 1) + t2(n− 1) = 2t2(n− 1).

Together with t2(2) = 1 this implies t2(n) = n!/2, in accordance with 6.1.2.

k = n− 1: We count stars.

n− 1
n

tn−1(n) = tn−2(n− 1) + (n− 1)tn−1(n− 1) = tn−2(n− 1).

Therefore, well-known,
tn−1(n) = n. (6.14)

k = n− 2: We count double-stars.

tn−2(n) =
2n

n− 2
tn−3(n−1)+ntn−2(n−1) =

2n

n− 2
tn−3(n−1)+n(n−1) =: f(n),

paying attention (6.14). Solving this recurrence we get

f(n) =
2n

n− 2
f(n− 1) + n(n− 1)

=
2n

n− 2

(
2(n− 1)
n− 3

f(n− 2) + (n− 1)(n− 2)
)

+ n(n− 1)

=
22n(n− 1)

(n− 2)(n− 3)
f(n− 2) + (2 + 1)n(n− 1)

=
22n(n− 1)

(n− 2)(n− 3)

(
2(n− 2)
n− 4

f(n− 3) + (n− 2)(n− 3)
)
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+(2 + 1)n(n− 1)

=
23n(n− 1)

(n− 3)(n− 4)
f(n− 3) + (22 + 2 + 1)n(n− 1)

...

=
2n−4n(n− 1)

4 · 3
f(4) + (2n−5 + . . . + 1)n(n− 1)

= 2n−4n(n− 1) + (2n−4 − 1)n(n− 1) in view of 6.1.2
= (2n−3 − 1)n(n− 1).

Hence,

tn−2(n) = (2n−2 − 2)
(

n

2

)
. (6.15)

for n ≥ 4.

We write the numbers tk(n) as a triangle:

n \ k 2 3 4 5 6 7 nn−2

2 1 1
3 3 3
4 12 4 16
5 60 60 5 125
6 360 720 210 6 1,296
7 2,520 8,400 5,250 630 7 16,807
8 20,160 100,800 109,200 30,240 1,736 8 262,144

From the theorem we obtain, by simple calculation, and consequently a weak,
lower bound for the number of trees with a given number of leaves.3

Theorem 6.4.2 For all numbers k with 2 ≤ k ≤ n− 1 it holds

tk(n) ≥ n!
k!

. (6.16)

Proof. In view of 6.4.1 we have

tk(n) ≥ ntk(n− 1) ≥ n(n− 1)tk(n− 2)
≥ n(n− 1)(n− 2)tk(n− 3) ≥ . . .

≥ n(n− 1) · · · (k + 2)tk(k + 1)

= n(n− 1) · · · (k + 2)(k + 1) =
n!
k!

.

2

3Later, investigating multi-stars, we will find a better bound for specific cases.
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6.5 The number of labeled forests

Observation 6.5.1 Let g1, . . . , gn be a sequence of nonnegative integers, and let c be
a positive integer, satisfying

n∑
i=1

gi = 2n− 2c. (6.17)

Then there exists a forest on n vertices with this predetermined degrees and c compo-
nents.

At first, we give a result which is not only as helpful for further considerations as
well on its own interest.

Lemma 6.5.2 (Clarke) The number of different trees T with the labeled vertices
v1, . . . , vn and with gT (v1) = g equals(

n− 2
g − 1

)
· (n− 1)n−g−1. (6.18)

Proof. The desired number is∑
g2,...,gn

(
n− 2

(g − 1)(g2 − 1) . . . (gn−1 − 1)

)
=

∑
g2,...,gn

(n− 2)!
(g − 1)!(g2 − 1)! · · · (gn−1 − 1)!

=
∑

g2,...,gn

(n− 2)!
(g − 1)!(g2 − 1)! · · · (gn−1 − 1)!

· (n− g − 1)!
(n− g − 1)!

=
(n− 2)!

(g − 1)!(n− g − 1)!

∑
g2,...,gn

(n− g − 1)!
(g2 − 1)! · · · (gn−1 − 1)!

=
(

n− 2
g − 1

)
·
∑

g2,...,gn

(
n− g − 1

(g2 − 1) . . . (gn − 1)

)
=

(
n− 2
g − 1

)
· ( 1 + . . . + 1︸ ︷︷ ︸

(n−1)−times

)n−g−1

=
(

n− 2
g − 1

)
· (n− 1)n−g−1,

by C.3.2. 2

We have the following consequence of 6.2.2 for forests.

Theorem 6.5.3 (Cayley) The number of different labeled forests with n vertices and
c components, where the first c vertices are in different components, equals

t′(n, c) = c · nn−c−1. (6.19)
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Proof. Consider the set C of trees with the vertices v0, v1, . . . , vn and g(v0) = c.
In view of 6.5.2 we have

|C| =
(

(n + 1)− 2
c− 1

)
· ((n + 1)− 1)(n+1)−c−1 =

(
n− 1
c− 1

)
· nn−c.

On the other hand, C is the union of all trees with vi adjacent to v0, for any i. Hence,

|C| =
(

n

c

)
· t′(n, c).

Altogether (
n

c

)
· t′(n, c) =

(
n− 1
c− 1

)
· nn−c.

Thus

t′(n, c) =
c!(n− c)!

n!
· (n− 1)!
(c− 1)!(n− c)!

· nn−c =
c

n
· nn−c = c · nn−c−1.

2

For fixed n the function
t′(n, c) =

c

nc
· nn−1 (6.20)

is a decreasing sequence in c from nn−2 until 1. Consequently, using the formula for
(finite) geometric series D.2.1, D.2.2, we find

n∑
c=1

t′(n, c) =

(
n∑

c=1

c

nc

)
· nn−1 =

1
n −

1
nn(

1− 1
n

)2 · nn−1 =
nn − n

(n− 1)2
. (6.21)

Corollary 6.5.4 The number of all forests with n labeled vertices is bounded from
below by

n∑
c=1

t′(n, c) =
nn − n

(n− 1)2
. (6.22)

Numerically,

n 1 2 3 4 5 6 7

1 2 6 28 195 1,786 22,876

Let t(n, c) be the number of all forests with n labeled vertices and c components.
Then, of course, t(n, c) ≥ t′(n, c). In particular for n = 4:

c = m = n− c t′(n, c) t(n, c) comment

1 3 16 16 all trees
2 2 8 15
3 1 3 6
4 0 1 1 the empty graph

28 38
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Easy to find an upper bound

Theorem 6.5.5

t(n, c) ≤
( (n

2

)
n− c

)
. (6.23)

For c = n, n− 1 and n− 2 equality holds.

As an exercise Bollobas [29] gives an explicit, but very complicated, formula for
t(n, c), implying

t(n, 2) =
1
2
(n− 1)(n + 6)nn−4. (6.24)

Numerically,

n = 2 3 4 5 6 7 . . . 10

t(n, 2) = 1 3 15 88 1080 11.557 . . . 288.000.000

In general, we know, in view of 4.6.6, that the number of edges in a forest is
bounded by n− 1. Then in (5.1)

number of forests with n vertices ≤
n−1∑
m=0

((n
2

)
m

)
≤
(

en(n− 1)
2(n− 1)

)n−1

,

paying attention 5.7.1.

Theorem 6.5.6 The number of forests with n labeled vertices is bounded from above
by (e

2

)n−1

· nn−1 = (1.3596 . . . · n)n−1. (6.25)

The comparison of 6.5.4 and 6.5.6 shows a small gap, which gives a hint for the
asymptotic behavior:

Theorem 6.5.7 (Renyi [200]) The number of forests with n labeled vertices is asymp-
totically √

e · nn−2 = 1.64872 . . . · nn−2. (6.26)

This is a very interesting result, since

# trees with n vertices
# forests with n vertices

≈ 1√
e

= 0.6065 . . . . (6.27)

As an exercise transform this fact into a statement in the sense of random graphs.
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Chapter 7

Unlabeled Graphs

Deciding when two graphs with different specifications are structurally equivalent,
that is, whether they have the same pattern of connections is an important, but diffi-
cult question. The concept of graph isomorphism lies (explicitly or implicitly) behind
almost any discussion of graphs, to the extent that it can be regarded as the funda-
mental concept of graph theory.1

An example for the practical importance of determining whether two graphs are
isomorphic is given by working with organic compounds. Such are build up large
dictionaries of compounds that they have exactly analyzed. When a new compound
is found, one wants to know if it is already in the dictionary. In general, many
compounds have the same molecular formula but differ in their structure as graphs.2

Consequently, one must test the new compound to see if it is isomorphic to a known
compound.

7.1 Isomorphic graphs

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphic if there
exists a one-to-one, onto mapping f : V1 → V2 such that vv′ ∈ E1 if and only if
f(v)f(v′) ∈ E2. f is called an isomorphism.

Observation 7.1.1 Isomorphism is an equivalence relation on the collection of all
graphs.

Isomorphic graphs are structurally equivalent.

Observation 7.1.2 Isomorphic graphs have/are
- the same number of vertices;

1Solutions to the fascinating problem of determining the number of graphs starts in 1927 by a re-
markable paper by Redfield [199]. But it seems forgotten for several years, when it was independently
investigated by Polya [192] in 1937.

2For instance the molecule C4H10 can be realized as butane and as isobutane.
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- the same number of edges;
- the same cyclomatic number;
- the same number of components;
- the same complement graphs;
- the same number of bridges;
- the same number of articulations;
- the same connectivity;
- an equal number of vertices of any given degree;
- for each integer k, the same number of paths of length k;
- for each integer k, the same number of cycles of length k;
- the same chromatic number;
- the same chromatic index;
- the same chromatic polynomial;
- a Hamiltonian cycle or not;
- the same metric order;
- an (open or closed) Eulerian line or not;
- both bipartite or not;
- both planar or not;
- and: the same number of spanning trees.

However, each of these properties is a necessary but not a sufficient criteria for
isomorphism. Is there a collection sufficient for isomorphism?3 For practice, give two
non-isomorphic graphs with
a) the same degree sequence; or
b) equal families of neighborhood, respectively.

In general it is difficult to determine whether two graphs are isomorphic.4 Consider
two graphs G1 = (V1, E1) and G2 = (V2, E2) with n vertices. There are n! possible
bijections between V1 and V2. This immediately implies the following test for graph
isomorphism.

Algorithm 7.1.3 Given two graphs G1 = (V1, E1) and G2 = (V2, E2).
We return ”yes” or ”no”, according to whether G1 is isomorphic to G2.

1. If |V1| 6= |V2| return no;

2. If the ordered sequences of the degrees of the vertices of G1 and G2 are not equal
return no;

3. Fix an ordering for the vertices of G1;
Write the adjacency matrix A(G1) with respect to that ordering;
For each ordering (= permutation) π of the vertices of G2 do

(a) Write the adjacency matrix A(G2) with respect to the ordering π;

3This is an open, and very hard question.
4Can be a graph isomorphic to its complement? If yes, find all.
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(b) If A(G1) = A(G2) return yes;

4. Return no.

Testing each such correspondence to see whether it preserves adjacency and non-
adjacency is impractical if n is large. For practice discuss the following fact.

Observation 7.1.4 Isomorphism of graphs is usually much harder to prove than
non-isomorphism.

It is strange, but the computational complexity to verify whether two graphs are
isomorphic is still unknown: No polynomially bounded algorithm is known, on the
other hand it has not been proved that this problem is in NPC. Maybe, this problem
is a member of NPI. A monograph on isomorphism detection is given in [134].

7.2 Labeled and unlabeled graphs

Remember that counting the number of unlabeled graphs tend to be harder to solve
than counting the number of labeled ones. The following observation is simple to see,
but gives in many cases a first estimation for the number of unlabeled graphs.

Observation 7.2.1 Let Clabeledn be a collection of labeled graphs each with n vertices.
Similar denotes Cunlabeled

n the same collection without labels. Then∣∣∣Clabeledn

∣∣∣ ≥ ∣∣∣Cunlabeled
n

∣∣∣ ≥ 1
n!
·
∣∣∣Clabeledn

∣∣∣ . (7.1)

I. A first application: In 5.7.3 we saw that there are approximately more than
βn · n! planar labeled graphs. Together with our observation this implies

Theorem 7.2.2 There is an exponential number of planar graphs.

The two graphs K5 and K3,3 are non-planar. This can easily be seen by 4.8.2 and
4.1.2. Conversely, it holds the following surprisingly fact, when we consider a weaker
form of isomorphism: Two graphs G1 and G2 are said to be homeomorphic if they
are isomorphic or if they can both be obtained from the same graph G by a sequence
of subdivisions. One may think homeomorphic graphs as being isomorphic, except,
possibly for vertices of degree 2. If two graphs are homeomorphic, they are either
both planar or they are both non-planar. Then it is clear that a graph containing a
subgraph homeomorphic to either K5 or K3,3 cannot be planar. The converse of this
fact, however, is also true, but much more difficult to prove.

Theorem 7.2.3 (Kuratowski) A graph is non-planar if and only if it contains a
subgraph homeomorphic to either K5 or K3,3.

The proof of this deep topological result is beyond the scope of the present script,
but is given in each of the textbooks of graph theory.
In this sense there are only two non-planar graphs, but of course, there are infinitely
many non-planar graphs which can be exactly named:
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a) Kn is planar if and only if n ≤ 4.

b) Kn1,n2 is planar if and only if min{n1, n2} ≤ 2.

c) QD is planar if and only if D ≤ 3.5

d) The Petersen graph Gpetersen is not planar.

A (little bit surprising) consequence of Kuratowski’s theorem is that we can check in
polynomially bounded time whether a graph is planar. But nevertheless such naively
searching for homeomorphic subgraphs K5 or K3,3 consumes many time. Several
good planarity algorithms have been developed, until an algorithm which runs in lin-
ear time, [44], [109].6

Remember that a planar graph G = (V,E) is called outer-planar if it can be
embedded into the plane such that all vertices lying on the boundary of exactly one
region. Then together with 7.2.3 we characterize outer-planar graphs.

Theorem 7.2.4 A graph is non-outer-planar if and only if it contains a subgraph
homeomorphic to either K4 or K2,3.

Recall what maximal planar and maximal outer-planar mean. For practice verify
(and expand) the following table for the numbers of such graphs with n vertices.

class n = 4 n = 5 n = 6 n = 7 n = 8 . . .

max. planar 1 1 2 5 14 . . .
max. outer-planar 1 1 3 4 . . .

II. We will go a little bit further. Let G be a graph with n vertices. An iso-
morphism of G to itself is called an automorphism. Thus each automorphism of
G = (V,E) is a permutation of V which preserves adjacency.
The set Aut(G) of all automorphisms forms a group.7

Any two bijective functions f1 and f2 from the set {1, . . . , n} to the set of vertices
of G give two identical labeled copies of G if and only if there is an automorphism
α ∈ Aut(G) such that α ◦ f1 = f2. It follows

Theorem 7.2.6 The number of different ways to label a graph G of n vertices is

n!
|Aut(G)|

. (7.2)

5Note, D is not the number of vertices, compare 4.1.4.
6If a graph G is both Hamiltonian and planar, then we observe that in an embedding of G the

edges which are not in the Hamilton cycle H can be divided in two sets, those inside H and those
outside H. This implies a very simple planarity algorithm, see [9].

7And vice versa:

Theorem 7.2.5 (Frucht, [92]) For any finite group Γ there exists a graph G such that Aut(G) is
algebraic isomorph to Γ.
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Proof. Certainly, there exist n! labellings of G using n labels without regard to
which labellings are distinct. For a given one of these, each automorphism gives rise
to an identical labeling. 2

For example the complete graph Kn has n! automorphisms, and so one labeling.
Recall that there are 16 labeled trees with four vertices. We note that among these
trees

12 =
4!

|Aut(P4)|
=

24
2

are isomorphic to the path P4 and 4 to the star K1,3:

4 =
4!

|Aut(K1,3)|
=

24
6

.

It is easy to see that a graph and its complement have the same automorphism group.
Using Lagrange’s theorem O.1.1 from group theory we find

Theorem 7.2.7 The order |Aut(G)| of a graph G with n vertices is a divisor of n!,
and equals n! if and only if G is the complete graph Kn or its complement, the empty
graph Kc

n.

In view of 7.1.4 we may assume that it is hard to determine the automorphism
group of a graph. Ihringer [138] gives an algorithm.

Of course the identity is in any case an automorphism, all other are called sym-
metries. In the sense of random graphs we have

Theorem 7.2.8 Almost all graphs have no symmetries.

7.3 The number of graphs

Since every unlabeled graph G with n vertices and m edges is isomorphic to a set of
at most n! labeled graphs we have

Theorem 7.3.1 The number g(n, m) of non-isomorphic graphs G with n vertices
and m edges is at least ((n

2)
m

)
n!

(7.3)

The theory of random graphs is almost exclusively concerned with graphs on dis-
tinguish vertices. 7.2.6 and 7.2.8 give the possibility to extend this to unlabeled ones.
And indeed in [30] it is shown that under suitable conditions the bound (7.3) is asymp-
totically exact, and consequently Polya already obtained 2(n

2)/n! as the asymptotic
number of graphs with n vertices.
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Of course, in view of 7.2.1, the number of unlabeled graphs with n vertices is much
smaller than that given by 5.1.1(b). On the other hand, by considering all n! labellings,
we find that the number g(n) of all non-isomorphic graphs obeys g(n) ·n! ≥ graph(n).
Hence,

Theorem 7.3.2 The number of non-isomorphic graphs with n vertices is at least

g(n) ≥
√

2
n(n−1)

/n!. (7.4)

We are interested in the order of growing of the function g(n). On the one hand,

log graph(n) = log 2(n
2) =

n(n− 1)
2

=
n2

2

(
1− 1

n

)
.

On the other hand,

log g(n) ≥ log
2(n

2)

n!

=
(

n

2

)
− log n!

=
n2

2

(
1− 1

n

)
− log n!

≥ n2

2

(
1− 1

n

)
− n log n

=
n2

2

(
1− 1

n
− 2 log n

n

)
.

In other words,

Theorem 7.3.3 The order of non-isomorphic graphs grows not essentially slower
than of all graphs.

Unfortunately, an explicit formula for the number of non-isomorphic graphs is
unknown, but for the first values we know

Number n of vertices Number of non-isomorphic graphs

1 1
2 2
3 4
4 11
5 34
6 156
7 1,044
8 12,346
9 274,668

10 12,005,168
11 1,018,997,864
12 165,091,172,592
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A more detailed list on the number of graphs depending on the two quantities, the
number n of vertices and the number m of edges, where 0 ≤ m ≤

(
n
2

)
, is given by

Harary [121] and Harary, Palmer [122]:

m \ n 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1
1 1 1 1 1 1 1
2 1 2 2 2 2
3 1 3 4 5 5
4 2 6 9 10
5 1 6 15 21
6 1 6 21 41
7 4 24 65
8 2 24 97
9 1 21 131

10 1 15 148
11 9 148
12 5 131
13 2 97
14 1 65
15 1 41
16 21
17 10
18 5
19 2
20 1
21 1

sum 1 2 4 11 34 156 1044

As an extreme case, the exact value for n = 24 is known, asymptotically g(24) ≈
1.9570 . . . · 1059.
The list suggests several properties of the function g(n, m) of graphs with n vertices
and m edges. For instance the reader should discuss

a) g(n, m) = g(n,
(
n
2

)
−m), which follows from the fact that two graphs are isomorphic

if and only if their complements are isomorphic.

b) g(n, m) forms a unimodal sequence in m for fixed n. Is this true?

c) A maximum value of g(., .) is achieved for approximately m =
(
n
2

)
/2. Really?

d) g(n, m) is a constant sequence in n for fixed m <
(
n
2

)
.

Note that all these questions are simple for the function graph(n, m) of the number
of labeled graphs, see C.2.3.
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7.4 The number of connected graphs

In view of 5.4.1 and 5.8.2 we assume that the number of connected graphs are not
essentially less than the number of all graphs. And, indeed this seems true:

Number n Number of ratio of connected
of vertices non-isomorphic connected graphs and all graphs

1 1 1
2 1 0.5
3 2 0.5
4 6 0.5454. . .
5 21 0.6176. . .
6 112 0.7179. . .
7 853 0.8170. . .
8 11,117 0.9004. . .
9 261,080 0.9505. . .

10 11,716,571 0.9759. . .
11 1,006,700,565 0.9879. . .
12 164,059,830,476 0.9937. . .

In general, we introduce the cyclomatic number for a graph G with n vertices, m
edges and c components by

ν(G) = m− n + c. (7.5)

If G is connected its cyclomatic number is m− n + 1.

Observation 7.4.1 ν(G) is the number of chords in G with respect to any spanning
forest of G.

With these facts in mind, the following result is easy to prove.

Theorem 7.4.2 The number of non-isomorphic connected graphs with n vertices and
m edges is at most

T (n) ·
( (

n
2

)
m− n + 1

)
, (7.6)

whereby T denotes the number of trees.

Proof. Each connected graph contains a spanning tree with n − 1 edges. The
remaining m− n + 1 edges are selected from

(
n
2

)
. 2

More and better bounds, created by extensive calculations, are given by Wetuch-
nowski [249].
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7.5 Several specific cases

I. In 5.2.1 we counted bipartite labeled graphs. An explicit formula the unlabeled
case is not known. Harary, Palmer [122] give an implicit solution. For instance,
we consider bipartite graphs with 2 + 3 vertices and m edges and find the following
numbers:

m 0 1 2 3 4 5 6 total

number 1 1 3 3 3 1 1 13

II. Remember that the complement of a graph G, denoted by Gc, has the same
set of vertices as G and two vertices are adjacent in Gc if and only if they are not
adjacent in G. We define G as self-complementary if G and Gc are isomorphic.
Let G be a self-complementary graph with n vertices and m edges then

m =
1
2

(
n

2

)
=

n(n− 1)
4

.

Consequently,

Observation 7.5.1 Every self-complementary graph has n ≡ 0 or 1(mod 4) vertices.

Harary, Palmer [122] reports the following known numbers of self-complementary
graphs with n vertices:

n 4 5 8 9 12 13 16 17

number 1 2 10 36 720 5,600 703,760 11,220,000

Asymptotically the number of self-complementary graphs with 4n or 4n + 1 vertices
is 22n2−2n/n!.
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Chapter 8

Polyhedra

Polyhedra are convex hulls of finite sets of points in the three-dimensional (Euclidean)
space. They, especially the regular ones, have been fascinating people since the an-
tiquity. Their investigation was one of the main sources of graph theory.

Remember that a graph is called planar if it can be embedded into the plane such
that no two curves which are the embeddings of the edges intersect each other outside
of the vertices. In such an embedding there are regions, which are parts of the plane
bounded by the curves. This shows that planar graphs and polyhedra are intimately
related.1

8.1 The f-vector

In an embedding of a planar graph there are several other entities than vertices and
edges. Why did we call it a facet? When Euler was trying ”his” formula 4.8.1, he was
studying polyhedra, which are solid bodies bounded by polygons. Here we translate
the notations

in graphs in polyhedra dimension

vertex node, vertex 0
edge edge 1
region facet 2.

1There are ”nice” drawings of planar graphs:

Theorem 8.0.2 Every 3-connected planar graph can be embedded in the plane such that all edges
are segments, and all bounded regions, as well as the union of all bounded regions are convex
polygons.

For a proof see [236].
For practice the reader should prove the following corollary, given by Wagner and rediscovered by
Fary: Every planar graph has a straight line drawing in the plane without intersections. It is also
quite easy to prove this corollary directly by induction, see [127].
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In other terms, Euler found

number of facets + number of nodes = number of edges + 2, (8.1)

written in the terms of the so-called f -vector2 (f0, f1, f2) with fi as the number of
i-dimensional faces of the polyhedron.

Observation 8.1.1 Combinatorially equivalent polyhedra have equal f-vectors, but
not vice versa.

As example construct two polyhedra, both with the f -vector (6, 12, 8), that are
not combinatorially equivalent.

Theorem 8.1.2 Euler’s relation 4.8.1 is the only (linear) restriction for f-vectors of
polyhedra.

Proof. Assume that there is a relation

α0f0 + α1f1 + α2f2 = β. (8.2)

Let Q be a polygon with k nodes, and let P1 be a pyramid and P2 be a bi-pyramid
each with Q as basis. We can express the f -vectors of P1 and P2

f(P1) = (k + 1, 2k, k + 1) (8.3)

and
f(P2) = (k + 2, 3k, 2k). (8.4)

Now we have
α0(k + 1) + α1(2k) + α2(k + 1) = β (8.5)

and
α0(k + 2) + α1(3k) + α2(2k) = β. (8.6)

Combining (8.5) and (8.6) yields the assertion. 2

Theorem 8.1.3 (Steinitz) (f0, f1, f2) is an f-vector of a polyhedron if and only if

f0 − f1 + f2 = 2 (8.7)

and
4 ≤ f0 ≤

2f1

3
(8.8)

and
4 ≤ f2 ≤

2f1

3
. (8.9)

2Abbreviation for ”face” vector.
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Proof. The first condition (8.7) is Euler’s relation.
Since the ”smallest” polyhedron is a tetrahedron, the lower bounds on f0 and f2 are
necessary. Consider the graph G of a polyhedron. Each vertex has degree at least
three. In view of 4.1.1 we find

2f1 ≥ 3f0,

and so (8.8). Similarly (8.9), since each region (facet) is bounded by at least three
edges and each edge lies on exactly two faces.

Here is a sketch of the converse. If the triple (f0, f1, f2) satisfies the conditions,
then there are nonnegative integers x and y such that

(f0, f1, f2)−x(1, 3, 2)−y(2, 3, 1) = (6, 10, 6) or (6, 9, 5) or (5, 9, 6) or (4, 6, 4), (8.10)

which can be proved by induction on f1. Each of the four triples just listed can be
realized by a polyhedron, which we will call irreducible.
Adding (2, 3, 1) can be realized by slightly adjusting the edges incident at a vertex
and replacing the vertex by a triangular facet. Adding (1, 3, 2) can realized similarly
by introducing two triangular facets in place of two adjacent edges of some facet. By
iterating, one of the four irreducible polyhedra can be built up to realize (f0, f1, f2). 2

In view of 8.1.3 we can eliminate one parameter of an f -vector, and consequently,
he following is true for polyhedra and its integer values f0 and f2:

Corollary 8.1.4 (f0, ·, f2) is the f-vector of a polyhedron if and only if

4 ≤ f0 ≤ 2f2 − 4 and 4 ≤ f2 ≤ 2f0 − 4. (8.11)

8.2 The graph of a polyhedron

In a natural sense, the vertices and edges of a polyhedron form a graph.

Theorem 8.2.1 (Steinitz, compare [110]) A graph is isomorphic to the graph of a
polyhedron if and only if it is planar and 3-connected.

At this point, observe that the combinatorial structure of a polyhedron is com-
pletely determined by its graph. It results from Whitney’s theorem [251] that the
embedding of a 3-connected planar graph is unique.3 In other terms,

Corollary 8.2.3 Two polyhedra are combinatorial equivalent if and only if their
graphs are isomorphic.

3A similar statement for higher-dimensional polytopes is not known, but the following nice result:
We can define the graph of a polytope in the natural way.

Theorem 8.2.2 (Balinski [14]) The graph of a D-dimensional polytope is D-connected.
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A graph G is called polyhedral if there exists a polyhedron which graph is isomor-
phic to G. Equivalently, if G is planar and 3-connected.

The high connectedness of polyhedral graphs has the following consequence.

Theorem 8.2.4 Let G be the graph of a polyhedron with n vertices. Then

diam(G) ≤ n + 1
3

. (8.12)

Proof. Let l be the diameter of G and let v and v′ be two vertices which achieve
l. Then there is a path from v to v′ of length l, and, consequently, with l +1 vertices.
Since G is 3-connected there are two vertex-disjoint paths interconnecting v and v′,
each with at least l − 1 internal vertices. Hence,

(l + 1) + 2(l − 1) = 3l − 1 ≤ n.

The assertion follows. 2

8.3 The number of polyhedra I.

How many polyhedra are there with n vertices and f facets?

Remember that for the f -vector (6, 12, 8) there are two non-isomorphic polyhedra.
For the number of polyhedra with small numbers n = f0 of nodes and numbers f2 of
facets we know, compare [60]:

f0 \ f2 4 5 6 7 8 9

4 1
5 1 1
6 1 2 2 2
7 2 8 11 8
8 2 11 42 74
9 8 74 296
10 5 76 633
11 38 768
12 14 558
13 219
14 50

Note the symmetry of the array. This is a consequence of the relation of planar graphs
and its duals.4

Summing up about the table gives
4The Poincare duality is a two-step process running as follows: Let G = (V, E) be a planar graph

embedded in the plane. Then

1. Insert a vertex into the interior of each region. Let V d be the set of all such vertices;
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Number of nodes Number of polyhedra

4 1
5 2
6 7
7 34
8 257
9 2,606

10 32,300
11 440,564

And further:

Number of nodes Number of polyhedra

12 6.3 · 106

13 9.6 · 107

14 1.5 · 109

...
18 1.1 · 1014

This suggests that the number increases exponentially, supported by 7.2.2. And
indeed this is true:

Theorem 8.3.2 (Bender [22]) The number of polyhedra with f0 = i + 1 nodes and
f2 = j + 1 facets is asymptotically

1
972 · ij(i + j)

·
(

2i

j + 3

)
·
(

2j

i + 3

)
. (8.13)

Croft et al. [60] name several facts about the asymptotic behavior for the number
of polyhedra. In particular,

Remark 8.3.3 The number of polyhedra with m = f1 edges is asymptotic to

1
486

√
π
· 4m

m7/2
. (8.14)

2. Through each edge e ∈ E draw an edge joining the vertex of V d on one side of e to the vertex
on the other side. Let Ed be the set of all such edges.

Observation 8.3.1 Let G = (V, E) be a planar graph embedded in the plane; and let Gd = (V d, Ed)
be one of its dual graphs. Then Gd is itself an embedding of a planar graph with
- |V d| = number of regions of G;
- |Ed| = |E|;
- number of regions of Gd = |V |.

100



8.4 The number of polyhedra II.

The results given in the section before lead up to the investigate the number of
polyhedra depending to the number and the size of the facets. More exactly, for
which sequences r3, r4, . . . do there exists a polyhedron with rj facets bounded by j
edges? This is an old and (in full generality) still unsolved question. At first we give
some necessary conditions.

Theorem 8.4.1 Let ni be the number of vertices of degree i, and let rj be the number
of facets bounded by j edges of a polyhedron. Then it holds

n3 + r3 = 8 +
∑
k≥5

(k − 4)(nk + rk). (8.15)

And, the pair
12 +

∑
j≥4

(2j − 6)rj =
∑
i≥3

(6− i)ni; (8.16)

12 +
∑
j≥3

(j − 6)rj =
∑
i≥4

(6− 2i)ni; (8.17)

Proof. The first equation is a consequence of 4.8.1:

2 = f0 − f1 + f2 hence
0 = 8− 4f0 + 4f1 − 4f2

= 8 + 2f1 − 4f0 + 2f1 − 4f2

= 8 +
∑
k≥3

knk −
∑
k≥3

4nk +
∑
k≥3

krk −
∑
k≥3

4rk

= 8 +
∑
k≥3

(k − 4)(nk + rk)

= 8− (n3 + r3) +
∑
k≥5

(k − 4)(nk + rk).

The result follows.
In view of 4.1.1 and 4.8.1 we have∑

i≥3

ini = 2f1 = 2(f0 + f2 − 2) = 2f0 + 2f2 − 4 =
∑
i≥3

2ni +
∑
j≥3

2rj − 4,

which implies ∑
i≥3

(i− 2)ni + 4 =
∑
j≥3

2rj . (8.18)

Similarly, ∑
j≥3

(j − 2)rj + 4 =
∑
i≥3

2ni. (8.19)
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We determine 2× (8.19) − (8.18):

2
∑
i≥3

2ni −
∑
i≥3

(i− 2)ni − 4 = 2
∑
j≥3

(j − 2)rj + 8−
∑
j≥3

2rj ,

which immediately implies the assertion. The other equation of the pair follows sim-
ilar by interchanging the role of rj and ni. 2

The following theorem provides a partial converse of 8.4.1.

Theorem 8.4.2 (Eberhard [72]) Suppose that the finite sequences r3, r4, r5, . . . and
n3, n4, n5, . . . of nonnegative integers satisfy the equations

• (8.15),

• (8.16) and

•
∑

i≥3,i 6=4 ini ≡ 0(mod 2).

Then there exists a polyhedron with ni vertices of degree i, and rj regions bounded by
j edges for all numbers i, j 6= 4.

For a further discussion see [110].5

8.5 Regular polyhedra

We will discuss several regular conditions for polyhedra.

I. A polyhedron is called regular if there exist integers r, s ≥ 3 such that each
vertex has r faces, or equivalently r edges, incident at it, and each face has s edges
on its boundary. The tetrahedron with (r, s) = (3, 3); and the cube are such bodies.
Regular polyhedra are also known as Platonic solids; which already played an impor-
tant role in the science by the ancient Greeks.6 They knew, proven by Euclid, that
there are exactly five of such solids, which we will prove in the next theorem.

Theorem 8.5.1 Suppose that a regular polyhedron has each vertex of degree r and
each face bounded by exactly s edges. Then

(r, s) = (3, 3) or (3, 4) or (4, 3) or (3, 5) or (5, 3). (8.20)

Proof. We have f0 − f1 + f2 = 2 by 4.8.1. Additionally, with similar arguments
than for the proof of 4.1.1, we find the following facts.

2f1 = rf0, (8.21)
5And visit Sloane’s encyclopedia of integer sequence in the www.
6We discuss polyhedra in the sense of graph theory. In the sense of metric geometry all faces of

a Platonic solid must be congruent and regular polygons.
Remember: Graph theory is a part of topology.
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and
2f1 = sf2. (8.22)

Hence, (
2
r
− 1 +

2
s

)
f1 = 2,

and, equivalently
1
r

+
1
s

=
1
2

+
1
f1

. (8.23)

In other words, the values r and s determine the quantities fi, i = 0, 1, 2. In particular
1
r + 1

s > 1
2 gives r = 3 or s = 3. Then (8.23) arises the five possibilities. 2

For each possible pair (r, s) we can find the values of f0, f1, f2 from (8.21), (8.22)
and (8.23). We tabulate these values, and give the name of the corresponding Platonic
solid, the first result in mathematics about counting.7

r s f0 f1 f2 Name

3 3 4 6 4 tetrahedron
3 4 8 12 6 cube
4 3 6 12 8 octahedron
3 5 20 30 12 dodecahedron
5 3 12 30 20 icosahedron

Corollary 8.5.2 A polyhedron whose all facets are hexagons cannot exist.

II. As well as the regular polyhedra just discussed, there exist the semi-regular
polyhedra known as the Archimedean solids, which have more than one type of facets.8

As an important example we will discuss the polyhedron which is made up of pen-
tagons and hexagons, with each vertex-degree three. We have

3f0 = 2f1 = 5r5 + 6r6. (8.24)

Then 4.8.1 implies

12 = 6f0 − 6f1 + 6r5 + 6r6 = 4f1 − 6f1 + 2f1 + r5 = r5.

Consequently,

Theorem 8.5.3 A polyhedron which is made up of pentagons and hexagons, with
each vertex-degree three, must contain exactly 12 pentagonal faces.

7The fact that there are exactly five Platonic solids play an important role in philosophy of the
ancient Greeks until Kepler, see [254].

8For practice discuss the number of all such solids. How many different polyhedra do you find?
Hint: Compare [12].
Note, that there are classes of infinitely many semiregular polyhedra. For example consider the
convex hull of two parallel regular n-gons.
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In other terms,
f2 = 12 + r6. (8.25)

Moreover, both (8.15) and (8.16) give

f0 = n = 20 + 2r6, (8.26)

and by 4.1.1 we have
f1 = 30 + 3r6 (8.27)

for the number n of vertices and the number f1 of edges depending on the number r6

of hexagons.
The case with zero hexagons corresponds to a dodecahedron. The case with 20
hexagons corresponds to the pattern of a soccer ball.9

8.6 Simplicial and simple polyhedra

We introduce classes of polyhedra, which are defined by a ”non-degeneracy” condi-
tion, which makes these polyhedra much easier to handle than polyhedra in general.
Examples are discussed in the section before.

Actually, the conditions will be dual, such that there is no formal reason to prefer
one of the classes. And moreover, counting the member of one class is enumerating
the member of the other one.

I. A polyhedron is called simplicial if each facet is a triangle (a simplex).
In a simplicial polyhedron each facet is incident with exactly three edges. Hence, we
have 3f2 = 2f1. Together with 4.8.1 this obtain

Theorem 8.6.1 The family of f-vectors of simplicial polyhedra depends only from
one parameter. In particular:

(f0, 3f0 − 6, 2f0 − 4) with f0 ≥ 4. (8.28)

Remember that we find these equations in considering maximal planar graphs.
Conversely, every maximal planar graph with at least four vertices is 3-connected,
which is not easy to see.

Theorem 8.6.2 A graph G is a graph of a simplicial polyhedron if and only if G is
maximal planar.

In view of these both theorems we can determine the number of simplicial poly-
hedra for small values n = f0, [110]:

9These structures play a very important role in the chemistry of carbons. The molecular structure
is that of 60 carbon atoms situated at the vertices of a truncated icosahedron. Also known as a
fullerene named after the architect R.M.Fuller.
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n = Number of simplicial polyhedra

4 1
5 1
6 2
7 5
8 14
9 50

10 233
11 1,249
12 7,595
13 49,566
14 339,722

...
20 ≈ 5.8 · 1010

21 ≈ 4.5 · 1011

II. A polyhedron is called simple if each vertex is incident to precisely 3 edges. In
other terms, the graph of a simple polyhedron is 3-regular.

a) A polyhedron is simple if and only if its dual is simplicial.

b) The dual graph of the graph of a simple polyhedron is maximal planar.

c) A polyhedron is simple if and only if each vertex is contained in exactly three
facets.

For more properties of simple polyhedra see [33] and [110].
This observation shows that by investigation of simplicial polyhedra we also consider
simple ones.

Theorem 8.6.3 Let rj be the number of facets bounded by j edges of a simple poly-
hedron. Then

3r3 + 2r4 + r5 = 12 +
∑
j≥7

(j − 6)rj . (8.29)

Proof. In view of (8.17) and ni = 0 for i 6= 3 we find

12 +
∑
j≥3

(j − 6)rj = 0.

2

On of the interesting features of the theorem is that it does not contain an infor-
mation about the number r6 of hexagons.

Theorem 8.6.4 (Eberhard [72], [110]) Suppose that the finite sequence r3, r4, r5, r7, . . .
of nonnegative integers which satisfy the equation (8.29). Then there exists a simple
polyhedron with rj regions bounded by j edges for all j 6= 6.
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Note that there are examples of two sequences r3, r4, r5, . . . which differ only in
the value r6, one may be realized a simple polyhedron and the other not. On the
other hand, if a sequence realized a simple polyhedron for some r6, then for infinitely
many values of r6. (8.29) implies 12 ≤ 3r3 +2r4 +r5. Consider the equality case, then
we find the following solutions in nonnegative integers and minimal values of r6:

r3 r4 r5 minimal r6

4 0 0 0

3 1 1 3
3 0 3 1

2 3 0 0
2 2 2 0
2 1 4 1
2 0 6 0

1 4 1 2
1 3 3 0
1 2 5 1
1 1 7 2
1 0 9 3

0 6 0 0
0 5 2 0
0 4 4 0
0 3 6 0
0 2 8 0
0 1 10 2
0 0 12 0

The given values each realizes a polyhedron. (Exercise.)

III. We consider polyhedra having only vertices of degree 4. (8.15) implies

Theorem 8.6.5 Let rj be the number of facets bounded by j edges of a polyhedron
having only vertices of degree 4. Then

r3 = 8 +
∑
k≥5

(k − 4)rk. (8.30)

The converse fact for sequences r3, r5, r6, . . . is also true, [110].
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Chapter 9

The Number of Unlabeled
Trees

Now we may estimate the number of non-isomorphic trees.

Recall that the problem to decide if graphs are isomorphic is not simple. On
the other hand, for trees the isomorphic problem is easy: there is a quadratic time
algorithm which decides whether two trees are isomorphic; see [240]. But this does
not mean that it is easy to count the number of such trees.

9.1 Upper and lower bounds

Let T (n) be the number of non-isomorphic trees with n vertices. By considering all n!
labellings, we have n! · T (n) ≥ nn−2. Hence, and by using Stirling’s inequality (I.3),

Theorem 9.1.1 Let T (n) be the number of non-isomorphic trees with n vertices.
Then

T (n) ≥ nn−2

n!
≥ en

en5/2
. (9.1)

In particular, the number of non-isomorphic, that means unlabeled, trees grows
exponentially.
On the other hand,

Theorem 9.1.2 Let T (n) be the number of non-isomorphic trees with n vertices.
Then

T (n) ≤ Cn−1, (9.2)

where Cn−1 denotes the (n− 1)th Catalan number.

Proof. We will describe a non-optimal technique, involving drawing a tree in the
plane: Let n > 1 be an integer. A tree code w (with respect to n − 1) is a sequence
in {0, 1}2(n−1) with the following properties:
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1. In each prefix of w the number of 1 is at least the number of 0;
In particular, the first letter in w must be 1;

2. The number of 1 in w equals the number of 0;
In particular, the last letter in w must be 0.

Algorithm 9.1.3 Let w be a tree code with respect to n−1. Then draw a tree by the
following algorithm:

1. Set a vertex as the origin;

2. Read w letter by letter and
if you see a 1 then draw a new edge to a new vertex;
if you see a 0 then move back by one edge toward the origin.

Thus the tree is described by its tree code. Hence, after generating all tree codes,
we can generate all unlabeled trees with n vertices.
We know by M.1.3 that the number of tree codes is the Catalan number, which gives
an upper bound for the number of non-isomorphic trees. 2

Note that the tree code is far from optimal; every unlabeled tree has many dif-
ferent codes. For instance all the codes 11010010, 10110100, 11101000, 10101100,
11011000 and 11100100 generate the same tree.

It holds,

T (n) ≤ Cn−1 =
1
n

(
2n− 2
n− 1

)
≈ 4n

√
2π · n3

. (9.3)

Consequently, we have that T (·) is bounded from above by an exponential function.
All together we expect that

T (n) = Θ
(

an

f(n)

)
(9.4)

with e ≤ a ≤ 4 and a function f(n) which is bounded by a low degree polynomial.
And indeed, according to a difficult result of Pólya, compare [122] or [249], the number
of unlabeled trees is asymptotically completely determined:

Theorem 9.1.4 Let T (n) be the number of non-isomorphic trees with n vertices.
Then

T (n) ≈ c · an

n5/2
, (9.5)

where
a = 2.9557 . . . and c = 0.5349 . . . . (9.6)

Note that, using the Stirling approximation I.2.2,

nn−2

n!
≈ nn

n2
· en

√
2πn · nn

=
en

√
2π · n5/2

. (9.7)
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In other terms, the approximation ratio is not far from (9.5), since
√

2π = 2.5066 . . . and e = 2.7183 . . . . (9.8)

In view of 7.2.8 this is not a surprise, because almost all graphs have nontrivial
automorphism groups.

9.2 Generating functions

Now we introduce a key tool for enumeration. The generating function of a sequence
a0, a1, a2, . . . is defined to be

f(x) =
∞∑

i=0

aix
i. (9.9)

(Sometimes we will use the index starting at 1.)

The concept of generating functions is very powerful, it rests upon its ability not
only to solve the kinds of problems we have considered so far, but also to help us in
new situations where additional restrictions could be involved. This is not a surprise
since generating functions are formal power series, which are well-understood in the
sense of higher algebra and calculus.

As an example, in view of C.2.2, we immediately see

Observation 9.2.1 (1 + x)n is the generating function for the sequence(
n

0

)
,

(
n

1

)
,

(
n

2

)
, . . . ,

(
n

n

)
, 0, 0, . . . (9.10)

of binomial coefficients.

Let T (n) be the number of trees with n vertices. No simple formula for T (.)
exists (better: is known), although T (n) is the coefficient of xn in a desired chosen
generating function

T (x) =
∞∑

n=1

T (n)xn. (9.11)

Otter [184] finds such a generating function for T (.).1 It shows that the number of
non-isomorphic trees at first is very small, but then increases rapidly:

1The proof used counting rooted trees, these are trees where one vertex (the root) distinguished
from the others. Let T ′(n) be the number of rooted trees with n vertices. Then

T (x) = T ′(x)−
1

2
(T ′2(x)− T ′(x2)). (9.12)

See [121] and our discussion in later sections.
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Number n of vertices Number T (n) of trees

1 1
2 1
3 1
4 2
5 3
6 6
7 11
8 23
9 47

10 106
11 235
12 551
13 1,301
14 3,159
15 7,741

...
...

23 14,828,074
24 39,299,897
25 1.0464 · 108

26 2.7979 · 108

For these numbers and other facts about the counting of trees see Carter et al. [37],
Hendy et al. [131] and Riordan [203].

We have an essential difference between the growing of the number of labeled and
unlabeled trees. In terms of p(.) in 2p(n):

Labeled trees p(n) = O(n log n)
unlabeled trees p(n) = O(n− log n).

In numerical terms:

Number n of vertices t(n) T (n)

10 108 106
20 2.6 · 1023 823,065
30 2.3 · 1041 1.4 · 1010

An interesting question: What is the number of non-isomorphic trees with a trivial
automorphism group. A partial answer give Harary and Prins [123]:
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Number n of vertices Number of non-isomorphic asymmetric trees

1 1
2 0
3 0
4 0
5 0
6 0
7 1
8 1
9 3

10 6
11 15
12 29
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Chapter 10

Digraphs

A digraph or directed graph is a pair G = (V,E) consisting of a finite set V of vertices
and a set E ⊆ V ×V of (ordered) pairs of vertices, which we call arcs. Hence, a digraph
G = (V,E) is essentially a relation over V . In other terms, enumerating digraphs is
counting relations.

10.1 The number of labeled digraphs

Let us consider the problem of counting all labeled digraphs with n vertices. There
are the following possibilities for two different vertices v and v′:

i) There is no arc.

ii) There is the arc (v, v′).

iii) There is the arc (v′, v).

iv) There are the arcs (v, v′) and (v′, v).

A digraph has at most
(
n
2

)
= n(n− 1)/2 (undirected) pairs between vertices. Hence,

when we observe that each of the four possible situations is either present or absent,
we have

Theorem 10.1.1 There are
4(n

2) = 2n2−n (10.1)

digraphs with n labeled vertices.

Remember that a digraph is called connected if on ignoring all orientations on the
arcs, the resulting multigraph is connected. Consequently, connected digraphs can
counted in terms of connected graphs.
As an example we consider labeled transitive digraphs, which plays an important role
in many application. An explicit formula is not known, but in Harary, Palmer [122]
we find the following list for small values n of vertices:
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n number of transitive digraphs

1 1
2 4
3 29
4 355
5 6,942
6 209,527
7 9,535,241
8 642,779,354

For practice the reader should discuss the following observation.

Observation 10.1.2 The number of labeled transitive digraphs for n vertices equals
the number of finite topologies on n labeled points.

10.2 Relations

Let U be a universe. A subset of U2 is called a relation over U . In contrast to digraphs
in relations loops, these are arcs (v, v), are allowed. Easy to see

Theorem 10.2.1 There are
2n2

(10.2)

relations over n elements.

I. Several specific kinds of relations play important roles.
A relation R over a universe U is said to

• reflexive: For all v ∈ U it holds that (v, v) ∈ R;

• symmetric: If (v, v′) ∈ R then (v′, v) ∈ R;

• antisymmetric: If (v, v′) ∈ R and (v′, v) ∈ R then v = v′;

• transitive: For any three elements v, v′ and w, if (v, v′) ∈ R and (v′, w) ∈ R
then (v, w) ∈ R.

Theorem 10.2.2 There are
2n2−n (10.3)

reflexive relations over n elements.

Proof. We have n2 pairs, whereby n be of the form (v, v). Consider the other
n2 − n pairs as we construct a reflexive relation we either include or exclude each
these pairs. 2
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To count the symmetric relations over U = {v1, . . . , vn}, we split U = X ∪ Y
whereby X = {(vi, vi) : i = 1, . . . , n} and Y = {(vi, vj) : i, j = 1, . . . , n, i 6= j}. Then

|Y | = |U × U| − |X| = n2 − n.

The set Y can be divided into (n2−n)/2 parts of the form {(vi, vj), (vj , vi)}.1 In con-
structing a symmetric relation we have for the X all choices of exclusion or inclusion
a pair and for Y two choices for each part. Then the number of symmetric relations
equals

2n · 2(n2−n)/2 = 2(n2+n)/2.

Consequently

Theorem 10.2.3 There are

2(n2+n)/2 = 2(
n+1

2 ) (10.4)

symmetric relations over n elements.

For practice the reader should prove

Corollary 10.2.4 There are
2(n2−n)/2 = 2(n

2) (10.5)

relations over n elements that are both reflexive and symmetric.

Note that ”not symmetric” is not synonymous with ”antisymmetric” (example as
exercise).

Theorem 10.2.5 There are
2n · 3(n2−n)/2 (10.6)

antisymmetric relations over n elements.

Proof. We make two observations as we try to construct an antisymmetric relation
over a set U :

i) Each pair (v, v) ∈ U ×U can be either included or excluded with no concern about
whether or not the relation is antisymmetric.

ii) For a pair (v, v′) with v 6= v′, we must consider three alternatives: include (v, v′),
include (v′, v), or include neither (v, v′) nor (v′, v) in the relation.

Then there are the number of antisymmetric relations equals 2n · 3(n
2). 2

II. There is no known general formula for the number of transitive relations,
but of relations which are simultaneously reflexive, symmetric and transitive, called
an equivalence relation if it is reflexive, symmetric and transitive. The following
observation reveals that equivalence relations and partitions are intimately related.

1Note that n2 − n = n(n− 1) is in any case an even number.
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Observation 10.2.6 There is a one-to-one correspondence between the set of equiv-
alence relations and the collection of partitions.

This is the first step in discussing classifications, which are hierarchies of partitions,
and of great relevance in biology.2 As an immediate consequence of 10.2.6 we find

Theorem 10.2.7 There are B(n) equivalence relations over n elements, where B(n)
denotes the nth Bell number.

There is a formula which gives the exact value of B(.), see K.3.2 and (K.7).

n = B(n) =

1 1
2 2
3 5
4 15
5 52
6 203
7 877
8 4,140
9 21,147

10 115,975
11 678,570
12 4,213,597
13 27,644,437
14 190,899,322

The number of equivalence relations grows exponentially:

Theorem 10.2.8
(n− 1) · 2n−2 ≤ B(n) ≤ n!. (10.7)

Proof. In view of K.4.2 we have for all n ≥ 1,

B(n) =
n−1∑
k=0

(
n− 1

k

)
B(k) ≥

n−1∑
k=0

k

(
n− 1

k

)
= (n− 1)2n−2.

2In the book The System of Nature Linnaeus introduced a system still in use today. He gave
every species two Latinized names; the first for the group it belongs to, the genus; and the second
for the particular organism itself. Each group is a partition of the set of all species. For example

group \ species human fruit fly

Domain Eukarya Eukarya
Kingdom Animalia Animalia
Phylum Chordata Arthropoda
Class Mammalia Insecta
Order Primata Diptera
Family Hominidae Drosophilidae
Genus Homo Drosophila
Species sapiens melanogaster
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Paying attention C.2.6.
The second inequality is given in K.4.1 2

As an exercise improve the lower bound to 1
2 · (3

n + 1) ≤ B(n). What kind of
graphs the Stirling number of the second kind do count?

III. A relation � in U is called a partial order if it is reflexive, antisymmetric and
transitive. The pair (U ,�) is named a poset.
If, in addition, for every pair v, v′ ∈ U either (v, v′) or (v′, v), then the relation is said
to be a linear order.3

What we are really asking for here is whether we can take the partial order � and
find a linear order ≤ for which

�⊆≤ . (10.8)

The answer is yes, and uses the following idea, known as topological sorting:

Algorithm 10.2.9 Given a poset (U ,�). Then a linear order ≤ satisfying (10.8)
can be found by the following algorithm.

1. Find a minimal element;

2. Put it on top of anything already in the linear ordering;

3. Remove it from the poset;

4. Repeat the process until the poset is empty.

In other terms, each partial order can be embedded in a linear order.
A linear orders for a universe U is a permutation of the elements. Hence,

Theorem 10.2.10 The number of linear orders for a universe U of n elements equals
n!.

There is no simple general formula for the number of posets known, but must be
faster growing than for linear orders, see [226]. Consequently,

Corollary 10.2.11 The number of posets increases exponentially in the number of
elements.

10.3 Sperner’s theorem

I. Consider the power set of a set X: P(X) = {S : S ⊆ X}. in 2.1.1 we saw that
This implies that the power set contains more elements than the set X itself.4

Our consideration gives us a way to enumerate methodically the subsets, beginning
with the empty set ∅, and then adding each successive element of S to a copy of each of

3Sometimes called a total order.
4Note, that the power set of the empty set ∅ is not empty, since it contains the ∅.
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all the previously listed subsets. Let us illustrating it on the subsets of X = {a, b, c}.
We look at the elements one by one, and write down a ”1” if the element occurs in the
subset and ”0” if it does not. Thus each subset corresponds with a binary sequence of
length 3. Moreover, such sequences remind us of the binary representation of integers.

subset binary seqence integer

∅ 000 0
{c} 001 1
{b} 010 2
{b, c} 011 3
{a} 100 4
{a, c} 101 5
{a, b} 110 6

S = {a, b, c} 111 7

In other terms, the subsets correspond to the numbers 0, . . . , 7., and similarly, we
count the power set of a set of n elements by 0, . . . , 2n − 1.

II. The subsets of a set X, when they are ordered by set inclusion, form a partial
ordered set. A linear order of subsets is called a chain.

Theorem 10.3.1 Let X be a finite set of n elements. A chain contains at most n
members, and there are at most n! chains in P(X).

Proof. Consider chains of subsets

∅ = C0 ⊂ C1 ⊂ C2 ⊂ . . . ⊂ Cn = X, (10.9)

where |Ci| = i for i = 0, . . . , n = |X|.
There are n! many chains, since we obtain a chain by adding one of the elements of
X after the other.5 2

III. Let F be a family of subsets of a set X. F is called an antichain if no member
of F contains another member of F .

Theorem 10.3.2 (Sperner [225]) Let X be a finite set of n elements. Let F ⊆
(P(X),⊆) be an antichain. Then

|F| ≤
(

n

bn/2c

)
. (10.10)

Proof. There are many proofs of this theorem; one due to Lubell [165] is probably
the most elegant.
In view of 10.3.1, there are n! many chains
Let F be an arbitrary antichain. For a set A ∈ F we ask how many chains does A

5Or, in other terms, since a chain is a linear order we use 10.2.10.
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contain. To get from ∅ to A have to add the elements of A one by one, and then
to pass from A to X we have to add the remaining elements. Thus if A contains
k elements, then by considering all these pairs of chains linked together there are
precisely

k! · (n− k)! (10.11)

such chains.
It is important to note that no chain can pass through two different sets A and A′ of
F , since F is an antichain.
Let fk be the number sets in F with exactly k elements. The number of chains passing
through some member of F cannot exceed the number n! of all chains. In other terms,

n∑
k=0

fk · k! · (n− k)! ≤ n!. (10.12)

Equivalently,
n∑

k=0

fk(
n
k

) ≤ 1. (10.13)

Paying attention C.2.3, replacing the dominator by the largest binomial coefficient
we obtain

1(
n

bn/2c
) n∑

k=0

fk ≤ 1. (10.14)

This complete the proof, since |F| =
∑n

k=0 fk. 2

In view of Stirling’s inequalities I.2.1, we can describe the asymptotic behavior of
set families. In particular, doing so gives us(

n
n
2

)
≈
√

2
π

2n

√
n

.

Thus the number of subsets of size n/2 grows exponentially with n; in fact it is the
fraction

√
2/(πn) of the total number of subsets of an n element set. In terms of the

exponent p(n) for 2p(n):

family p(n) =

power set n
chain O(log n)
antichain O(n− 0.5 · log n)

These numbers suggests an intimately relation between chains and antichains.6

6And indeed this is true, not only for the power set.

Theorem 10.3.3 (Dilworth, see [28]) If (X,≤) is a poset and if the largest antichain(s) have k
elements, then there are a family of k chains whose union is X.
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Theorem 10.3.4 (Erdös, Ko, Rado [79], [5]) The largest size of an intersecting
family in which all sets have the same size k is

(
n−1
k−1

)
when n ≥ 2k

IV. A similar question, solved by another method: Let F be a finite family of
subsets of a set X.7 We assume

F = {X1, . . . , Xm} (10.15)

with
|Xi| = k and |Xi ∩Xj | = t

for all i and i 6= j, and given numbers k and t.
What is the maximal possible number for m?
Consider the characteristic function xi = fXi for Xi. The functions xi can be regarded
as essential vectors. We find for the (standard) inner product of such vectors

(xi, xi) = k and (xi, xj) = t

for all i and i 6= j.
When we consider the Gram-matrix

G =


(x1, x1) (x1, x2) . . . (x1, xm)
(x2, x1) (x2, x2) . . . (x2, xm)
· · · · · · · · ·

(xm, x1) (xm, x2) . . . (xm, xm)

 =


k t . . . t
t k . . . t
· · · · · · · · ·
t t . . . k

 . (10.16)

For t < k it is easy to see that detG 6= 0. Consequently, x1, . . . , xm are linearly
independent. In particular, m ≤ |X|. Hence,

Theorem 10.3.5 Let F be a finite family of k-element subsets of a set X with

|Y ∩ Z| = t < min{k, |X|} (10.17)

for some integer t. Then
|F| ≤ |X|. (10.18)

For a broader description of Sperner’s theory see Engel, Gronau [75].

10.4 Tournaments

A tournament G is a digraph in which for every two distinct vertices v and v′, either
(v, v′) or (v′, v) is an arc of G. In other terms, a tournament is a digraph obtained
when directions are assigned to each edge of a complete graph. In particular, for any
vertex v in a tournament with n vertices

gin(v) + gout(v) = n− 1. (10.19)
7A pair (X,F) is sometimes called a hypergraph. The ”hyperedges” are elements of F and in

general not 2-elementary. Two vertices Xi and Xj are adjacent if there exists an edge e ∈ F such
that Xi, Xj ∈ e.
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Theorem 10.4.1 There are 2(n
2) tournaments with n vertices.

For the proof note that there are two choices for which way to put a direction of
an edge. 2

We observe that the number of tournaments is the precisely the number of all (la-
beled) graphs, see 5.1.1(b). The correspondence between these two classes of graphs
is indicated by the order in which they appear: Each tournament corresponds to that
labeled graph in which the vertices with labels i and j are adjacent if and only if i < j
and the arc from i to j is present in the tournament.

A tournament is a model for a game in which every two players engage in a match;
and a match cannot end in a tie.

Theorem 10.4.2 Let v be a vertex of maximum outdegree in a tournament G. Then
the minimum number of arcs from v to any other vertex in G equals 1 or 2.

Proof. Assume that G = (V,E) has n vertices, gout(v) = k, and that v is adjacent
to the vertices v1, . . . , vk. Then

(v, vi) ∈ E for i = 1, . . . , k; and
(uj , v) ∈ E for j = 1, . . . , n− k − 1.

We show that there is a directed path from v to each of the uj with two arcs.
If each vertex uj , j = 1, . . . , n − k − 1, is adjacent from some vertex vi, then this
creates such path. Otherwise, suppose now that some vertex uk is adjacent from no
vertex vi. Then uk is adjacent to each vi. Moreover, uk is also adjacent to v. Hence,

gout(uk) = k + 1 > gout(v),

which is a contradiction. 2

10.4.2 gives the following interpretation for a game: We define a winner w as a
player with the most victories.8 The theorem says that a winner w has been defeated
only by players that were themselve defeated by a player which had been beaten by w.

Let G = (V,E) be a digraph. A Hamiltonian cycle (path) is a directed cycle
(path) that contains all vertices of G. The problem is to decide whether or not G has
a Hamilton cycle; if so then G is called a Hamiltonian digraph.

Theorem 10.4.3 Every tournament has a Hamiltonian path.

Proof. Assume on the contrary, that G = (V,E) is a tournament that does not
have a Hamiltonian path. Then |V | > 3. Let P : v1, . . . , vn be a longest directed path
in G. Since P is not a Hamiltonian path there is a vertex v of G that does not belong

8Maybe there is more than one winner.
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to P .
If (v, v1) ∈ E then v, v1, . . . , vn is a path whose length exceeds that of P , which is a
contradiction to the choice of P . Hence, (v1, v) ∈ E; similarly, (v, vn) ∈ E.
Since G is a tournament we know that for any vertex vi, 1 ≤ i ≤ n either (v, vi) ∈ E
or (vi, v) ∈ E. We already know that (v1, v), (v, vn) ∈ E, such that there must be an
integer j, 1 ≤ j < n such that (vj , v), (v, vj+1) ∈ E. However,

P ′ : v1, . . . , vj , v, vj+1, . . . , vn

is a path whose length exceeds that of P . Since we cannot avoid this contradiction,
the theorem is proved. 2

For practice the reader should discuss 10.4.3 in terms of games. Does this path
run from a winner to a loser?

Corollary 10.4.4 Every transitive tournament contains exactly one Hamiltonian
path.

Consider a tournament with n vertices. A Hamiltonian path has exactly n − 1
arcs. Hence, the number of tournaments containing a given Hamiltonian path is
2(n

2)−n+1. On the other hand, the number of Hamiltonian paths possible in such a
tournament is n!. With each occurring in 2(

n
2)−n+1 tournaments, the average number

per tournament is
2(n

2)−n+1 · n!

2(n
2)

= 2−n+1 · n!.

Hence,

Theorem 10.4.5 At least one tournament on n vertices contains at least

n!
2n−1

≥ 2e
( n

2e

)n

(10.20)

Hamiltonian paths.

Contrary, while 10.4.3 shows that each tournament contains a Hamiltonian path,
and paying attention 10.4.5 many more, not every tournament is Hamiltonian, that
means not every tournament has a Hamiltonian cycle. Of course,

Observation 10.4.6 Every Hamiltonian tournament is strongly connected.

The converse statement is also true. We give an even stronger result, but without
a proof. One can find it in [44].

Theorem 10.4.7 Every vertex of a strongly connected tournament with n vertices is
contained in a cycle of length k for every k with 3 ≤ k ≤ n.
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10.5 The shortest superstring problem

The problem of Hamiltonian paths is strongly connected with the shortest common
superstring problem (SCS):
Given: A set of strings (= sequences = words) over the same alphabet.
Find: A shortest sequence that contains each of the given sequences as a subse-
quence.
It plays a very important role in DNA sequencing. In fact, in DNA sequencing is
routinely done by sequencing large numbers of relatively short fragments and then
finding a SCS. Compare [31].

Let S = {w1, . . . , wn} ⊆ A? be a set of strings over the alphabet A.
Throughout the discussion we assume that no string in S is a substring of any other
string in S. Any such substring can be efficiently detected (How?) and consequently
removed. After that the problem has the same solution as before, which means that
a SCS for the remaining strings is also an SCS of the original set.
For two strings w,w′ ∈ A? we define the string

Merge(w,w′) = xyz, (10.21)

where y is a suffix of w; y is a prefix of w′; and |y| is maximal. The string y is called
the overlap of w and w′, and written by y = overlap(w,w′).
prefix(w,w′) is the prefix of w ending at the start of the overlap. Of course,

|prefix(w,w′)| = |w| − |overlap(w,w′)| (10.22)

Note that the function |prefix(., .)| satisfies the triangle inequality, but it is not a
metric, since the symmetry fails.

Let π be a permutation of {1, . . . , n}, then

w[π] = prefix(wπ(1), wπ(2))prefix(wπ(2), wπ(3)) . . .prefix(wπ(n−1), wπ(n))wπ(n).
(10.23)

is the concatenation of the non-overlapping prefixes of the pairs of adjacent strings,
followed by the full string of the last index.

Theorem 10.5.1 For a set S = {w1, . . . , wn} ⊆ A? of strings and the permutation
π the string w[π] is a superstring of S with length

|w[π]| =
n−1∑
i=1

|prefix(wπ(i−1), wπ(i))|+ |wπ(n)|. (10.24)

That is, looking for an SCS is the search for a permutation π such that |w[π]| =
min.
For S we define the distance-graph G = (V,E) by the following definitions:

a) V = S;
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b) E = V × V , this means that G includes loops;

c) There is a length-function c : E → IN with

c(w,w′) =
{
|prefix(w,w′)| : w 6= w′

|w| : w = w′

Then, looking for an SCS is the search for a minimal tour through the distance graph.

In view of the fact that the shortest superstring problem is NP-complete, [241],
we are interested in an approximation strategy. We use a greedy strategy: In the
overlap-graph we sequentially chose the longest edge that does not form a cycle with
already chosen edges.
For S we define the overlap-graph G = (V,E) by the following definitions:

a) V = S;

b) E = V × V \ {(w,w) : w ∈ V };

c) There is a length-function c : E → IN with

c(w,w′) = |overlap(w,w′)|

for w 6= w′.

(10.22) says that we can derive the overlap-graph from the distance-graph.

Algorithm 10.5.2 Let S = {w1, . . . , wn} ⊆ A? be a set of strings.
While |S| > 1 do

1. Find wi, wj ∈ S, i 6= j, such that

|overlap(wi, wj)| = max{|overlap(w,w′)| : w,w′ ∈ S};

2. w = Merge(wi, wj);

3. S := S \ {wi, wj} ∪ {w}.

The remaining string is the searched superstring.

10.6 The number of unlabeled digraphs

0. Two digraphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphic if there
exists a one-to-one, onto mapping f : V1 → V2 such that (v, v′) ∈ E1 if and only if
(f(v), f(v′)) ∈ E2. Of course,

Observation 10.6.1 Isomorphism is an equivalence relation on the family of all di-
graphs.
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I. Similar to 7.2.1 the number of unlabeled digraphs increases at least exponen-
tially. Numerical better, the following table due to Oberschelp [182] gives the number
of digraphs with n vertices.9

Number n of vertices Number of digraphs number of connected digraphs

1 1 1
2 3 2
3 16 13
4 218 199
5 9,608 9,364
6 1,540,944 1,530,843
7 882,033,440 880,471,142
8 1,793,359,192,848 1,792,473,955,306

II. In 10.4.1 we find a simple formula for the number of labeled tournaments. Of
course, counting unlabeld tournaments are not so easy, [122]:

Number n of vertices Number of tournaments

1 1
2 1
3 2
4 4
5 12
6 56
7 456
8 6,880
9 191,536
...

...
12 1.54108 · 1011

III. For practice the reader should find the number of (unlabeled) posets for small
values of elements:

Number n of elements Number of posets

1 1
2 2
3 5
4 16
5 ?

More information in [226].

9Note that in the underlying graph multiple edges are allowed, since (v, v′) and (v′, v) can be
arcs.
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Chapter 11

Phylogenetic Networks

The underlying principle of phylogeny is to try to group ”living entities” according to
their level of similarity. In biology for example, such trees (”phylogenies”) typically
represent the evolutionary history of a collection of extant species or the line of de-
scent of some gene. No two members of a species are exactly the same - each member
has slight modifications from its parents. As environmental conditions change, nature
will favour that branch of a species with some particular modification; as time goes
on another mutation of the basic stock will become dominant. In this way, all species
are continually evolving. This evolution occurs in a number of ways at the same time:
some species die out and some become new species in their own right. This forces a
”tree-like” structure. This was already seen by Darwin [63].1

The present book is devoted to the question: How fast does the number of possible
phylogenetic trees grow as function of the size of the given number of taxa? We will
give partial answers.

11.1 Phylogenetic trees

Phylogenetic trees summarize the history of life according the theory of evolution.

I. In a phylogenetic tree each vertex describes a species and the leaves represent
the species that exist today. In particular, in phylogenetics we search for a tree
interconnecting a set N of ”living entities” (species, genes, sequences, words - roughly
speaking: Names2). Such a partially labeled tree (semi-labeled tree) is usually called
an N -tree, which means:

• The tree has exactly |N | leaves, each labeled by a different element of N ;

1Darwin wrote it under ”I think” in his notebook, see Engels [76]. A picture of this paper can be
found in the book Phylogenetics [220].

2which explains the term ”phylogenetic”
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• All internal vertices are unlabeled;

• The degree of each internal vertex is at least 3;

• Sometimes we accept an exception, namely that exactly one internal vertex is
marked, and is permitted to have degree 2. Then this vertex is called the root
of the tree, and such a tree is called a rooted N -tree.

In view of the application of N -trees in phylogeny, these trees are also usually called
phylogenetic trees, namely that in biology, phylogenetic trees are used as ”evolution-
ary” trees or cladograms. In other terms: Starting with a set of known present-day
objects a phylogenetic tree may be constructed by first assigning each object a leaf of
the tree and then assigning ancestral and unknown objects to the internal nodes.

Furthermore, if N is a set of objects to be classified, then an N -tree can also be
viewed as a type of hierarchical classification of N . Here the central idea is that the
classification of organisms reflects its evolutionary history.3

A classification is the formal naming of a group of individuals. In the sense of set
theory a classification C of a set N of individuals is given by a collection of subsets of
N satisfying

• ∅ /∈ C;

• N ∈ C;

• {v} ∈ C for any v ∈ N ; and

• For any two members N ′ and N” of C it holds that

N ′ ∩N” ∈ {N ′, N”, ∅}. (11.1)

In other words, any two sets in C are disjoint or one is contained in the other.

A member of a classification is called a class or a cluster of N .
Extending 10.2.6,

3In the widest sense, a classification scheme may represent simply a convenient method for or-
ganizing a large set of data so that the retrieval of information may be made more efficiently. In
this sense, classification is the beginning of all science. Consequently, phylogenetic analysis does not
only be a question in biology. As an example in linguistics we give a very partial representation of
branches of Indo-European language family.

Indo-European Germanic German
English
Danish

Slavic Russian
Polish

Indo-Iranian Persian
Hindi

For a classification of languages see Comrie et al. [57].
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Observation 11.1.1 (Hendy et al. [131]) There is a one-to-one correspondence be-
tween the collection of classifications for a set N and the collection of (rooted) N -trees.

In other words, classifications for a set N and rooted N -trees contain essentially
the same information: The following statements are pairwise equivalent.

• C is a classification for N .

• C represents a (rooted) N -tree.

• C consists of a series of partitions for N which become finer and finer.

For example a first classification of the life on earth is given by

organisms = {{prokaryota} = {archea} ∪ {bacteria},
{eukaryota} = {protista} ∪ {plantae} ∪ {fungi} ∪
{animalia}}.

Roughly speaking, for the description of classifications, and related trees, we have the
following relationship:

Level

In taxonomy OTU = operational HTU = hypothetical
taxonomic unit taxonomic unit

Species/genes extant extinct
Placement in time existing unit ancestor

Classification individuals class
Vertex in the tree leaf internal vertex

For more facts see Page und Holmes [185]. An elementary introduction is given by
Cieslik [54].4 A broad discussion on the basis of molecular evolution we find by Graur,
Li [107]. A very short introduction by Dossing et al. [69].

II. From now on we will investigate different classes of trees in parallel:

• Graphs and digraphs.

• Rooted and unrooted trees.

• Labeled, unlabeled and semi-labeled graphs and digraphs.
4In a first view, it seems impossible to describe the ”Great Darwin Tree” since the diversity of the

living world is staggering: more than two million existing species of plants and animals have been
named and described; many more - both existing and past - remain to be discovered. But tolweb.org
attempts to describe the ”Tree of Life”.
Biodiversity is twofold:

• The presence of numerous species on Earth; and

• The polymorphism within each species.

For using evolutionary history for describing the biodiversity see [99] or [163].
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A helpful description of binary trees with labeled leaves is given by the following
procedure: Let T = (V,E) be a binary N -tree for N = {v1, . . . , vn}.

1. If n = 2, then write T as (v1v2); otherwise,

2. Let vi and vj be two leaves of T which are adjacent to the same vertex v. Then
- Delete the leaves vi and vj , and its incident edges;
- Replace the vertex v by (vivj), which is now a leaf;
- Consider the new tree with n− 1 leaves and repeat the procedure.

Clearly, this procedure gives a simple written description of the tree, called the
”bracket” or Newick format. But note that it is not unique, for example for the one
N -tree for n = 3 we have the descriptions ((v1v2)v3) and (v1(v2v3)) and ((v1v3)v2).

11.2 Semi-labeled trees

A tree in which each vertex has degree one or three is called a binary tree.5 Such
trees play an important role in the theory of evolution, since it is assumed that
a phylogenetic tree is a ”bifurcation” tree. This follows from the assumption that
evolution is driven by bifurcation events.6

To count the number more precisely, we start with the following observation, which
is easy to verify.

Observation 11.2.1 A binary tree with n leaves has exactly n− 2 internal vertices.
In particular, the tree has an even number of vertices, namely 2n − 2, and 2n − 3
edges.

With this in mind we have the following result.

Theorem 11.2.2 The following formulas are true for the number of binary trees:

a) The number of binary trees with n labeled leaves and n−2 labeled internal vertices
is

(2n− 4)!
2n−2

. (11.2)

b) (Cavalli-Sforza, Edwards [38]) The number of binary trees with n labeled leaves
and n− 2 unlabeled internal vertices (i.e. binary N -trees having |N | = n) is

(2n− 5)!! = 1 · 3 · 5 · · · (2n− 5) = Ω

((
2n

3

)n−2
)

. (11.3)

5This definition is a little bit strange, but later we will define an order on such trees, and our
condition means that each internal vertex has exactly two ”children”.

6In practice phylogenetic trees are allowed to be multifurcating when the bifurcations are suffi-
ciently close together or the exact order of two or more bifurcations cannot be determined unam-
biguously with the available data.
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Proof. Any tree has exactly n leaves and, in view of 11.2.1, exactly n− 2 vertices
of degree 3. Then 6.2.2 counts the number of trees by(

(2n− 2)− 2
(1− 1) . . . (1− 1)︸ ︷︷ ︸

n−times

(3− 1) . . . (3− 1)︸ ︷︷ ︸
(n−2)−times

)
=

(2n− 4)!
2n−2

.

If the n − 2 internal vertices are unlabeled, then this number must be divided by
(n− 2)!, thus

(2n− 4)!
2n−2(n− 2)!

=
(2n− 4) · (2n− 5) · (2n− 6) · (2n− 7) · · · 4 · 3 · 2 · 1

2(n− 2) · 2(n− 3) · · · 2 · 2 · 2 · 1
= (2n− 5)(2n− 7)(2n− 9) · · · 5 · 3 · 1
= (2n− 5)!!.

2

Independently, there is a much simpler proof of (b) by induction, which also gives
a procedure to create all such trees: If n = 3, then there is clearly one such tree.
By adding a new leaf to any of the edges in this tree we obtain all three possible
bifurcating trees on 4 leaves. In general, we can obtain every tree by adjoining a new
leaf and edge to some tree T ′ on the first n − 1 leaves, in exactly one way. T ′ has
2(n− 1)− 3 = 2n− 5 edges. It follows 11.2.2(b) in another form:

Theorem 11.2.3 There are (2n − 5)!! different bifurcating phylogenetic trees on n
taxa.

The function (2n − 5)!! grows very rapidly with n. That means, the number of
possible trees increases rather dramatically as the number of taxa increases. In the
following tabular, the result is applied to phylogenetic trees, Hall [119]:

Number of taxa Number of binary trees Comment

3 1
4 3
5 15
6 105
7 945
8 10,395
9 135,135

10 2,027,025
11 34,459,425
12 654,729,075
22 ≈ 3 · 1023 Almost a mole of trees
50 ≈ 3 · 1074 More trees than the number

of atoms in the universe
100 ≈ 2 · 10182 out of any range
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11.3 Multi-stars

Specific ”topologies” of trees play an important role in the phylogenetic analysis.

I. A star is defined as a tree in which exact one internal vertex.7 Of course, there
are n labeled stars with n vertices and exactly one unlabeled star.

II. A double-star is a tree with exact two internal vertices. Easy to see.

Observation 11.3.1 The both internal vertices of a double-star must be adjacent.

In other terms, a double tree with n vertices has n−2 leaves where k ≥ 1 adjacent
to one and l = n− 2− k ≥ 1 adjacent to the other internal vertex.
Let v and v′ be the both centers. The internal edge vv′ divides the set of all n − 2
leaves in two disjoint sets. In view of 12.1.1 there are 2n−3 − 1 of such splits.
This is also true vice versa: Assume that v and v′ are unlabeled internal vertices. We
can select

(
n
2

)
such pairs, and get two possible correspondences.

If all vertices are unlabeled we count all bipartitions of the integer n− 2, see L.2.1.

Theorem 11.3.2 Consider double-stars.

a) There are (
n

2

)
· (2n−2 − 2) (11.4)

double-stars for n labeled vertices.8

b) There are
2n−3 − 1 (11.5)

double-stars for n− 2 labeled leaves and 2 unlabeled internal vertices.

c) There are {
n−2

2 : if n even
n−3

2 : otherwise (11.6)

double-stars with n unlabeled vertices.

Now we distinguish double trees for given numbers n ≥ 4, k and l. In view of
11.3.1 there is exactly one such tree in the unlabeled case.

n = (k, l) = Number of Number of
labeled trees partially labeled trees

4 (1,1) 12 1
5 (1,2) 60 3
6 (1,3) (Exercise) 4
6 (2,2) (Exercise) 3
7 (1,4) 4
7 (2,3) 11

7Or equivalently as K1,n−1.
8Remember that we found this result already in (6.15).
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Very important in phylogeny are the partially labeled double stars with four leaves
splited in k = l = 2, namely ((12)(34)), ((13)(24)) and ((14)(23)).
The so-called quartet puzzling method, originated by Strimmer, von Haeseler [231],
use these trees as input, then combine the quartet trees into an N -tree, which tries to
respect to the neighbor relation of all quartet trees. Repeat these steps many times
and output the majority consensus tree.

III. It would be an interest topic for further investigations to discuss these ques-
tions for multi-stars, which are graphs (!) with the following properties: The internal
vertices induce a complete graph and each internal vertex is adjacent to at least one
leaf. Considering n vertices and k leaves, the number n− k of internal vertices must
be satisfies n− k ≤ k. Hence,

n− 1 ≥ k ≥
⌈n

2

⌉
. (11.7)

Theorem 11.3.3 Let t(m)(n, k) be the number of multi-stars with n vertices, which
k are leaves, satisfying (11.7). Then

t(m)(n, k) =
n!
k!
· S(k, n− k), (11.8)

where S(., .) denotes the Stirling number of the second kind.

Proof. To count t(m)

(i) We have to choose k vertices as leaves. This can be done in
(
n
k

)
ways.

(ii) The set of all leaves has to partition into n − k parts. This we count by the
Stirling numbers of the second kind in S(k, n− k) ways.

(iii) We have to pair off each internal vertex with one of the parts. This can be done
in (n− k)! ways.

Altogether we obtain

t(m)(n, k) =
(

n

k

)
· S(k, n− k) · (n− k)!

=
n!

k!(n− k)!
· S(k, n− k) · (n− k)!

=
n!
k!
· S(k, n− k).

2

We write the numbers t(m)(n, k) as a triangle:
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n \ k 2 3 4 5 6 7 sum

3 3 3
4 12 4 16
5 60 5 65
6 120 210 6 336
7 1260 630 7 1897
8 1680 8400 1736 8 11824

Combining 11.3.3 and 6.2.3 we find

Theorem 11.3.4 Let tk(n) be the number of trees with n (labeled) vertices, which k
are leaves, satisfying (11.7). Then

tk(n) ≥ n!
k!
· S(k, n− k) · (n− k)n−k−2, (11.9)

where S(., .) denotes the Stirling number of the second kind.

(Why does not equality hold?)

More generally, a multi-star K(m)(g1, . . . , gm) is a graph such that the m vertices
form a Km, and additionally each vertex is adjacent with gi ≥ 1 pendants9, i =
1, . . . ,m. Easy to see, K(m)(g1, . . . , gm) has m +

∑m
i=1 gi vertices, and

(
m
2

)
+
∑m

i=1 gi

edges. And for counting we have to use the knowledge about the partition of integers.
See [180].

IV. Another generalization are the caterpillars. These are trees with the property
that after removing all leaves and its incident edges there is only a path. The number
of caterpillars are determined by Lifschitz [162]. In particular

Remark 11.3.5 (Harary, Schwenk [124]) The number of unlabeled caterpillars with
n vertices is

2n−4 + 2b(n−4)/2c. (11.10)

11.4 The structure of rooted trees

The most important point in a phylogenetic tree is its root. In a rooted tree exactly
one distinguished vertex is marked as the root. This tree has a natural orientation
from ancestors to descendants, and the root as the common ancestor of the leaves. In
this sense, a universal ancestor must exists.10

I. Rooted trees are representations for evolutionary relationships: For a rooted
N -tree T we view the edges as being directed away from the root, and then regard T

9These are vertices of degree 1, in trees called leaves.
10Unrooted trees neither make assumptions nor require knowledge about common ancestors.
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as describing the evolution of the set N of given ”names” from a common (hypothet-
ical) ancestral name; the other internal vertices of T correspond to further ancestral
names. The distinction between rooted and unrooted trees is important, because
many methods for reconstructing phylogenetic trees generated unrooted ones11, and
we need more information for rooting an unrooted tree.12

The root is placed at this position to indicate that

• it corresponds to the (theoretical) last universal common ancestor of everything
in the tree;

• gives directionality to evolution within the tree; and

• it identifies which groups of vertices are ”true”, given that the root does not lie
within a group.

The question is: On which edge should the root be placed? There are three popular
ways to find this position:

1. On the longest edge13.

2. In the middle of the longest path between two leaves.

3. An ”outgroup” can be added to the set of given points. Then the root is placed
at the bifurcation between outgroup and the main group.

II. Remember that in a tree any two vertices are connected by exactly one path.
Hence, a unique path leads from the root to any other vertex of a rooted tree. Let w
be the root and v be an arbitrary vertex in a rooted tree T = (V,E). The length of
the path from w to v is called the level of v:

level(v) = ρ(w, v). (11.11)

The depth of the tree itself is defined by

depth(T ) = max{level(v) : v ∈ V }. (11.12)

If T is a rooted tree, then it is customary to draw T with root w at the top, at level
0. The vertices adjacent to w are placed on level 1. Any vertex adjacent to a vertex
of level 1 is at level 2, and so on. In general, every vertex at level i > 0 is adjacent to
exactly one vertex at level i− 1. The definition of the depth gives

Observation 11.4.1 Let T be a rooted tree. Then

diam(T ) ≤ 2 · depth(T ). (11.13)
11Such trees are also biologically relevant since they are typically what tree reconstruction methods

generate.
12Rooting a tree has a strong relationship to the molecular clock; but especially, proteins evolve

at different rates, making it difficult to relate the (evolutionary) distance to the historical time.
13This approach of course requires that there is a length-function for the graph.
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III. We may consider a rooted tree T = (V,E) as a digraph if we direct the
edges vv′ ∈ E from v to v′ if and only if level(v′) = level(v) + 1. Then gin(w) = 0
characterizes the root, and gout(v) = 0 characterizes the leaves of T .
In this sense we have an ancestor/successor-relation for the vertices of a rooted tree.
In particular, the root is the common ancestor of all vertices of the tree. In other
words, a rooted tree has a vertex identified as the root from which ultimately all other
vertices descend.
For a rooted tree T = (V,E) a natural partial order ≤T on the set V of vertices is
obtained by setting v ≤T v′ if

• The path from the root of T to v′ includes v; or, equivalently,

• v′ is the successor of v, and v is the ancestor of v′.

Observation 11.4.2 Let T = (V,E) be a rooted tree, and v, v′ ∈ V . Then v ≤T v′

implies level(v) ≤ level(v′), but not vice versa.

IV. Let T = (V,E) be a rooted N -tree and let N ′ be a subset of N . We will refer
to the unique vertex v of T that is the greatest lower bound of N ′ under the order
≤T as the last universal common ancestor (LUCA) of N ′ in T . That means

1. v is an ancestor for each vertex in N ′; and

2. level(v) = max{level(v′) : v′ ancestor for each member in N ′}.

It is extremely simple to see, but has deep consequences in biology,14 that the following
fact holds true.

Observation 11.4.3 Let T = (V,E) be a rooted N -tree, and N ′ ⊆ N . Then LUCA
for N ′ in T exists.

This is a central tenet of modern evolutionary biology: All ”living things” trace
back to a single common ancestor.15,16

Humans and other mammals are descended from shrew-like creatures that lived more
than 150 Mya (million years ago); mammals, birds, reptiles and fish share as ancestors

14And in its application in medicine, for instance when we discussed which animal is the ”mixing
vessel” for a specific virus disease, see [113].

15It has become clear that the basic metabolic processes of all living cells are very similar. A
number of identical mechanisms, structures, and metabolic pathways are found in all living entities
so far observed. In particular

• All cells utilize phosphates, particularly adenosine triphosphate (ATP), for energy transfer.

• The metabolic reactions are catalyzed largely by proteins.

• Proteins are manufactured in the cell by a complete coding process. The sequence of amino
acids in each protein is determined by the sequence of nucleotides in its gene, ”written” as a
DNA.

• The universal genetic code.

16Note that this proposition does not assert that life arose just once, but that all starting points
except one became extinct.
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aquatic worms that lived 600 Mya; all plants and animals are derived from bacteria-
like organisms that originated more than 3000 Mya. If we go back far enough, humans,
frogs, bacteria and slime moulds share a common ancestor.17

Finding the LUCA for a set of species, or a set of populations, or a collection of genes
is a very difficult task.18 To find LUCA for all species is discussed in [68], [187],
and [250]. Eigen [73] found that the LUCA for genes is an RNA-molecule with the
following properties: 3.5 - 4 Gya and 76 bp. A complete discussion of this subject is
given by [190].19

11.5 The number of rooted trees

We are interested to count rooted trees, and, in view of 11.1.1 simultaneously the
number of classifications.

Remember that in order to find the number of trees it was necessary to investigate
rooted trees. Let Tr(n) be the number of (without the root unlabeled) rooted trees
with n vertices. No simple formula for Tr(.) is known, but T (n) is the coefficient of
xn in a desired chosen generating function

T ′(x) =
∞∑

n=1

Tr(n)xn. (11.14)

Halder and Heise [118] prove

Theorem 11.5.1 The generating function T ′ satisfies

T ′(x) = x · exp

( ∞∑
n=1

T ′(xn)
n

)
. (11.15)

17In 11.4.1 we see that for two existing species with a common ancestor in d Mya, the ”evolution
distance” is 2 · d Mya.

18In particular, find this entity for all humans!
A centaur is not a common ancestor of human and horse.

19Darwin claimed that the African apes are mans closest relatives, and suggested that evolutionary
origins of man were to be found in Africa. In other words, the commonly held view was that humans
were phylogenetically distinct from the great apes (chimpanzees, gorillas and orang-utans), being
placed in different taxonomic families, and that this split occurred at least 15 Mya. These conclusions
were based on fossils.
In 1967, Sarich and Wilson [214] measured the extent of immunological cross-reaction in the protein
serum albumin between various primates. The results were striking: humans, chimpanzees and
gorillas were genetically equidistant and clearly distinct from the orang-utan.
The breakthrough for understanding came with a publication in Nature in 1987 [36] by Wilson
and two of his students, Cann and Stoneking, entitled ”Mitochondrial DNA and human evolution”.
They used mother-only genes, known technically as mitochondrial DNA. Wilson and his colleagues
examined the mother-only genes in 134 individuals from around the world. They found remarkable
similarities as well as differences in all the samples. The centrepiece of the article was a diagram
which bears a superficial resemblance to a tree. It contains a hypothetical common female ancestor
of all extant humans, called Eve, or in more scientific terms Mitochondrial Eve.
For more facts about this question compare [13], [16] and [185].
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Consequently, in numerical terms, see [203]:

Number n of vertices Number Tr(n) of rooted trees

1 1
2 1
3 2
4 4
5 9
6 20
7 48
8 115
9 286

10 719
11 1,842
12 4,766
13 12,486
14 32,973
15 87,811

...
...

23 268,282,855
24 743,774,984
25 2.0671 · 109

26 5.7596 · 109

Another approach to count rooted trees is given by the following considerations. Let
Tr(n, g) be the number of rooted trees in which the root has degree g.

Theorem 11.5.2

Tr(n) =
∞∑

g=1

Tr(n, g) =
n−1∑
g=1

Tr(n, g), (11.16)

and
Tr(n, 1) = Tr(n− 1). (11.17)

n \ g 1 2 3 4 5

2 1
3 1 1
4 2 1 1
5 4 3 1 1
6 9 6 3 1 1

Consider a rooted tree with the root w, whereby g(w) = g and

1 ≤ g ≤ n− 1. (11.18)
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Then T − w is a forest, where we may assume that each tree is itself a rooted tree.
gi denotes the number of such roots which represents a rooted tree of i vertices. The
sum of the degrees of the roots of each tree equals g, and furthermore the sum of
vertices must be n− 1. Hence,

g1 + . . . + gn−1 = g (11.19)

and
g1 + 2 · g2 + . . . + (n− 1) · gn−1 = n− 1. (11.20)

For example, for n = 5 we have g = 1, . . . , 4 and (g1m . . . , g4) = (0, 0, 0, 1) or =
(1, 0, 1, 0) or = (0, 2, 0, 0) or = (2, 1, 0, 0) or = (4, 0, 0, 0).
To compute Tr(n, g) we have to determine all possibilities for Tr(i).

Theorem 11.5.3 (Flachsmeyer [87]) The number of rooted trees can be recursively
computed by

Tr(n) =
∑(

Tr(1) + g1 − 1
g1

)
· · ·
(

Tr(n− 1) + gn−1 − 1
gn−1

)
, (11.21)

where the sum runs over all integers which satisfy (11.18), (11.19) and (11.20).

11.6 The number of rooted binary trees

A tree T is called a rooted binary tree if for its vertices

gT (v) =

 1 : if v is a leaf
2 : if v is the root
3 : otherwise

holds. In other words, we create a rooted binary tree from a binary tree by choosing
an edge and placing the root there.20

Observation 11.6.1 A rooted binary tree with n leaves has exactly n − 1 internal
vertices.

And,

Observation 11.6.2 Let T be a rooted binary tree of depth d. Then T has at least
d + 1 and at most 2d leaves.

Conversely, the depth of such a tree with n leaves lies between Ω(log n) and O(n).

For each of the labeled trees we have n rooted trees, because any of the n vertices
can be made a root. Hence, as a consequence of Cayley’s tree formula we find21:

20Remember that this procedure is called rooting a tree.
21Similar discussed by Harper [125] for problems in paleontology.
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Theorem 11.6.3 The number of different rooted labeled trees with n vertices equals
nn−1.

For semi-labeled trees we have together with 11.2.2 the following result.

Theorem 11.6.4 The number of rooted binary trees with n labeled leaves and unla-
beled internal vertices (i.e. rooted binary N -trees having |N | = n) is

(2n− 3)!! = 1 · 3 · 5 · · · (2n− 3) = Ω

((
2n

3

)n−1
)

. (11.22)

Moreover, in view of 11.2.2(b), the number of rooted binary trees with n labeled
leaves and unlabeled internal vertices grows 2n − 3 times faster than the number of
binary trees with the same kind of vertices. And, in 11.2.3 we saw that the function
(2n− 5)!! grows very rapidly with n.22 Hall’s tabular [119]:

Number of taxa Number of unrooted trees Number of rooted trees

3 1 (not defined)
4 3 15
5 15 105
6 105 945
7 945 10,395
8 10,395 135,135
9 135,135 2,027,025

10 2,027,025 34,459,425
11 34,459,425 654,729,075
12 654,729,075 13,749,310,575

...
20 2.2 · 1020 8.2 · 1021

The assumption that only one of these trees correctly represents the true evolutionary
relationship among the taxa, it is usually very difficult to identify the true phylogenetic
tree when the number of taxa is large.

11.7 The shape of phylogenetic trees

Now we go back from semi-labeled to unlabeled trees. Consider a N -tree T and ignore
the labels (of the leaves), we obtain a tree shape T (T ).
This term introduce an equivalence relation of phylogenetic trees: The N -trees T1

and T2 are called shape equivalent if T (T1) is isomorphic to T (T2).

22This was one of the pessimistic view by Graham and Foulds [103], that it will be unlikely
that minimal phylogenies for realistic number of ”living entities” can be constructed in reasonable
computational time. Today we are a little bit more optimistic. In particular by applying PAUP,
which stands for ”Phylogenetic analysis using parsimony”; see Hall [119] and Swofford [232].
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This concept extends naturally to the rooted trees and binary trees.

Obviously, there are two questions:

1. Given a positive integer n. Determine the number of tree shapes for phylogenetic
trees on n leaves.

2. For a given tree shape T , count the number of phylogenetic trees on a given
label set with shape T .

The first question we discussed together with the considerations about unlabeled trees.
Now we consider the second. We follow an approach of Semple and Steel [220] to give
an outline.
We need some facts from the theory of groups: An action of a group Γ on a set X is
a map X × Γ → X. Two elements x and x′ are equivalent if there is an element π of
Γ such that πx = x′, or equivalently orb(x) = orb(x′), when we define

orb(x) = {π(x) : π ∈ Γ}, (11.23)

We denote by [x] the equivalence class of x under this relation.

We find Burnsides lemma O.3.5 in the following form:

Lemma 11.7.1 Let Γ be a finite group acting on a finite set X and let x ∈ X. Then

|[x]| = |Γ|
|stab(x)|

, (11.24)

where
stab(x) = {π ∈ Γ : π(x) = x}. (11.25)

In our context, X is the collection of all rooted phylogenetic trees with n labeled
vertices, while Γ is the group of all n! permutations.
We consider for an element π ∈ Γ and an element T ∈ X, the action which maps T
to the phylogenetic tree obtained from T by permuting the labels according to π.

An internal vertex v of a rooted binary tree shape T is called a symmetry vertex
if the two maximal rooted subtrees that lie below v have the same shape. Let s(T )
denote the number of symmetry vertices of T . Combining all our results we obtain
the following theorem.

Theorem 11.7.2 The number of rooted binary phylogenetic trees T with n leaves and
of shape T is

n! · 2−s(T ). (11.26)
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11.8 Generalized binary trees

A generalized binary tree consists of a root and its left and right subtree, which are
themselves smaller generalized binary trees.
Our recursive view of such trees makes mathematical induction the method of choice
for proving many important facts about binary trees. Typically, (Exercise)

Observation 11.8.1 Consider a generalized binary tree T .

• If T is of depth d, then its left and right subtree both have a depth less than or
equal to d− 1, and equality holds for at least one of them.

• If T is of depth d, then it has at most 2d+1 − 1 vertices.

Now, we derive a formula for the number bn of different generalized binary trees
on n vertices.
First, we will establish a recursive formula for bn. The recursion can be expressed
more conveniently by artificially defining b0 = 1. Since the only binary tree with one
vertex is a root without subtrees; it follows that b1 = 1. For n > 1, a generalized
binary tree T on n vertices has a left subtree with j vertices and a right subtree with
n−j−1 vertices, for some j between 0 and n−1. Pairing the bj possible left subtrees
with the bn−j−1 possible right subtrees, the multiplication principle gives

bj · bn−j−1

different combinations of left and right subtrees for T . Hence,

bn = b0bn−1 + b1bn−2 + . . . + bn−1b0. (11.27)

This recurrence equation is well-known: M.2.1. Consequently, in view of M.3.1:

Theorem 11.8.2 The number bn of different generalized binary trees on n vertices
is the Catalan number:

bn = Cn =
1

n + 1

(
2n

n

)
. (11.28)

11.9 Genealogical trees

Now we consider specific trees which play a role in social models of parent-child
relations.23 Schimming [215] discussed so-called genealogical trees, which are rooted
trees with linearly ordered leaves.
More exactly, we translate the notations

23Curiously, one of the first mathematical papers about phylogenetic trees created by Buneman
[34] dealt not with biology but rather with reconstructing the copying history of manuscripts. An
example, Mink [174]:

The same data as used for creating the new printed Editio Critica Maior of the New
Testament, commencing with Catholic Letters, allows a genealogical analysis of the
witness. The objective is to establish a comprehensive theory of the structure of the
tradition. Because the tradition of the New Testament is highly contaminated this
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in the tree in the social model

vertex person
root progenitor
internal vertex person with an offspring
leaf person without an offspring
adjacency parent-child relation
level generation

But we further assume that there is a social order in each generation: It shall be
hereditary, that means pass over from the parents to their children24 and can be writ-
ten more formally as: If v is higher than w, then every child v′ from v is higher than
every child w′ of w.

C(n, k) denotes the number of non-isomorphic genealogical trees with n+1 vertices
and k leaves.
As an example determine some simple cases and show

C(n, 1) = C(n, n) = 1 and

C(n, 2) = C(n, n− 1) =
(

n

2

)
.

Theorem 11.9.1 (Schimming [215]) For the number C(n, k) of genealogical trees it
holds

C(n, k) =
1
n

(
n

k

)(
n

k − 1

)
. (11.29)

By simple calculation:

C(n, k) =
1
k

(
n− 1
k − 1

)(
n

k − 1

)
. (11.30)

The equations created the following triangle:

theory has to handle the problem of contamination, and also the problem of accidental
rise of variants, and must be able to be verified at any passage of the text. Where there
are variants, the witnesses have a relation that can be described by a local stemma of the
different readings. These local stemmata allow or restrict relations among witness in a
global stemma, which must be in harmony with the total of the local stemmata. In the
first phase, local stemmata were established only at places where the development of the
variants is very clear. The coherencies within each attestation were analysed.. . . Then
the local stemmata must be revised in the light of the total of the genealogical data
included in them. Now an analysis of genealogical coherence is possible and may
help to find local stemmata for passages unsolved so far. Finally, the global stemma
(or stemmata) mirroring all the relations of the local stemmata will be established by
combining optimal substemmata, each containing a witness and its immediate ancestor,
to produce the simplest possible tree.

For an application to the Canterbury Tales Project see [64].
24for example by the order of births or by a system of privileges
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n \ k 1 2 3 4 5 6 7 8

1 1
2 1 1
3 1 3 1
4 1 6 6 1
5 1 10 20 10 1
6 1 15 50 50 15 1
7 1 21 105 175 105 21 1
8 1 28 196 490 490 196 28 1

The triangle suggests the following equation, which is indeed true C(n, k) = C(n, n+
1− k). Of more interest is that the numbers C(n, k), k = 1, . . . , n form a ”partition”
of the nth Catalan number.

Corollary 11.9.2 (Schimming [215])

n∑
k=1

C(n, k) = Cn, (11.31)

where Cn denotes the nth Catalan number.

11.10 Multifurcating trees

Until now, in our studies we assume that the evolutionary process is usually employs
bifurcation trees, in which each ancestral taxon splits into two descendent taxa. Mul-
tifurcation generalizes bifurcation, when we assume that the tree is not necessarily a
binary one. There are two possible interpretations for such an approach:

a) Either it represents the true sequence of events, whereby an ancestral taxon gave
rise to three or more descendent taxa simultaneously;

b) Or it represents an instance in which the exact order cannot be determined un-
ambiguously with the available data.

Although multifurcating trees perhaps model biological reality better, mostly, con-
structing binary phylogenetic trees is considered. Reasons:

• The construction of multifurcation trees is much more difficult.

• In evolution multifurcating events are rare.

We will discuss several aspects of multifurcating trees: structure and counting.

I. Let m ≥ 2 be an integer. A rooted tree in which every vertex has m or fewer
successors is called an m-ary tree.

Lemma 11.10.1 An m-ary tree has at most mk vertices at level k.
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Proof. We use induction over k.
The statement is trivially true for k = 1.
Assume as induction hypothesis that there are ml vertices at level l, for some l ≥ 1.
Since each of these vertices has at most m successors, there are at most m ·ml = ml+1

successors at the next level. 2

In view of this lemma an m-ary tree of depth d has at most md leaves.25 Con-
versely, the depth of such a tree with n leaves lies between Ω(log n) and O(n).
About the total number of vertices we derive another inequality.

Theorem 11.10.2 Let T be an m-ary tree of depth d with n vertices. Then

d + 1 ≤ n ≤ md+1 − 1
m− 1

. (11.32)

Proof. Let nk be the number of vertices at level k. In view of 11.10.1

1 ≤ nk ≤ mk.

Thus

d + 1 =
d∑

k=0

1 ≤
d∑

k=0

nk = n,

and

n =
d∑

k=0

nk ≤
d∑

k=0

mk =
md+1 − 1

m− 1
.

2

II. In 11.6.4 we gave the number of bifurcating (binary) trees. Now we are in-
terested in methods for enumerating the number of trees when multifurcations are
allowed. Felsenstein [83] created the following approach, using the observation that
if a tree contains a multifurcation, it has fewer than n− 1 internal vertices.
Let m-tree(n, k) be the number of distinct (multifurcating) trees having n labeled
leaves and k unlabeled internal vertices. We will extend our method for proving
11.2.3 to compute m-tree(n, k) from m-tree(n− 1, k). There will be a one-to-one cor-
respondence between the ways adding a new leaf and the desired tree.
Clearly,

m-tree(1, 0) = 1 and
m-tree(1, i) = 0 otherwise.

Assume that we know all values of m-tree(n− 1, i).
If we add the leaf vn to a tree and obtain a tree with k internal vertices, this could
happen in two ways:

25But maybe no more than one leaf.
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1. We could take a tree with n− 1 leaves and k internal vertices. For each of the
trees of this sort there are then k possibilities at which the new leaf could be
added.

2. We could take a tree with n− 1 leaves and k− 1 internal vertices. Each tree of
this sort has n + k − 2 internal edges. Then we place a new internal vertex in
the midst of one of its edges, and have a new leaf arise from the new vertex.

Consequently,

m-tree(n, k) =
{

k ·m-tree(n− 1, k) + (n + k − 2) ·m-tree(n− 1, k − 1) : k > 1
m-tree(n− 1, 1) : k = 1

In view of 11.6.1 m-tree(n, n− 1) is the number of bifurcating rooted trees.

Theorem 11.10.3 m− tree(n, k) is the number of distinct (multifurcating) trees
having n labeled leaves and k unlabeled internal vertices. Furthermore, there are

n−1∑
k=1

m-tree(n, k) (11.33)

distinct multifurcating trees having n labeled leaves and unlabeled internal vertices.

III. Further generalizations, in particular for trees in which ancestors and/or
leaves are partly labeled, are discussed in Felsenstein [83].

11.11 Phylogenetic forests

Let N be a finite set (of names). We generalize phylogenetic trees by the following
definition: A phylogenetic forest G on N is a union of trees Ti = (Vi, Ei), i = 1 . . . , c,
such that

Ni = N ∩ Vi

form a partition of N , that means Ti is an N ∩ Vi-tree.
If each of the trees Ti is rooted and binary, then G is called a rooted binary phylo-
genetic forest. Surprisingly, there is an explicit formula for the number of such trees
which generalizes 11.2.2(b), 11.2.3 and 11.6.4 (exercise).

Theorem 11.11.1 For every pair of positive integers n and c with 1 ≤ c ≤ n, the
number of rooted binary phylogenetic forests with n labeled vertices and consisting of
c trees (components) equals

(2n− c− 1)!
(n− c)! · (c− 1)! · 2n−c

. (11.34)

For a proof see [220].
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Chapter 12

Collections of Trees

If we possessed a perfect pedigree of mankind, a genealogical arrangement
of the races of man would afford the best classification of the various
languages now spoken throughout the world; and if all extinct languages,
and all intermediate and slowly changing dialects, were to be included
such an arrangement would be the only possible one.

Charles Darwin

So far we have assumed that the evolutionary relationships among sequences1

are best represented by a tree. However, the actual evolutionary history may be
not be in particular tree-like, in which case analyses that assume a tree may be
seriously misleading. There are limitations in always forcing data onto a standard
phylogenetic tree. Processes such as parallel mutation, hybridization, recombination,
gene conversion and lateral gene transfer violate a tree-based evolutionary model. In
other words, if we look for ”The Great Darwin Tree”, we will find a network with
several cycles. But the number of (elementary) cycles will be small in relation to the
number of vertices.2

12.1 Splits and trees

Let N be a finite set. A split for N is a bipartition, that is a partition of N into two
non-empty sets. That means N = S ∪ Sc with S ∩ Sc = ∅.

Theorem 12.1.1 The number of splits of a set of n elements is 2n−1 − 1.3

Proof. If we choose k elements for N , 0 < k < n, then we also choose n − k
elements for Sc. Hence, each selecting of k elements creates a split. We can do it in

1and genes, species, organisms,...
2This idea of a symbiotic evolution was first given by Margulis [168], compare also [68].
3In terms of the Stirling numbers of the second kind: S(n, 2) = 2n−1 − 1.
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(
n
k

)
ways. But we find each split twice, namely by choosing k, and by choosing n− k.

Consequently, the number of splits is

1
2

n−1∑
k=1

(
n

k

)
=

1
2

(
n∑

k=0

(
n

k

)
−
(

n

0

)
−
(

n

n

))

=
1
2
(2n − 1− 1)

= 2n−1 − 1.

2

Let T = (V,E) be an N -tree, |N | ≥ 3. For an edge e of T the graph G − e
has exactly two components G1 = (V1, E1) and G2 = (V2, E2), and creates a split
S(e) = {N1, N2} of the set N of leaves by setting

N1 = V1 ∩N and (12.1)
N2 = V2 ∩N = N \N1. (12.2)

This means in particular that for a split S(e) = {N1, N2}, each path from a vertex in
N1 to a vertex in N2 contains the edge e. The collection

S(T ) = {S(e) : e ∈ E} (12.3)

denotes the family of all splits of N induced by the tree T .
For instance, consider the set N = {a, b, c, d, e}. Coming from the (binary) N -tree
(((ab)c)(de)) we have the split family

S = {{a, bcde}, {b, acde}, {c, abde}, {d, abce}, {e, abcd},
{ab, cde}, {abc, de}}. (12.4)

The following result provides a fundamental equivalence between N -trees and a
certain type of collection of splits of N . A pair {N1, N2} and {M1,M2} of splits for
N is called compatible if at least one of the sets N1 ∩ M1, N1 ∩ M2, N2 ∩ M1 and
N2 ∩M2 is the empty set. Then we have the following central theorem:

Theorem 12.1.2 (Buneman [34]) Let S be a collection of splits for the set N . Then
there is an N -tree T such that S = S(T ) if and only if the splits in S are pairwise
compatible. Moreover, if such a tree exists, then, up to isomorphism, T is unique.

For a proof compare [15].

A natural way to generate splits of a set N is to arrange the elements of N on a
circle in the plane and then to draw lines to divide the points into two subsets.

Theorem 12.1.3 Let N be a set of n elements, n ≥ 3, and let π be a cyclic permu-
tation on N . Then the number of binary N -trees for which π is a circular ordering
equals the Catalan number Cn.
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Sketch of the proof. On the one hand, we know by that the number of cyclic
permutations of N is (n− 1)!, see 6.1.2.
On the other hand, the number of choices of N -trees is determined in 11.2.2.
Equating these two counts gives the desired result.4 2

12.2 Reconstructing trees

O. Each N -tree is a metric space. Let S be a split on the tree T = (V,E). Then
define for two leaves v and w for T :

d(v, w) =
{

1 : S separates v and w
0 : otherwise

This creates a metric on V as

ρT (v, w) =
∑

split S

d(v, w). (12.5)

Theorem 12.2.1 Let v and w be leaves of a N -tree T . Then

ρT (v, w) = length of the path from v to w.

The proof follows from the fact that length of a path is the number of its edges. 2

I. The general idea is the following: Let N = {v1, . . . , vn} be a set of individuals
(OTU’s). We assume that N is embedded in a metric space (X, ρ), such that we
represent the distances between the members of N by a symmetric distance matrix

D = (dij) = (ρ(vi, vj)), (12.6)

where i, j = 1, . . . , n = |N |.
We would like to build a phylogenetic tree for N . If we fix an N -tree T = (V,E) we
obtain a metric ρT . The broad aim of distance methods is to determine a (or all)
tree(s) T for which ρT is as close to ρ as possible. Then we said that D is ”tree-like”.
Consider the following example. For n = 3 we only have one N -tree T with one
internal vertex w. Looking for the edge-lengths li = ρT (vi, w), i = 1, 2, 3, such that
ρ = ρT means solving the following system

l1 + l2 = d12

l1 + l3 = d13

l2 + l3 = d23,

4The values of the Catalan numbers represent the number of ways to cut a polygon: Examines a
given convex polygon of n ≥ 3 sides. Euler counted the number of ways the interior of the polygon
to subdivide into triangles by drawing diagonals that do not intersect. Let cn be this number.

cn+1 = c2cn + c3cn−1 + . . . + cn−1c3 + cnc2.

Then use M.2.1.
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which is given by

l1 =
1
2
(d12 + d13 − d23)

l2 =
1
2
(d12 + d23 − d13)

l3 =
1
2
(d13 + d23 − d12).

(Note that the values on the right-hand side are non-negative due to the triangle
inequality.) Hence, we have a unique tree which reflects the phylogeny with respect
to given distances.

II. For specific classes of distances we have some results more. A collection of
distances D = (dij) = (ρ(vi, vj)) for i, j = 1, . . . , n = |N | is called additive if there is
an N -tree T such that

dij = ρT (vi, vj). (12.7)

We saw that for N each distances are additive. In general, this is not true for n ≥ 4.
We characterize additive distances by the following statements.

Theorem 12.2.2 (Buneman [35]) A collection (dij)i,j=1,...,n of distances is additive
if and only if for every set of four distinct numbers it holds the so-called four-point
condition, that means for 1 ≤ i, j, k, l ≤ n two of the three sums dij + dkl, dik + djl

and dil + djk coincide and are greater than or equal to the third one:

dij + dkl ≤ max{dik + djl, dil + djk}. (12.8)

In biology, the so-called molecular clock hypothesis states that the mutation rate
is constant over all edges of the tree. That implies that all leaves have the same
distance to the root. We call such a tree an ultrametric ones.

Theorem 12.2.3 A collection (dij)i,j=1,...,n of distances is ultrametric if and only if
for every tripel of distinct numbers it holds the so-called three-point condition:

dij ≤ max{dik, dkj}. (12.9)

Effective methods to construct the trees which reflect 12.7 are given in the refer-
ences at the end of the present chapter.5

5Since we are looking for binary trees these approaches use pair group methods (PGM) which are
known from cluster analysis, [81]:

Algorithm 12.2.4 Let N1 = {v1}, . . . , Nn = {vn} be a family of sets each containing a single
element. Then do

1. Find the nearest pair of distinct sets, say Ni and Nj ;

2. Merge Ni and Nj to form N ′;
Compute a new distance, or similarity from N ′ to each of the other sets;
Decrement the number of sets by one;

3. If the number of sets equal one then STOP, else go to 1.
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12.3 Fitch’s algorithm

For a given semi-labeled tree, finding the labels of the internal vertices such that the
total number of changing is minimized is the parsimony problem.6

A well-known method to compute a tree in a sequence space is a dynamic program-
ming algorithm for finding the location of the internal vertices in a given N -tree:

Algorithm 12.3.1 (Fitch [85]) Let N be a set of n sequences in a sequence space
(Ad, ρH): N = {vk = vk,1, . . . , vk,d : k = 1, . . . , n}, and let a binary N -tree T = (V,E)
be given. Then do:

1. For each position i = 1, . . . , d do
1. Label each leaf vk with {vk,i};
Li := 0;
2. Until all vertices are labeled do
Find an unmarked vertex which is adjacent to two marked vertices with the labels
N1 and N2;
Label the unmarked vertices with
(a) N1 ∩N2 if N1 ∩N2 6= ∅; otherwise
(b) N1 ∪N2 and Li := Li + 1;

2. L(T ) :=
∑d

i=1 Li.

The correctness of Fitch’s algorithm is proven by Hartigan [126]. In particular,
it is shown that the final answer is independent of the vertices chosen when moving
through the tree.
The algorithm computes the length of the tree. Since a binary N -tree has 2n− 2 ver-
tices, it uses O(n) time for each position and hence O(d · n) time to find the length.
Hence, the Fitch algorithm uses linear time to find the length of a given binary N -
tree On the other hand, there are exponentially many binary trees. Consequently,
applying 12.3.1 in a sequence space uses in exponential time.
After applying 12.3.1 we have labels for all the internal vertices in the tree. However,

6Remember, that we have to choose a tree among a collection of many trees. The Principle
of Maximum Parsimony involves the identification of a combinatorial structure that requires the
smallest number of evolutionary changes. It is often said that this principle abides by Ockham’s
razor. Note, that we do not use this principle in a simple sense; Cavalli-Sforza [39]:

... it does not necessarily follow that a method of tree reconstruction minimizing the
number of mutations is the best or uses all the information contained in the sequences.
The minimization of the number of mutation is intuitively attractive because we know
that mutations are rare. There may be some confusion, however, between the advantage
of minimizing the number of mutations and sometimes invoked parallel of Ockham’s
razor ..., which was developed in the context of mediaval theology. The extrapolation of
Ockham’s razor to the number of mutations in an evolutionary tree is hardly convincing.

That means that in this case minimizing the number of assumptions does not mean to minimize
the steps of an evolution, it means that among all possible network structures we search one which
satisfy only one, namely the condition of length minimizing. What other condition can be more
natural in a metric space? For more facts what does Ockham’s razor in network design really mean
see [26], [53] and [133].
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some marks have more than one letter and hence are ambiguous. There are several
methods for choosing which one of the possible states yields the most parsimonious
reconstruction; the simplest one is : Go back up the tree assigning to any internal
vertex that is ambiguous the intersection of its label with that of its immediate an-
cestor.

However, as the number of possible trees increases rapidly with the number of
given sequences, it is virtually impossible to employ an exhaustive search when the
number of given sequences is not small. Fortunately, there exist short-cut algorithms
for identifying all shortest trees that do not require exhaustive enumeration, and work
for larger sets of sequences. One such algorithm is the branch-and-bound method by
Hendy and Penny [130], described briefly below:

1. Guess a ”good tree” T0 using a heuristic7);
L0 := L(T0);
Let X be the set of all binary N -trees;

2. (Iteration:)
1. Partition X into a small number of subsets X1, X2, . . . , Xk;
2. For i := 1, . . . , k do
- Find a length L(Xi) such that L(T ) ≥ L(Xi) for all T ∈ Xi;
- If L(Xi) ≤ L0 then iterate (return to 1. with X = Xi).

12.3.1 can be extended to find the location of Steiner points in phylogenetic spaces
(A?, ρL). And indeed, Sankoff [211] and Cieslik et al. [50] give a dynamic program-
ming algorithm for tree alignment. They merges the high-dimensional version of the
dynamic programming algorithm for pairwise alignment with the Fitch algorithm.

12.4 Consensus trees

A consensus tree summarizes information common to two or more trees. In other
words:

• A phylogenetic tree summarizes phylogenetic information;

• A consensus tree summarizes the information in a set of trees.
Here, we have two additional observations: a) We can combine heterogeneous
data, and b) We can find hidden phylogenetic information.

For instance,

- One may want to treat different phylogenetic trees as different estimations of the
same underlying true evolutionary tree. Then a consensus tree represents the
evolutionary history on which the different trees agree.

7This tree is expected to have short length.
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- Cavalli-Sforza [40] compares the species tree and the tree of languages for human
populations. This gives many hints for the prehistoric development of mankind.

- In general, molecular systematics shows that the phylogenies of genes does not
match those of the organisms, due lineage sorting, hybridization, recombination
and other events. See v.Haeseler and Liebers [115] or Page and Holmes [185].

- Consensus trees are helpful to taxonomists, see Semple and Steel [220].

The methods differ in what aspect of tree information they use, and how frequently
that information must be shared among the trees to be included in the consensus.
The most commonly used are the strict consensus and the majority-rule consensus
trees.
Suppose that T1, . . . , Tm are N -trees. Each of the trees has the same leaves, namely
the members of N . We are interested in a consensus N -tree T described by one of
the following methods.

I. The strict consensus tree includes only those splits that occur in all the trees.
That means

S(T ) =
m⋂

i=1

S(Ti). (12.10)

II. We can relax the requirement that a split of T occurs in all trees, and instead
retain those splits occuring in a majority of the trees.

Algorithm 12.4.1 For each of the N -trees T1, . . . , Tm, mark the vertices inductively
as follows:

1. Mark the leaf v with {v};

2. If the vertices v1, . . . , vr have been marked with N1, . . . , Nr and v is the common
ancestor of v1, . . . , vr, then mark v with N1 ∪ . . . ∪Nr.

The consensus tree T consists of exactly those vertices whose mark occurs in more
than half of the Ti.

For more facts about consensus trees see Margush, Morris [169].

III. As a generalization and a weaker form of II. we define consensus trees by the
following methods: Let S be a collection of splits and let S ∈ S. Let n(S) be the
number of N -trees in a family F ⊆ Tn that induces S. For all 0 ≤ q < 1, let

S(q) =
{

S ∈ S :
n(S)
|F|

> q

}
. (12.11)

As an exercise prove the following

Theorem 12.4.2 If q ≥ 0.5, then S(q) is the set of splits of N induced by a (unique)
N -tree.8

8For q < 0.5 the definition of S(q) makes no sense.
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12.5 The metric spaces of all trees

Given two or more phylogenetic trees computed from different gene families or related
taxa, the problem of comparing these trees arises.

I. It is often helpful to have a measure of distance between two phylogenetic trees.
More precisely, to begin with, let Tn denote the set of all N -trees with n = |N |.

T1 and T2 each contain exactly one tree. T3 contains one, and T4 four trees. A
tree in Tn has at least one and at most n − 2 internal vertices, and consequently, at
least n and most 2n− 3 edges. Using 6.2.3 we find that

|Tn| =
n−2∑
k=1

(n + k)n+k−2

k!
≤

n−2∑
k=1

(2n)n+k−2

k!
= (2n)n−2 ·

n−2∑
k=1

(2n)k

k!
≤ (2n)n−2 · e2n.

On the other hand,

|Tn| ≥ (2n− 5)!! =
(2n− 4)!

(n− 2)! · 2n−2
≥
(

2
e

)n−2

· (n− 2)n−3.

In other words, Tn will be a finite set with a number of elements which is exponential
in n, but not more or less. More facts are given in [131].

We are interested in creating a metric between the trees in Tn which reflects
the ”difference” between the trees in the sense of different phylogeny. A commonly
used measure of dissimilarity between two N -trees is Penny and Hendy’s [188], [131]
method based on tree partitioning. It uses the binary operation 4 which is the
symmetric difference between sets, defined as

S14S2 = (S1 \ S2) ∪ (S2 \ S1) (12.12)
= S1 ∪ S2 \ S1 ∩ S2 (12.13)

for sets S1,S2.9 Then

|S14S2| = |S1 ∪ S2 \ S1 ∩ S2|
= |S1 ∪ S2| − |S1 ∩ S2|
= |S1|+ |S2| − 2 · |S1 ∩ S2|.

In R.2.1, we saw that ρ(S1, S2) = |S14S2| is a metric. Then we define the metric ρ
between trees as follows: Let T1, T2 be two trees in Tn, n ≥ 3, with the induced split
collections S(T1),S(T2), respectively.

ρS(T1, T2) = |S(T1)4S(T2)| (12.14)

is a distance between T1 and T2, which is called the split metric.
9Let S1, . . . ,Sk be a family of subsets of U . An element of U is a member of S14S24 . . .4Sk if

and only if it is contained in an odd number of the Si’s. In particular, the symmetric difference of a
set with itself is empty.
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Observation 12.5.1 (Tn, ρS) is a metric space.

The proof for the following description for the split metric should be an exercise
for the reader.

Remark 12.5.2 Let T1 = (V1, E1) and T2 = (V2, E2) be two N -trees. Then

ρS(T1, T2) = |E1|+ |E2| −# splits induced by both T1 and T2. (12.15)

Note that it is algorithmically easy, i.e. achievable in polynomial time, to compute
the distance between two trees in (Tn, ρS).

Theorem 12.5.3 (Robinson and Foulds) Let T and T ′ be N -trees. Then ρS(T, T ′) is
equal to the smallest k for which there is a sequence T = T0, T1, . . . , Tk = T ′, and for
all i = 1, . . . , k the tree Ti is obtained from Ti−1 by either contraction or expanding
an edge Ti.

For a proof see [220].

We call an edge of T an internal edge if it connects two internal vertices. However,
all splits comprising a leaf on one hand and the rest of the tree on the other are not
”phylogenetically informative” in the sense that all possible N -trees will contain those
splits. Using an internal edge implies for a split that |N1|, |N2| ≥ 2. Since each tree
in Tn, n ≥ 3, contains at most n− 3 internal edges, we observe the following:

Theorem 12.5.4 It holds for any two trees T1 and T2 in (Tn, ρS)

ρS(T1, T2) ≤ #internal edges in T1 + #internal edges in T2 (12.16)
≤ 2n− 6. (12.17)

In particular, the diameter of the metric space (Tn, ρS) equals 2n−6 (Exercise).10

A ”strange” metric space: many elements and small diameter. More exactly: expo-
nential size and linear expansion. (Do you know some other spaces with this prop-
erty?)

II. T denotes the set of all trees: T =
⋃

n≥1 Tn. By 2.6.1 T is a infinite, but
countable set.
The edit distance ρ, between two trees of not necessarily equal size is the minimal
number of ”edit operations” required to change one tree into the other, where an edit
operation are deletion of a leaf from a tree, insertion of a new leaf into a tree, and
substituting a vertex in a tree for a vertex in another tree. Then (T , ρ) becomes a
metric space.

10More facts about the geometry of the space of phylogenetic trees can be found by Billera, Holmes
and Vogtmann [27].
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12.6 Further reading

For further reading about phylogenetic networks, its application in the theory of
evolution, construction methods and related topics see:

1. Böckenhauer, Bongartz: Algoritmische Grundlagen der Bioinformatik; [31].

2. Cieslik: Shortest Connectivity - An Introduction with Applications in Phy-
logeny; [52].

3. Clote, Backofen: Computational Molecular Biology; [56].

4. Gusfield: Algorithms on Strings, Trees, and Sequences; [112].

5. Hall: Phylogenetic Trees Made Easy; [119].

6. Huson et al.: Phylogenetic Networks; [136].

7. Knoop, Müller: Gene und Stammbäume; [156].

8. Page, Holmes: Molecular Evolution: A Phylogenetic Approach; [185].

9. Semple, Steel: Phylogenetics; [220].

10. Waterman: Introduction to Computational Biology; [248].

An annotated bibliography in Computational Molecular Biology is presented by Vin-
gron et al. [242].
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Chapter 13

Spanning Trees

Network organization is just about universal in the real world, as evidenced by systems
as different as the World Wide Web, glass fiber cable interconnections, metabolic
networks, protein interactions, and financial transactions. Such universality is related
to the very general nature of network structures. Compare [49], [179], and [253].
The mathematical description of networks is given by graph theory; and an core
investigating networks are the spanning trees. See [253].

13.1 The number of spanning trees

Let G = (V,E) be a graph. A subgraph G′ = (V,E′) is called a spanning tree of G if
G′ is a tree. If G′ is a spanning tree of G, then G itself must be connected. Conversely,
if G = (V,E) is a connected graph, then G contains a subgraph G′ = (V,E′) minimal
with respect to the property that G′ is connected. The graph G′ is a spanning tree
of G. Hence,

Theorem 13.1.1 A graph is connected if and only if it contains a spanning tree.

This simple result has a lot of important consequences: First, in view of our
investigations about random graphs, we see that almost all graphs contain a spanning
tree. Furthermore,

Observation 13.1.2 A connected graph with n vertices contains at least n−1 edges.

And

Observation 13.1.3 Each spanning tree of a connected graph G contains all bridges
of G.

In some situations it is necessary to be able to generate a complete list of all
the spanning trees of a graph. This may be the case when, for example, the ”best”
tree needs to be chosen, but the criterion used for deciding what tree is the ”best”
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is very complex. Hence, we are interested in the number of spanning trees for a graph.

Generalizing and applying 6.2.3 we have

Theorem 13.1.4 Consider (connected) graphs G with n vertices and m edges.

(a) (Kelmans [149]) The number of spanning trees of G is at most

1
n

(
2m

n− 1

)n−1

≤ nn−2. (13.1)

(b) (Cayley [41]) If the graph is complete, that is 2m = n(n− 1), equality holds, i.e.
the number of spanning trees of Kn is exactly

nn−2. (13.2)

The quantity t(G) denotes the number of spanning trees for a graph G. The
following facts are easy to see.

Observation 13.1.5 Let G = (V,E) be a graph. Then

a) If G is a tree, then t(G) = 1.

b) If G is disconnected, then t(G) = 0.

c) t(Cn) = n.

d) t(Kn) = nn−2.

e) For any spanning subgraph G′ = (V,E′), E′ ⊆ E, of G, it holds t(G′) ≤ t(G).

f) If G is a connected graph and G′ a proper spanning subgraph, then t(G′) < t(G).

The present chapter deduces several approaches to calculate the quantity t(G) for
several classes of graphs G.

13.2 The density of graphs

I. Let G be a graph with n vertices and m edges. the maximum number of edges
is
(
n
2

)
. Then the we define the density of G by the fraction of these edges that are

actually present:

density(G) =
m(
n
2

) =
2m

n(n− 1)
.

The quantity d = density (G) is a real number between 0 and 1, whereby d = 0
characterizes the empty and d = 1 the complete graph. The density of a k-connected
graph with n vertices is at least k/(n− 1).1

1The expected density of a graph is 1/2.
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The density of a graph G has a strong connection to the average degree d̃(G), since
in view of 4.1.1:

density(G) =
2m

n(n− 1)
=

1
n(n− 1)

∑
v∈V

g(v) =
1

n− 1
d̃(G).

Consequently,

Lemma 13.2.1 Let G be a graph with minimum degree δ, average degree d̃ and den-
sity d. Then (n− 1) · d = d̃ ≥ δ and for sufficiently large n it holds nd ≈ d̃.

Summarizing our further results we have for specific nonempty graphs:

minimum degree average degree density
δ ≤ d̃ ≤ d ≈

forests 1 2− 1
n

2
n

outer-planar graphs 3 4− 6
n

4
n

planar graphs 5 6− 12
n

6
n

It is a nice exercise to show that a connected graph with average degree greater than
two has at least two cycles.
For practice discuss for planar graphs G and its dual graphs Gd the interrelation
between t(G) and t(Gd).
Let G be a graph with n ≥ 3 vertices and density greater than 1− 2/n. then in view
of 4.4.3 it holds t(g) > 1. Conversely,

If density(G)
{

> 1− 2
n

< 2
n

}
then G is

{
connected
disconnected

}
II. Let G be connected, then, in view of 13.1.2, m ≥ n − 1, and furthermore,

paying attention 13.1.4:

Theorem 13.2.2 Let G be a graph with n vertices, density d and average degree d̃.
If G is connected then d ≥ 2/n and G contains a spanning tree, but at most

nn−2 · dn−1 = d · (dn)n−2 =
1
n
·
(

n

n− 1
d̃

)n−1

. (13.3)

In other terms, the number of spanning trees is asymptotically bounded by d̃n−1/n.

The density of planar graphs is bounded by 6/n. Therefore, a planar graph with
n vertices contains at most 6n/(6n) spanning trees. On the other hand, there are
planar graphs with an exponential number of spanning trees: For an even number n
consider a rotor Rn with n/2 triangle wings. Then Rn is an outer-planar graph with
n + 1 vertices and t(Rn) = 3n/2 =

√
3

n
.
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A graph is dense if m is large compared to n and sparse otherwise. More exactly,
a graph is called dense if the density tends to a constant as n →∞.2 A graph is said
sparse if the density tends to zero.
We may expect that dense graphs has more spanning trees than sparse.

III. Consider graphs and its complements.
The density of a self-complementary graph equals 1/2. Consequently, there are at
most 1

n ·
(

n
2

)n−1 spanning trees in such a graph with n vertices.

Lemma 13.2.3 Let G be a graph and Gc its complement. Then

density(Gc) = 1− density(G). (13.4)

The proof follows from (4.15). 2

Theorem 13.2.4 Let G be a graph with n vertices and let Gc be its complement.
Then

t(G) + t(Gc) ≤ nn−2. (13.5)

Equality holds if and only if G is the complete or the empty graph.

Proof. Let d and d′ be the density of G and Gc, respectively, then

t(G) + t(Gc) ≤ nn−2 · dn−1 + nn−2 · d′n−1 by 13.2.2
= nn−2 ·

(
dn−1 + d′n−1

)
≤ nn−2 · (d + d′)n−1

= nn−2 in view of (13.4).

The discussion of equality uses that d or d′ must be 0. 2

As an example consider the cycle C5, whereby Cc
5 is itself C5. Then t(C5)+t(C5) =

5 + 5 = 10.
In view of 4.4.6 we know t(G) + t(Gc) ≥ 1. This bound cannot be given better: For
n ≥ 3 consider the star G with n− 1 leaves. Gc is disconnected. Hence t(G) = 1 and
t(Gc) = 0.

13.3 Polyhedral graphs

Recall that polyhedral graphs are planar and 3-connected, implying that the number
of edges is a number between 3n/2 and 3n− 6. Simple calculations give

2In such a graph the fraction of non-zero elements in the adjacency matrix remains constant as
the graph becomes large.
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Lemma 13.3.1 Let G be a polyhedral graph with n vertices. Then

3
n

< density(G) <
6
n

. (13.6)

We may expect that polyhedral graphs have many spanning trees, but of which
structure? A Hamiltonian path is a spanning tree with maximum degree two. Not
each polyhedral graph contains such a path (Example as an exercise). Thus the the
following theorem is related in a natural way.

Theorem 13.3.2 (Barnette [18]) Every polyhedral graph has a spanning tree of max-
imum degree 3.

13.4 Generating spanning trees

How we can find spanning trees algorithmically?

I. It is not a difficult task to obtain one (arbitrary) spanning tree. 4.6.2 gives a
technique to generate one of a graph G = (V,E):

1. Start with the empty graph T = (V, ∅);

2. Sequentially choose an edge that does not form a circle with already chosen
edges;

3. Stop when all vertices are connected, that is when |V | − 1 edges have been
chosen.

A generalization to optimization problems are given in S.1.2 and T.2.1.

II. In general, methods to generate all spanning trees use the following approach:
Let G = (V,E) be a connected graph and let T1 = (V,E1), T2 = (V,E2) be two
spanning trees of G. Then

ρ(T1, T2) = |E1 \ E2| (13.7)

defines a distance. Question: Is ρ a metric?

If the ρ(T1, T2) = 1, that means

(E1 \ E2) ∪ (E2 \ E1) = E1 ∪ E2 \ E1 ∩ E2 = {e1, e2},

where ei ∈ Ei, i = 1, 2, then T2 could be derived from T1 by removing e1 and
introducing e2. Such a transformation is called an elementary tree transformation.

Theorem 13.4.1 (Christofides [48]) If T0 and Tk are spanning trees of a graph with
ρ(T0, Tk) = k, then Tk can be obtained from T0 by a sequence of k elementary tree
transformations.
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Kapoor and Ramesh [145] present an algorithm for enumerating all spanning trees
of a graph G having complexity O(t(G) + n + m), where t(G) is the number of trees.

III. Sometimes it is of interest to find spanning trees with specific properties. In
general, this will be not a simple question. Consider a graph G = (V,E) with n
vertices, then the following problems are NP-complete, [97], [253].3

• For a given integer g, is there a spanning tree for G in which no vertex has
degree larger than g?4

• Given a sequence
{g1, ..., gn} ⊆ {1, 2, . . .} ∪ {∞} (13.8)

of positive integers. Is there a spanning tree such that no vertex vi has a degree
greater than gi, i = 1, ..., n?

• For a given positive integer L, decide if there is a spanning tree T with∑
v,v′∈V

ρT (v, v′) ≤ L?

• For a given integer k, is there a spanning tree for G in which k or more are
leaves?5

• For a given tree T with n vertices, does G contain a spanning tree isomorphic
to T .

On the other hand, there are several problems which can be solved in polynomially
bounded time:

• Find a spanning tree of G with minimum diameter, [253].6

• Find a spanning tree in which a specific vertex has a degree bounded by a given
positive integer, [93].

3For practice read all these problems with care and discuss whether for specific parameters they
are easier to solve.

4For g = 2 we obtain that the problem of a Hamiltonian path, which is a spanning path, is NP-
complete.

5Kleitman, West [155] give a partial answer:

Theorem 13.4.2 Let l(n, b) be the maximal number k such that each connected graph G with n
vertices and δ(G) ≥ b contains a spanning tree with at least b leaves. Then

l(n, b) ≤ n− 3
n

db− 1e
+ 2, (13.9)

and, conversely

a) l(n, 3) ≥ n/4 + 2,

b) l(n, 4) ≥ (2n + 8)/5, and asymptotically

c) l(n, b) ≥ n · (1− (c ln b)/b), where c is a desired chosen constant.

6We will discuss this question below in its own section.
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13.5 A recursive procedure

Another method to count the number of spanning trees of a graph is given by the
following recursive procedure: Let G = (V,E) be a graph and let e be an edge of G.
G− e denotes the graph after deleting the edge e, and G ↓ e denotes the contraction
of G on e, that is the graph obtained from G by deleting e and then amalgamating
its endvertices, where parallel edges may be produced. For practice consider the
contracting K3,3 ↓ e.

Theorem 13.5.1 (Zykov; compare [109] or [258]) Let G = (V,E) be a graph and
denote the number of its spanning trees by t(G). Then

t(G) = t(G− e) + t(G ↓ e), (13.10)

where e ∈ E.

Proof. The number of spanning trees of G that do not contain e is t(G− e) since
each of them is also a spanning tree of G− e, and vice versa. On the other hand, the
number of spanning trees that contain e is t(G ↓ e) because each of them corresponds
to a spanning tree of G ↓ e. 2

13.5.1, together with 13.1.5 a), b) and c) as initial steps, creates a recursion to
compute the number of spanning trees.7

As an example we consider fans, those are graphs Gn on the vertices v0, v1, . . . , vn

with 2n− 1 edges defined as follows: v0 is adjacent to each of the other vertices; and
vi is adjacent to vi+1 for i = 1, . . . , n−1. fan(n) denotes the number of spanning trees
for a fan with n + 1 vertices. Lets look at some small cases: fan(1) = 1, fan(2) = 3
and fan(3) = 8.
To apply 13.5.1, we assume that v1, . . . , vn forms a path in this order. Then for
e = v0vn we

t(G− e) = fan(n− 1)

and
t(G ↓ e) = hn−1,

whereby hn denotes the number of spanning trees for a ”derived” fan with a multiple
edge between v0 and vn. Simple to see by 13.5.1

hn−1 = fan(n− 1) + hn−2.

Altogether, and repeatedly applying 13.5.1

fan(n) = fan(n− 1) + fan(n− 1) + hn−2

7The running time of the algorithm is an exponential function in the number of edges, hence an
exponential function in the square of the number of vertices, and so the algorithm is impractical for
large and dense graphs.
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= fan(n− 1) + fan(n− 1) + fan(n− 2) + hn−3

...

= fan(n− 1) +
n−1∑
i=1

fan(i).

This is a recurrence that goes back through all previous values. We use a trick to
compute fan(n) by a simpler one.

fan(n)− fan(n− 1) = fan(n− 1) +
n−1∑
i=1

fan(i)−

(
fan(n− 2) +

n−2∑
i=1

fan(i)

)
= 2 · fan(n− 1)− fan(n− 2).

Hence
fan(n) = 3 · fan(n− 1)− fan(n− 2). (13.11)

n 1 2 3 4 5 6 7 8

fan(n) 1 3 8 21 55 144 377 987

This sequence seems known, and indeed as an exercise prove

Theorem 13.5.2 The number fan(n) of fan graphs on n+1 vertices satisfies (13.11)
and it holds

fan(n) = f2n−1, (13.12)

where fn denotes the nth Fibonacci number.

A wheel Wn consists of a cycle with n vertices and an additional vertex that is
adjacent to all of the vertices in the cycle. The formula for the number of spanning
trees of the wheel with n spokes is difficult to derive, so we present the formula with
the idea of the proof.

Theorem 13.5.3 Let Wn, n ≥ 3, be a wheel. Then

t(Wn) =

(
3 +

√
5

2

)n

+

(
3−

√
5

2

)n

− 2. (13.13)

Sketch of the proof. The number t(Wn) satisfies the recurrence relation

t(Wn) = 3 · t(Wn−1)− 3 · t(Wn−3) + t(Wn−4). (13.14)

2

The formula is a little bit strange, since it handles with irrational numbers, al-
though in any case T (Wn) is an integer.
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Since W3 = K4, the reader is invited to check the formula for n = 3.
We consider fan graphs and wheels. A fan graph is an interval graph, a wheel not;
a fan graph is outer-planar, a wheel is only planar. An interesting observation we
obtain when comparing wheels and fan graphs, which are differ in exactly one edge.8

n 1 2 3 4 5 6 7 8

t(Rn) - 2 - 9 - 81 - 279
fan(n) 1 3 8 21 55 144 377 987
t(Wn) 1 3 16 45 121 318 831

13.6 The matrix-tree theorem

We associate the following matrix M(G) = (mij)i,j=1,...,n of admittance to a graph
G = (V,E) with V = {v1, ..., vn}:

mij =

 gG(i) : if i = j
−1 : if the vertices vi and vj are adjacent

0 : otherwise.

That is
M(G) = diag(gG(v1), ..., gG(vn))−A(G),

where A(G) denotes the matrix of adjacency and diag(gG(v1), ..., gG(vn)) is the matrix
which has the degrees of the graph on the diagonal and all other elements equal zero.
It holds, of course:

detM(G) = 0, (13.15)

but surprisingly,

Theorem 13.6.1 (Kirchhoff) Let G be a graph with the labeled vertices 1, ..., n. Then
the number of spanning trees of G is the determinant of the matrix obtained from the
matrix of admittance M(G) by deleting the i’th row and the i’th column for some i
between 1 and n.9

Proof. There is a very elegant proof using the Binet-Cauchy theorem of matrix-
algebra: Let M1 be an r × s-matrix and M2 be an s × r-matrix, then M1 · M2

is a quadratic r × r-matrix such that detM1 ·M2 equals the sum of the products of
determinants of the r×r-submatrices, where we take the same indices for the columns
of M1 and the rows of M2. Compare [5].
Here, we will give another proof, created by Hutschenreuther, compare [209], which
only uses very simple properties of matrices.
Let A = (aij) be an n× n matrix. We define the following operations for A:

• Ai is the matrix obtained from A by deleting the i’th row and the i’th column;
8In view of 13.1.5 it holds t(G− e) ≤ t(G). Is there constant c such that t(G) ≤ c · t(G− e)?
9In particular, the value of this determinant is independent of the choice of the number i.
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• A?
j is the matrix obtained from A by setting ajj = 0 and alj = 0 for l 6= j; and

• Ak is the matrix obtained from A by setting akk = akk − 1.

Then the following facts are true:

detAi = detA?
i . (13.16)

For k 6= i it holds
(Ai)k = (Ak)i, (13.17)

shortly written as Ak
i .

For k 6= i we write Aik = (Ai)k.
For k 6= i it holds

detAi = det(Ai)k + det(Ai)?
k. (13.18)

This can be seen by the fact that (Ai)k and (Ai)?
k only differs in the kth column; the

sum of both columns equals the kth column of Ai.
Altogether,

detAi = det(Ai)k + det(Ai)?
k by (13.18)

= detAk
i + det(Ai)?

k by (13.17)
= detAk

i + det(Ai)k by (13.16)
= detAk

i + detAik,

which gives
detAi = detAk

i + detAik. (13.19)

Now we complete the proof of the theorem by induction over the number n of
vertices and the number m of edges.

The theorem is true for an edgeless graph, since such graph has no spanning tree
and its admittance matrix is the zero matrix.

The theorem is true for a graph with two vertices, since the number of its spanning
trees equals m, and the admittance matrix is given by

M =
(

m −1
−1 m

)
. (13.20)

Now, assume that the theorem is true for all graphs with less than n vertices and m
edges.

Let G = (V,E) with |V | = n and |E| = m be given. Consider a vertex v ∈ V .

Case 1: v is an isolated vertex.
Then t(G) = 0, and detMi = 0, when i denotes the index of v.
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Case 2: There is an edge e incident with v.
i and k denote the subscript of v and its neighbor. Then, in view of the induction
assumption,

t(G ↓ e) = detM(G ↓ e)k

= det(Mi)k

= detMik. (13.21)

On the other hand, also using the induction assumption,

t(G− e) = detM(G− e)i

= det(Mi)k

= detMk
i by (13.17). (13.22)

Altogether,

t(G) = t(G ↓ e) + t(G− e) in view of 13.5.1
= detMik + detMk

i by (13.21) and (13.22)
= detMi by (13.19).

This is the assertion. 2

Given a graph G. The number of spanning trees grows exponentially in the num-
ber of vertices. But the theorem shows that it is possible to find the quantity t(G) in
polynomially bounded time. This is one of the few enumeration problems which has
such property.

Suppose that the eigenvalues of M(G) are equal to λ1, . . . , λn. Since detM(G) = 0,
we assume that λn = 0.10 In view of

det(M(G)− xI) = −xΠn−1
j=1 (λj − x),

we see that for M ′, which is the matrix M(G) with the i’th row and column removed,
it holds

(−1)i+j+1 · n · detM ′ = λ1 · · ·λn−1

and find an equivalent statement to 13.6.1.

Theorem 13.6.2 (Stanley [227]) Let G be a graph with the n labeled vertices and the
matrix of admittance M(G). If M(G) has the eigenvalues λ1, . . . , λn, with λn = 0,
then

t(G) =
1
n
· λ1 · · ·λn−1. (13.23)

10Note: The geometric multiplicity g(λ) of an eigenvalue λ is the dimension of its eigenspace. The
arithmetic multiplicity a(λ) is the multiplicity of λ as the zero of the characteristic polynomial. In
any case a(λ) ≤ g(λ), but for symmetric matrices equality holds.
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13.7 Applications

We give several applications of the matrix-tree theorem, showing the power of this
approach.

I. As exercise prove 13.1.4(b), namely t(Kn) = nn−2 again, by investigating

M(Kn) =


n− 1 −1 . . . −1
−1 n− 1 . . . −1
· · · · · · · · ·
−1 −1 . . . n− 1

 . (13.24)

We can do it on two ways:
1. applying 13.6.1 with calculations of the determinant of M(G) with the i-th row
and column removed; and
2. applying 13.6.2 showing that M(G) has the eigenvalues n ((n − 1)-times) and 0
(once).

II. Similar, considering the complete bipartite graph

M(Kn1,n2) =



n1 0 . . . 0 −1 −1 . . . −1
0 n1 . . . 0 −1 −1 . . . −1
· · · · · · · · · · · · · · · · · ·
0 0 . . . n1 −1 −1 . . . −1
−1 −1 . . . −1 n2 0 . . . 0
−1 −1 . . . −1 0 n2 . . . 0
· · · · · · · · · · · · · · · · · ·
−1 −1 . . . −1 0 0 . . . n2


(13.25)

we find the following result.

Theorem 13.7.1 Let Kn1,n2 be the complete bipartite graph with n1 + n2 vertices.
Then

t(Kn1,n2) = nn1−1
2 · nn2−1

1 . (13.26)

We are interested in specifications and generalizations of this theorem.

A consequence of 13.7.1 is simple to prove.

Corollary 13.7.2 Let K2,n be the complete bipartite graph with 2+n vertices. Then

t(K2,n) = n · 2n−1. (13.27)

Proof. The graph K2,n is a bipartite graph with two blue vertices v and w, and n
red vertices. In any spanning of K2,n, the unique path between v and w has length
two. We can now count, there are n ways to choose the internal vertex, and for each
of the remaining n− 1 red vertices, there are two choices, either to be adjacent to v
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or w. This gives us a total of n2n−1 different spanning trees. 2

As an exercise prove that the number of non-isomorphic spanning trees is essen-
tially less:

Theorem 13.7.3 The number of non-isomorphic spanning trees in K2,n is⌊
n + 1

2

⌋
. (13.28)

This is a complete other situation than for Kn. There are nn−2 different spanning
trees, and also an exponential number of non-isomorphic ones.

On the other hand, the complete multi-partite graph Kn1,...,nr
denotes the graph

G = (V,E) which is defined by a partition of V in subsets Vi with |Vi| = n1, i =
1, . . . , r, such that all edges connecting only distinct Vi and Vj :

E =
⋃
i 6=j

{vw : v ∈ Vi, w ∈ Vj}.

Theorem 13.7.4 (Onadera [183]) For the number of spanning trees of the complete
multi-partite graph it holds

t(Kn1,...,nr
) = nr−2 ·Πr

i=1(n− ni)ni−1, (13.29)

where n = |V | =
∑r

i=1 ni.

III. What is the probability for a given edge to be a member in a spanning tree
in the complete graph Kn?
First we know t(Kn) = nn−2. With help of 13.6.1 we find

t(Kn − e) = (n− 2)nn−3,

where e denotes a specific edge. Consequently, the number α of spanning trees of Kn

which contain e equals

α = t(Kn)− t(Kn − e) = nn−2 − (n− 2)nn−3 = 2nn−3.

Then α/nn−2 is the probability that e is in a spanning tree of Kn:

Theorem 13.7.5 The probability for a given edge in the complete graph of n vertices
to be a member in a spanning tree equals 2/n.

An extension of the calculation for t(Kn)− t(Kn − e) is given in

Theorem 13.7.6 (Weinberg) Let E ⊆
(
V
2

)
, |V | = n be a set of m pairwise disjoint

edges, that means in particular m ≤ n− 1. Then the number of different trees on V
that do not contain any edge in E equals

nn−2 ·
(

1− 2
n

)m

. (13.30)
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For a proof and further generalizations see [25].
Another property of a randomly chosen tree is given by the following considerations:
Let T be a spanning tree of the Kn, then the diameter of T is at least 2, at most n−1
and in the average case

Theorem 13.7.7 (Renyi, Szekeres [201]) (In the model Gn,p it holds:) The diameter
of a randomly chosen spanning tree of Kn is of order

√
n.

13.8 Cubes, Grids, Ladders

I. We consider hypercubes QD.
Q3 has 8 vertices and the average degree 3. In view of 13.2.2 we have t(Q3) ≤ 696.
Actually, t(Q3) = 384. This is a consequence of the following theorem.

Theorem 13.8.1 The D-dimensional hypercube has

t(QD) =
∏

W⊆{1,...,D},|W |≥2

2|W | = 22D−D−1 ·
D∏

k=1

k(D
k) (13.31)

spanning trees.

The proof uses the matrix-tree theorem in the form 13.6.2 and several deep results
about the eigenvalues of matrices, see [227]. 2

The formula gives an superexponential growing11:

D = n = t(QD) =

1 2 1
2 4 4
3 8 384
4 16 42,467,328
5 32 256,494,072,527,585,280

II. The set
Lp,q = {1, . . . , p} × {1, . . . , q} (13.32)

is called an p×q-grid. As an exercise the reader should prove that Lp,q is Hamiltonian
if and only if p · q is an even number.
For practice determine t(Lp,q) for some small values of p and q. For instance,
t(L2,3) = 15 and t(L3,3) = 192.

III. L1,q is a path, such that t(L1,q) = 1. L2,q denotes a ladder. Using 13.5.1 we
find

t(L2,q) = 4 · t(L2,q−1)− t(L2,q−2), (13.33)

11in the dimension of the hypercube, but not in the number of its vertices
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which solution is
t(L2,q) =

1
2
√

3

(
(2 +

√
3)q − (2−

√
3)q
)

. (13.34)

Numerically,

q = 1 2 3 4 5 6 7 8

t(L2,q) = 1 4 15 56 209

The circular ladder CL2,q is ladder in which the ends are joined. More exactly, it
consits of two concentric cycles with q vertices each in which every pair of corre-
sponding vertices is joined by an edge. For practice the reader should discuss that
t(CL2,3) = 75 and t(CL2,4) = 384.

Related questions about the number of spanning trees in graphs are discussed in
[100], [127] and [180].

13.9 Spanning Tree Numbers

13.1.5 shows that for each nonnegative integer t, except 2, there exists a graph G with
t(G) = t.12 For each positive integer n we define

Υ(n) = {t : there is a graph G with n vertices and t(G) = t}. (13.35)

We have for n > 2:

a) 0, 1, 3, . . . , n ∈ Υ(n).

b) nn−2 ∈ Υ(n).

c) (n− 2)nn−3 ∈ Υ(n).

d) Υ(n) ⊂ Υ(n + 1).

a) and b) are obvious; c) and d) remains as an exercise for the reader.13 Assume
that the numbers in Υ(n) are ordered: t0 < t1 < t2 < . . . < tr. Then Sedlacek [218]
reported:

tr = nn−2

tr−1 = (n− 2) · nn−3

tr−2 = (n− 2)2 · nn−4

tr−3 = (n− 1)(n− 3) · nn−4

tr−4 = (n− 2)3 · nn−5

tr−5 = (n− 1)(n− 2)(n− 3) · nn−5

12Why t = 2 is impossible?
13Hint: for c) compare the proof of 13.7.5.
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tr−6 = (n− 2)(n2 − 4n + 2) · nn−5

tr−7 = (n− 3)2 · nn−4

tr−8 = (n− 1)2(n− 4) · nn−5

tr−9 = (n− 2)4 · nn−6

Of course, there are non-isomorphic graphs with the same number of spanning trees.
Let g(n) be the number of non-isomorphic graphs with n vertices. Then |Υ(n)| ≤ g(n).

n = members of Υ(n) |Υ(n)| = g(n) =

1 1 1 1
2 0,1 2 2
3 and 3 3 4
4 and 4,8,16 6 11
5 and 5,9,11,12,20,21,24,40,45,75,125 17 34

13.10 Arboricity

One of the most common question in graph theory deals with decompositions of a
graph into various subgraphs possessing some prescribed property. Here we decom-
pose a graph in a union of simpler ones, where the union of two graphs G = (V,E)
and G′ = (V,E′) is defined by G ∪G′ = (V,E ∪ E′).

I. Any graph G can be expressed as the union of spanning forests. A natural prob-
lem is to determine the minimum number of edge-disjoint spanning forests into which
G can be decomposed. This number is called the arboricity of the graph, written as
µ(G).14

Assume that G has n vertices and m edges. The maximum number of edges in
a spanning forest is n − 1. Consequently, the minimum number of spanning forests
which composed G is at least m/(n− 1). Since the arboricity is an integer, we have

Lemma 13.10.1

µ(G) ≥
⌈

m

n− 1

⌉
. (13.36)

In terms of edges,

µ(G) ≥
⌈

m

m− ν(G)

⌉
, (13.37)

where ν(G) denotes the cyclomatic number of G, compare 7.4.1.
Let G′ be a subgraph of G then µ(G′) ≤ µ(G). Together with 13.10.1 this is the basic
of the (nontrivial) proof of

14This is a new quantity measured the density of a graph. We already defined: Diameter, minimum
degree, connectedness, and density itself. It is an interesting question to discuss the interrelation
between these numbers.
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Theorem 13.10.2 (Nash-Williams [178]) Let G be a graph with n vertices and let
m(k) be the maximum number of edges in any subgraph of G having k vertices. Then

µ(G) = max
k

⌈
m(k)
n− 1

⌉
. (13.38)

As an exercise prove the following facts for the arboricity of the complete graph
and complete bipartite graph.

Corollary 13.10.3

µ(Kn) =
⌈n

2

⌉
.

µ(Kn1,n2) =
⌈

n1 · n2

n1 + n2 − 1

⌉
.

In a specific case the decomposition is extremely simple:

Theorem 13.10.4 (Beineke [20]) Assume that n is a even number. Then Kn can
be decomposed into n/2 spanning paths.

Is there a nice description for the arboricity of planar graphs?15

II. The arboricity of a graph G was the minimum number of forests whose union
covers G. A star forest is a forest in which each component is a star. The star ar-
boricity µ?(G) of G is the minimum number of star forests whose union covers G.

It follows from the definition that µ(G) ≤ µ?(G). Since every tree can be decom-
posed into two star forests (Exercise), we obtain

Theorem 13.10.6 µ?(G) ≤ 2 · µ(G) for every graph G.

Kurek [160] shows that equality is possible, that is, for any natural k there exists
a graph G = G(k) with µ(G) = k and µ?(G) = 2k.

15Conversely, when we are interested in the smallest number of planar graphs into which a graph
G can be decomposed. This number is called the thickness of the graph, written as θ(G).
Exact in the same way as 13.10.1, we prove

Theorem 13.10.5

θ(G) ≥
⌈

m

3n− 6

⌉
. (13.39)

A formula for the thickness of the complete graph is not easy to find: On the one hand, using
13.10.5, we can derive that

θ(Kn) ≥
⌈

n(n− 1)

6(n− 2)

⌉
=

⌊
n(n− 1) + 6(n− 2)− 2

6(n− 2)

⌋
=

⌊
(n + 7)(n− 2)

6(n− 2)

⌋
=

⌊
n + 7

6

⌋
. (13.40)

On the other hand, it is hard to show that in almost all cases equality holds, compare [127]:

θ(Kn) =

{ ⌊
n+7

6

⌋
: n 6= 9, 10

3 : n = 9, 10
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Chapter 14

Coloring of graphs

Suppose that the vertices of a graph represent different kinds of chemicals in some
manufactoring process. For each pair of these chemicals that might explode if com-
bined, there is an edge between the corresponding vertices. Label each chemical with
a color such that those which can be combined without exploding have the same
color.1

14.1 Vertex coloring

To color the vertices of a graph G is to assign a color to each vertex in such a way
that no two adjacent vertices have the same color. In general, but not exclusively, we
will refer to the colors by natural numbers 1, 2, . . ..
We can reformulate coloring in another way. Let G = (V,E) be a graph colored with
k colors. Consider the sets Vi = {v ∈ V : color of v = i}, i = 1, . . . , k. These sets
forms a partition of V , coming from the equivalence relation: v ∼ v′ if and only if v
not adjacent to v′.2

14.2 The number of colored and labeled graphs

Let G = (V,E) be a labeled graph colored with k colors. Two such graphs are
isomorphic if there is a bijective mapping between the sets of vertices which preserves
not only adjacency but also the colors. In other terms, we also count the number

1One of the origin of graph theory is the four-color problem, which was a long-standing problem
dates back to 1852 when Guthrie tried to color a map of the countries of England, and become aware
of the fact that although the question seems to be very simple and finding the answer is very hard.
In coloring a ”geographical” map it is customary to give different colors to any two countries that
have a part of their boundary in common. Guthrie attempted to prove that the countries (regions)
of any (!) map could be colored with four colors. This was repeatedly misproven, but finally proved
correctly in 1976 with a combination of graph theory and sophisticated computing.

2The sets Vi are also called independent
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of color-classes. The number c(n, k) denotes the number of k-colored labeled graphs
with n vertices. Note

Observation 14.2.1 The number of k-colored labeled graphs with n vertices in which
the colors have fixed identities is k!c(n, k).

Remember that the the collection of Vi, i = 1, ldots, k forms a partition of V . Let
ni = |Vi| ≥ 1, then

k∑
i=1

ni = n. (14.1)

Conversely, each solution of 14.1 determines a partition with k parts of a set of n
vertices. In view of C.3.1 the number of ways that the labels can be selected for the
vertices is the multinomial coefficient(

n

n1n2 . . . nk

)
.

Obviously, there are (
n

2

)
−

k∑
i=1

(
ni

2

)
=

1
2
·

(
n2 −

k∑
i=1

n2
i

)
(14.2)

pairs of vertices of different colors. Since each of these pairs may or may not be
adjacent we use 2.1.1 to obtain for the number of graphs with ni vertices of color i
precisely (

n

n1n2 . . . nk

)
2(n2−

∑k

i=1
n2

i )/2. (14.3)

Summing over all solutions of (14.1) and paying attention 14.2.1 we obtain

Theorem 14.2.2 (Read [198]

c(n, k) =
1
k!

∑
(14.1)

(
n

n1 . . . nk

)
2(n2−

∑k

i=1
n2

i )/2. (14.4)

The equation in 14.2.2 creates the following triangle:

n \ k 1 2 3 4 5 6 7

1 1
2 1 2
3 1 12 8
4 1 80 192 64
5 1 720 5,120 5120 1024
6 1 9,152 192,000 450,560 24,576 32,768
7 1 165,312 10,938,368 59,197,120 64,225,280 22,020,096 2,097,152
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14.2.2 also suggests a recursive formula for c(n, k) (Exercise).
Consider the second column. Here we find the numbers which was deduced as upper
bounds for the number of bipartite graphs in 5.2.2. This is not a surprise, since the
proofs are similar.

Corollary 14.2.3 the coefficient of xm in

1
k!

∑
(14.1)

(
n

n1 . . . nk

)
(1 + x)(n

2−
∑k

i=1
n2

i )/2. (14.5)

is the number of k-colored labeld graphs with n vertices and m edges.

14.3 The chromatic number

I. The chromatic number χ(G) of a graph G is the smallest value of k for which the
vertices of G can be colored by k colors. This is not a simple question. For instance
determine the chromatic number of the Petersen graph Gpetersen. As an exercise
show the following facts:

a) Let G be a graph with the components G1, . . . , Gm. Then
χ(G) = max{χ(G1), . . . , χ(Gm)}.

b) χ(Kn) = n.

c) A graph G is bipartite if and only if χ(G) = 2.

d) It holds χ(T ) = 2 for any tree T .

e) Let Cn be a cycle of length n, then

χ(Cn) =
{

2 : n even
3 : otherwise

f) Let Kr, the complete graph with r vertices, be a subgraph of G. Then χ(G) ≥ r.

It seems natural that there should be a good bound of the chromatic number in terms
of the size of the largest complete subgraph. The following theorem shows that this
approach fails.

Theorem 14.3.1 (Mycielsky, see [5]) For any positive integer r, there exists a triangle-
free graph G, with χ(G) = r. And furthermore G does not contain any Ks for s > 3.

The only vertex coloring problem that can be nicely characterized is concerned
with two-colorable graphs, called bichromatic. Such graphs can be divided into two
sets such that all edges are between a vertex in one set and a vertex in the other set.
We called such graphs bipartite. Consequently, in view of 4.1.2 we have,
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Theorem 14.3.2 A graph can be two-colored if and only if it does not contain a cycle
of odd length.

In other words, bipartite and bichromatic are equivalent terms.

II. We derive several interrelations between the chromatic number and the size of
a graph. By definition, χ(G) ≤ |V |. That

|E| ≥
(

χ(G)
2

)
, (14.6)

or equivalently,

χ(G) ≤ 1
2

+

√
2|E|+ 1

4
, (14.7)

holds true is obviously. But the next inequality not.

Theorem 14.3.3 For any graph G = (V,E)

χ(G) ≥ |V |2

|V |2 − 2|E|
. (14.8)

Proof. Let χ = χ(G).

Vi = {v ∈ V : v colored with i} (14.9)

denote the sets of vertices colored with the same color. Let ni = |Vi| for i = 1, . . . , χ.
Consider the adjacency matrix A(G) of G. Let

N0 = number of 0 entries in A(G) and
N1 = number of 1 entries in A(G).

a) Each set Vi induces a submatrix of A(G) the entries of which are all 0. Thus

N0 ≥ n2
1 + . . . + n2

χ. (14.10)

Applying the Cauchy-Schwarz inequality (G.2) to (n1, . . . , nχ) and (1, . . . , 1)
gives

n2
1 + . . . + n2

χ ≥
(n1 + . . . + nχ)2

χ
=
|V |2

χ
. (14.11)

b) In view of 4.1.1
N1 = 2|E|. (14.12)

Thus, the total number of entries in A(G) satisfies

|V |2 = N0 + N1 ≥ 2|E|+ |V |2

χ
.

This gives the required formula. 2

III. We estimate the chromatic number of a graph and its complement.
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Theorem 14.3.4 Let G be a graph with n vertices. Then

2
√

n ≤ χ(G) + χ(Gc) (14.13)
χ(G) + χ(Gc) ≤ n + 1 (14.14)

n ≤ χ(G) · χ(Gc) and (14.15)

χ(G) · χ(Gc) ≤
(

n + 1
2

)2

. (14.16)

Proof. Let F : V → {1, . . . , χ(G)} be a coloring of G = (V,E).

Vi = {v ∈ V : F (v) = i}, (14.17)

for i = 1, . . . , χ(G). Let ni = |Vi|. Then ni > 0, and

n = |V | =
χ(G)∑
i=1

ni ≤
χ(G)∑
i=1

max
j=1,...,χ(G)

nj = χ(G) · max
j=1,...,χ(G)

nj .

Hence,
χ(G) ≥ n

maxj=1,...,χ(G) nj
. (14.18)

If v, v′ ∈ Vi, then they have the same color. Consequently they cannot be adjacent
in G, and must be adjacent in Gc. In other terms, Kni

is a subgraph of Gc. Thus
χ(Gc) ≥ ni for all i = 1, . . . , χ(G), which implies

χ(Gc) ≥ max
j=1,...,χ(G)

nj . (14.19)

Together with (14.18) we get the inequality (14.15).
We state, as a consequence of G.3.2, that

(χ(G) + χ(Gc))2 ≥ 4χ(G)χ(Gc). (14.20)

In view of (14.15) we have (χ(G) + χ(Gc))2 ≥ 4n, which gives (14.13).
To show the two other inequalities we use induction over the number n of vertices.
For n = 2 the inequalities are obvious. Let G be a graph with n vertices, and let v
be a vertex of G. It is not hard to see that

χ(G− v) + 1 ≥ χ(G) and χ((G− v)c) + 1 ≥ χ(Gc).

We distinguish two cases:
1. In one of the inequalities there is ”<”.

χ(G) + χ(Gc) ≤ χ(G− v) + 1 + χ((G− v)c) + 1− 1
≤ χ(G− v) + χ((G− v)c) + 1
≤ (n− 1) + 1 + 1 using the induction assumption
= n + 1.
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2. Both inequalities are equalities.
The following must be true considering the vertex v:

gG(v) ≥ χ(G− v), and (14.21)
gGc(v) ≥ χ((G− v)c), (14.22)

otherwise we can color G and Gc with fewer than χ(G) and χ(Gc) colors, respectively.
Altogether,

χ(G) + χ(Gc) = χ(G− v) + 1 + χ((G− v)c) + 1
≤ gG(v) + 1 + gGc(v) + 1
= (n− 1) + 1 + 1 = n + 1.

In both cases we obtain the third desired inequality (14.14).
(14.14) and (14.20) give the last of the desired inequality. 2

14.4 Spanning trees of colored graphs

The chromatic number can be understand as a measure of density. In this sense we
consider a graph G with n vertices, m edges and chromatic number χ.
On one hand, (14.6) implies

d =
2m

n(n− 1)
≥ χ(χ− 1)

n(n− 1)

for the density d of G.
On the other hand, (14.8) is equivalent to

2m

n2
≤ 1− 1

χ
. (14.23)

Additionally,
2m

n2
=

2m

n(n− 1)
· n− 1

n
= d · n− 1

n
.

Altogether,

Lemma 14.4.1 Let G be a graph with n vertices and of chromatic number χ. Then

χ(χ− 1)
n(n− 1)

≤ density(G) ≤ n

n− 1
· χ− 1

χ
. (14.24)

The chromatic number is a global parameter of a graph, as well as the average
degree. For practice discuss the interrelation of both quantities.
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We have
n− 1

n
≤ χ

χ− 1
(14.25)

(1 + 1/n)n+1 is a monotone decreasing sequence such that for χ ≤ n(
χ

χ− 1

)χ

≥
(

n

n− 1

)n

. (14.26)

14.4.1 in 13.2.2 gives for the number of spanning trees

t(G) ≤ nn−2 ·
(

n

n− 1
· χ− 1

χ

)n−1

= nn−2 ·
(

n

n− 1

)n

· n− 1
n

·
(

χ− 1
χ

)n−1

≤ nn−2 ·
(

χ

χ− 1

)χ

· n− 1
n

·
(

χ− 1
χ

)n−1

by (14.26)

≤ nn−2 ·
(

χ

χ− 1

)χ

· χ− 1
χ

·
(

χ− 1
χ

)n−1

by (14.25)

= nn−2 ·
(

χ− 1
χ

)n−χ

.

Hence,

Theorem 14.4.2 Let G be a graph with n vertices and of chromatic number χ. Then

t(G) ≤ nn−2 ·
(

1− 1
χ

)n−χ

. (14.27)

Since bichromatic and bipartite are equivalent terms, this theorem implies

Corollary 14.4.3 Let G be a bipartite graph with n vertices.

t(G) ≤
(n

2

)n−2

. (14.28)

14.5 Algorithms for coloring

It is easy to decide whether a graph is bicromatic using a naive coloring procedure.
But this is the only simple case: The Graph 3-colorability problem is NP-complete,
see Stockmeyer [229].

I. An exact algorithm is given by the following theorem.

Theorem 14.5.1 (Zykov) Let G = (V,E) be a graph with two non-adjacent vertices
v and w. Then

χ(G) = min{χ(G + vw), χ(G ↓ vw)}. (14.29)
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Proof. ≤: Each coloring of G + e is also a coloring of G. Each coloring of G ↓ e
induces also a coloring of G given that v and w get the same color which ther also
the color of the vertex representing v and w.
≥: Let F : V → {1, . . . , χ(G)} be an optimal coloring of G. If F (v) 6= F (w) then is
F also a coloring of G + e. Otherwise, F (v) = F (w), and F is a coloring of G ↓ e. 2

As an exercise use this theorem to create an algorithm for finding the chromatic
number.3

II. There is no easy way of finding the chromatic number of a graph. Often, but
not in general, a good upper bound is given by the following considerations.

Lemma 14.5.2
χ(G) ≤ ∆(G) + 1, (14.30)

where ∆(G) is the maximum degree of a vertex in G.

The proof is given by induction.
Brook characterized the equality in 14.5.2 completely: If the graph G is not an odd
cycle or a complete graph, then χ(G) ≤ ∆(G), where ∆(G) is the maximum degree
of a vertex in G.
We will omit the proof, but we will give the following greedy algorithm which creates
a vertex coloring of G with at most ∆(G) + 1 colors.

Algorithm 14.5.3 Let G = (V,E) be a graph. Consider the following algorithm:

1. List the vertices in some order: V = {v1, v2, . . . , vn};

2. Assign color 1 to v1;

3. for i := 2 to n do:
assign to vi the color j as small as possible which has not yet been used to color
a vertex adjacent to vi.

This algorithm is far from being optimal, it depends essentially on the way the
vertices are ordered. As an exercise find graphs G for which χ(G) and ∆(G) differ
significantly.

3Another approach was created by Christophides using independent sets:
for k := 1 to n do
for all W ∈

(
V
k

)
do

χ(G[W ]) := 1 + min{χ(G[W \ S]) : S an independent set with |S| = β(G[W ])}.

where β(G) denotes the independence number of G.
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14.6 Chromatic polynomials

Two colorings of a labeled graph G are considered different if they assign different
colors to the same vertex in G. The chromatic polynomial p(G, t) of G is the number
of different colorings of G that use t or fewer colors.
If t < χ(G), then p(G, t) = 0. In fact, the smallest positive integer t such that
p(G, t) > 0 is the chromatic number:

χ(G) = min{t : p(G, t) > 0}. (14.31)

The following lemma is easy to see.

Lemma 14.6.1 Let G be a graph with the isolated vertex v. Then

p(G, t) = t · p(G− v, t). (14.32)

Consider the complete graph Kn. If we color this graph with t ≥ n colors then
there are t choices for the color of the first vertex. For each such choice, there are
t− 1 choices for the second vertex. Since a third vertex is adjacent to both the first
and second vertex, we have t− 2 choices for the color of this vertex. And so on. For
the chromatic polynomial of Kc

n we use 14.6.1.

Theorem 14.6.2 Let n and t be positive integers. Then

p(Kn, t) = t(t− 1) · · · (t− n + 1). (14.33)

And
p(Kc

n, t) = tn. (14.34)

The following theorem provides an expression for p(G, t) for graphs G in general.

Theorem 14.6.3 Let G be a graph and p(G, t) the chromatic polynomial of G. Then

p(G, t) = p(G− e, t)− p(G ↓ e, t), (14.35)

where e ∈ E.

Proof. Let e = vv′ ∈ E. Consider the coloring F : V → {1, 2, . . . , t} of G− e.
If F (v) 6= F (v′) there is also a coloring of G.
Otherwise, if F (v) = F (v′), we get a coloring of G ↓ e. Hence,

p(G− e, t) = p(G, t) + p(G ↓ e, t).

2

14.6.3 suggests a way of finding the chromatic polynomial p(G, t) of a graph G:
From G we construct two graphs. One with the same number of vertices and one
more edge, and the other with one vertex less than G. We can continue this procedure
provided no graph produced in this process is complete or empty. Applying 14.6.2 we
find a justification for the name ”polynomial”.
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Theorem 14.6.4 A graph G with n vertices is a tree if and only if

p(G, t) = t(t− 1)n−1. (14.36)

It is not known in general, however, what properties graphs G and G′ must possess
for p(G, t) = p(G′, t). 14.6.4 shows that non-isomorphic graphs may have the same
chromatic polynomial, since there are non-isomorphic trees with the same number of
vertices.

14.7 Edge coloring

Let G = (V,E) be a graph. An edge-coloring of a graph is a mapping from E into a
finite set, the colors, such that for each vertex all incident edges have different colors.
The chromatic index χ′(G) of a graph G is the smallest value of k for which the edges
of G can be colored by k colors.

Let G = (V,E) be a graph with maximum degree ∆(G), then obviously χ′(G) ≥
∆(G), but surprisingly

Theorem 14.7.1 (Vizing) Let G = (V,E) be a graph with maximum degree ∆(G),
then χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1.

We omit the proof. You can find one in [109]. Consequently, there is a polyno-
mially bounded algorithm which finds an edge-coloring of a graph G with ∆(G) + 1
colors. But surprisingly, to decide whether χ′(G) = ∆(G) is NP-complete, [135].
For practice the reader should discuss the following facts:

• Let Kn be the complete graph with n vertices, then

χ′(Kn) =
{

n : n odd
n− 1 : n even

• χ′(Gpetersen) = 4.

• What can we say about the chromatic index of a tree?

Theorem 14.7.2 (König compare [9]) χ′(G) = ∆(G) for all bipartite graphs G.

14.8 The four-color problem

Recall that a graph G = (V,E) is called planar if it can be embedded into the plane
such that two curves which are the embeddings of the edges intersect only at the
vertices. More precisely, planarity asserts that it is possible to represent the graph in
the plane in such a way that the vertices correspond to distinct points and the edges
to simple Jordan curves connecting the points of its endvertices such that every two
curves are either disjoint or meet only at a common endpoint.
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We use the term plane graph to refer to a planar description of a planar graph. A
plane graph determines a partition of the plane into regions.

The Four Color Problem: Can the regions of a plane graph be colored with
four colors so that adjacent regions are colored differently?4

The Poincare duality construction transforms this question into the problem of
deciding whether it is possible to color the vertices of every planar graph with four
colors so that no two adjacent vertices are assigned the same color.

Observation 14.8.1 The Four Color Problem: The chromatic number of each planar
graph is less or equal 4.

Now we prove the famous Five Color Theorem.

Theorem 14.8.2 (Heawood) Every planar graph can be 5-colored.

Proof. We only need to consider connected planar graphs.
We prove the theorem by induction on the number of vertices. Let G = (V,E) be a
planar and connected graph with n vertices.
Trivially for n ≤ 5 G can be 5-colored.
Now we assume that all connected planar graphs with n− 1 vertices are 5-colorable.
In view of 4.8.3 there is a vertex v ∈ V with degree at most 5. Deleting v from G we
obtain a graph G′ with n− 1 vertices which by assumption can be 5-colored. Now we
reconnect v to G′ and try to properly color v.
If gG(v) ≤ 4, then we can assign v a color different from the colors of its neighbors.
The same approach works if the degree equals 5, but the neighbors only needs 4 colors.
Thus it remains to consider the case where v is of degree 5 and have the neighbors
v1, . . . , v5 with i being the color of vi. We may assume that v1, . . . , v5 are arranged
in clockwise order around v.
Let i and j be two different colors. Then define

Gi,j = G′[{v′ ∈ V \ {v} : the color of v′ = i or j}]. (14.37)

Note, that in any case Gi,j is a subgraph of G.
First consider G1,3. Suppose that there is no path in this graph from v1 to v3. Then
we change the color of v1 and all other vertices in its component from 1 to 3 or vice
versa. This interchange will not affect v3. Hence, the color 1 is ”free” to color v. On
the other hand, if v1 and v3 are in the same component of G1,3, a path from v1 to v3

together with the edges vv1 and vv3 forms a cycle in G which blocks the possibility
of any path from v2 to v4 in G2,4. Thus, we can perform a 2-4 interchange in the
component which contains v2, and v can be properly colored with 2. This completes
the induction step. 2

4The embedding of a K4 show that fewer than four colors are not sufficient in general.
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There is an nice interrelation between edge and region colorings. Let G be an
embedding of a connected, 3-regular, planar and bridgeless graph in the plane. Such
a plane graph is called a cubic map . We can define a cubic map equivalently as an
embedding of a 2-connected 3-regular planar graph.
Cubic maps are not rare. As an exercise construct an exponential number of such
graphs.

Theorem 14.8.3 (Tait) Let G be a cubic map. Then the edges of G are colorable
with three colors if and only if the regions of G are colorable with four colors.

Idea of the proof. We use the colors 0, a1, a2 and a3 which can be added in the
sense of the Klein group.
Let G = (V,E) be a cubic map with the set

R = {R1, . . . ,R2−|V |+|E|},

of regions.
Let F : R → {0, a1, a2, a3} be a coloring of the regions. We define a coloring F ′ :
E → {a1, a2, a3} of the edges by: Let e be an edge on the common boundary of the
regions Ri and Rj , then

F ′(e) = F (Ri) + F (Rj).

Conversely, let F ′ : E → {a1, a2, a3} be a coloring of the edges. We find a coloring
F : R → {0, a1, a2, a3} of the regions by:

F (R1) = 0.

Let Ri, i = 2, . . . , 2− |V |+ |E| be a region. Let C be a curve from an inner point of
R1 to an inner point of Ri which avoids all vertices of G. Then

F (Ri) =
∑

C crosses e

F ′(e).

2

Consequently, the Four-Color-Conjecture is true if and only if each 2-connected
3-regular graph has chromatic index 3.

Theorem 14.8.4 The Four-Color-Conjecture is true if and only if each bridge-less
planar graph can factored in (three) perfect matchings.

In 1977 Appel, Haken [10] show that every planar graph can be 4-colored.5

5The proof was controversial at that time because it made extensive use of a computer to check
the large number of special cases. it was the first proof of a major mathematical result generated in
this fashion. Can a human being check its correctness?
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Chapter 15

Graphs Inside

15.1 Subgraph isomorphism

A very important generalization of graph isomorphism is known as subgraph isomor-
phism, and it is to determine whether a graph is isomorphic to a subgraph of another
graph. More formally, a subgraph isomorphism of a graph G1 = (V1, E1) into a graph
G2 = (V2, E2) is an injective mapping f : V1 → V2 such that

vv′ ∈ E1 then f(v)f(v′) ∈ E2.

Remark 15.1.1 The problem of determining whether or not a graph is isomorphic
to a subgraph of another graph is NP-complete.

Compare [240].

Most practical applications of the problem need finding all subgraphs of a given
graph which are isomorphic to another given graph.

Theorem 15.1.2 Assume that p ≤ n. There are

a) (
n

p

)
=

n!
p!(n− p)!

(15.1)

different subgraph of the complete graph Kp into the complete graph Kn.

b)
n!

(n− p)!
(15.2)

different subgraph isomorphisms of the complete graph Kp into the complete
graph Kn.
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Proof. Since the graphs are complete, any injection from the set of vertices of Kp

into the set of vertices of Kn, will be a subgraph isomorphism. There are(
n

p

)
=

n!
p! · (n− p)!

different injections; and the complete graph on p vertices induced by each of which
has p! different automorphisms. 2

Generalizing the second statement of the former theorem we find

Theorem 15.1.3 Let G be a graph with p vertices given, and let p ≤ n. The number
of subgraphs of Kn isomorphic to G equals

n · (n− 1) · · · (n− p + 1)
|Aut(G)|

. (15.3)

Proof. There are
(
n
p

)
ways to choose the p vertices for a copy of G. In view of

7.2.6 for each labeling of G we have p!/|Aut(G)| ways to place it on these vertices.
Then(

n

p

)
· p!
|Aut(G)|

=
n!

p!(n− p)!
· p!
|Aut(G)|

=
n · (n− 1) · · · (n− p + 1)

|Aut(G)|
. (15.4)

2

15.2 Trees inside

Let k be a natural with k ≤ 2m/n, then a graph with n vertices and m edges contains
a path with k vertices. (Exercise.)
All graphs of sufficiently large minimum degree contain all trees of certain orders.

Theorem 15.2.1 Let T be a tree with n vertices, and let G be a graph with δ(G) ≥
n− 1, where δ(G) denotes the minimum degree in G. Then T is isomorphic to some
subgraph of G.

Proof. (Chartrand, Lesniak, [45]) We proceed by induction on n.
The result is obviously true for n = 1 and n = 2.
Assume that for any tree T ′ with n− 1 vertices, where n ≥ 3, and any graph G′ with
δ(G′) ≥ n− 2, that T ′ is isomorphic to a subgraph of G′.
Now let T and G be given as above. Let v be a leaf of T and w be the neighbor of v.
Then the graph T − v is a tree with n− 1 vertices. Since

δ(G) ≥ n− 1 > n− 2,

it follows by the induction hypothesis that T − v is isomorphic to a subgraph T1 of
G. Let w1 be the vertex of T1 that corresponds to the vertex w under an isomor-
phism. Since gG(w1) ≥ n − 1 and the fact that T1 has n − 2 vertices different from
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w1, necessarily w1 is adjacent to a vertex u of G that does not belong to T1. Then
the subgraph T1 + w1u of G is isomorphic to T . 2

Hartsfield and Ringel [127] count the number of trees inside the complete graph
for specific cases:

Theorem 15.2.2 There are
n!

2(n− k − 1)!
(15.5)

many subgraphs isomorphic to the path of length k in the complete graph with n
vertices for k < n.

Proof. A path Pk of length k has k +1 vertices. Clearly we have to assume k < n.
Now we count as follows: If we begin at some vertex, there are n− 1 choices for the
next vertex in the path and n− 2 choices for the vertex following that, until we reach
the (k+1)th vertex. This is a total of n(n−1)(n−2) · · · (n−k). But we have counted
everything twice. So we divide by 2, and get the assertion. 2

Theorem 15.2.3 There are

n ·
(

n− 1
3

)
(15.6)

many subgraphs isomorphic to K1,3 in the complete graph with n vertices.

Proof. First we have
(
n
4

)
choices of four vertices from n vertices. For every choice

we have four possibilities to form a K1,3 as a subgraph.
By simple calculation:

4 ·
(

n

4

)
= 4

n!
4!(n− 4)!

=
n(n− 1)!
3!(n− 4)!

= n ·
(

n− 1
3

)
.

2

15.3 Complete graphs inside

Maybe the ”Great Darwin Tree” is not a tree, but a graph with some subgraphs which
are created ”clusters”. Consequently, we are interested in the converse question as in
the section before.
.

Let G = (V,E) be a graph. Usually, a complete subgraph of G is called a clique;
more exactly a k-clique when the subgraph contains exactly k vertices.1

1The complement of a clique is an independent set; that means no two vertices are adjacent in G.
As an example we wish to design an aquarium, which is a collection of tanks, for a big collection
of species of fishes. Several of these animals can be placed in the same tank, but not if one is the
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The obvious way to find a k-clique would be subject all
(|V |

k

)
subsets of V with

cardinality k and test of whether they fulfill the requirement. The catch is that k can
be depend from the size |V |.

Observation 15.3.1 Consider cliques in a graph.

a) The maximum clique problem is NP-complete.2

b) The maximum clique problem is solvable in polynomial time for graphs obeying a
fixed degree bound.3

Let G = (V,E) be a graph with n vertices. For any positive integer k the quantity
ck(n) denotes the number of complete subgraphs of G with k vertices.
Of course,

c1(n) = n = |V |, (15.7)

and
c2(n) = |E|. (15.8)

Theorem 15.3.2 (Ahlswed et al. [1]) Let G = (V,E) be a graph with n vertices and
m edges. Then for k ≥ 2 it holds

ck(n) ≥ 2(k − 1)m− (k − 2)n2

kn
· ck−1(n). (15.9)

The proof uses induction over k starting with (15.7) and (15.8). 2

By simple calculation after 15.3.2 we obtain

Theorem 15.3.3 Let G = (V,E) be a graph with n vertices and m edges. If for some
positive number ε

m ≥
(

k − 1
2k

+ ε

)
· n2, (15.10)

then
ck(n) ≥ εk−1nk. (15.11)

Remeber that we define the density of graph G = (V,E) as the quantity |E|/
(|V |

2

)
.

Then 15.3.3 is satisfied if density(G) > (1− 1/k + 2ε).

predator of one other. If two species cannot be placed in the same tank, we say they cannot cohabit.
What is the minimum number of tanks that are required? And how can the fishes distributed among
the tanks?
We can model this question by a graph in which each vertex corresponds to a species of fish, and
two vertices are adjacent if and only if the corresponding species cannot cohabit. The vertices for
each species of fish in a tank must be independent. The species of fish that residue in the same tank
of the aquarium correspond to an independent set of vertices.

2See [97].
3In particular this holds true for planar graphs, see 4.8.3.
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15.4 Counting perfect matchings

Let G = (V,E) be a graph. A subset E′ ⊆ E is called a matching if no two edges in
E′ have a common endvertex. Then, of course,

|E′| ≤ |V |
2

. (15.12)

A matching E′ of G is called perfect if each vertex is incident with exactly one
edge in E′, that means in (15.12) equality holds.4

Of course, not each graph contains a perfect matching. At least such a graph must
have an even number of vertices.

I. How many perfect matchings are in the complete graph K2n?
We shall denote this number by f(2n). Of course f(2) = 1, as an exercise show that
f(4) = 3.
Now, consider the graph K2n and fix a vertex v. There are 2n− 1 choices for an edge
in a perfect matching containing v. Once we have chosen such an edge, we can now
disregard the two endvertices of the edge and consider how many perfect matchings
can be made from the remaining 2n− 2 vertices. Thus

f(2n) = (2n− 1)f(2n− 2). (15.13)

This gives immediately by repeated application

f(2n) = (2n− 1) · f(2n− 2)
= (2n− 1) · (2n− 3) · f(2n− 4)
...
= (2n− 1) · (2n− 3) · (2n− 5) · · · 3 · 1

=
(2n− 1)!

(2n− 2) · (2n− 4) · · · 4 · 2

=
(2n− 1)!

2n−1 · (n− 1)!
.

We proved

Theorem 15.4.1 There are

f(2n) =
(2n− 1)!

2n−1 · (n− 1)!
= (2n− 1)!! (15.14)

perfect matchings in K2n.
4In literature such a subgraph is sometimes called a 1-factor.
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II. Another problem is to count the perfect matchings in the complete bipartite
graph Kn,n.5 This is the question of the number of bijections from an n-element set
into itself. Hence,

Theorem 15.4.3 There are n! perfect matchings in Kn,n.

The general question of the number of perfect matchings in bipartite graphs is
much more difficult. The reader should prove

Corollary 15.4.4 Let G = (V,E) be an r-regular, 1 ≤ r ≤ n, bipartite graph with
n + n vertices. Then G contains at least r! distinct perfect matchings.

The problem for bipartite graphs in general is discussed in [3] and [143].6 Also
the following sharper result.

Remark 15.4.5 Let G = (V,E) be an r-regular, 1 ≤ r ≤ n, bipartite graph with
n + n vertices. Then G contains at least

n! · rn

nn
≥ e3/4 ·

√
n ·
(r

e

)n

(15.16)

distinct perfect matchings.

Now we consider the following specification: How many perfect matchings are in
the graph K̃n,n which is the complete bipartite graph minus a perfect matching, that
is r = n − 1? From 15.4.5 we get only a lower bound, but we can find an exact
answer. By changing the indexes the problem is the question of all derangements of
n objects. Denoting the number of derangements of {1, . . . , n} by Dn, we can give an
exact result.

Theorem 15.4.6 Let K̃n,n be the complete bipartite graph with n+n vertices without
a perfect matching. Then there are

Dn = n! ·
n∑

k=0

(−1)k 1
k!
≈ n!

e
(15.17)

perfect matchings in K̃n,n.

Al-Knaifes, Sachs [7] give an algebraic approach to count the number of perfect
matchings in arbitrary graphs.

5This is a generalizations the so-called marriage problem: Given a set of women, each of whom
known a subset of men, under what conditions can each of the women marry a men whom she knows?
More formally: If a bipartite graph G = (V0 ∪ V1, E) has a matching that saturates all the vertices
in V0, then we say that V0 can be matched into V1.

Theorem 15.4.2 (König, Hall) In a bipartite graph G = (V0 ∪ V1, E), V0 can be matched into V1

if and only if
|N(W )| ≥ |W | (15.15)

for all W ⊆ V0.

6And Petersen showed that every bridgeless 3-regular graph contains a perfect matching, see [66].
More exactly, it is the sum of a perfect matching and a collection of cycles, see [191].

189



15.5 Systems of distinct representatives

Closely related to the marriage problem is to find a set of distinct representatives for
a collection of subsets. We need to pick one element from each subset without using
any element twice. More formally, let S be a set and let {S1, . . . , Sm} be a collection
of subsets of S. The set {r1, . . . , rm} is called a system of distinct representatives,
abbreviated SDR, for {S1, . . . , Sm} if

• ri ∈ Si for i = 1, . . . ,m; and

• ri 6= rj for i 6= j.

Assume that an SDR exists for {S1, . . . , Sm} ⊆ S. If we select k of the sets from
among S1, . . . , Sm, then these sets are represented by k elements of S. Consequently,
we have for each subcollection Si1 , . . . , Sik

|
ik⋃

j=i1

| ≥ k (15.18)

for all k = 1, . . . ,m.
Thus the inequalities (15.18) are obviously necessary for the existence of an SDR. The
following theorem shows that the condition is also sufficient.

Theorem 15.5.1 Let S be a set of n elements and let {S1, . . . , Sm} be a collection
of subsets of S. Assume that m ≤ n. Assume moreover, that each Si contains at
least t ≥ 1 elements. An SDR for {S1, . . . , Sm} exists if and only if the inequalities
(15.18) hold.

Sketch of the proof. Consider the bipartite graph

G = (S ∪ {S1, . . . , Sm}, {Sixj : xj ∈ Si}),

2

Theorem 15.5.2 Assume the conditions of 15.5.1. Then there are at least t! of
SDR’s if t ≤ m and t!

(t−m)! otherwise.

A proof can found in [167].

15.6 Alignments, pairwise

Einstein said: ”God does not play dice.” He was right. God plays scrabble.

Philip Gold
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Similar to the problem of perfect matchings is to compute the number of align-
ments. Sequence alignment is the identification of residue-residue correspondences.
It is the basic tool of bioinformatics.

Any assignment of correspondences that preserves the order of the residues within
sequences is an alignment; gaps may be introduced.

I. Given two sequences w and w′ over the same alphabet, an alignment of w and
w′ is a partial mapping from letters in w to w′, or vice versa, which preserves the
left-to-right ordering. Such an alignment can be represented by a diagram (a matrix)
with aligned letters above each other, and unaligned letters placed opposite gaps. An
alignment can be viewed as a way to extend the sequences to be of the same length
using gaps or ”dummy symbols”.
For instance consider the two words w = ac2g2t2 and w′ = agct. The following arrays
are all alignments for w and w′:

a c c g g t t
a g c t - - -

a c c g g t t - - -
- - - - - - a g c t

and

a c c g g t t
a - - g c t -

where ”-” denotes a ”dummy” symbol.
In other words, we are looking for a diagram such that

• The elongated sequences are of the same length;

• There is no position for which the elongated sequences both have a dummy (i.e.
we do not use pairs of dummies).

Consider two words w = a1a2 . . . an and w′ = b1b2 . . . bm. To count alignments is
to identify aligned pairs (ai, bj) and simply to choose subwords of w and w′ to align.
We do not count the pairs of (a−,−b) and (−a, b−) as distinct. There must be k
aligned pairs, where 0 ≤ k ≤ min{n, m}. There are

(
n
k

)
ways to choose a’s and

(
m
k

)
ways to choose b’s, so there are

(
n
k

)
·
(
m
k

)
alignments with k aligned pairs. Altogether

there are ∑
k≥0

(
n

k

)(
m

k

)
=
(

n + m

n

)
(15.19)

alignments, compare C.2.5.7

7We do not count the pairs of (a−,−b) and (−a, b−) as distinct. Otherwise, the number f(n, m)
of such alignments for two sequences of n and m letters fulfills the equality

f(n, m) = f(n− 1, m) + f(n− 1, m− 1) + f(n, m− 1), (15.20)
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Theorem 15.6.1 There are (
n + m

n

)
=
(

n + m

m

)
(15.22)

alignments of two words with n and m letters, respectively.
In particular, if both words have the same length n there are(

2n

n

)
≈ 4n

√
πn

(15.23)

alignments.

More about the combinatorics of alignments can be found in Waterman [247].

II. In the biological context the equality of words makes no sense, since mutations
do not allow identical sequences in reality. On the other hand, in biomolecular se-
quences, high sequence similarity usually implies significant functional and structural
similarity.8

Given an alignment between two sequences, we assign a score to it as follows: Each
column of the alignment will receive a certain value depending on its contents and the
total score for the alignment will be the sum of the values assigned to its columns.
The similarity sim(w,w′), between two sequences w,w′ ∈ A? according to a scoring
system is the maximum of the scores running over all alignments of w and w′. Here,
a scoring system (p, g) is given by

• A symmetric function p : A×A → IR, and

• A non-positive real number g.

The array of p is called the (substitution) score matrix. The value p(a, b) scores pairs
of aligned letters a and b. The penalty g is used to penalize gaps. In general, we
assume that p(a, a) > 0, for a ∈ A, and g < 0.9

The distance ρ(w,w′), between two sequences w,w′ ∈ A? according to a cost measure
is the minimum of the costs running over all series of operations transforming w into

which does not have a nice explicit description. But it can be shown that

f(n, n) ≈ (1 +
√

2)2n+1 ·
√

n, (15.21)

see [246].
8But note that the converse is, in general, not true. And in reality, for applications in biology it is

sometimes necessary to take into account several other properties of the macro-molecules to measure
their similarity, for instance structure, expression and pathway similarity, compare [144].

9In general, in a biological context a scoring matrix p is a table of values that describe the prob-
ability of a residue (amino acid or base) pair occuring in an alignment. The approach is good, if the
score matrix produces good alignments.
The PAM (Point Accepted Mutation) series of score matrices are frequently used for protein align-
ments [8] and [65]. Each entry in a PAM matrix gives the logarithm of the ratio of the frequency at
which a pair of residues is observed in pairwise comparisons of homologous proteins to the frequency
expected due to chance alone. Amino acids that regularly replace each other have a positive score,
while amino acids that rarely replace each other have a negative score.
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w′. The function ρ is a pseudo-metric in A?.10

The interrelation between both approaches are given in the following theorem.

Theorem 15.6.2 (Smith, Waterman, Fitch [223], Waterman [246]) A metric ρ and
the corresponding similarity sim there holds the following interrelation: Let w and w′

be sequences (words) over A. Then

ρ(w,w′) + sim(w,w′) = c · (|w|+ |w′|). (15.24)

Idea of the proof. Let w and w′, and let α be an alignment between w and w′.
We define a series σ of operations transforming w into w′ by dividing α into columns
corresponding to the operations in a natural way:

• matches and mismatches in the alignment correspond to substitutions in the
transformation;

• gaps in the alignment corresponds to indels (= insertions and deletions) in the
transformation.

2

But we should note what Gusfield [112] wrote:

Although an alignment and an edit transcript are mathematically equiv-
alent, from a modeling standpoint, an edit transcript is quite different
from an alignment. An edit transcript emphasizes the putative mutational
events (point mutations in the model so far) that transform one string to
another, whereas an alignment only displays a relationship between two
strings. The distinction is one of process versus product. Different evo-
lutionary models are formalized via different permitted string operations,
and yet these can result in the same alignment. So an alignment alone
blurs the mathematical model. This is often a pedantic point but proves
helpful in some discussions of evolutionary modeling.

III. How can we find the similarity of or the distance between two words? Clearly,
the consideration of all possible alignments does not make sense, since there are too
many; see 15.6.1. But, observe that we cannot change the order of the letters in
the words. This fact suggests that a dynamic programming approach will be useful.
A dynamic programming algorithm finds the solution by first breaking the original
problem into smaller subproblems and then solving all these subproblems, storing
each intermediate solution in a table along with a score, and finally choosing the
sequence of solutions that yields the highest score.11 The goal is to maximize the
total score for the alignment.

Algorithm 15.6.3 Let w = a[1]a[2] . . . a[m] and w′ = b[1]b[2] . . . b[n] be two se-
quences in A?, equipped with a scoring system (p, q). Then, we find the similarity
sim(w,w′) =sim[m,n] by the following procedure.

10The metric space (A?, ρ) is a discrete one, that means each bounded set is a finite one.
11We used this approach by 4.7.2 in finding shortest paths.
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1. for i := 0 to m do
sim[i, 0] := i · g;

2. for j := 0 to n do
sim[0, j] := j · g;

3. for i := 1 to m do
for j := 1 to n do
sim[i, j] := max{sim[i− 1, j] + g, sim[i− 1, j − 1] + p[i, j], sim[i, j − 1] + g}

In other terms, we determine each 2× 2 submatrix by the following scheme:

sim[i− 1, j − 1] sim[i− 1, j]

↘ ↓
sim[i, j − 1] → sim[i, j]

The algorithm runs in quadratic time:

Observation 15.6.4 Let w and w′ be two words over the same alphabet A. Then
the quantities sim(w,w′) and ρ(w,w′) can be determined in O(|w| · |w′|) time.12

15.7 Alignments, multiple

Remember that the key question in phylogeny is the reconstruction of the evolution-
ary tree based on contemporary data. Often these data may come from a multiple
alignment. which is a natural generalization of the alignment of two sequences.13

That means that we insert gap characters (called dummies) into, or at either end of,
each of the sequences to produce a new collection of elongated sequences that obeys
these rules:

(i) All elongated sequences have the same length, l;

12Note that 15.6.3 is relatively fast but still too slow for most practical work, where the length
of the sequences and the number of sequences to be compared are very large. This comes from the
following often used question: You already have a particular protein or nucleic acid sequence that
you are interested in and you need to find other sequences that are related to it.
There are heuristic methods which are more efficiently for ”similarity-searching” an entry in a collec-
tion of sequences. In particular, the well-known BLAST method runs in linear, that is O(|w|+ |w′|),
time, compare [221]. Usually, BLAST use a scoring system with:

match = 1

mismatch = −3

gap setting = −5

gap extension = −2

13Phylogenetic trees and networks which are constructed in view of protein or DNA sequences are
general used aligned sequences, and so the first step in an evolutionary study is often to build such
a scheme.
As a nice example from linguistics we compare the word for SCHOOL in different languages:
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(ii) There is no position at which all the elongated sequences have a dummy.

Then the sequences are arrayed in a matrix of n rows and l columns, where

max
i=1,...,n

|wi| ≤ l ≤
n∑

i=1

|wi|. (15.25)

Consequently,

Observation 15.7.1 There are only finitely many multiple alignments for a collec-
tion of sequences.

Although the notation of a multiple alignment is easily extended from two to
many sequences, the score or the cost of a multiple alignment is not easily general-
ized. There is no function that has been universally accepted for multiple alignment
as distance or similarity has been for pairwise alignment. Compare Chan et al. [42],
and Wang, Jiang [245].

As an example a cost measure is a function f : (A∪{−})n → IR≥0, which satisfies
the following conditions:

(i) f is non-negative: f(a1, . . . , an) ≥ 0;

(ii) f(a, . . . , a) = 0, for each a ∈ A;
f(−, . . . ,−) is not defined;

(iii) f(a1, . . . , an) > 0 if ai = − holds for at least one index i;

(iv) f is symmetric:
f(aπ(1), . . . , aπ(n)) = f(a1, . . . , an) (15.26)

holds true for any permutation π.

For a broader discussion of the relationship between multiple alignment and phy-
logeny construction, compare Vingron [243].

A natural and simple way to combine alignments is the following: Let A be an
alphabet and let C = {w1, . . . , wn} be a collection of n sequences over A, each of length
l. Given the n(n − 1)/2 pairwise alignments of the members of C, their alignment
graph G(C) = (V,E) is constructed as follows:

Language

German - S C H U - L E
English - S C H O O L -
French E - C - O - L E
Italian - S C - U O L A

Consensus, MR - S C H or - O or U O or - L E
Consensus, restricted MR E S C H O or U O L E

MR abbreviates ”majority rule”.
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(i) There is a vertex in G(C) for each position in each sequence; and

(ii) For each pair of aligned positions in each of the pairwise alignments, there is an
edge between the corresponding vertices.

Observation 15.7.2 Let C = {w1, . . . , wn} be a collection of n sequences over an
alphabet A, each of length l. Then for the alignment graph G(C) = (V,E),

|V | = nl and (15.27)

|E| ≤ ln(n− 1)
2

. (15.28)

Now a multiple alignment for C is given by a maximum clique in the alignment
graph.

15.8 The center of a graph

I. Let G = (V,E) be a graph. The eccentricity e(v) of the vertex v of G is the distance
from v to a vertex furthest away from v:

e(v) = max{ρ(v, w) : w ∈ V }. (15.29)

The radius is defined as

rad(G) = min{e(v) : v ∈ V }, (15.30)

and the diameter we have as

diam(G) = max{e(v) : v ∈ V }. (15.31)

The diameter is a monotone function in the following sense: Let G = (V,E) be a
connected graph. If G′ = (V,E′) is a (connected) subgraph of G, E′ ⊆ E, then
diam(G) ≤ diam(G′).

The hypercube QD is a metric space with a strange property: Depending on
the quantity D (the dimension), on one hand, it is a ”big” space, since it contains
exponentially many points and superexponentially many spanning trees; on the other
hand, it is a ”small” space, since it has a linear diameter:

diam(QD) = D. (15.32)

For some deep consequences of this observation for molecular evolution see [74].
In [213] we find some facts about the diameter of randomly chosen subgraphs of the
hypercube.

Theorem 15.8.1 Let G be a graph. Then

rad(G) ≤ diam(G) ≤ 2 · rad(G). (15.33)
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Proof. The left inequality follows directly from the definition.
To verify the right inequality let v, w ∈ V such that ρ(v, w) = diam(G), and let u be
a vertex with e(u) = rad(G). Then

diam(G) = ρ(v, w) ≤ ρ(v, u) + ρ(u, w) ≤ rad(G) + rad(G) = 2 · rad(G).

2

Consider a tree T . Here, any pair of vertices has a unique path. For this reason,
the diameter and the radius are more related:

2 · rad(T )− 1 ≤ diam(T ) ≤ 2 · rad(T ), (15.34)

and two paths which are realized the diameter cannot be disjoint. Whilst the to find
the diameter of a graph consumes cubic time, the diameter (and the center) of tree
can be computed in linear time (Exercise). A tree has diameter 2 if and only if it is
a star.

The center of a graph G is the subgraph induced by the vertices whose eccentricity
equals the radius. We have a surprising fact:

Theorem 15.8.2 Every graph is the center of some connected graph.

Proof. Let G = (V,E) be a given graph. We construct a new graph G′ = (V ′, E′)
in the following way:

V ′ = V ∪ {v1, v2, w1, w2};
E′ = E ∪ {v1v : v ∈ V } ∪ {v2v : v ∈ V } ∪ {v1w1, v2w2},

where v1, v2, w1, w2 are new vertices. Then for the eccentricities related to G′:

e(v) = 2 for all v ∈ V ;
e(v1) = e(v2) = 3; and

e(w1) = e(w2) = 4.

Hence, the radius of G′ equals 2, and the center of G′ is G. 2

On the other hand, not every tree is a center of some tree. The proof is left to the
reader.

Theorem 15.8.3 The center of a tree is one vertex or two adjacent vertices including
the edge incident to both of them.

II. Now we attack the minimum diameter spanning tree problem.
Recall that the of a network is given as a) the maximum eccentricity; and b) the
longest distance between any two vertices.
For a network G = (V,E, f) the minimum diameter spanning tree (MDST) is a
spanning tree of minimum diameter among all possible spanning trees.
We shall have a look at some properties of collections of paths in a tree helpful for
computing an MDST in a network.
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Lemma 15.8.4 a) Consider the three paths interconnecting three vertices in a tree,
then these paths intersect at a vertex.

b) Two paths in a tree, each of the length of the diameter, cannot be disjoint.

c) Let P be a set of at least two paths in a tree where the paths intersect each other.
Then all paths in P share a common vertex.

Proof.
a) Otherwise there exist a cycle.
b) Suppose that the paths are given between v1 and v2, and between v3 and v4,
respectively. Let u1 be an intersection point of {v1, v2, v3} and u2 an intersection
point of {v1, v3, v4}.

ρ(v1, v3) + ρ(v2, v4) = ρ(v1, v2) + ρ(v3, v4) + 2ρ(u1, u2) > 2ρ(v1, v2),

since ρ(v1, v2) = ρ(v3, v4) is the diameter, and ρ(u1, u2) > 0.
It implies that the path from v1 to v3 or the path from v2 to v4 is longer than the
diameter, which is a contradiction. c) Otherwise there exist a cycle. 2

From 15.8.4 we immediately get the following result.

Theorem 15.8.5 All paths in a tree, each of the length of the diameter, share at
least one common vertex.

15.9 The metric orders

Let G = (V,E) be a connected graph with n vertices.14 The metric ρ(v, v′) denotes
the length of a shortest path between the vertices v and v′.
Let k be a positive integer. A k-order for G is a permutation π of {1, . . . , n} such
that

ρ(vπ(i), vπ(i+1)) ≤ k (15.35)

for i = 1, . . . , n− 1, and
ρ(vπ(n), vπ(1)) ≤ k. (15.36)

Obviously, each connected graph has a k-order, but for which value of k.15 It seems
that this quantity lies in a wide range. But this is not true.

Lemma 15.9.1 (Karaganis [146]) Let T = (V,E) be a tree with n vertices, and let
v, v′ be two vertices. Then there is a order v = v1, v2, . . . , vn−1, vn = v′ of the vertices
such that

ρ(vi, vi+1) ≤ 3 (15.37)

for i = 1, . . . , n− 1.
14For disconnected graphs the following considerations are without sense.
15Note, that a 1-order is a Hamilton cycle.
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Proof. We use induction over n.
The lemma is true for n = 2, 3. Now we assume that it is true for all trees with less
than n vertices.
Let v = v1, v2, . . . , vr−1, vr = v′ be the path interconnecting v with v′.

G1 = G− v1v2,

Gi = G− vi−1vi − vivi+1, for i = 2, . . . , r − 1
Gr = G− vr−1vr

G1 ∪ . . . ∪ Gr is a forest, where the tree Gi contains the vertex vi. In view of the
induction hypothesis for each i = 1, . . . , r there is a order vi = vi

1, v
i
2, . . . , v

i
ni

in Gi

such that

ρ(vi
j , v

i
j+1) ≤ 3 for j = 1, . . . , ni − 1 (15.38)

ρ(vi, v
i
ni

) = 1, (15.39)

where ni denotes the number of vertices in Gi.
Then we construct the desired order by

v = v1 = v1
1 , . . . , v1

n1
, v2 = v2

1 , . . . , v2
n2

, . . . , vr−1 = vr−1
1 , . . . , vr−1

nr−1
,

vr
nr

, vr
nr−1, . . . , v

r
1 = vr = v′. (15.40)

2

Consequently, we have the following surprising result.

Theorem 15.9.2 (Sekanina) Each connected graph has a 3-order.

Proof. First use a spanning tree of the graph, then apply 15.9.1 for two adjacent
vertices. 2

As an exercise construct a graph without 2-order.16

Now we give the metric order another form. Let G = (V,E) be a graph. For a positive
integer k we define the kth power Gk of G as a graph with the same set of vertices
and that the different vertices v and v′ are adjacent if

ρG(v, v′) ≤ k.

Then 15.9.2 says that for a connected graph G the ”cube” G3 is Hamiltonian. And
we have a very deep and surprising result.

Theorem 15.9.3 (Fleischner [88]) Let G be a 2-connected graph. Then G2 is Hamil-
tonian.

Of course, it is of interest to extend this result.17 Further comments we find in
[244].

16Hint: In view of 15.9.1 it is sufficient to look for a tree.
17The conjecture that a 3-connected graph is Hamiltonian is not true. This can be seen in consid-

ering the complete bipartite graph Kk,(k+1). The graph is k-connected, but not Hamiltonian, since,
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15.10 Forbidden subgraphs

Remember that we are interested in estimating the number of edges for specific classes
of graphs.

I. We start with the following result.

Theorem 15.10.1 (Mantel [172], [127]) Let G = (V,E) be a graph with n vertices
and without triangles. Then

|E| ≤
⌊

n2

4

⌋
. (15.41)

Equality holds if and only if G is a bipartite graph with G = Kn1,n2 , whereby n1 = bn
2 c

and n2 = dn
2 e.

Proof. Let v1 be a vertex with maximum degree g and let vn, . . . , vn−g+1 be
its neighbors. Since there is no triangle in G the neighbors are only incident with
v1, . . . , vn−g. Hence

|E| ≤ g(v1) + . . . + g(vn−g) ≤ (n− g) · g.

The discussion of equality follows by considering of the function f(g) = (n− g)g. 2

II. 15.10.1 is the first instance of a problem in ”Extremal Graph Theory”, which
means for a given graph H to find the maximum number of edges that a graph with
n vertices can have without containing the ”forbidden” subgraph H.18

Theorem 15.10.2 (Turan, [237]) The largest graph G = (V,E) with n vertices that
contains no subgraph isomorphic to Kr+1 is the graph Kn1,...,nr which is defined by a
partition of V in subsets Vi with |Vi| = n1, i = 1, . . . , r, and |ni − nj | ≤ 1 such that
|E| consists of all edges connecting distinct Vi and Vj:

E =
⋃
i 6=j

{vw : v ∈ Vi, w ∈ Vj}.

To maximize the number of edges one chooses the parts Vi to have as equal size
as possible, that means ⌊n

r

⌋
≤ |Vi| ≤

⌈n

r

⌉
. (15.42)

In particular, if r divides n, then we may choose ni = n/r for all i, obtaining(
r

2

)(n

r

)2

=
r(r − 1)

2
n2

r2
=

n2

2

(
1− 1

r

)
.

That means
in view of 4.1.2, each cycle has even length and the graph has an odd number of vertices.
Planarity changes the picture completely. There are 3-connected planar graphs which are not Hamil-
tonian, for instance the so-called Herschel- or the Grinberg graph, see [45]. On the other hand, Tutte
[239] shows that every 4-connected planar graph is Hamiltonian.

18As an exercise prove that if a graph G with n vertices has at least
(

n−1
2

)
+ 1 edges, then G has

a Hamiltonian path.
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Theorem 15.10.3 For the largest graph G = (V,E) with n vertices that contains no
subgraph isomorphic to Kr+1 it holds

|E| ≤ n2

2

(
1− 1

r

)
. (15.43)

For further comments compare [5].

III. Now we will write the problem in terms of coloring graphs.
Remember that the chromatic number χ(G) of a graph G is the smallest value of k
for which the vertices of G can be colored by k colors.

Theorem 15.10.4 The largest graph G = (V,E) with n vertices and chromatic num-
ber r is the graph Kn1,...,nr

.

The conclusion is the same as of 15.10.2, but the assumption is stronger. The
assumption of 15.10.4 implies the assumption of 15.10.2, but not conversely: No
graph with chromatic number r contains a subgraph isomorphic to Kr+1, which is of
chromatic number r + 1, but, for instance, a cycle of length five does not contain a
K3 and still has chromatic number 3.

Remark 15.10.5 ([80]) Let H be a fixed graph of chromatic number r. Then the
number of graphs with n vertices and not containing H as a subgraph is

2(n
2)(1− 1

r−1+o(1)). (15.44)

IV. Another generalization of 15.10.1 is

Theorem 15.10.6 (Reiman) Let G = (V,E) be a graph not containing a 4-cycle.
Then

|E| ≤ n

4
(1 +

√
4n− 3) (15.45)

where n = |V |.

Proof. S is the set of pairs (u, {v, w}), v 6= w, where u is adjacent to v and w. We
count S in two ways: Summing over u, we find

|S| =
∑
u∈V

(
g(u)

2

)
.

On the other hand, since 4-cycles are forbidden, implies that v and w have at most
one common neighbor,

|S| ≤
(

n

2

)
.

Altogether, and rearranging, we conclude∑
u∈V

g(u)2 ≤ n(n− 1) +
∑
u∈V

g(u). (15.46)
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We apply the Cauchy-Schwarz inequality (G.2) to the two vectors (g(u1), . . . , g(un))T

and (1, . . . , 1)T , obtaining (∑
u∈V

g(u)

)2

≤ n
∑
u∈V

g(u)2, (15.47)

and hence by (15.46) (∑
u∈V

g(u)

)2

≤ n2(n− 1) + n
∑
u∈V

g(u). (15.48)

In view of 4.1.1 we find
4|E|2 ≤ n2(n− 1) + 2n|E|

or, equivalently,

|E|2 − n

2
|E| − n2(n− 1)

4
≤ 0. (15.49)

Solving this quadratic inequality we obtain the result. 2
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Chapter 16

Ramsey Theory

Every ”irregular” structure, if it is large enough, contains a ”regular”
substructure of some given size.1

In mathematics one sometimes finds that an almost obvious idea, when applied
in a rather subtle manner, is the key needed to solve troublesome problems. One of
such is the pigeonhole principle2: If m pigeons occupy n pigeonholes and m > n, then
at least one pigeonhole has two or more pigeons in it.3

In this sense, we introduce the main topic of the so-called Extremal Graph Theory.
The core of this theory starts with the following result, introduced by Ramsey in 1930
[197], which gave the subject its name.

Let G = (V,E) be a graph. An edge-coloring of a graph is a mapping from E into
a set of two elements, the colors: ”red” and ”blue”.
Suppose that the graph is the complete graph Kr with r vertices. We are interested
in complete subgraphs whose edges all have the same color, called a monochromatic
complete subgraph; and define the Ramsay number R(p, q) as the smallest integer r
such that for any 2-coloring of Kr there exist a monochromatic red Kp or a monochro-
matic blue Kq.
Another interpretation of R(p, q) arises from the following observation. Given a col-
oring of Kr, one can view the red edges as a graph on the r vertices and the blue

1Roughly spoken in biological context: If the universe is big (and chaotic) enough, life must be
in it.

2This is the Anglo-American notation; continental the Schubfach principle.
3To find deeper consequences of the pigeonhole principle, we have to describe it more exactly.

• If n objects are put into m boxes and n > m, then at least one box contains two (or more)
objects.

• The strong version: If n objects are put into m boxes and n > m, then some box must contain
at least d n

m
e objects.

• The infinite version: If an infinite number of objects are put into a finite number of boxes,
then some box must contain an infinite number of objects.
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edges as the complement of that graph. This yields the following fact.

Observation 16.0.7 R(p, q) is the smallest integer r such that if G is any graph with
r vertices, then either G contains a Kp or Gc contains a Kq.

16.1 Ramsey’s theorem

The existence of Ramsey’s numbers is not immediately obvious.
First some simple statements.

Observation 16.1.1 For the Ramsey numbers we have

a) For all positive integers p and q: R(p, q) = R(q, p).

b) R(1, q) = 1.

c) R(2, q) = q for q ≥ 2.

Therefore the first nontrivial Ramsey number is R(3, 3). It is a nice exercise to
see that R(3, 3) ≤ 6.4 On the other hand, this number cannot be less than 6, since
K5 is the union of two cycles, one red and one blue. Hence,

Observation 16.1.2 For any graph G with six vertices G or Gc contains a triangle:
R(3, 3) = 6.

In order to show that R(p, q) = r, we must verify:

1. For every coloring of the edges of a Kr there exist a monochromatic red Kp or
a monochromatic blue Kq.

2. There exists a coloring of the Kr−1 such that no p vertices are pairwise adjacent
by red edges and no q vertices are pairwise adjacent by blue edges.

Using only the first step gives upper bounds for the Ramsey numbers.

Theorem 16.1.3 The Ramsey numbers R(p, q) exist for all integers p, q ≥ 1 and
satisfy

R(p, q) ≤ R(p− 1, q) + R(p, q − 1). (16.1)

Proof. We assume that R(p − 1, q) and R(p, q − 1) exist. Let r = R(p − 1, q) +
R(p, q− 1) and consider a Kr which has been colored. We now show that there must
exist a red Kp or blue Kq.
Fixing a vertex v of Kr we consider the r − 1 incident edges. Let α represent
the number of red edges incident to v and β the blue edges, respectively. Since

4Hint: In any group of six people, at least three must be mutual friends or at least three must be
mutual strangers. Consider and myself as one of the people and put the other five people in m = 2
boxes: Box 1: my friends, and Box 2: stranger to me.
Using the pigeonhole principle in one box there are d 5

3
e = 3 people.
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r − 1 = R(p − 1, q) + R(p, q − 1) − 1, it follows from the pigeonhole principle that
there are at least R(p − 1, q) red edges or at least R(p, q − 1) blue edges. Without
loss of generality we may then assume α ≥ R(p− 1, q). Attached to these α edges is
a subgraph KR(p−1,q) of Kr. This subgraph must contain a red Kp−1 or a blue Kq.
If the subgraph contains a blue Kq, then we are done. If not, then the vertices of the
red Kp−1 together with the vertex v yield a red Kp.
The argument is similar if β ≥ R(p, q − 1). 2

Corollary 16.1.4

R(p, q) ≤
(

p + q − 2
p− 1

)
. (16.2)

Proof. We proceed 16.1.3 by induction.
Let n = p + q and assume the result is true for n− 1. Then, by using (C.12)

R(p, q) ≤ R(p− 1, q) + R(p, q − 1) ≤
(

p + q − 3
p− 2

)
+
(

p + q − 3
p− 1

)
=
(

p + q − 2
p− 1

)
,

2

16.2 Known Ramsey numbers

Only few of Ramsey numbers R(p, q) are exactly known. Since there is no unified
methodology for evaluating Ramsey numbers, the difficulties in obtaining these num-
bers are formidable.

Lemma 16.2.1 (Greenwood, Gleason) R(3, 4) ≤ 9.

Proof. Consider the complete graph K9, colored by red and blue. For each vertex
v let α(v) represent the number of red edges incident with v, and let β(v) be the
number of blue edges incident with v. Then of course α(v)+β(v) = 8 for each vertex
v.
Suppose that α(v) = 3 for each vertex v of the K9. Then the degree sum of the
subgraph composed of the red edges would be 3 · 9 = 27, which contradicts 4.1.1.
Hence, there exists a vertex v with α(w) 6= 3.
We consider the following two cases.
Case 1: α(w) ≥ 4.
Let w1, . . . , w4 be four vertices such that wwi is red, and let K4 denote the complete
graph determined by these vertices. If an edge of K4 is red, say wiwj , then there is
a red triangle {w,wi, wj}. If this is not true, then every edge must be blue, and we
have a blue K4 as desired.
Case 2: α(w) ≤ 2.
It holds β(w) ≥ 6. Let w1, . . . , w6 be six vertices such that wwi is blue, and let
K6 denote the complete graph determined by these vertices. Applying 16.1.2 to K6
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we either have a red triangle (in which case we are done) or a blue triangle, say
{wi, wj , wk}, then the complete graph for {w,wi, wj , wk} provides the desired blue
K4. 2

Lemma 16.2.2 (Greenwood, Gleason) R(3, 5) ≥ 13.

Altogether,

Theorem 16.2.3 (Greenwood, Gleason)

R(3, 4) = 9 (16.3)
R(3, 5) = 14 (16.4)

Proof. From 16.1.3 we obtain R(3, 5) ≤ R(2, 5) + R(3, 4), which implies, in view
of 16.1.1, 16.2.1 and 16.2.2, 14 ≤ R(3, 5) ≤ 5 + 9 = 14. 2

The following Ramsey numbers (for p, q ≥ 3) and only these are exactly known,
see [45], [252]:

q/p 3 4 5 6 7 8 9

3 6 9 14 18 23 28 36
4 9 18 25

16.3 Asymptotics

In view of (C.12) and a trivial upper bound for the sum of the binomial coefficients
we obtain

R(p, p) ≤
(

2p− 2
p− 1

)
=
(

2p− 3
p− 1

)
+
(

2p− 3
p− 2

)
≤ 22p−3.

Consequently

Theorem 16.3.1
R(p, p) ≤ 4p

8
. (16.5)

Now we are interested in a lower bound for R(p, p). First, we give an argument
which is typical of probabilistic methods.

Lemma 16.3.2 If
(

r
p

)
21−(p

2) < 1 then R(p, p) > r.

Proof. Let V be a set consisting of r elements (vertices), and let S ⊆ V with
|S| = p.
There are 2(r

2) ways to color Kr and there are 2(r
2)−(p

2)+1 colorings of Kr for which
the Kp for S is monochromatic. Since S can be chosen in

(
r
p

)
ways there are at most(

r

p

)
2(r

2)−(p
2)+1 (16.6)
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colorings which yield a monochromatic Kp.
Under the hypothesis that 2(r

2) is greater than (16.6) there must exist a coloring of
Kr which has no monochromatic Kp. Hence R(p, p) > r. 2

The lemma 16.3.2 is the starting point for several facts about Ramsey numbers
created by Erdös.

Theorem 16.3.3 (Erdös , compare [252])

R(p, p) ≥ p · 2p/2

(
1

e
√

2
+ o(1)

)
. (16.7)

Proof. Let r = R(p, p). In view of 16.3.2 and C.2.4 we have

2(p
2)−1 ≤

(
r

p

)
≤ rp

p!
≤ 1

e

(
er

p

)p

≤
(

er

p

)p

.

By taking logarithms we obtain((
p

2

)
− 1
)

log 2 ≤ p(log(er)− log p), (16.8)

which gives the assertion. 2

The best lower bounds, given by using the theorem, are listed below.

p = 3 4 5 6 7 8 9 10 11 12 13 14 15

R(p, p) ≥ 3 6 11 17 27 42 65 100 152 231 349 527 792

16.4 Generalized Ramsey numbers

The Ramsey numbers introduced in the preceding sections are often called the clas-
sical Ramsey numbers. This subject has expanded greatly and in many directions,
creating a ”Ramsey theory”, compare Graham et. al. [106].5 We expand our consid-
erations about the Ramsey numbers in direction of graphs.6

5In an extremely abstract sense:

Theorem 16.4.1 (Ramsey) Let p, t, n be positive integers. Then there exists a positive integer r
with the following property: If X is any set with at least r elements and(X

p

)
= S1 ∪ . . . ∪ St (16.9)

is any partition of the set of all p-element subsets of X, then there exists a subset Y of X with at
least n elements such that (Y

p

)
⊆ Si (16.10)

for one index i.

For a proof see [141].
6One of the origin of Ramsey theory was of geometric nature:
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Let H and H ′ be two graphs. The Ramsey number R(H,H ′) is the least positive
integer n such that if G is any graph with n vertices, then H is a subgraph of G or H ′

is a subgraph of Gc. Obviously, this Ramsey number may also be described in terms
of coloring the edges of Kn. Thus,

Observation 16.4.3 There are the following interrelations of the Ramsey number
and the Ramsey number of graphs.

a) For all positive integers p and q it holds

R(Kp,Kq) = R(p, q). (16.12)

b) For any two graphs H and H ′ with p and q vertices, respectively,

R(H,H ′) ≤ R(p, q). (16.13)

This observation and 16.1.3 imply

Theorem 16.4.4 The Ramsey numbers R(H,H ′) exist for all graphs H and H ′.

In general the determination of the Ramsey numbers of graphs is more difficult
than for ”simple” ones; only for some graphs we can present a complete answer. For
example, but without proof:

Theorem 16.4.5 (Chvatal) Let T be a tree with p vertices, and let q be a positive
integer. Then

R(T,Kq) = 1 + (p− 1)(q − 1). (16.14)

As exercise determine the following Ramsey numbers: R(P3, P3), R(K1,3,K1,3)
and R(P3,K1,3).

Remark 16.4.2 (Erdös, Szekeres, [77]) There is a minimum function f(.) such that any set of
f(n) points in the plane in general position contains the nodes of a convex n-gon.
The best bounds known for f(.) are:

2n−2 + 1 ≤ f(n) ≤
(2n− 4

n− 2

)
+ 1. (16.11)
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Chapter 17

Markov processes

A Markov chain describes a stochastic process in which the future state can be pre-
dicted from its present state as accurately as if its entire earlier history was known.

17.1 Transitions

Let S be a finite set of states. Without loss of generality we assume that the states
are named by numbers:

S = {1, 2, . . . , n}. (17.1)

We consider diagrams between states, where the transition from state i to state j
occurs with given probability αij , altogether written in a transition matrix

A = (αij)i,j=1,...,n. (17.2)

Of course, a transition matrix has the properties αij ≥ 0 for any i, j = 1, . . . , n, and

n∑
j=1

αij = 1 (17.3)

for any i = 1, . . . , n.
Under these conditions, such a matrix is sometimes called stochastic. The pair (S, A)
is called a Markov process.
Consider A2 = (α(2)

ij )i,j=1,...,n. Then

n∑
j=1

α
(2)
ij =

n∑
j=1

n∑
k=1

αikαkj =
n∑

k=1

αik

n∑
j=1

αkj =
n∑

k=1

αik = 1,

since A is a stochastic matrix. Therefore A2 is stochastic, too.

Observation 17.1.1 The power of any stochastic matrix is also stochastic.
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In view of (17.3) we have αij ≤ 1, for any i, j = 1, . . . , n, so that we can really
speak about a probability. Moreover

α
(2)
ij =

n∑
k=1

αikαkj

=
n∑

k=1

probability for a transition from state i to state k

? probability for a transition from state k to state j.

Hence α
(2)
ij is the probability for a transition from state i to state j in two steps. By

induction we obtain

Theorem 17.1.2 (Chapman, Kolmogorov) Let (S, A) be a Markov process. Let

At = (α(t)
ij )i,j=1,...,n (17.4)

be the tth power of A. Then α
(t)
ij is the probability for a transition from state i to state

j in t steps.

A stochastic matrix A is called double-stochastic if AT is also stochastic. A sym-
metric stochastic matrix is double stochastic, but not vice versa.

For example consider a two-state process with the matrix

A =
(

0.99 0.01
0.01 0.99

)
, (17.5)

representing the probabilities for a particular period of time (e.g. 1 million years).
If this trend was to continue for 100 periods (= 100 million years), what would the
corresponding transition matrix be? Answer: A100. Obviously, this matrix is not easy
to compute, but we can use the following trick: Consider the matrix

T =
(

1 1
1 −1

)
, (17.6)

which is a regular matrix, called a Hadamard matrix, and

T−1 =
(

0.5 0.5
0.5 −0.5

)
. (17.7)

Then it holds

T−1AT =
(

1 0
0 0.98

)
= B. (17.8)

Simple to see that At = TBtT−1, see (17.21), and B100 is easy to calculate:

B100 =
(

1 0
0 0.1326

)
.

Hence,

A100 =
(

0.5663 0.4337
0.4337 0.5663

)
. (17.9)
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17.2 Two-states processes

As a specific case consider ({1, 2}, A) with

A =
(

1− p p
q 1− q

)
, (17.10)

where 0 ≤ p, q ≤ 1.
For p = q = 0 we have limt→∞ At = E; for p = q = 1 the quantity limt→∞ At does
not exist.
Now we assume 0 < p, q < 1. We have

A = E +
(
−p p
q −q

)
= E + B. (17.11)

It is easy to see that B2 = −(p + q) ·B, such that

Bi = (−1)i−1(p + q)i−1 ·B, (17.12)

for all i ≥ 2. Then1

At = (E + B)t =
t∑

i=0

(
t

i

)
Bi by C.2.2

= E +
t∑

i=1

(
t

i

)
Bi

= E +
t∑

i=1

(
t

i

)
(−1)i−1(p + q)i−1B by (17.12)

= E − 1
p + q

t∑
i=1

(
t

i

)
(−1)i(p + q)iB

= E +
1

p + q
B − 1

p + q

t∑
i=0

(
t

i

)
(−1)i(p + q)iB

= E +
1

p + q
B − 1

p + q

t∑
i=0

(
t

i

)
(−p− q)iB

= E +
1

p + q
B − (1− p− q)t

p + q
B by C.2.2.

Theorem 17.2.1 Let

A =
(

1− p p
q 1− q

)
(17.13)

1In view of the fact that in general the multiplication of matrices is not commutative, but for the
unit matrix it is true.
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be a stochastic matrix. Then

At = E +
1− (1− p− q)t

p + q
(A− E). (17.14)

Now, we discuss the convergence behavior.

Case 1: p = q = 0. Then A = E, and of course At = E.

Case 2: p = q = 1. Then

A =
(

0 1
1 0

)
and A2 = A4 = A6 = . . . = E, but A3 = A5 = A7 = . . . = A, such that a limit
does not exists.

Case 3: 0 < p + q < 1. Since limt→∞(1− p− q)t = 0 we get

lim
t→∞

At = E +
1

p + q
B. (17.15)

Theorem 17.2.2 Consider a two-state Markov process with 0 < p + q < 1. Then

lim
t→∞

(
1− p p

q 1− q

)t

=
( q

p+q
p

p+q
q

p+q
p

p+q

)
. (17.16)

Corollary 17.2.3 Consider a two-state Markov process with a double-stochastic ma-
trix A. Then

lim
t→∞

At =
(

1
2

1
2

1
2

1
2

)
. (17.17)

17.3 The convergence behaviour

We are interested in discussing the convergence behaviour of stochastic matrices.

Theorem 17.3.1 Let A be a stochastic matrix. Assume that

C = lim
t→∞

At (17.18)

exists. Then

a) C is a stochastic matrix.

b) C is a projection which commutes with A, that means

C2 = C = CA = AC. (17.19)
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Proof. The first fact is an immediately consequence of 17.1.1.

C = lim
t→∞

A2t = lim
t→∞

At lim
t→∞

At = C2,

C = lim
t→∞

At+1 = lim
t→∞

AtA = CA,

and
C = lim

t→∞
A1+t = lim

t→∞
AAt = AC.

2

We may restrict ourselves to similar matrices.

Theorem 17.3.2 Let A be a matrix. Let B be similar to A, where B = T−1AT with
a regular matrix T . Then

lim
t→∞

Bt = T−1 lim
t→∞

AtT. (17.20)

Proof.
Bt = (T−1AT )t = T−1AT · · ·T−1AT︸ ︷︷ ︸

t−times

= T−1AtT. (17.21)

2

Matrix diagonalization enables us to easily calculate any positive power of the
matrix.

Theorem 17.3.3 Let A be an n×n matrix with n linearly independent real eigenvec-
tors, and corresponding eigenvalues λ1, . . . , λn. Let T be the transformation matrix
such that

T−1AT = diag(λ1, . . . , λn).

Then
At = T · diag(λt

1, . . . , λ
t
n) · T−1. (17.22)

As an exercise prove the following fact.2

Theorem 17.3.4 Let A be an double-stochastic n × n matrix with 1 as a simple
eigenvalue. Then limt→∞ At = 1

nE.

2Hint: First prove that the power of a double-stochastic matrix is also double stochastic.
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17.4 Once again: Two-states processes

Consider again our example for the two-state case A ∈M2,2:

A =
(

a11 a12

a21 a22

)
. (17.23)

By simple calculation, we find the characteristic polynomial

pA(λ) = λ2 − (a11 + a22)λ + a11a22 − a12a21 (17.24)
= λ2 − trace A · λ + det A. (17.25)

In view of a12 = 1− a11 and a21 = 1− a22 we find the characteristic polynomial in

pA(λ) = λ2 − trace A · λ + trace A− 1. (17.26)

The roots are easy to find:

Lemma 17.4.1 A 2× 2 stochastic matrix A has the eigenvalues

λ1 = 1 and
λ2 = trace A− 1.

Now, we create a triangular matrix similar to A: Consider again the Hadamard
matrix

T =
(

1 1
1 −1

)
, (17.27)

Then it holds

T−1AT =
(

1 a11 − a22

0 trace A− 1.

)
(17.28)

Theorem 17.4.2 Each 2× 2 stochastic matrix A is similar to(
1 0
0 trace A− 1.

)
(17.29)

17.5 Continuous Markov processes

Evolutionary models describe the substitution processes in DNA, RNA and amino
acid sequences through time. For simplicity, we will concentrate on DNA sequences,
that means the corresponding matrices of the transition probabilities are given by

P (t) =


paa(t) pac(t) pag(t) pat(t)
pca(t) pcc(t) pcg(t) pct(t)
pga(t) pgc(t) pgg(t) pgt(t)
pta(t) ptc(t) ptg(t) ptt(t)

 , (17.30)

where pxx(.) really means the probability that the nucleotide x ∈ {a, c, g, t} is not
substituted.
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Observation 17.5.1 For each time parameter t ≥ 0 the matrix P (t) is double-
stochastic.

While modeling we assume that P (t) gives the probability of all possible states
changes in time t. We get a continuous-time Markov process. Then we find 17.1.2 in
the following theorem:

Theorem 17.5.2 Let P (t) be the matrix for the transition probabilities.

P (t + t′) = P (t) · P (t′). (17.31)

Now we assume that such continuous-time Markov processes are differentiable at
every t ≥ 0. For h > 0 it then follows, in view of 17.5.2

P (t + h)− P (t)
h

=
P (t)P (h)− P (t)

h
=

P (t)(P (h)− E)
h

= P (t) · P (h)− P (0)
h

.

When h → 0 this identity implies

P ′(t) = P (t) · P ′(0). (17.32)

This differential equation has the following solution.

Theorem 17.5.3 Under the assumptions given above the matrix P (t) has the form

P (t) = etQ, (17.33)

where Q is some (fixed) matrix.

Recall, that for a square matrix A we define the exponential matrix eA by the sum
of the following series:

eA =
∞∑

n=0

An

n!
.

The matrix Q is called the matrix of instantaneous change or the rate matrix. It has
the following important properties:

a) It holds the ”inverse” identity Q = P ′(0).

b) P (t) is the unique solution to P ′(t) = P (t) ·Q, subject to P (0) = E.

c) The elements in each row of Q = (qij) sum up to 0. Furthermore, qij ≥ 0 for i 6= j
and qii < 0 for all i. In particular, det Q = 0.

Remark 17.5.4 A matrix Q is a rate matrix if and only if the matrix P (t) = etQ is
a stochastic matrix for every t.
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By varying the matrix Q one obtains several models:
The Jukes-Cantor model is the oldest model and assumes that the probabilities to
find a nucleotide site are equal for all four possible states and for all time t. The
matrix of instantaneous change is given by

Q =
1
4


−3α α α α
α −3α α α
α α −3α α
α α α −3α

 , (17.34)

where α is a positive real number, called the evolutionary rate.
We will calculate the corresponding matrix P (t). First, by induction, it is easy to see
that

Qn = (−α)n−1Q (17.35)

is true for all integers n ≥ 1. Now we find P (t) = exp(tQ) by the following calcula-
tions.

P (t) =
∞∑

n=0

tnQn

n!

= E +
∞∑

n=1

tnQn

n!

= E +

( ∞∑
n=1

tn(−α)n−1

n!

)
Q in view of (17.35)

= E − 1
α

( ∞∑
n=1

(−tα)n

n!

)
Q

= E − 1
α

(
e−tα − 1

)
Q.

This implies

Theorem 17.5.5 The transition matrix in the Jukes-Cantor model equals

pij(t) =
{

1
4 + 3

4e−tα : i = j
1
4 −

1
4e−tα : i 6= j

(i, j ∈ {a, c, g, t})

In other models the entries of the matrices are influenced by the nucleotide com-
position. The Kimura model models a certain difference between two types of nu-
cleotide substitutions: Purines into pyrimidines or vice versa; and purines into purines
or pyrimidines into pyrimidines. It is given by

Q =
1
4


−(2β + 1)α βα α βα

βα −(2β + 1)α βα α
α βα −(2β + 1)α βα
βα α βα −(2β + 1)α

 , (17.36)
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with two parameters α, β > 0.

Theorem 17.5.6 The transition matrix in the Kimura model equals

pij(t) =


1
4 + 1

4e−tαβ − 1
2e−tα(β+1)/2 : (i, j) = (a, g), (g, a), (c, t) or (t, c)

1
4 −

1
4e−tαβ : (i, j) = (a, c), (c, a), (a, t), (t, a),

: (c, g), (g, c), (g, t) or (t, g)
1
4 + 1

4e−tαβ + 1
2e−tα(β+1)/2 : otherwise

For more information, and other models, compare [139].

17.6 A Moran process

... is a specific birth-death process.
Consider a population of fixed size n. There are two types of individuals, A and
B. In any time step, a random individual is chosen for reproduction and a random
individual is chosen for elimination. They reproduce at the same rate, but assume
that A has fitness r while B has fitness 1. If r > 1 then the selection favors A; if
r < 1 favors B; and if r = 1 we have neutral drift.
The Moran process is defined on the state space i = 0, . . . , n. The probability that A
is chosen for reproduction is given by ri/ri + n − i; hence, the probability that B is
chosen for reproduction is given by n− i/ri + n− i. On the other hand, fitness does
not act on dead, which means that the probability that A is chosen for elimination is
i/n; and for B is (n− i)/n. For the transition matrix, we obtain

pii−1 =
n− i

ri + n− 1
· i

n
pii = 1− pii−1 − pii+1

pii+1 =
ri

ri + n− 1
· n− i

n
,

all other elements are zero.
Therefore, solving this system, the probability of being absorbed in the state n when
starting in state i is given by

xi =
1− 1

ri

1− 1
rn

. (17.37)

The fixation probability of a single A individual in a population of n−1 B individuals
is

pA = x1 =
1− 1

r

1− 1
rn

. (17.38)

For more information see [181].
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Appendix A

Orders of Growing

A.1 The Landau symbols

Often we will use the phrase ”on the order of” to express lower and upper bounds.
For this purpose we introduce specific notations, called Landau symbols: Let f and
g be functions from the positive integers into the real numbers. Then:

1. The function g(n) is said to be of order at least f(n), denoted Ω(f(n)), if there
are positive constants c and n0 such that g(n) ≥ c · f(n) for all n ≥ n0.

2. The function g(n) is said to be of order at most f(n), denoted O(f(n)), and often
read ”big oh”, if there are positive constants c and n0 such that g(n) ≤ c · f(n)
for all n ≥ n0.

3. The function g(n) is said to be of order f(n), denoted Θ(f(n)), if g(n) =
Ω(f(n)) and g(n) = O(f(n)). That is, f(n) and g(n) both grow at the same
rate; only the multiplicative constants may be different.

This notation allows us to concentrate on the dominating term in an expression de-
scribing a lower or upper bound and to ignore any multiplicative constants order
notations.
Note that it is not an equation in the usual sense. It has to be read from left to right.

Example A.1.1 If p(n) is a polynomial of degree k that means

p(n) = akxk + ak−1x
k−1 + . . . + a1x + a0. (A.1)

Then
p(n) = O(nk). (A.2)
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Proof.

|p(n)| = |akxk + ak−1x
k−1 + . . . + a1x + a0|

≤ |akxk|+ |ak−1x
k−1|+ . . . + |a1x|+ |a0|

= |ak|xk + |ak−1|xk−1 + . . . + |a1|x + |a0|
≤ (|ak|+ |ak−1|+ . . . + |a1|+ |a0|)xk

= axk.

2

In particular, we say that the function f is polynomially bounded if there is a
positive integer k such that f(n) = O(nk).
It is not hard to see that the ”Order”-notations have the following properties:

• g(n) = O(f(n)) if and only if f(n) = Ω(g(n)).

• f(n) = Θ(g(n)) if and only if g(n) = Θ(f(n)).

• The relation represented by ”O” is transitive.

• For the logarithmic order O(log n) the base is irrelevant since logb n = loga n ·
logb a.

• Exponential functions grow faster than polynomial functions: nk = O(bn) for
all k > 0 and b > 1. Conversely, logarithmic functions grow more slowly than
polynomial functions.

Observation A.1.2 The big oh notation has the following hierarchy of increasing
orders:

c, log log n, log n, n, n · log n, n2, n3, cn, n!, nn. (A.3)

For our purpose we will use the following ”classes of order”, which are defined in
terms of the input size n:

Order Name of the ”class” Remark
O(1) constant the function is bounded

O(log n) logarithmic the base is irrelevant
O(n) linear

O(n log n) log-linear the base is irrelevant
O(n2) quadratic
O(n3) cubic

...
O(nk) polynomial k is a fixed positive integer

Mention that the previous table shows the ”slow growing” orders, this table the ”fast
growing” ones:
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Order Name of the ”class” Remark
O(cn) exponential c > 1 is a fixed positive real number

...
O(n!) factorial n! = n · (n− 1) · (n− 2) · · · 2 · 1

...
Ω(22n

) superexponential

A.2 Approximations

Often we have no exact formula for counting the number of combinatorial objects of
some kind, but we can describe its asymptotic behavior. Then we use the following
notation: Let f and g be functions from the positive integers into the real numbers,
then

1. The function g(n) is said to be growing faster than f(n), denoted f(n) = o(g(n)),
and read ”small oh”, if

lim
n→∞

f(n)
g(n)

= 0. (A.4)

2. The function g(n) is said to be approximately f(n), denoted f(n) ≈ g(n), if

lim
n→∞

f(n)
g(n)

= 1. (A.5)

It is easy to see that the relation represented by ”o” is transitive, and we have the
same increasing sequence as in A.1.2.

Theorem A.2.1 Let f and g be two functions.

If f(n) ≈ g(n), then f(n) = Θ(g(n)).

Proof. f(n) ≈ g(n) means that limn→∞
f(n)
g(n) = 1. It follows that there is some

number n0 beyond which the ratio is always between 1/2 and 2. Thus, f(n) ≤ 2g(n)
for all n ≥ n0, which implies that f(n) = O(g(n)); and f(n) ≥ (1/2)g(n) for all
n ≥ n0, which implies that f(n) = Ω(g(n)). Together, f(n) = Θ(g(n)). 2

As exercise show that the converse statement is not true.
A broader discussion on the growth of functions can be found in the book by

Aigner [4].
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Appendix B

Designs

B.1 Incidence Structures

Let X and Y be sets and let I be a correspondence from X to Y . Here, we will call
the tripel (X, Y, I) an incidence structure.
We write xIy to denote the fact that (x, y) ∈ I, saying that x is incident with y.
Often the elements of X are called the points and the elements of Y the blocks of the
incidence structure.
Specific examples of incidence structures are

• Geometry: X is the set of points, and Y the family of lines. xIy means that
the point x lies on the line y.

• Graph theory: X is any finite set of vertices, and Y is a finite family of unordered
pairs of vertices, called edges. The incidence e = uv means that the edge e joins
the vertices u and v.

We define the incidence matrix as the b× v matrix I = (aij) with

aij =
{

1 : the ith block contains the jelement
0 : otherwise

That means that I is based on the order in which the blocks, and the elements are
taken. However, it turns out that the important properties of I do not depend on the
particular orders chosen.

B.2 The double counting principle

The double counting principle compares the number r(x) of blocks which are incident
with the point x:

r(x) = |{(x, y) : y ∈ Y, xIy}|, (B.1)

and the number r(y) of points incident with the block y.
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Theorem B.2.1 Let (X, Y, I) be a (finite) incidence structure. Then∑
x∈X

r(x) = |I| =
∑
y∈Y

r(y). (B.2)

Proof. For x ∈ X we consider Sx = {(x, y) : y ∈ Y, xIy}. Then C = {Sx : x ∈ X}
is a partition of I, where some of the Sx may be empty, but then r(x) = 0. Then by
the addition principle ∑

x∈X

r(x) =
∑
x∈X

|Sx| = |I|.

Similarly, we get the other equation. 2

Consider the following example from number theory. Let τ(n) be the number of
divisors of the natural number n. We are interested in the average number τ̃(n) of
divisors. At first glance, this seems hopeless. For primes we have τ = 2, while for
powers of 2 we obtain τ(2k) = k + 1. So, τ is a widly jumping function. But this is
not true for τ̃ .
Let X, Y = {1, . . . , 8} and let I be the divisibility relation, that means xIy = x|y.
We write the incidence in the following matrix:

axy =
{

1 : x|y
: otherwise

which gives

X \ Y 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1
2 1 1 1 1
3 1 1
4 1 1
5 1
6 1
7 1
8 1

Obviously, τ(y) is the number of 1’s in the column y.
To use B.2.1 consider such matrix for n. We must also count the number of 1’s in the
rows. This number is

⌊
n
x

⌋
. Consequently,

τ̃(n) =
1
n
·

n∑
y=1

τ(y) =
1
n
·

n∑
x=1

⌊n

x

⌋
≈ 1

n
·

n∑
x=1

n

x
=

n∑
x=1

1
x

,

which is called the nth Harmonic number. Later we will prove that the Harmonic
number is approximately the logarithm.

Theorem B.2.2 The average number of divisors of an integer is asymptotic τ̃(n) ≈
lnn.
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B.3 Balanced incomplete block designs

Let V be a set with v elements. A collection {B1, . . . , Bb} of subsets of V is called
a balanced incomplete block design (BIBD), or (v, b, r, k, λ)-design, if the following
conditions are satisfied:

a) For each index i the subset Bi contains exactly k elements, where k is a fixed
constant and k < v;1

b) Each element x ∈ V is in exactly r of the subsets Bi;

c) Every pair x, y ∈ V appear together in exactly λ of the subsets Bi.

For example

{1, 2, 4} {2, 3, 5} {3, 4, 6} {4, 5, 7}
{5, 6, 1} {6, 7, 2} {7, 1, 3}

is a BIBD on seven elements with each pair in exactly one block.
The subsets of {1, . . . , 6} have the property that each subset has three elements and
each pair of elements occurs in two of the subsets:

{1, 2, 3} {1, 2, 4} {1, 3, 5} {1, 4, 6} {1, 5, 6}
{2, 3, 6} {2, 4, 5} {2, 5, 6} {3, 4, 5} {3, 4, 6}

This example was given by Yates in 1936 in construction of agricultural experiments.

Let (v, b, r, k, λ)-design be given. The parameters b, v, r, k and λ are not all inde-
pendent.

Theorem B.3.1 In a (v, b, r, k, λ)-design it holds bk = vr.

Proof. Each block contains k elements. Therefore the total numbers of elements
in the b blocks is bk. Each of the v elements occurs in r blocks, so the total number
of elements in the b blocks is vr. The assertion follows. 2

Theorem B.3.2 In a (v, b, r, k, λ)-design it holds λ(v − 1) = r(k − 1).

Proof. Let x be an arbitrary element. Then x appears in r different blocks,
whereby it appears with k − 1 other of the v − 1 elements. The total number of
elements different from x that appear in the r blocks containing x is r(k − 1).
Each of the v − 1 elements different from x must occur with x in λ blocks, so the
total number of elements different from x that appear in the r blocks containing x is
λ(v − 1). 2

We assume by definition that k < v. This and several other inequalities are
summarizes in the following result.

1That k < v means ”incomplete”; otherwise ”complete” has the meaning that each block is V .
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Theorem B.3.3 In a (v, b, r, k, λ)-design it holds a) k < v, b) r < b and c) λ < r.

Proof. a) is the definition for ”incompletness”.
b) is a direct consequence from (a) and B.3.1.
c) By B.3.2 we have λ(v − 1) = r(k − 1). Therefore, in view of (a),

λ

r
=

k − 1
v − 1

< 1,

2

It should noted that for arbitrary given values v, b, r, k and λ, there need not exist
a (v, b, r, k, λ)-design. Moreover, the above conditions are necessary, but they are not
sufficient for the existence of a BIBD. For example it can be shown that there is no
BIBD with the parameters v = 15, b = 21, r = 7, k = 5 and λ = 2 even though all of
the conditions are satisfied.
An interesting special type is given when we restrict to k = 2 and λ = 1. Then by
B.3.1 and B.3.2 we obtain 2b = rv and r = v − 1. Together b =

(
v
2

)
. Assuming that

we have v vertices, and consider the blocks as the edges, we have the complete graph
Kv.

B.4 The Fisher inequality

Theorem B.4.1 Let I be an incidence matrix of a (v, b, r, k, λ)-design. Then

IT · I = (r − λ)E + λJ, (B.3)

where E is the v × v unit matrix and J the v × v matrix with every entry equal 1.

A very important consequence is the fact, that a design cannot contain fewer
blocks than elements.

Theorem B.4.2 (Fisher) In a (v, b, r, k, λ)-design it holds v ≤ b.

Proof. Let I be the incidence matrix for the design. Then

det(IT I) = det


r λ λ . . . λ
λ r λ . . . λ
λ λ r . . . λ
...

...
...

...
...

λ λ λ . . . r

 in view of B.4.1

= det


r λ λ . . . λ

λ− r r − λ 0 . . . 0
λ− r 0 r − λ . . . 0

...
...

...
...

...
λ− r 0 0 . . . r − λ
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= det


r + (v − 1)λ λ λ . . . λ

0 r − λ 0 . . . 0
0 0 r − λ . . . 0
...

...
...

...
...

0 0 0 . . . r − λ


= (r + (v − 1)λ)(r − λ)v−1

= rk(r − λ)v−1 in view of B.3.2.

Now k < v by B.3.3, such that in view of B.3.1 r > λ. Consequently,

det(IT I) 6= 0.

In other terms the rank of the v × v matrix IT I must be v.

v = rank(IT I) ≤ rankI ≤ number of rows of I = v.

2

As exercise show that no BIBD exists for v = 25, k = 10 and r = 3.
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Appendix C

Polynomic Approaches

C.1 Factorials and double factorials

There are
n! = n · (n− 1) · (n− 2) · · · 2 · 1 (C.1)

ways to place n objects in a row.
It is convenient to define 0! = 1. Obviously, the function ! satisfies the following
recurrence relation:

n! = n · (n− 1)! for n ≥ 1; (C.2)
0! = 1. (C.3)

The double factorial !! can be defined recursively by

n!! = n · (n− 2)!! for n ≥ 1; (C.4)
0!! = (−1)!! = 1. (C.5)

A continuous extension of the factorial function is the gamma function Γ, defined
by

Γ(k) =
∫ ∞

0

xk−1e−x dx, (C.6)

for k > 0.

Theorem C.1.1 For positive integers n

Γ(n) = (n− 1)!. (C.7)

Proof.

Γ(n) =
∫ ∞

0

xn−1e−x dx

= −e−xxn−1|∞0 + (n− 1)
∫ ∞

0

xn−2e−x dx

= (n− 1)Γ(n− 1),
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since
lim

x→∞
e−xxn−1 = 0.

In view of Γ(1) = 1 the proof is complete. 2

C.2 Binomial coefficients

We call the numbers (
n

k

)
=

n!
k!(n− k)!

the binomial coefficients. Now we will see why.

Theorem C.2.1 (The binomial theorem) For any real numbers x and y and a non-
negative integer n

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk (C.8)

holds.

Proof.
(x + y)n = (x + y) · · · (x + y)︸ ︷︷ ︸

n−times

. (C.9)

So the coefficient of the term xn−kyk is the number of ways of getting xn−kyk when
the n brackets are multiplied out. Each term in the expansion is the product of one
term from each bracket; so xn−kyk is obtained as many times as we can choose y from
k brackets and x from the remaining n− k brackets. But this can be done just in

(
n
k

)
ways. 2

Corollary C.2.2 For any real number y and nonnegative integers n

(1 + y)n =
n∑

k=0

(
n

k

)
yk (C.10)

holds.

This corollary is the origin of

n∑
k=0

(
n

k

)
= 2n; and

n∑
k=0

(−1)k

(
n

k

)
= 0. (C.11)

It holds the following recursive relation:(
n + 1

k

)
=
(

n

k

)
+
(

n

k − 1

)
. (C.12)
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The proof should be given by the reader.

Another property one observes that along any row, the entries increase until the
middle, and then decrease. To verify this observation, we want to compare two
consecutive entries: (

n

k

)
?
(

n

k + 1

)
. (C.13)

Rearranging the above formula, we get the following one which is equivalent

k ?
n− 1

2
. (C.14)

So if k < n−1
2 , then

(
n
k

)
<
(

n
k+1

)
; if k = n−1

2 , then
(
n
k

)
=
(

n
k+1

)
(the latter is the case

for the two entries in the middle if n is odd); and if k > n−1
2 , then

(
n
k

)
>
(

n
k+1

)
.

A (finite) sequence a1, a2, . . . , an of numbers is called unimodal if there is an index k
such that

a1 ≤ a2 ≤ . . . ≤ ak−1 ≤ ak ≥ ak+1 ≥ . . . ≥ an−1 ≥ an. (C.15)

And so we proved

Theorem C.2.3 The sequence
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
of binomial coefficients is unimodal,

whereby the middle element is the largest. If n is even, there is a unique middle; if n
is odd, then there are two equal middle elements.

In general it is difficult to compute the binomial coefficients for large values of n
and k, but in many cases only upper or lower bounds are of interest. Several simple
calculations gave the following result.

Theorem C.2.4 (n

k

)k

≤
(

n

k

)
≤ 1

e

(en

k

)k

. (C.16)

Consider the identity

(1 + x)m(1 + x)n = (1 + x)m+n. (C.17)

Using C.2.2 for both sides and comparing the coefficients gives us(
m + n

j

)
=

j∑
k=0

(
m

k

)(
n

j − k

)
. (C.18)

Specification for j = n gives us

Theorem C.2.5 (Vandermonde’s convolution) Let m and n be positive integers.
Then ∑

k

(
n

k

)(
m

k

)
=
(

m + n

n

)
. (C.19)

228



Differentiation of both sides of C.2.2 gives us

n(1 + y)n−1 =
n∑

k=1

k

(
n

k

)
yk−1, (C.20)

and by setting y = 1 we obtain

Theorem C.2.6
n∑

k=0

k

(
n

k

)
= n2n−1. (C.21)

C.3 Multinomial coefficients

The number of arrangements of the four letters in BALL is not 24 = 4!, since we do
not have four distinct letters to arrange. The letter L occurs twice, and we have to
count 4!/2 = 12. Generalizing this idea we solved a new type of problem by relating
it to the previous enumeration principles:

Lemma C.3.1 If there are n objects of k types with ni of the ith type, i = 1, . . . , k,
where n1 + . . . + nk = n, then the number of arrangements equals(

n

n1n2 . . . nk

)
=

n!
n1! · n2! · · ·nk!

. (C.22)

Proof. (
n

n1

)
·
(

n− n1

n2

)
· · ·
(

n−
∑k−1

i=1 ni

nk

)
=

n!
n1!(n− n1)!

· (n− n1)!
n2!(n− n1 − n2)!

· · ·
(n−

∑k−1
i=1 ni)!

nk!

=
n!

n1! · n2! · · ·nk!
.

2

For instance an RNA is a chain consisting of bases, each link of which is one of
four possible chemical components: a,c,g,u. The number of such chains, where ni,
i ∈ {a, c, g, u} denotes the number of the components, is given by

(na + nc + ng + nu)!
na! · nc! · ng! · nu!

. (C.23)

The quantity (
n

n1n2 . . . nk

)
=

n!
n1! · n2! · · ·nk!

(C.24)
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is called the multinomial coefficient, since it is a generalization of the binomial coef-
ficients: (

n

k

)
=

n!
k! · (n− k)!

=
(

n

k n− k

)
. (C.25)

In expanding (x1 +x2 +x3)7, we think of writing down seven (x1 +x2 +x3) terms
in a row, and then adding up xi

1x
j
2x

k
3 for all ways of selecting x1 from i of the terms,

x2 from j of the terms and x3 from k of the terms. Note that i + j + k = 7 in each
case. In view of C.3.1 we get:

Theorem C.3.2 (The multinomial theorem) Let x1, . . . , xm be any real numbers and
let n be a nonnegative integer, then

(x1 + . . . + xm)n =
∑

k1+...+km=n

n!
k1! · · · km!

xk1
1 · · ·xkm

m , (C.26)

where we read the sum sign that appears in the formula as ”the sum over all lists
k1, . . . , km such that k1 + . . . + km = n”.

With x1 = . . . = xm = 1 we get∑
k1+...+km=n

n!
k1! · · · km!

= mn. (C.27)

For further reading see [43], [87], [105], [108] or [170].
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Appendix D

Geometric Series

D.1 The Towers of Hanoi

We consider the well-known Towers of Hanoi: Given n discs, all of different sizes. A
collection of discs forms a tower if they are ordered according to their size, the largest
at the bottom. Now

(i) All the n discs form a tower on position 1.

(ii) There are two other positions: 2 and 3.

(iii) Move the original tower from position 1 to position 3 by moving exactly one disc
in one step, and by producing only towers at the diferent positions.

What is minimum number of steps required?1

Let an be the smallest number of steps required to move the n discs. It is easy to see
that a1 = 1, a2 = 3 and a3 = 7 (Exercise).
What about an? Forget the bottom disc and move the remaining n−1 discs to position
2. To get this stage, an−1 steps are needed. Then move the disc from position 1 to
position 3: one step. Now move the tower from position 2 to position 3. Altogether
we need an−1 + 1 + an−1 steps. Hence we have to solve

an = 2 · an−1 + 1, (D.1)

with a1 = 1 (and a0 = 0).2 Then an = 2n − 1.

1Lucas, compare [105], furnished this toy with a romantic legend. The tower of Brahama, which
supposedly has 64 disks of pure gold. At the beginning of the time, God placed these disks on the
first needle and ordained that a group of priests should transfer them to the third, according to the
rules above. The priests work day and night at their task. When they finish, the tower will crumble
and the world will end.

2In reality, we only proved an ≤ 2 · an−1 + 1, since these moves suffice. As exercise show that so
many moves are also necessary.
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D.2 The finite case

Suppose that the population of a colony of ants doubles in each successive year. A
colony is established with an initial population of a0 = a ants. How many ants will
this colony have after n years?
Let an denote this number. Then

an = 2 · an−1 = 22 · an−2 . . . = 2n−1 · a1 = 2n · a.

Theorem D.2.1 Let
an = can−1 + g, (D.2)

n ≥ 1, with given constants c and g, and an initial condition a0, be a (nonhomoge-
neous) recurrence relation. Then

an =
{

cna0 + cn−1
c−1 g : c 6= 1

a0 + ng : c = 1

For 0 < c < 1 we get

an →
1

1− c
g.

Proof.

an = c · an−1 + g

= c · (c · an−2 + g) + g = c2 · an−2 + cg + g

= c2 · (c · an−3 + g) + cg + g = c3 · an−3 + c2g + cg + g

...
= cn−1 · a1 + cn−2g + . . . + c2g + cg + g

= cna0 + cn−1g + . . . + c2g + cg + g

= cna0 + (cn−1 + . . . + c2 + c + 1) · g.

Now, we distinguish between c = 1 and c 6= 1. 2

More about population biology we find in [128] and [233].

As an reformulation of D.2.1 we have for a real number x

Rn =
n∑

k=1

xk = x
1− xn

1− x
. (D.3)

Now consider

Sn =
n∑

k=1

kxk. (D.4)
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Then

(1− x)Sn =
n∑

k=1

xk − nxn+1

= Rn − nxn+1

= x
1− xn

1− x
− nxn+1

=
x− (n + 1)xn+1 + nxn+2

1− x
.

Corollary D.2.2
n∑

k=1

kxk =
x− (n + 1)xn+1 + nxn+2

1− x
. (D.5)

D.3 Infinite series

For 0 < c < 1 we have a convergent geometric series:

Theorem D.3.1 Let
an = can−1 + g, (D.6)

n ≥ 1, with given constants 0 < c < 1 and g, and an initial condition a0, be a
(nonhomogeneous) recurrence relation. Then

an →
1

1− c
g.

And,

Corollary D.3.2
∞∑

k=1

kxk =
x

(1− x)2
. (D.7)
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Appendix E

Polynomials and its Zeros

We consider polynomials of degree n, which are functions of the kind

p(x) = anxn + an−1x
n−1 + . . . + a1x + a0, (E.1)

where ai are real numbers with an 6= 0. We will call this representation the monomial
form of the polynomial.
One of the most important questions to manipulate polynomials is to determine the
functional value(s) at one or more points.

Algorithm E.0.3 If a polynomial p is given in its monomial form, then we can
determine the values of p by Horner’s method:

1. p := an;

2. For i = 1, 2, . . . , n do p := x · p + an−i.

E.1 Roots of polynomials

Usually the zero of a polynomial is called its root. The following fact is well-known
from algebra, compare [161].

Lemma E.1.1 The number α is a root of the polynomial p(x) if and only if p(x) is
divisible by x− α.

In other terms, finding the roots of a polynomial is equivalent for finding its linear
factors.
In examining the roots of polynomials we did not pose the question of whether every
polynomial possesses roots. This is indeed true, when we not only restrict ourself to
real numbers. The fundamental theorem of algebra is the most important discovery
dealing with the roots of a polynomial.
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Theorem E.1.2 A polynomial of degree n has exactly n roots, that means the equa-
tion

p(x) = anxn + an−1x
n−1 + . . . + a1x + a0 = 0 (E.2)

has exactly n solutions, provided each root is counted as many times as its multiplicity.1

Corollary E.1.3 If the polynomials p(x) and q(x) whose degrees do not exceed n
have equal values for more than n distinct values of the unknown, then p(x) = q(x).

Proof. The polynomial p(x)− q(x) has degree at most n and more roots than n.
By E.1.2 the equation p(x)− q(x) = 0 must be true. 2

In view of E.1.2, there are unique real or complex numbers α1, . . . , αk and positive
integers m1, . . . ,mk, with m1 + . . . + mk = n, which make it possible to factorize p:

p(x) = an(x− α1)m1 · · · (x− αk)mk . (E.3)

Let there be given the polynomial with leading coefficient an = 1 and let its roots by
counting multiplicities, that means we have the following expansion

p(x) = (x− α1) · · · (x− αn). (E.4)

Multiplying out the parantheses on the right, and then collecting like terms and
comparing the resulting coefficients with the coefficients of the polynomials its given
form, we get the following formulas.

Theorem E.1.4 Let

p(x) = xn + an−1x
n−1 + . . . + a1x + a0 (E.5)

a polynomial with the roots α1, . . . , αn. Then Vieta’s formulas hold true:

a0 = (−1)nα1 · · ·αn,

a1 = (−1)n−1(α1α2 · · ·αn−1 + α1α2 · · ·αn−2αn + . . . + α2α3 · · ·αn),
...

an−2 = α1α2 + α1α3 + . . . + α1αn + α2α3 + . . . + αn−1αn,

an−1 = −(α1 + . . . + αn).

If the leading coefficient an of the polynomial p(x) is different from unity, then in
order to make use Vieta’s formulas, it is first necessary to divide all the coefficients
by an; this has no effect on the roots of the polynomial.

1Note that the theorem holds true for n = 0 as well, since a polynomial of zero degree has no
roots. The theorem is not applicable to the polynomial 0, which has no degree, and is equal to zero
for any value.
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For polynomials of degree n ≤ 4, there exist formulas for determination of the
roots. In the 1820’s Abel demonstrated that no such formulas can be found for for
the nth-degree equations where n ≥ 5. For instance the equation

x5 − 4x− 2 = 0

is not solvable by radicals.
In the 1830’s Galois made a complete investigation of the conditions under which a
given equation is solvable by radicals. For the so-called Galois theory, see Artin [11]
or Stewart [228].
In general the roots of a polynomial can be found only approximately. In practice,
however, iterative methods are employed even for solving polynomial equations of
third and fourth degree.

E.2 Estimating of roots

We are interested in bounds within which lie the roots of a polynomial, and to deter-
mine the number of the roots.

Theorem E.2.1 Let

p(x) = anxn + an−1x
n−1 + . . . + a1x + a0 (E.6)

be a polynomial (an 6= 0). Then

|α| ≤ 1 +
A

|an|
, (E.7)

holds true for any root α of p(x), where A = max{|a0|, . . . , |an−1|}.

Proof.
anxn = p(x)− (an−1x

n−1 + . . . + a1x + a0)

implies
|anxn| ≤ |p(x)|+ |an−1x

n−1 + . . . + a1x + a0|.

In view of this inequality we find

|p(x)| ≥ |anxn| − |an−1x
n−1 + . . . + a1x + a0|

≥ |an| · |x|n −A(|x|n−1 + . . . + |x|+ 1)

= |an| · |x|n −A
|x|n − 1
|x| − 1

> |an| · |x|n −
A

|x| − 1
|x|n assuming |x| > 1

= (|an| −
A

|x| − 1
)|x|n.
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The factor |an| −A/(|x| − 1) is strictly positiv if and only if

|x| > A

|an|
+ 1,

which is also satisfied for |x| ≤ 1. 2

Corollary E.2.2 There is a number c, such that for |x| > c the value of the polyno-
mial p(x) has the same sign as the leading term anxn.

This implies the following, a little bit unexpected, fact.

Corollary E.2.3 A polynomial of odd degree has at least one root.

As an exercise prove the following, more exact, version of these corollaries.

Theorem E.2.4 Let

p(x) = anxn + an−1x
n−1 + . . . + a1x + a0 (E.8)

be a polynomial of odd degree. Assume that an > 0, then{
p(x) > 0
p(x) < 0

}
for

{
x > 1 + B

an

x < −(1 + B
an

),

}
where B = |an−1|+ . . . + |a1|+ |a0|. Similarly for an < 0.

E.3 A randomized algorithms

Computers appear to behave far too unpredictably as it is. Adding randomness would
seemingly be a disadvantage, adding further complications to the already challenging
task of efficiently utilizing computers.
Randomized algorithmss are algorithms that make random choice during their exe-
cution. In practice, a randomized program would use values generated by a random
number generator to decide the next step at several branches of its execution.

Mitzenmacher and Upfal [175] consider the following problem of polynomial iden-
tity:
Given: Two polynomials f(x) and g(x).
Verify: The identity, that means f(x) ≡ g(x). It is well-known, that the following
algorithm verifies the identity f(x) ≡ g(x):

1. Convert the two polynomials to their canonical form2;
2that means of the form

∑n

k=0
ckxk
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2. f(x) and g(x) are equivalent if and only if all the coefficients in their canonical
form are equal.

In particular, if f(x) is given as a product

f(x) = Πn
k=1(x− ak)

and g(x) is given in its canonical form. Transforming f(x) to its canonical form by
consecutively multiplying of the monomials requires Θ(n2) multiplications of coeffi-
cients. Assuming that multiplying and adding numbers can be performed in constant
time we have an algorithm which requires quadratic time. Let us instead utilize ran-
domness to obtain a faster method to verify the identity. Our new algorithm is the
following:

Algorithm E.3.1 1. Determine the largest exponent n of x in f(x) and g(x);

2. Choose a positive integer m;

3. Chooses an integer r uniformly at random in the range {1, . . . ,mn};

4. Compute f(r) and g(r);

5. If f(r) 6= g(r) the two functions are not equivalent; otherwise they are equivalent.

The algorithm runs in linear time (Exercise). But E.3.1 may give a wrong answer.
More exactly:

a) If f(x) ≡ g(x), then the algorithm gives the correct answer, since it will find
f(x) = g(x) for any value of x;

b) If f(x) 6≡ g(x) and f(r) 6= g(r), then the algorithm gives the correct answer, since
it has found a case where the functions disagree;

c) If f(x) 6≡ g(x) and f(r) = g(r), then the algorithm gives the wrong answer.

We take a closer look at the third case. For this error to occur r must be a root of
the equation

f(x)− g(x) = 0. (E.9)

The degree of the polynomial on the left side is at most n and, by the fundamental
theorem of algebra, f(x) − g(x) has no more than n roots. And therefore no more
than n values in {1, . . . ,mn} for which the polynomials are equal.

Theorem E.3.2 The algorithm E.3.1 running in linear time gives a wrong answer
with probability 1/m, where the integer m can be arbitrarily chosen.

For all questions arising randomized algorithms see Motwani and Raghavan [176].
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Appendix F

Recurrence Relations

Recursion: see recursion.

David Darling in The Universal Book of Mathematics [62]

F.1 Fibonacci’s rabbits

In his famous book Liber Abaci, Fibonacci raised the following question

A certain man put a pair of rabbits in a place surround on all sides by a
wall. How many pairs of rabbits can be produced from that pair in a year
if it is supposed that every month each pair begets a new pair which from
the second month on becomes productive.

For convenience, we will count the rabbits in male-female pair. F0 represents the
initial population, and Fi represents the population in the ith month. Let fi = |Fi|
denote the total number of pairs in the ith generation.

generation F0 F1 F2 F3 F4 F5 F6

number of
mature pairs 0 1 1 2 3 5 8

number of
baby pairs 1 0 1 1 2 3 5

fi 1 1 2 3 5 8 13

And further
f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

21 34 55 89 144 233 377 610 987 1597

We can see from this table that

fn = fn−1 + fn−2, (F.1)

for n ≥ 2 with f0 = 1 and f1 = 1.
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F.2 Handle recurrences with care

Consider the following sequence

an =
{

1 + an
2

: n even
1 + a3n−1 : otherwise

with a1 = 1. We get

a3 = 1 + a8 = 1 + (1 + a4) = 2 + a4 = 2 + (1 + a2) = 3 + a2 = 3 + (1 + a1) = 5,

but
a5 = 1 + a14 = 2 + a7 = 3 + a20 = 4 + a10 = 5 + a5,

which means that a5 is not defined.
Another example, first posed by Collatz in 1937, starts with a positive integer z such
that a1 = z and

an =
{

an−1/2 : an−1 even
3an−1 + 1 : otherwise

For z = 7 we get 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 and the last three
digits 4, 2, 1 being continually repeated; exact the same situation we find for z = 6:
6, 3, 10, . . . , 4, 2, 1.
It is an open problem whether or not for each choice of z the sequence has a period
4, 2, 1. As an exercise start the sequence with z = 27. For a nice description of this
question compare [151] or [152].

F.3 Recurrence relations of second order

Now, we concentrate on the recurrence relation

an = c1an−1 + c2an−2 (F.2)

with given a0, a1, and constants c1, c2, where c2 6= 0. There is a very neat method for
solving such relations.
Substituting αn for an with α 6= 0 in (F.2) gives αn = c1α

n−1 + c2α
n−2, that is

α2 = c1α + c2. Consequently, αn is a solution of (F.2) if and only if α is a solution of
the so-called characteristic equation

x2 = c1x + c2. (F.3)

We have to distinguish between two cases:

1. We assume that α and β are distinct solutions of (F.3). Then αn and βn and
also their linear combination satisfy (F.2):

an = d1α
n + d2β

n. (F.4)

Choose d1, d2 so that

a0 = d1 + d2

a1 = d1α + d2β.
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2. On the other hand, when the characteristic equation has a repeated root α, that
means of multiplicity two, then

x2 − c1x− c2 = (x− α)2 = x2 − 2αx + α2 (F.5)

so that c1 = 2α and c2 = −α2. nαn also satisfies (F.2), since

c1an−1 + c2an−2 = c1(n− 1)αn−1 + c2(n− 2)αn−2

= 2(n− 1)αn − (n− 2)αn

= nαn

= an.

Then we consider the linear combination

an = d1α
n + d2nαn. (F.6)

Choose d1, d2 so that

a0 = d1

a1 = d1α + d2α.

Solving these equations we get the following theorem.

Theorem F.3.1 Suppose that {an} satisfies the recurrence relation

an = c1an−1 + c2an−2 (F.7)

with given a0, a1.
Let α and β be the roots of the characteristic equation

x2 − c1x− c2 = 0. (F.8)

a) If α 6= β then

an =
a1 − a0β

α− β
· αn +

a0α− a1

α− β
· βn. (F.9)

b) If α = β then
an = ((1− n) · a0 + n · a1

α
) · αn. (F.10)

F.4 Phylotaxis

Recall Fibonacci’s rabbits to find the characteristic equation in x2 − x− 1 = 0, with
the roots

α, β =
1±

√
5

2
,
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Example F.4.1 The Fibonacci sequence

fn = fn−1 + fn−2, (F.11)

for n ≥ 2 with f0 = 1 and f1 = 1, has the solution

fn =
1√
5

(1 +
√

5
2

)n+1

−

(
1−

√
5

2

)n+1
 . (F.12)

This result is strange, since fn is in any case an integer.
Note that for specific values of n it is easier to determine fn in the preceding example
by using the recurrence relation starting with the initial conditions than to solve the
equations.

The number
1 +

√
5

2
= 1.61803 . . . (F.13)

is important in many parts of mathematics as well as in the art world since ancient
times.1

In the nineteenth century Fibonnacci numbers were discovered in many natural forms.
For example, many types of flower have a Fibonacci number of petals: certain types
of daisies tend to have 34 or 55 petals, while sunflowers have 89 or 144.
The understanding of these relations is called phylotaxis, see [58] or [233].

F.5 A general solution method

Generalizing the method used in F.3.1 we outline the theory of solving recurrence
relations of the form

an = c1an−1 + c2an−2 + . . . + ckan−k (F.14)

with given
a0, . . . , ak−1, (F.15)

where the ci’s are given constants, ck 6= 0.

The recurrence allows us to compute an for any n we like, but it only gives indirect
information. A solution to the recurrence in a ”closed form” helps us to understand
what an really stands for, compare our investigations about Fibonacci’s rabbits.
There is a general solution technique involving a sum of individual solutions of the
form nr · αn.

Algorithm F.5.1 Let a recurrence relation (F.14), (F.15) be given. Then

1Therefore it has a special name, the Golden Ratio, and in general denoted by Φ, in honor of
Phidas, compare [105].
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1. Solve the characteristic equation

xk − c1x
k−1 − c2x

k−2 − . . .− ck = 0. (F.16)

It has k roots, some of which may be multiple.2

2. If α1, . . . , αr are the roots of (F.16), then an = αn
i is a solution of the recurrence

equation (F.14).
Compose a linear combination for the roots in the following sense: If root α has
multiplicity m then use

αn, nαn, n2αn, . . . , nm−1αn. (F.17)

3. We need to be given the initial conditions of the first k values (F.15).
The k equations can be solved if we insert these conditions. This forms a system
of k linear equations with k unknowns, which is simple to solve.

F.6 Triangles of numbers

Recursion is a process that wraps back on itself and feeds the output of a process
back in as the input.
It often happens that in studying a sequence of numbers, a connection between the
current value and several of the previous values is obtained. Recall the triangles of
the binomial coefficients b(n, k) =

(
n
k

)
, the Stirling numbers s(n, k) of the first and

S(n, k) of the second kind. We constructed these triangles by

b(n, k) = b(n− 1, k) + b(n− 1, k − 1), (F.18)
s(n, k) = (n− 1) · s(n− 1, k) + s(n− 1, k − 1), (F.19)
S(n, k) = k · S(n− 1, k) + S(n− 1, k − 1), (F.20)

A nice description of the coefficients b(n, k) is given by the so-called Pascal’s triangle,
which displays C.12:

row 0 1
row 1 1 1
row 2 1 2 1
row 3 1 3 3 1
row 4 1 4 6 4 1
row 5 1 5 10 10 5 1
row 6 1 6 15 20 15 6 1
...

. . .

For the Stirling number of the first and the second kind in the form of a right triangle
will be give below.
The numbers in such triangle satisfy, practically speaking, infinitely many identities
for the recurrence relation.

2A solution is explicitly possible if k ≤ 4, but maybe not for the case k > 4. For considerations
concerning these questions, the so-called Galois theory, see Artin [11].
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Appendix G

Inequalities

G.1 Bernoulli’s inequality

Theorem G.1.1 Let a be a positive real number and let n ≥ 2 be an integer. Then

(1 + a)n > 1 + na. (G.1)

Proof. In view of C.2.2 we have

(1 + a)n =
(

n

0

)
a0 +

(
n

1

)
a1 +

(
n

2

)
a2 + . . .︸ ︷︷ ︸
>0

> 1 + na.

2

G.2 The Cauchy-Schwarz inequality

Theorem G.2.1 Let v and w be vectors in a space with an inner product (., .). Then
it holds the so-called Cauchy-Schwarz inequality:

|(v, w)|2 ≤ (v, v) · (w,w). (G.2)

Equality holds if and only if v and w are linearly dependent.

Proof. For all real numbers α, we have

0 ≤ (v − αw, v − αw)
= (v, v)− 2α(v, w) + α2(w,w).

Taking α = (v, w)/(w,w), we get

0 ≤ (v, v)− 2
(v, w)
(w,w)

(v, w) +
(v, w)2

(w,w)2
(w,w)
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= (v, v)− 2
(v, w)2

(w,w)
+

(v, w)2

(w,w)

= (v, v)− (v, w)2

(w,w)
.

Hence,
(v, w)2 ≤ (v, v) · (w,w). (G.3)

2

In an inner product space we define a map from the space into the real numbers
by ||v|| =

√
(v, v). Consequently,

|(v, w)| ≤ ||v|| · ||w|| (G.4)

G.3 Arithmetic and geometric means

Let x1, . . . , xn be nonnegative real numbers. The geometric mean for these numbers
is defined by

G(x1, . . . , xn) = n
√

x1 · · ·xn, (G.5)

and the arithmetic mean by

A(x1, . . . , xn) =
x1 + . . . + xn

n
. (G.6)

Observation G.3.1 If x1 ≥ x2 ≥ . . . ≥ xn, then

G(x1, . . . , xk) ≥ G(x1, . . . , xn) (G.7)

and
A(x1, . . . , xk) ≥ A(x1, . . . , xn) (G.8)

for 1 ≤ k ≤ n.

Proof. Since x1 ≥ x2 ≥ . . . ≥ xk ≥ xk+1 we have

x1 · · ·xk ≥ xk
k+1. (G.9)

Furthermore, in view of (G.9),

(x1 · · ·xk)k+1 = (x1 · · ·xk)k(x1 · · ·xk) ≥ (x1 · · ·xk)kxk
k+1 = (x1 · · ·xk+1)k,

which gives the asserted result.
The second inequality follows with similar arguments. 2

As an exercise determine the limit of the sequence an for which the general term
is the arithmetic mean of its two preceding terms: an+2 = A(an, an+1).
Now, we will prove the very important inequality G ≤ A. Many different and in-
genious proofs of this general result have been devised. The simplest way is the
following.
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Theorem G.3.2 Let x1, . . . , xn be nonnegative real numbers. Then

G(x1, . . . , xn) ≤ A(x1, . . . , xn), (G.10)

where equality holds if and only if x1 = . . . = xn.

Proof. Let s =
∑n

i=1 xi. Consider the function

f(x1, . . . , xn) =
n∏

i=1

xi. (G.11)

Since the set {(x1, . . . , xn) : xi ≥ 0,
∑n

i=1 = s} is compact, the quantity Maxf exists.
We may assume that all xi are positive.
Let x1 6= x2, then for y1 = y2 = x1+x2

2 it holds

y1 + y2 + x3 + . . . + xn = s, (G.12)

and

y1y2 − x1x2 =
(

x1 + x2

2

)2

− x1x2 =
(

x1 − x2

2

)2

> 0. (G.13)

Consequently, y1y2x3 · · ·xn > x1 · · ·xn. In the same way we can prove that x1 = xi,
where xi is any one of the x’s and we may assume that Maxf is achieved if xi = xj = x
for all i, j. Then s = nx.

n∏
i=1

xi = f(x1, . . . , xn) ≤ f
( s

n
, . . . ,

s

n

)
=
( s

n

)n

=
(∑n

i=1 xi

n

)n

.

This gives the assertion. 2

G.4 Means generated by integrals

Chen [46] and Eves [82] give a surprising generalization of many different means. Let
a and b two distinct positive real numbers. We define a general mean by

F (a, b)(t) =

∫ b

a
xt+1dx∫ b

a
xtdx

. (G.14)

This definition encompass the following specific (and well-known) means. Verify as
an exercise:

Harmonic mean: F (a, b)(−3) = H(a, b) =
2ab

a + b
; (G.15)

Geometric mean: F (a, b)(−3/2) = G(a, b) =
√

ab; (G.16)

Logarithmic mean: F (a, b)(−1) = L(a, b) =
b− a

ln b− ln a
; (G.17)
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Herionian mean: F (a, b)(−1/2) = N(a, b) =
a +

√
ab + b

3
; (G.18)

Arithmetic mean: F (a, b)(0) = A(a, b) =
a + b

2
; and (G.19)

Centroidal mean: F (a, b)(1) = T (a, b) =
2(a2 + ab + b2

3(a + b)
. (G.20)

Theorem G.4.1 The function F (a, b)(t) is strictly increasing.

Proof. To prove that F (t) = F (a, b)(t) is strictly increasing for 0 < a < b, we
show that F ′(t) > 0.
By the quotient rule,

F ′(t) =

∫ b

a
xt+1 lnxdx ·

∫ b

a
xtdx−

∫ b

a
xt+1dx ·

∫ b

a
xt lnxdx

(
∫ b

a
xtdx)2

. (G.21)

Since the bounds of the definite integrals are constant, the numerator of this quotient
can be written as

=
∫ b

a

xt+1 lnxdx ·
∫ b

a

ytdy −
∫ b

a

yt+1dy ·
∫ b

a

xt lnxdx

=
∫ b

a

∫ b

a

xtyt lnx(x− y)dxdy.

Substituting in a different manner, we write the same numerator as

=
∫ b

a

yt+1 ln ydy ·
∫ b

a

xtdx−
∫ b

a

xt+1dx ·
∫ b

a

yt ln ydy

=
∫ b

a

∫ b

a

xtyt ln y(y − x)dxdy.

Averaging the two equivalent expressions shows that this numerator is

1
2

∫ b

a

∫ b

a

xtyt(x− y)(lnx− ln y)dxdy > 0,

as long as 0 < a < b. In view of (G.21), this implies that F ′(t) >= 0 as desired. 2

An immediate consequence is the following result.

Corollary G.4.2

H(a, b) ≤ G(a, b) ≤ L(a, b) ≤ N(a, b) ≤ A(a, b) ≤ T (a, b). (G.22)

Equality holds if and only if a = b.

As an exercise compute F (a, b)(−2) and find further inequalities for means.
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Appendix H

The Harmonic Numbers

H.1 The sequence of harmonic numbers

We are interested in the sequence {Hn} of the sum of the reciprocals:

Hn =
n∑

k=1

1
k

, (H.1)

which is called the nth harmonic number.

About the convergence behavior of {Hn}n=1,2,... we know.

Theorem H.1.1 The sequence {Hn} of the harmonic numbers diverges.

Proof. We group the terms of Hn according to the powers of 2.

1
1︸︷︷︸

group 1

+
1
2

+
1
3︸ ︷︷ ︸

group 2

+
1
4

+
1
5

+
1
6

+
1
7︸ ︷︷ ︸

group 3

+
1
8

+
1
9

+ . . . +
1
14

+
1
15︸ ︷︷ ︸

group 4

+ . . . .

Each of the 2k−1 terms in group k is between 21−k and 2−k; hence, the sum of each
group is between 1/2 and 1.
This procedure shows us that if n is in group k, we must have Hn > k/2; thus
Hn →∞. 2

On the other hand, consider the Riemann zeta function ς(s) defined for any real
s > 1 by

ς(s) =
∑
k≥1

1
ks

. (H.2)

For real s > 1 the series converges, since for

ςn(s)− 1 =
n∑

k=1

1
ks
− 1 =

n∑
k=2

1
ks
≤
∫ n

1

dx

xs
=

1
1− s

(n1−s − 1),
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and n running to infinity, we get:

ς(s) ≤ s

s− 1
. (H.3)

Several exact values of the function are known:

s 2 4 6 8

ς(s) π2

6
π4

90
π6

945
π8

9450

H.2 Approximations

Hn is unbounded, but how fast does it increase? The proof of H.1.1 gave a hint of an
approximation; we will create a better one. Consider the function f(x) = 1/x. The
area under the curve between 1 and n, which is

∫ n

1
dx
x , is greater than the area of the

lower rectangles and less than the area of the upper trapezium:

n∑
k=2

1
k
≤
∫ n

1

dx

x
≤

n−1∑
k=1

1
2

(
1
k

+
1

k + 1

)
n∑

k=1

1
k
− 1 ≤ lnn ≤ 1

2

(
n−1∑
k=1

1
k

+
n−1∑
k=1

1
k + 1

)

Hn − 1 ≤ lnn ≤ 1
2

(
Hn −

1
n

+ Hn − 1
)

and consequently

Theorem H.2.1 The harmonic number Hn is bounded by

lnn +
1
2

+
1
2n

≤ Hn ≤ lnn + 1. (H.4)

In other terms
Hn = ln n + Θ(1). (H.5)

This theorem allows us to conclude that the millionth harmonic number is

H1,000,000 = 14.39272 . . . .

Furthermore, it holds

Hn ≈ lnn +
1
2n

+ γ, (H.6)

where the quantity
γ = lim

n→∞
(Hn − lnn) (H.7)

249



is called Euler’s constant or Mascheroni’s constant and is calculated approximately
by γ = 0.57721 . . . . This number is one of the most mysterious of all arithmetic con-
stants. In particular, it is not even known whether γ is irrational.

For more and deeper facts about harmonic numbers and Euler’s constant compare
[105] and [129].1

1An amusing problem which shows the strangeness of the world is the so-called ”worm on the
rubber band”, [95], [96], [129]. A slow, but persistent worm W starts at one end of a one meter-
long rubber band and crawls one centimeter per minute toward the other end. At the end of each
minute, an (equally persistent) keeper K stretches the band on one meter. During the stretching
W maintains his relative position. After W crawls for another minute, K stretches the band again
for one meter. And so on. Does the worm ever reach the end? At first glance it seems as if not; he
keeps moving, but the goal seems to move away even faster.
When K stretches the rubber band, the fraction of it that W has crawled stays the same. Thus he
crawls along 1/100th of the rubber band in the first minute, along 1/200th in the second; and so on
along 1/n · 100th in the nth. After n minutes the fraction of the band that W has crawled is

1

100
+

1

200
+ . . . +

1

n · 100
=

Hn

100
.

Consequently, W reaches the finish if ever Hn surpass 100. In view of H.1.1 this must happen at
some time.
On the other hand, our facts about the growing of the harmonic numbers tell us that this event will
happen when

ln n + γ ≥ 100,

that means when n is approximately e100−γ . We can imagine W ’s triumph when he crosses the
finish line at last: 287 decillion centuries after starting his long crawl.

Look for an old problem which has a deepth consequence, compare [129]: You have to cross the
desert by jeep. There are the following limiting facts for your trip:

(i) There are no sources of fuel in the desert.

(ii) You cannot carry enough fuel in a jeep in order to make the crossing in one go.

(iii) You do not have time to establish fuel dumps.

On the other hand, you have a large supply of jeeps (and drivers), but none of which you want to
lose.
Can you cross the desert, and if the answer is ”yes” what is the minimum amount of fuel? In a first
view we assume that the answer will be ”no”; but our ”worm” let us be carefully.
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Appendix I

The Order of Magnitude of
the Factorials

I.1 Stirling’s inequalities

The quantity n!, spoken ”n factorial”, increases very quickly. We describe the order
of growing by the following considerations: In calculus, an integral can be regarded as
the area under a curve, and we can approximate this area by adding up long, ”skinny”
rectangles that touch the curve. Consider the function lnx. Then

n−1∑
k=1

ln k ≤
∫ n

1

lnx dx ≤
n∑

k=2

ln k

ln
n−1∏
k=1

k ≤ n lnn− n + 1 ≤ ln
n∏

k=2

k

ln
n!
n
≤ lnnn − n + 1 ≤ lnn!

exponentiating
n!
n
≤ e

nn

en
≤ n!

rearranging gives the

Observation I.1.1 (Stirling’s inequalities)

e
nn

en
≤ n! ≤ en

nn

en
. (I.1)
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I.2 Approximations

When we use the inequality

n−1∑
k=1

1
2
(ln(k + 1) + ln k) ≤

∫ n

1

lnx dx, (I.2)

coming from an approximation of
∫

lnx dx by trapezium, we get the better bound

n! ≤ e
√

n · nn

en
. (I.3)

An approximation from below with the same order uses the approximation of
∫

lnx dx
by trapezium under the lines y = 1

kx + ln k − 1. We get∫ n

1

lnx dx ≤
n∑

k=2

1
2

((
k − 1

k
+ ln k − 1

)
+ (1 + ln k − 1)

)

=
n∑

k=2

(
ln k − 1

2k

)

=
n∑

k=2

ln k − 1
2

n∑
k=2

1
k

=
n∑

k=1

ln k − 1
2
(Hn − 1)

= ln n!− 1
2
Hn +

1
2
.

Hence,

n lnn− n + 1 ≤ lnn!− 1
2
Hn +

1
2
.

Further going

lnn! ≥ n lnn− n +
1
2
Hn +

1
2

≥ n lnn− n +
1
2

(
lnn +

1
2

)
+

1
2

in view of H.2.1

= n lnn− n +
1
2

lnn +
3
4

which immediately gives

n! ≥ e3/4
√

n · nn

en
. (I.4)

Altogether,
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Theorem I.2.1 For the order of growing of the factorials the inequalities (I.3) and
(I.4) hold. Consequently,

n! = Θ
(√

n · nn

en

)
. (I.5)

And
n! = O(2(n+0.5) log n). (I.6)

In view of

e3/4 = 2.11701 . . . (I.7)
√

2π = 2.5066 . . . (I.8)
e = 2.7183 . . . , (I.9)

this is not far from

Remark I.2.2 (Stirling’s equality)

n! ≈
√

2πn · nn

en
. (I.10)

For further reading see [166].
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Appendix J

Decomposition of
permutations

J.1 The Stirling Number of the first kind

Each permutation can be written as a product of cycles. For instance:

1 2 3 4 5 6 7 8 9
2 4 3 7 6 5 1 9 8

is (1247)(3)(56)(89).
Conversely, every cycle arrangement defines a permutation if we reverse the construc-
tion. In other words, permutations and cycle arrangements are essentially the same
thing.
The Stirling number of the first kind is defined as follows: s(n, k) is the number of
permutations of 1, . . . , n consisting of exactly k cycles.
As an example consider the permutations of the set {1, 2, 3, 4}. Clearly, these 24
permutations can be classified according to the cycles they have as follows.

1. There are 6 permutations with exactly one cycle: (1234), (1324), (2134), (2314),
(3124) and (3214).

2. There are 11 permutations with exactly two cycles: (123)(4), (124)(3), (134)(2),
(234)(1), (132)(4), (142)(3), (143)(2), (243)(1), (12)(34), (13)(24) and (14)(23).

3. There are 6 permutations with exactly three cycles: (12)(3)(4), (13)(2)(4),
(14)(2)(3), (23)(1)(4), (24)(1)(3) and (34)(1)(2).

4. There is only one permutation with four cycles: (1)(2)(3)(4).

Here are several elementary facts about the Stirling number of the first kind: s(n, n) =
1 and

n∑
k=1

s(n, k) = n!. (J.1)
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Theorem J.1.1
s(n, 1) = (n− 1)!. (J.2)

Proof. If we select the first n− 1 elements, then the nth is determined. Selecting
n− 1 elements can be done in (n− 1)! ways. 2

Theorem J.1.2

s(n, n− 1) =
(

n

2

)
. (J.3)

The proof remains as an exercise for the reader.

Theorem J.1.3 For n, k ≥ 2 it holds

s(n, k) = (n− 1) · s(n− 1, k) + s(n− 1, k − 1). (J.4)

Proof. Consider n elements and the nth element explicitly. We distinguish two
cases.
Case 1: n forms a 1-cycle on its own.
There are s(n− 1, k − 1) ways to do this.
Case 2: n can be slotted into a cycle.
There are s(n− 1, k) of such permutations of 1, . . . , n− 1 with k cycles. Then n can
be inserted after one of the numbers 1, . . . , n− 1. 2

It is customary to write the Stirling numbers as Stirling’s triangle (of the first
kind) in the form of a right triangle.

n \ k 1 2 3 4 5 6 7 8

1 1
2 1 1
3 2 3 1
4 6 11 6 1
5 24 50 35 10 1
6 120 274 225 85 15 1
7 720 1764 1624 735 175 21 1
8 5040 13068 13132 6769 1960 322 28 1

J.2 s(n, 2) and the harmonic numbers

In view of J.1.3 and J.1.1 we have

s(n, 2) = (n− 1)s(n− 1, 2) + (n− 2)! (J.5)
with s(2, 2) = 1. (J.6)
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Repeatedly applications give

s(n, 2) = (n− 1)s(n− 1, 2) + (n− 2)!
= (n− 1)(n− 2)s(n− 2, 2) + (n− 1)(n− 3)! + (n− 2)!
= (n− 1)(n− 2)(n− 3)s(n− 3, 2) + (n− 1)(n− 2)(n− 4)!

+(n− 1)(n− 3)! + (n− 2)!

= (n− 1)(n− 2)(n− 3)s(n− 3, 2) +
(n− 1)!
(n− 3)

+
(n− 1)!
(n− 2)

+
(n− 1)!
(n− 1)

...

= (n− 1)(n− 2) · · · 2 · s(2, 2) + (n− 1)!
(

1
n− 1

+
1

n− 2
+ . . . +

1
2

)
= (n− 1)! + (n− 1)!

n−1∑
k=2

1
k

= (n− 1)! ·
n−1∑
k=1

1
k

.

When Hn denotes the nth Harmonic number, we obtain

Theorem J.2.1
s(n, 2) = (n− 1)! ·Hn−1. (J.7)

J.3 Benford’s paradox

If a number is chosen at random from a large table of data or statistics we assert that
distribution of first significant digits is

log10

(
1 +

1
d

)
(J.8)

has become known as Benford’s law. In view of its conterintuitive nature of the law
it is also called Benford’s paradox.

d intuitive probability suggested probability

1 0.111 . . . 0.30103 . . .
2 0.111 . . . 0.17609 . . .
3 0.111 . . . 0.12494 . . .
4 0.111 . . . 0.09691 . . .
5 0.111 . . . 0.07918 . . .
6 0.111 . . . 0.06695 . . .
7 0.111 . . . 0.05799 . . .
8 0.111 . . . 0.05115 . . .
9 0.111 . . . 0.04578 . . .
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Appendix K

The Partition of Sets

K.1 Partitions and equivalence relations

A partition of a set S is a collection of subsets S1, . . . , Sk of S such that

• Si 6= ∅ for all i = 1, . . . , k;

• Si ∩ Sj = ∅ for i 6= j; and

•
⋃k

i=1 Si = S.

The subsets Si are called the parts of the partition.

Observation K.1.1 There is a one-to-one correspondence between the set of equiv-
alence relations and the collection of partitions.

A direct consequence of the multiplication principle is

Observation K.1.2 Suppose that ∼ is an equivalence relation on a set S with n
elements and each equivalence class has the same number m of elements. Then ∼ has
n/m equivalence classes.

K.2 Partitions of a given size

Now we are interested in the number of partitions with specified, but not necessarily
equal, part sizes. Consider a set S of n elements and a partition of S into α1 parts of
size 1, α2 parts of size 2, up to αn parts of size n, where, of course, 1 ≤ i ≤ n and

n∑
i=1

iαi = n. (K.1)

Such a partition is called of type [1]α1[2]α2 . . . [n]αn. Recall C.3.1. The n elements
can be placed in n! ways. To count distinct partitions we have to take into account
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the ways of ordering the elements within the parts and the ways of ordering the parts
of the same size i. Hence,

Theorem K.2.1 The number of partitions of type [1]α1[2]α2 . . . [n]αn is

n!∏n
i=1(i!)αi · αi!

. (K.2)

In particular,

Corollary K.2.2 The number of partitions of a set into pairs, with m = n
2 , is

n!
2m ·m!

. (K.3)

K.3 The Stirling number of the second kind

The Stirling number S(n, k) of the second kind denotes the number of ways of parti-
tioning of a set of n elements into exactly k parts.

As an example consider the partitions of the set {1, 2, 3, 4}. These partitions can
be classified according to the number of parts they have, as follows.

1. There is only one partition with exactly one part: {{1, 2, 3, 4}}.

2. There are 7 partitions with exactly two parts:

{{1, 2, 3}, {4}} {{1, 2, 4}, {3}} {{1, 3, 4}, {2}} {{2, 3, 4}, {1}}
{{1, 2}, {3, 4}} {{1, 3}, {2, 4}} {{1, 4}, {2, 3}}

3. There are 6 partitions with exactly three parts:

{{1, 2}, {3}, {4}} {{1, 3}, {2}, {4}} {{1, 4}, {2}, {3}}
{{2, 3}, {1}, {4}} {{2, 4}, {1}, {3}} {{3, 4}, {1}, {2}}

4. There is only one partition with four parts: {{1}, {2}, {3}, {4}}.

For all n ≥ 2,

S(n, 1) = S(n, n) = 1.

S(n, 2) = 2n−1 − 1.

S(n, n− 1) =
(
n
2

)
.

Theorem K.3.1 Whenever 1 < k < n,

S(n, k) = S(n− 1, k − 1) + k · S(n− 1, k). (K.4)
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Proof. Consider a partition of {1, . . . , n} into k parts; consider the element n.
Case 1: n appears by itself as a 1-element part.
Then the remaining n − 1 elements have to form a partition of {1, . . . , n − 1} into
k − 1 subsets. There are S(n− 1, k − 1) ways in which this can be done.
Case 2: n is in a part of size at least two.
Then we can think of partitioning {1, . . . , n − 1} into k sets (which can be done in
S(n− 1, k) ways) and then of adding n in one of the k sets (there are k ways of doing
this). 2

There is an explicit formula for the Stirling number, namely

Theorem K.3.2

S(n, k) =
1
k!

k−1∑
i=0

(−1)i

(
k

i

)
(k − i)n. (K.5)

The proof uses 3.4.4(b) and 2

It is customary to write the Stirling numbers as Stirling’s triangle in the form of
a right triangle, where the second column is the number of splits and the diagonal
under the main diagonal contains the binomial coefficients.

n \ k 1 2 3 4 5 6 7 8

1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1

K.4 Bell numbers

B(n) is the total number of partitions of a set of n elements, and is called a Bell
number:

B(n) =
n∑

k=1

S(n, k) (K.6)

=
n∑

k=1

1
k!

k−1∑
i=0

(−1)i

(
k

i

)
(k − i)n. (K.7)

where we define B(0) = 1 = S(0, 0). In other terms, the Stirling numbers S(n, k),
k = 1, . . . , n form a ”partition” of the nth Bell number.
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Theorem K.4.1 B(n) ≤ n!.

Outline of the proof. We introduced the Stirling number s(n, k) of the first kind,
which is the number of permutations of 1, . . . , n consisting of exactly k cycles. Obvi-
ously,

S(n, k) ≤ s(n, k). (K.8)

Then we have

B(n) =
n∑

k=1

S(n, k) ≤
n∑

k=1

s(n, k) = n!. (K.9)

2

We can obtain the following recursive relation for the Bell numbers.

Theorem K.4.2 For all n ≥ 1,

B(n) =
n−1∑
k=0

(
n− 1

k

)
B(k). (K.10)

Proof. Consider the nth element of a set which is partitioned. It is in one of the
parts of the partition with j ≥ 0 other elements. There are

(
n−1

j

)
ways of choosing

these j elements. The remaining n−1− j elements can be partitioned in B(n−1− j)
ways. Hence,

B(n) =
n−1∑
j=0

(
n− 1

j

)
B(n− 1− j) =

n−1∑
k=0

(
n− 1

k

)
B(k),

putting n− 1− j = k. 2

For further reading see [118].
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Appendix L

The Partition of Integers

L.1 Composition of integers

Remember 3.2.2 which said that the number of solutions for the equation x1 + . . . +
xn = k in nonnegative integers xi equals(

n + k − 1
k

)
. (L.1)

As an example consider

x + y + z = 8
subject to x ≥ 2

y ≥ 4

We substitute x = 2 + u, y = 4 + v and solve u + v + z = 2 with help of 3.2.2 to find(
3+2−1

2

)
= 6 solutions.

At this point it is crucial that we recognize the equivalence of the following state-
ments.

• The number of integer solutions of the equation x1 + . . . + xn = k, xi ≥ 0.

• The number of selections, with repetition, of size k from a collection of size n.

• The number of ways k identical objects can be distributed among n distinct
containers.

It is an important exercise for the reader to restate a problem given in one of the
above formulations in the other two.

Let us determine all the different ways in which we can write the number 4 as a
sum of positive integers, where the order of the summands is considered relevant:

4 = 3 + 1 = 1 + 3 = 2 + 2 = 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 = 1 + 1 + 1 + 1.
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We find eight compositions in total. Now suppose that we wish to count the number
of compositions for the positive integer n.

1. For one summand there is only one composition, namely n itself.

2. If there are two (positive) summands, we want to count the number of integer
solutions for z1 + z2 = n, which is the number(

2 + (n− 2)− 1
n− 2

)
=
(

n− 1
n− 2

)
. (L.2)

3. Continuing with our next case, we examine the composition with three (positive)
summands and find (

3 + (n− 3)− 1
n− 3

)
=
(

n− 1
n− 3

)
(L.3)

possibilities.

When we summarize the cases we get

n−1∑
j=0

(
n− 1

j

)
= 2n−1. (L.4)

Theorem L.1.1 The number of compositions for the positive integer n, where the
order of the summands is considered relevant, equals 2n−1.

L.2 The partition numbers

If n objects are indistinguishable, then the number of ways of grouping them is
called the partition number p(n). To determine the bipartition number p2(n), which
counts the number of grouping in exactly two integers is simple: If counting k =
1, 2, 3, . . . , n− 1 then in the same time we select n− k and have all pairs, each twice.

Theorem L.2.1 For the bipartition numbers it holds

p2(n) =
{

n
2 : if n even

n−1
2 : otherwise

In general the question is much harder. A partition of a nonnegative integer n
is a finite list of nonnegative integers with sum n, the order of the summands is not
important.
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n partitions p(n)

1 1 1
2 2, 1 + 1 2
3 3, 2 + 1, 1 + 1 + 1 3
4 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1 5
5 5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 7

1 + 1 + 1 + 1 + 1
6 6, 5 + 1, 4 + 2, 4 + 1 + 1, 3 + 3, 3 + 2 + 1, 3 + 1 + 1 + 1, 11

2 + 2 + 2, 2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1
7 Exercise 15
8 22
9 30

10 42
11 56

In view of L.1.1 we have p(n) ≤ 2n−1; but, paying attention [170], a better bound is
given by the following considerations:

p(n) ≤ 1
xn

·Πn
i=1

1
1− xi

(L.5)

holds true for any real number x between 0 and 1. Thus,

ln p(n) ≤ −n lnx−
n∑

i=1

ln(1− xi). (L.6)

In view of the series

− ln(1− y) = y +
y2

2
+

y3

3
+

y4

4
+ . . .

we can transform the second term of the former equation (L.6):

−
n∑

i=1

ln(1− xi) =
n∑

i=1

∞∑
j=1

xij

j
=

∞∑
j=1

1
j

n∑
i=1

xij

≤
∞∑

j=1

1
j

∞∑
i=1

xij =
∞∑

j=1

1
j

xj

1− xj

≤
∞∑

j=1

1
j

xj

(1− x)jxj−1
(Exercise)

=
x

1− x

∞∑
j=1

1
j2

=
x

1− x
ς(2)

=
x

1− x

π2

6
in view of the ζ -function.
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Altogether we find

ln p(n) ≤ −n lnx +
x

1− x

π2

6
, (L.7)

which is a function of the real number x. With the help of a little bit of calculus, this
implies

ln p(n) ≤ π
√

2n/3. (L.8)

Consequently,

Theorem L.2.2 For the partition numbers there is the inequality

p(n) ≤ eπ
√

2n/3 = e2.5650...·
√

n. (L.9)

There is no simple exact formula for p known, but there is a remarkable approxi-
mation given by Ramanujan, compare [58]:

p(n) ≈ 1
4
√

3n
· eπ

√
2n/3. (L.10)

For further reading see Turan [238].

To find the values of p(n) algorithmically, we can use the following observations.
Let q(k,m) be the number of ways of grouping k such that no summand is greater
than m.

Theorem L.2.3 (Barron [19]) It holds

p(n) = q(n, n), (L.11)

where we computed the values of q(., .) by the following recursion

q(k,m) =


1 : k = 1
1 : m = 1
q(k, k) : k < m
1 + q(k, k − 1) : k = m
q(k, m− 1) + q(k −m,m) : k > m

For further reading see [43].
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Appendix M

The Catalan Numbers

We introduce a sequence of numbers known as the Catalan numbers, which arise as
the counting numbers of a remarkable number of different types of structure. They are
named after the Belgian mathematician Catalan, but they had been studied earlier
by several others.

M.1 Routes in grids

The set
{0, . . . ,m} × {0, . . . , n} (M.1)

is called an m× n-grid. An n× n-grid is called a square of order n.
By an ”up-right” route we mean a path from (0, 0) to (m,n) following the edges of

the grid always moving upwards or to the right, i.e. the only possible pairs following
the pair (x, y) are (x, y + 1) or (x + 1, y).

Theorem M.1.1 The number of up-right routes from the bottom left node to the top
right node of an m× n-grid is(

m + n

n

)
=

(m + n)!
m! · n!

=
(

m + n

m

)
. (M.2)

Proof. Any route must consist of m + n steps, m of which must be to the right
and n upwards. 2

Corollary M.1.2 The number of up-right routes from the node (r, s) to the node
(m,n), with r ≤ m and s ≤ n of a grid is given by(

m + n− r − s

n− s

)
. (M.3)
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Proof. The calculation may be reduced by a parallel transfer of the system of axes:
x′ = x− r and y′ = y− s to the calculation of the routes from (0, 0) to (m− r, n− s).
For this we use M.1.1. 2

We consider a sequence w in {0, 1}2n, called a tree code (with respect to n), with
the following properties:

1. In each prefix of w the number of 1 is at least the number of 0;
In particular, the first letter in w must be 1;

2. The number of 1 in w equals the number of 0;
In particular, the last letter in w must be 0.

In other words we are interested in the number Cn of binary sequences of length 2n
containing exactly n 0’s and n 1’s, such that at each position in the sequence the
number of 0’s up to that position never exceeds the number of 1’s.

For such a sequence w consider a sequence of pairs

(x, y) ∈ {0, . . . , n}2, (M.4)

where

x = number of 1 in w; (M.5)
y = number of 0 in w. (M.6)

Then w describes an up-right route from the bottom left node to the top right
node of an n× n-grid which never goes above the diagonal {(x, x) : 0 ≤ x ≤ n}, and
vice versa.

Theorem M.1.3 The number of tree codes Cn with respect to n is exactly the number
of up-right routes from the bottom left node to the top right node of an n×n-grid which
never go above the diagonal.

Cn is called the nth Catalan number.

M.2 A recurrence relation for the Catalan numbers

To determine the Catalan numbers we consider up-right routes from the bottom left
node to the top right node of an n×n-grid which never go above the diagonal. These
routes are called correct routes.
Each correct route from (0, 0) to (n, n) must contain a pair (m,m) on the diagonal
before (n, n), even if it is only (0, 0). Let (m,m) be the last point on the diagonal
prior to the route reaching (n, n), 0 ≤ m < n.
There are Cm possibilities for the part of the route from (0, 0) to (m,m).
After (m,m) the route must then proceed to (m + 1,m) and continue to (n, n − 1)
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with never going above the ”line” from (m + 1,m) to (n, n − 1), since otherwise
(m,m) would not have been the last meeting before (n, n). The points (m + 1,m)
and (n, n− 1) are opposite nodes in a square of order n−m− 1. There are Cn−m−1

correct routes in this square.
Using the multiplication principle, we find out that the number of correct routes from
(0, 0) to (n, n) with (m,m) as the last point of contact with the diagonal before (n, n),
is

Cm · Cn−m−1. (M.7)

Since m can have any value from 0 to n−1, it now follows from the addition principle

Theorem M.2.1 The Catalan number Cn satisfies the recurrence relation

Cn =
n−1∑
m=0

Cm · Cn−m−1, (M.8)

with C0 = 1.

M.3 An explicit formula for the Catalan numbers

Following the considerations in the section before, Andre found an explicit description
for the Catalan numbers.
Consider any incorrect route. There will be a first point on that route above the
diagonal. Suppose that this is (m,m+1). We reflect the part of the route from (0, 0)
to (m,m + 1) on the ”line” L = {(x− 1, x) : 1 ≤ x ≤ n}, this means

(x, y) 7→ (y − 1, x + 1).

Together with the other part of the route, we get an up-right route from (−1, 1) to
(n, n) in an (n + 1)× (n− 1)-grid. In view of M.1.2 there are(

(n + 1) + (n− 1)
n + 1

)
=
(

2n

n + 1

)
(M.9)

such routes.
Conversely, any up-right route from (−1, 1) to (n, n) must cross L somewhere, and
must arise from precisely one incorrect route from (0, 0) to (n, n). Hence, the number
of incorrect routes from (0, 0) to (n, n) is just the number of up-right routes from
(−1, 1) to (n, n), which was given by (M.9).
Altogether,1

# correct routes = # all routes −# incorrect routes

=
(

2n

n

)
−
(

2n

n + 1

)
1where we use the abbreviation # for ”the number of”
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=
(

2n

n

)
− n

n + 1

(
2n

n

)
=

1
n + 1

(
2n

n

)
.

We proved

Theorem M.3.1 The Catalan number Cn is

Cn =
1

n + 1

(
2n

n

)
=

(2n)!
(n + 1)! · n!

. (M.10)

The sequence of Catalan numbers begins

n 0 1 2 3 4 5 6 7 8 9 10 11

Cn 1 1 2 5 14 42 132 429 1,430 4,862 16,796 58,786

From M.3.1 we can easily derive another recurrence relation for computing suc-
cessive Catalan numbers, namely

Cn+1 =
4n + 2
n + 2

Cn (M.11)

for n > 1 with C0 = 1. Consequently, we may assume that the Catalan numbers grow
exponentially, where the base of the expression equals 4. And indeed, in view of I.1.1,
(I.3) and I.2.2 we get the order and the asymptotic behavior of the Catalan numbers.

Corollary M.3.2

1
e3/4

·
√

2√
e
· 4n

(n + 1)
√

n
≤ Cn ≤

√
2√
e
· 4n

(n + 1)
√

n
. (M.12)

Cn = Θ
(

4n

n3/2

)
. (M.13)

Cn ≈
1√
π
· 4n

n3/2
. (M.14)

For further reading see [9] and [43].

M.4 Applications

The Catalan numbers play an important role in many applications. In each case we
find the number by using M.2.1.

• Suppose we have n+1 variables x0, x1, . . . , xn whose product is to be computed
by multiplying them in pairs. How many ways are there to insert parenthe-
ses into the product Πn

i=0xi so that the order of multiplication is completely
specified? The Catalan number Cn is the answer.
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• The Catalan number count the number of ways of grouping any objects.

• How many noncrossing handshakes are possible with n pairs of people?

But the following problem was first proposed by Euler. It examines a given convex
polygon of n ≥ 3 sides. Euler wanted to count the number of ways the interior of the
polygon can be subdivided into triangles by drawing diagonals that do not intersect.
Let tn be this number. As an exercise verify that

tn+1 = t2tn + t3tn−1 + . . . + tn−1t3 + tnt2.

Theorem M.4.1 (Euler) Cn−2 is the number of ways of dividing a convex polygon
with n ≥ 4 nodes into triangles by drawing n− 3 non-intersection diogonals.
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Appendix N

Fixed Points in Permutations

N.1 Derangements

A derangement of a string of distinct elements is a permutation of the elements such
that no element appears in its original position. Equivalently, a derangement is an
injective function of a finite set onto itself without a fixed point, where a fixed point
x of a function f : X → X being f(x) = x.

The number of derangements of {1, . . . , n} is denoted by Dn. For an explicit
description of Dn we use the principle of inclusion and exclusion. Let Pi be the
property: The element i is in the ith position. Then

N(i) = (n− 1)!, (N.1)

since i is fixed and the remaining n − 1 elements can be permutated in any way.
Because this is independent of the concrete choice of the position i we get N1 = (n−1)!.
Similarly, Nk = (n − k)! is the number of permutation with at least k chosen fixed
points. Then we can apply the principle of inclusion/exclusion:

Dn = n!−
(

n

1

)
(n− 1)! +

(
n

2

)
(n− 2)!± . . . + (−1)n

(
n

n

)
0!

= n!− n!
1!

+
n!
2!
± . . . + (−1)n n!

n!

= n!
(

1− 1
1!

+
1
2!
± . . . + (−1)n 1

n!

)
.

This gives us the following values for the derangement numbers:

n 1 2 3 4 5 6 7 8 9 10

Dn 0 1 2 9 44 265 1,854 14,831 133,496 1,334,961
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In view of ex =
∑∞

k=0
1
k!x

k for any real number x, we find

1
e

= e−1 =
∞∑

k=0

(−1)k 1
k!

. (N.2)

Consequently Dn/n! is very close to the number 1/e.

Theorem N.1.1 For the number Dn of derangements the following holds

Dn = n! ·
n∑

k=0

(−1)k 1
k!

(N.3)

≈ n!
e

. (N.4)

For further reading see [87].

N.2 A given number of fixed points

Now we consider Dn,k the number of permutations of n elements with exactly k fixed
points.1 The following equations are not hard to see: Dn,0 = Dn, Dn,n−1 = 0 and
Dn,n = 1. In general,

Theorem N.2.1 Let Dn,k be the number of permutations of 1, . . . , n elements with
exactly k fixed points. Then

Dn,k =
(

n

k

)
Dn−k ≈

n!
ek!

. (N.5)

Proof. There are
(
n
k

)
ways of choosing the k numbers which are fixed. The

remaining n− k have to be deranged, and this can be done in Dn−k ways.
In view of N.1.1

Dn,k =
(

n

k

)
Dn−k ≈

n!
k!(n− k)!

· (n− k)!
e

=
n!
ek!

.

2

n \ k 0 1 2 3 4 5 6 7

1 0 1
2 1 0 1
3 2 3 0 1
4 9 8 6 0 1
5 44 45 20 10 0 1
6 265 264 135 40 15 0 1
7 1854 1855 924 315 70 21 0 1

1The problem to calculate Dn,k is often called the ”Rencontre” problem.
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Corollary N.2.2 The probability that a permutation has exactly k fixed points is
approximately 1/ek!.

Study the following table with care and note that the sum is not dependent on
the value of n.

n 0 1 2 3 4∑n
k=0

1
ek! 0.3678 . . . 0.7357 . . . 0.9196 . . . 0.9809 . . . 0.9962 . . .

Knowing all these facts, we obtain that it is a rare event that a permutation has
many fixed positions, and we can determine the average number of fixed points in a
permutation.

Theorem N.2.3 On average there is one fixed position in a randomly chosen per-
mutation (independently of n).
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Appendix O

Elements of Group Theory

O.1 Groups

Let Γ be a nonempty set and a (binary) map · on Γ given; then (Γ, ·) is called a group
if the following conditions are satisfied:

Closure: For all a, b ∈ Γ, a · b ∈ Γ;

Associativity: For all a, b, c ∈ Γ, (a · b) · c = a · (b · c);

Identity: There exists e ∈ Γ such that for any a ∈ Γ it is a · e = e · a = a;

Inverse: For each a ∈ Γ there is an element b ∈ Γ such that a · b = b · a = e.

If, in addition,

Commutativity: For all a, b ∈ Γ, a · b = b · a, then Γ is called a commutative, or
Abelian, group.

As example consider the following groups:

G1 a b c d

a a b c d
b b a d c
c c d a b
d d c b a

G2 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2
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G3 ∅ R S N

∅ ∅ R S N
R R ∅ N S
S S N ∅ R
N N S R ∅

G1 and G3 are isomorphic, and is called the Klein group, but this group and G2

cannot be isomorphic. Do you find a third non-isomorphic group with four elements?
If not, prove that such a group does not exist.

A group Γ is called cyclic if there is an element a ∈ Γ such that

Γ = {an : n an integer}. (O.1)

Let (Γ, ·) be group. If H is a subset of Γ such that H is a group with the operation ·,
then H is called a subgraph of Γ. Every group has two trivial subgroups, the group
consisting of the identity alone and the whole group.

Theorem O.1.1 (Lagrange’s theorem) The order of a subgroup of a finite group Γ
is a factor of the order of Γ.

The converse statement is not true: The alternating group A4, which is of order
12, has no subgroup of order 6.

Corollary O.1.2 Every group of prime order is cyclic.

A complete introduction into the theory of groups is given by Gallian [94].

O.2 The number of finite groups

Obviously, a finite cyclic group Γ with n elements is isomorphic to Γn. Consequently,
in view of O.1.2, we have only list the number of groups for non-primes.1

n 4 6 8 9 10 12 14 15 16 18 20

number of groups 2 2 5 2 2 5 2 1 14 5 5

n 21 22 24 25 26 27 28 30 32 33 34

number of groups 2 2 15 2 2 5 4 4 51 1 2

n 35 36 38 39 40 42 44 45 46 48 49

number of groups 1 14 2 2 14 6 4 2 2 52 2

Further reading: Speiser [224].
1But note, that there are non-primes with only one group of this order.
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O.3 Permutation groups

Recall that a permutation of a set S is a function from S to S that is both one-to-one
and onto. A permutation group of a set S is a set of permutations of S that forms a
group under function composition.
We will often focus on the case where S is finite; the symmetric group Sn of all
permutations of n elements.

Theorem O.3.1 (Cayley) Every group is isomorphic to a group of permutations.

Let Γ be a group of permutations of a set S. We define the following concepts:

• For each i ∈ S, let
stab(i) = {π ∈ Γ : π(i) = i}, (O.2)

called the stabilizer of i in Γ.

• For each i ∈ S, let
orb(i) = {π(i) : π ∈ Γ}, (O.3)

called the orbit of i under Γ.

We leave the reader to show that stab(i) is a subgroup of Γ of S for any i ∈ S.

Theorem O.3.2 Let Γ be a (finite) permutation group of a set S. Then for any
i ∈ S,

|Γ| = |orb(i)| · |stab(i)|. (O.4)

Hence, we are interested in counting the number of orbits.

Lemma O.3.3 Let Γ be a finite permutation group of a set S with n orbits, then

n =
∑
i∈S

1
|orb(i)|

. (O.5)

Proof. Suppose that X1, X2, . . . , Xn are the orbits. Then

S = X1 ∪X2 ∪ . . . ∪Xn.

It follows that∑
i∈S

1
|orb(i)|

=
n∑

j=1

∑
i∈Xj

1
|orb(i)|

=
n∑

j=1

∑
i∈Xj

1
|Xj |

=
n∑

j=1

1
|Xj |

∑
i∈Xj

1 =
n∑

j=1

1
|Xj |

|Xj | = n.

2

For any group Γ of permutations on a set S and any π ∈ Γ, we let

fix(π) = {i ∈ S : π(i) = i}, (O.6)

called the set of fixed points of π.2 The double counting principle gives
2Recall that we counted the number of permutations with a given number of fixed points in N.2.1.
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Lemma O.3.4 Let Γ be a finite permutation group of a set S, then∑
i∈S

|stab(i)| =
∑
π∈Γ

|fix(π)|. (O.7)

Then

Theorem O.3.5 (Burnside’s lemma) If Γ is a finite permutation group of a set S
with n orbits. Then

n =
1
|Γ|
∑
π∈Γ

|fix(π)|. (O.8)

Proof. Our considerations above establish the following chain of equalities:

1
|Γ|
∑
π∈Γ

|fix(π)| = 1
|Γ|
∑
i∈S

|stab(i)| = 1
|Γ|
∑
i∈S

|Γ|
|orb(i)|

=
∑
i∈S

1
|orb(i)|

= n.

2
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Appendix P

Latin squares

Latin squares are of interest arose through their use in statistical experimental design,
but they are also in pure theoretical sense, a trivial example is the fact that the
composition table of a finite group is a Latin square.1

P.1 Finite fields

Theorem P.1.1 Each finite field is of order of a power of a prime.
For each prime p and each positive integer n, there is, up to isomorphism, a unique
field of order pn.

The unique field is called a Galois field GF(pn). If n = 1 and only in this case
GF(p) = Γp. Furthermore, the structure of Galois fields is completely described.

Remark P.1.2 Consider the Galois field GF(pn).

a) As a group under addition, GF(pn) is isomorphic to

Γp ⊕ Γp ⊕ . . .⊕ Γp︸ ︷︷ ︸
n−times

. (P.1)

b) As a group under multiplication, the set of nonzero elements of GF(pn) is isomor-
phic to

Γpn−1. (P.2)

P.2 The Existence of Latin squares

An n × n Latin square of order n is a n × n matrix of symbols, usually 1, 2, . . . , n,
where each symbol appears exactly once in each row and each column of the matrix.2

1As a popular example Latin squares of order 3 play an important role in the play called ”Sodoku”.
2Latin squares may also be regarded as bicolored graphs Kn,n in which the edges are also colored.

the vertices of the first color correspond to the rows of the Latin square while the vertices of the
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The following is an example for a 4× 4 Latin square.

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

May be the reader find this square well-known; and indeed we considered a matrix
as the operation table for (finite) groups which is essentially a Latin square.3 This
observation gives the following

Lemma P.2.1 For all n ≥ 2, we can obtain an n× n Latin square from the table of
the group (Γn,+) if we replace the occurences of 0 by the value of n.

In other terms, for each n ≥ 2 an n× n Latin square exists. But how much? The
following theorem seems intuitively true, but is not simple to prove, compare [142].

Theorem P.2.2 (M.Hall) There are at least l(n) =
∏n

k=1 k! Latin squares of order
n.

n 1 2 3 4 5 6 7

l(n) 1 2 12 288 34,560 24,883,200 124,913,664,000

We estimate the order of l(n). For an even number n ≥ 4

n∏
k=1

k! ≥ 2n/2
(n

2

)
!n/2 ≥ 2n/2

(
e

(
n/2
e

)n/2
)n/2

= (2e)n/2
( n

2e

)n2/4

=
nn2/4

(2e)n/2
.

The bound l(n) is extremely bad. In [118] we find a better estkimated values for
the number lreal(n) of Latin squares. l(n) grows exponentially in n; is lreal(n) a
superexponential function?

An r × n (r ≤ n) Latin rectangle based on 1, . . . , n is an r × n matrix that each
entry is one of the numbers 1, . . . , n and each number occurs in each row and column
at most once.

Theorem P.2.3 ([142])

a) Each r × n Latin rectangle can extend to a Latin square of order n.

b) There at least
∏n−r+1

k=1 k! Latin rectangles.

second color stand for the columns. Every edge is colored with one of the n colors so that each vertex
is incident with one edge of each color.

3The converse cannot be true (Why?).
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P.3 Orthogonal Latin squares

There are several other 4× 4 Latin squares, than are given above:

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

and,

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

From these two Latin squares we are able to produce all of the ordered pairs in
{1, 2, 3, 4}2.

(1,1) (2,2) (3,3) (4,4)
(2,3) (1,4) (4,1) (3,2)
(3,4) (4,3) (1,2) (2,1)
(4,2) (3,1) (2,4) (1,3)

showing that all the 16 pairs are distinct. We now question whether or not we can do
this for n× n Latin squares in general.
Let Lk = (a(k)

ij , k = 1, 2 be two n×n Latin squares. If the n2 ordered pairs (a(1)
ij , a

(2)
ij )

are distinct, then L1 and L2 are called a pair of orthogonal Latin squares. As exercise
show

1. There is no pair of 2× 2 orthogonal Latin squares.

2. There is a pair of 3× 3 orthogonal Latin squares.

3. (Already shown above:) There are three pairs of 4×4 orthogonal Latin squares.

Can we continue this sequence? First we create an upper bound for the number of
orthogonal Latin squares.

Theorem P.3.1 For n ≥ 2 the largest possible number of n × n Latin squares that
are orthogonal in pairs is n− 1.

Proof. Let
Lm = (a(m)

ij ), (P.3)

m = 1, . . . , k be distinct n × n Latin squares. We may assume that the squares are
in standard form, which means that its first row is 12 . . . n. In other words,

a
(m)
1j = j (P.4)
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for all 1 ≤ m ≤ k.
Now consider a

(m)
21 for all 1 ≤ m ≤ k. These entries in the second row and first column

must be different from 1. Furthermore, if there exists 1 ≤ l < m ≤ k with a
(l)
21 = a

(m)
21 ,

then the pair Ll and Lm cannot be an orthogonal pair (Why?). Consequently, there
are at most n− 1 choices for the entries a

(m)
21 in any of our Latin squares. 2

Secondly, we give a construction n− 1 of n×n Latin squares for specific values of
n: Let n > 2 be a power of a prime, that is n = pt where p is a prime and t a positive
integer. Let

F = GF(pt) = {x1, x2, . . . , xn} (P.5)

be the Galois field of order n, where x1 is the unity and xn the zero.
For each 1 ≤ m ≤ n− 1 let

Lm = (a(m)
ij ), (P.6)

be the n× n matrix with
a
(m)
ij = xm · xi + xj . (P.7)

First we show that each Lm is a Latin square. If not there are two identical elements
in the same row or column. Suppose it occurs in a column. Then

xm · xr + xj = a
(m)
rj = a

(m)
sj = xm · xs + xj .

this implies that xm ·xr = xm ·xs, by the cancellation for addition in F . Since m 6= n
the element xm is not the zero in F . Hence, xr = xs and r = s. Similar for the rows
in Lm.
Now we have n − 1 Latin squares. We have to prove that they orthogonal in pairs.
Assuming not. Let 1 ≤ m < k ≤ n− 1 with

a
(m)
ij = a(m)

rs

a
(k)
ij = a(k)

rs

and (i, j) 6= (r, s). Equivalently

xm · xi + xj = xm · xr + xs

xk · xi + xj = xk · xr + xs.

Subtracting these equations, we find

(xm − xk) · xi = (xm − xk) · xr.

With m 6= k it follows that xm − xk cannot be the zero. Thus xi = xr. Putting this
back into either of the above equations, we find xj = xs. Consequently, i = r and
j = s.
We proved (in a constructive way):

Theorem P.3.2 Let n > 2 be a power of a prime. Then there are n − 1 of n × n
Latin squares that are orthogonal in pairs.
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The first natural number which is not a power of a prime is 6. Euler in 1779
observed the following problem:

Thirty-six officers of six ranks and from six different regiments are to
march in a square formation 6 × 6. Each row and each column of the
formation is to contain one and only one officer of each rank and one and
only one officer from each regiment. Is such formation possible?

Euler’s conjecture, that there was no solution, around 1900, Tarry showed correct.

n 2 3 4 5 6 7

Does GF(n) exist? yes yes yes yes no yes

number of orthogonal Latin squares 1 2 3 1

n 8 9 10 11 12 13

Does GF(n) exist? yes yes no yes no yes

number of orthogonal Latin squares 7 8
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Appendix Q

Hadamard matrices

In 1893 Hadamard showed that any n × n matrix H, whose entries hij all satisfies
|hij | ≤ 1, has determinant at most nn/2, where equality occurring only if HHT = nE.

We introduce a family of matrices all whose entries are ±1. A n× n matrix with
entries ±1 is called a Hadamard matrix of order n if

H ·HT = HT ·H = nE. (Q.1)

From the definition the following facts follow immediately (Exercise).

Observation Q.0.3 Let H be a Hadamard matrix of order n. Then

a) HT is also a Hadamard matrix.

b) Any two rows of H are orthogonal; and any two columns of H are orthogonal.

c)
detH = ±nn/2, (Q.2)

d) H is invertible with

H−1 =
1
n

HT . (Q.3)

Theorem Q.0.4 Let H be a Hadamard matrix of order n. Then n = 1, 2 or n = 2m
for some positive integer m.

Proof. 2

Examples for the specific orders n:

H0 = (1).

H1 =
(

1 1
1 −1

)
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H2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


And, in general, there is a straightforward way of constructing Hadamard matrices.

Observation Q.0.5 Starting with the Hadamard matrix H0 = (1), we define for
each m ≥ 1 recursively the Hadamard matrices

Hm =
(

Hm−1 Hm−1

Hm−1 −Hm−1

)
(Q.4)

Now we have Hadamard matrices of order 0, 1, 2, 4, . . . , 2m, . . .. Does a Hadamard
matrix for other values of n exist?
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Appendix R

Metric Spaces

Distance is the mathematical description of the idea of proximity, and consequently,
will play an important role in mathematics. A metric space is a kind of of space in
which the concept of distance has meaning.

R.1 Distances

The following term was introduced by Fréchet in 1906: A pair (X, ρ) is called a metric
space if X is a nonempty set of elements called the points, and ρ : X ×X → IR is a
real-valued function satisfying:

(i) ρ(x, y) ≥ 0 for all x, y in X;

(ii) ρ(x, y) = 0 if and only if x = y;

(iii) ρ(x, y) = ρ(y, x) for all x, y in X; and

(iv) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z in X (triangle inequality).

Usually, such a function ρ is called a metric.

Note that the axioms are not independent: (i) is a consequence of (iv). On the
other hand,

Observation R.1.1 A metric ρ can be defined equivalently by

(ii) ρ(x, y) = 0 if and only if x = y; and

(iv’) ρ(x, y) ≤ ρ(x, z) + ρ(y, z) for all x, y, z in X.

We will say that the quantity ρ(x, y) is the distance between the points x and y.

In the biological context the equality of words makes no sense, since mutations do
not allow identical sequences in reality. On the other hand, in biomolecular sequences,
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high sequence similarity usually implies significant functional and structural similarity.
Consequently, the following variants of ”metric approaches” will be also of interest:

• If ρ satisfies (ii) only in the weaker form

(ii’) ρ(x, x) = 0 for all x in X;

we say that ρ is a pseudometric.

• If the function ρ satisfies the conditions (i),(ii’) and (iii) it is called a dissimi-
larity. It will be the dual of the approach of ”similarity”.

• A metric ρ is called an ultrametric if

ρ(v, w) ≤ max{ρ(v, u), ρ(w, u)} (R.1)

for any points u, v, w.
Ultrametric distances very useful in phylogenetics when implying of a constant
rate of evolution. Furthermore, if distances between sequences are ultrametric
then the most similar sequences are also the closely related.
It is easy to see that

Observation R.1.2 The following is true for all ultrametric spaces (X, ρ):

If ρ(v, u) 6= ρ(w, u), then ρ(v, w) = max{ρ(v, u), ρ(w, u)}.

That means that all triangles in (X, ρ) are isosceles triangles where the base is
the shorter side.

A metric, pseudometric, ultrametric or dissimilarity ρ on a finite set X of n points
can be specified by an n × n matrix of (nonnegative) real numbers. (Actually

(
n
2

)
numbers suffice because of (ii’) and (iii).)

R.2 Examples

We will find distances for many sets which are of great importance.

• The function

ρ(x, y) =
{

1 : x 6= y
0 : x = y

defines a metric for any set X.1

• The field of real numbers is considered as a metric space with the metric
ρ(x, y) = |x− y|.

1This generality makes the space not very informative.
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• The Euclidean plane is defined in the affine plane with the Euclidean metric√
(x1 − x2)2 + (y1 − y2)2 between the points (x1, y1) and (x2, y2) derived from

a norm ||.||:
||(x, y)|| =

√
x2 + y2. (R.2)

• Let F([a, b], IR) be the set of all continuous real functions over the real numbers
between a and b.

ρ(f, g) = sup{|f(x)− g(x)| : a ≤ x ≤ b} (R.3)

defines a metric for f, g ∈ F([a, b], IR).

• For x = {xi}, y = {yi} ∈ IN IN the function

ρ(x, y) =
{

0 : x = y
1
n : otherwise, where n = min{n : xi 6= yi}

creates a (complete) ultrametric.

• Using the binary operation 4 -the symmetric difference between sets- we find
a metric for sets

Observation R.2.1 |S14S2| is a metric.

It is sufficient to show the triangle inequality.

S14S2 ⊆ S14S3 ∪ S34S2. (R.4)

Moreover,

S14S3 ∩ S34S2 = ((S1 ∩ S2) \ S3) ∪ (S3 \ (S1 ∪ S2)). (R.5)

That means, if an element is in S14S3 ∩ S34S2, then it cannot be in S14S2.
2

• The Hamming distance between v and w in An, for an alphabet A is the number
of positions in which v and w disagree:

ρH((a1, . . . , an), (b1, . . . , bn)) = |{i : ai 6= bi for i = 1, . . . , n}|, (R.6)

for ai, bi ∈ A.

• Consider the set A? of all words over the alphabet A. The edit distance ρL,
between two words of not necessarily equal length is the minimal number of ”edit
operations” required to change one word into the other, where an edit operation
is a deletion, insertion, or substitution of a single letter in either word.2

2At first glance, it seems that the spaces with Hamming distance are subspaces of the space with
Levenshtein distance, but this is not true: Consider the two words v = (ab)n and w = (ba)n; then
ρL(v, w) = 2 but ρH(v, w) = 2n.

286



• To extend the Hamming distance to a metric for all words we may proceed in
the following way: Add a ”dummy” letter ”-” to A. We define a map

cl : (A ∪ {−})? → A? (R.7)

deleting all dummies in a word from (A∪ {−})?. Then for two words w and w′

in A? we define the extended Hamming-distance as

ρ(w,w′) = min{ρH(w,w′) : w,w′ ∈ (A ∪ {−})?, |w| = |w′|,
cl(w) = w, cl(w′) = w′}. (R.8)

Observation R.2.2 The extended Hamming-distance coincides with the Lev-
enshtein metric.

• We create a metric ρ for the set Sn of all permutations of n elements by

ρ(π, κ) = i(π ◦ κ−1). (R.9)

• Each graph is a metric space, and conversely

Observation R.2.3 (Hakimi, Yau [116], [143]) Each finite metric space is
equivalent to some network.

When we restrict to metric spaces with integer-valued distances we have a deeper
result.

Observation R.2.4 (Kay, Chartrand [148]) Let (X, ρ) be a finite metric spaces
where all values of ρ are integers. Then (X, ρ) is a distance space of some graph
if and only if for any two points u and v with ρ(u, v) ≥ 2 there is a third point
w such that

ρ(u, w) + ρ(w, v) = ρ(u, v).

• One of the major challenges of shape analysis is object recognition, but there
is to distinguish between thousands of object categories, each characterized by
tremendous variability. At the heart of this work is Gromov’s approach using
the Hausdorff distance: For the sets A and B in a metric space (X, ρ) we define:

ρ(A,B) = max{sup
a∈A

inf
b∈B

ρ(a, b), sup
b∈B

inf
a∈A

ρ(a, b)}. (R.10)

Equivalently

ρ(A,B) = inf{r > 0 : A ⊆ Ur(B), B ⊆ Ur(A)}, (R.11)

where Ur(·) stands for the r-dilation of the set. More by Sapiro [212].
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R.3 Topological spaces

One calls topological space a set X equipped with a family O of subsets of X, called
the open sets of X satisfying the following conditions:

(i) ∅ ∈ O and X ∈ O;

(ii) Every union of open sets is open; and

(iii) Every finite intersection of open sets is open.

We will find topologies for many sets and of great importance. Firstly, we consider
the following examples, we will meet many more later.

• Let X be a nonempty set, then we may define the open sets by O = P(X),
which is called the discrete topology.

• Let X be a nonempty set, then we may define the open sets by O = {∅, X},
called the coarse topology.

• Every metric space is automatically a topological space considering its open
sets.

Let (X,O) be a topological space. A subset S of X is called closed if X \ S is open.

Theorem R.3.1 Let (X,O) be a topological space. Then

(i) ∅ and X are closed;

(ii) Every intersection of closed sets is closed; and

(iii) Every finite union of closed sets is closed.

The proof follows immediately by passage the definition of open sets to comple-
ments. 2

R.4 Radon’s lemma

Theorem R.4.1 Let C = {Cα}α∈A be a collection of closed sets of IRd where

• For at least one index α0 the set Cα0 is bounded, consequently compact.

• Each finite subcollection of C has a nonempty intersection.

Then ⋂
α∈A

Cα 6= ∅. (R.12)
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Proof. Assume that

∅ =
⋂

α∈A

Cα =
⋂

α∈A\{α0}

Cα ∩ Cα0 . (R.13)

Then ⋃
α∈A\{α0}

(IRd \ Cα) ⊇ Cα0 (R.14)

says that
{IRd \ Cα}α∈A\{α0} (R.15)

is an open covering of Cα0 . Since this set is compact, a finite subcollection

{IRd \ Ci}k
i=1 (R.16)

is a covering too. Equivalently,

k⋂
i=1

Ci ∩ Cα0 = ∅, (R.17)

which contradicts the conditions on C. 2

289



Appendix S

Minimum Spanning Trees

The minimum spanning tree problem is one of the most typical problems of combina-
torial optimization; methods for its solution have generated important ideas of modern
combinatorics and have played a central role in the design of computer algorithms.
The problem is usually stated as follows:

Given a weighted (connected) graph one would then wish to select for con-
struction a set of communication links that would connect all the vertices
and have minimal total cost.

S.1 A greedy strategy

Starting with Boruvka in 1926, Kruskal in 1956 and Prim in 1957, Minimum Spanning
Trees have a well-documented history [104] and effective constructions [47]. In view
of the many contributions to the problem of constructing minimum spanning trees,
its popularity through the ages, and its natural applications to various practical ques-
tions, it is hopeless to expect a complete list of the many facets of the problem. In
other terms, the problem has an interest in its own.1

A minimum spanning tree in a graph can be found with the help of Kruskal’s
method2. For an introduction to this algorithm the reader should prove the following
facts:

Observation S.1.1 Let G = (V,E, f) be a network, where all edge lengths are dis-
tinct. Then it holds

1It seems to be the first network optimization problem ever studied. Its history dates back to
at least 1926. Boruvka [32] produced the first fully realized minimum spanning tree algorithm by a
parallel technique, and it has been rediscovered several times, Sollin in [24]

2This cheapest-link algorithm is the mother of all greedy algorithms, that is to takes the best
choice and run, [158].
Another method, created by Prim [193] and Dijkstra [67], is a typical example for dynamic
programming.
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a) Let V ′ ⊆ V be a nonempty subset of vertices, and let e be an edge of minimal
length and with one endvertex in V ′ and the other not. Then every minimum
spanning tree contains e.

b) Let C be a cycle in G, and let e be the longest edge belonging to C. Then e does
not belong to any minimum spanning tree of G.

Now let us have a look at the algorithm.

Algorithm S.1.2 (Kruskal [159]) A minimum spanning tree in a graph G = (N,E)
with a positive length-function f : E → IR can be found

1. Start with the forest T = (N, ∅);

2. Sequentially choose the shortest edge that does not form a circle with already
chosen edges;

3. Stop when all vertices are connected, that is when |N |−1 edges have been chosen.

Or in a dualistic version:

Algorithm S.1.3 Given a network G = (V,E, f), a minimum spanning tree T for
G can be found by the following procedure:

1. Start with the graph G = (V,E);

2. Sequentially delete the longest edge that does not disconnect the remaining graph;

3. Stop when the graph does not contain a cycle, that is when |V |−1 edges remain.

A nice description of the difference between the two techniques is given by Lovász
et.al. [164]:

There is this story about the pessimist and the optimist: They each get a
box of assorted candies. The optimist always picks the best; the pessimist
eats the worst (to save the better candies for late). So the optimist always
eats the best available candy, and the pessimist always eats the worst
available candy; and yet, they end up with eating same candies.

A complete discussion of minimum spanning tree strategies in networks are given by
[234], [235], [253].

S.2 Shortest Connectivity

The problem of ”Shortest Connectivity” has a long and convoluted history.3 Usually,
the problem is known as Steiner’s Problem and it can be described more precisely in

3The history of Steiner’s Problem started with P.Fermat early in the 17th century and C.F.Gauß
in 1836. At first perhaps with the famous book What is Mathematics by R.Courant and H.Robbins
in 1941, this problem became popularized under the name of Steiner.
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the following way: Given a finite set of points in a metric space, search for a network
that connects these points with the shortest possible length.

Steiner’s Problem seems disarmingly simple, but it is rich with possibilities and
difficulties. This is one of the reasons that an enormous volume of literature has been
published, starting in the seventeenth century and continuing today. More and more
real-life problems are given which use Steiner’s Problem or one of its relatives as an
application, as a subproblem or as a model, compare [52].

The most surprising application of Steiner’s Problem is in the area of phylogenet-
ics. Bern and Graham [26]:

David Sankoff of the University of Montreal and other investigators defined
a version of the Steiner problem in order to compute plausible phyloge-
netic trees. The workers first isolate a particular protein that is common
to the organism they want to classify. For each organism they then deter-
mine the sequence of the amino acids that make up the protein and define
a point at a position determined by the number of differences between
the corresponding organism’s protein and the protein of other organisms.
Organisms with similar sequences are thus defined as being close together
and organisms with dissimilar sequences are defined as being far apart.
In a shortest network for this abstract arrangement of given points, the
Steiner points correspond to the most plausible ancestors, and edges corre-
spond to relations between organisms and ancestor that assume the fewest
mutations.

The latter remark explains the importance of trees having the least possible length
in phylogenetic spaces for evolutionary relation investigation. This approach to Evo-
lution Theory was suggested first by Fitch [85] in 1971, and also explicitly written
by Foulds et al. [91], [222] in 1979. Unfortunately, this idea does not give a simple
method.4

The central question of ”Shortest Connectivity” in networks was originally formu-
lated by Hakimi [117] in 1971:

Steiner’s Problem in Graphs
Given: A connected graph G = (V,E) with a length-function f : E → IR, and
a nonempty subset N of V .
Find: A connected subgraph G′ = (V ′, E′) of G such that

L(G′) =
∑
e∈E′

f(e) (S.1)

is minimal.
4And seems to have been rather forgotten in the field of biology after tree-building program

packages became widely available.
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Two specific cases are well-known:

|N | = 2: We search a shortest path interconnecting the two points in N . Here there
does not exist a Steiner point, so any internal vertex on the path has degree 2.
To find such paths we use the dynamic programming strategy.

N = V : Here Steiner points are not necessary; we look for a minimum spanning tree.
This is easy to do using the greedy strategy.

Two algorithms, which generalize our specific cases, create an SMT in graphs.
The Dreyfus and Wagner solution method [71] breaks the problem down into sub-
problems, and each of these subproblems themselves into subproblems etc., until the
subproblems can be solved with help of a shortest path technique. The time com-
plexity is O(3nk + 2nk2 + k3), where n = |N | and k = |V |. Hence, the algorithm
is exponential in the number of given points and polynomial in the number of other
vertices.
On the other hand, Hakimi [117]) proposed that a minimum spanning tree be cal-
culated for each of the possible subsets of vertices, from just the set of given points
through to the complete set of vertices. The time complexity of the algorithm is
O(n2 · 2k−n + k3), where n = |N | and k = |V |. Hence, the algorithm is polynomial in
the number of given points and exponential in the number of the other vertices.
All known exact algorithms for Steiner’s Problem in graphs are in some way enu-
merative algorithms. However, they differ in how the enumeration is done and how
clever their strategies for avoiding total enumeration are.5 Consequently, all of these
algorithms need exponential time. But this is not a surprise, since Steiner’s Problem
in graphs is NP-hard, [147].

Surveys on Steiner’s Problem in graphs can be found in [137], [194].

5For the problem of enumerating all solutions see [51].
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Appendix T

Matroids

In 1935 Whitney introduced the concept of a matroid. His intention was to elabo-
rate fundamental properties of dependence which are common to graphs and matrices.

Many combinatorial optimization problems can be formulated as follows: Given a
set system (E,F) for a finite set E, and a cost function c : F → IR, find a set X in
F whose total cost

c(X) =
∑
e∈X

c(e) (T.1)

is minimumal.

If we restrict ourselves to those combinatorial optimization problems, where (E,F)
describes an independence system we can generate a general and useful theory for such
problems.

T.1 Independence systems

A set system (E,F) for a finite set E is called a matroid if

1. ∅ ∈ F ;

2. If Y ∈ F and X ⊆ Y then X ∈ F ;

3. If X, Y ∈ F and |X| > |Y |, then there is an element x ∈ X\Y with Y ∪{x} ∈ F .

If only (i) and (ii) are satisfied we will speak about an independence system.1

The members of F are called independent. For X ⊆ E, the maximal independent
subsets of X are called bases of X.

1The name matroid points out that these structures are generalizations of matrices. Namely, the
set of columns of a matrix over some field which are linearly independent form a matroid. (Why?)
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Theorem T.1.1 Let (E,F) be an independence system. Then the following state-
ments are (pairwise) equivalent:

• If X, Y ∈ F and |X| > |Y |, then there is an element x ∈ X\Y with Y ∪{x} ∈ F .

• If X, Y ∈ F and |X| = |Y | + 1, then there is an element x ∈ X \ Y with
Y ∪ {x} ∈ F .

• For each X ⊆ E, all bases of X have the same size.

Proof. The implications (a)⇒(b)⇒(c) are obvious.
To prove (c)⇒(a), let X, Y ∈ F and |X| > |Y |. By (c), Y cannot be a basis of X ∪Y .
So there must be an x ∈ (X ∪ Y ) \ Y = X \ Y such that Y ∪ {x} ∈ F . 2

T.2 The greedy algorithm

A greedy algorithm is one in which we make the best choice possible at each step,
regardless of the subsequent effect of that choice.
An immediate generalization of S.1.2 is the following strategy.

Algorithm T.2.1 (Greedy algorithm) Given an independence system (E,F) for a
finite set E, and a cost function c : F → IR. Consider the following procedure:

1. Sort E = {e1, e2, . . . , en} such that c(e1) ≤ c(e2) ≤ . . . ≤ c(en);

2. Set F := ∅;

3. for i := 1 to n do:
if F ∪ {ei} ∈ F then set F := F ∪ {ei}.

In step 1, the complexity of sorting the n values depends, of course, on the choice
of the sorting algorithm, but it never takes more than quadratic time. The other
steps need linear time (Exercise). Altogether, we get that the greedy strategy T.2.1
is an efficient algorithm.

Now, the most interesting questions is: Where does T.2.1 work exactly?

Theorem T.2.2 An independence system (E,F) is a matroid if and only if T.2.1
finds a minimum solution for all cost functions c.

Proof. First assume that (E,F) is a matroid, but there exists a cost function c for
which the greedy algorithm is not optimal, which means that the greedy algorithm
stops with a set F = {e1, . . . , ek}, but there exists a maximal independent set F ′ =
{f1, . . . , fk′} such that c(F ′) < c(F ). Since all maximal independent sets have the
same cardinality, we have k′ = k.

295



By construction of F it holds c(e1) ≤ . . . ≤ c(ek). Then the assumption c(F ′) < c(F )
implies that there exists an index 1 ≤ i ≤ k such that c(ei) > c(fi). Let

G = {e1, . . . , ei−1}
G′ = {f1, . . . , fi−1, fi}.

As G and G′ are both independent and |G′| > |G| there exists an x ∈ G′ \ G such
that G ∪ {x} ∈ F . But because of our choice of i and the definition of G′, we have

c(x) ≤ c(fi) ≤ c(ei).

This cannot be, the case though the greedy algorithm would have then chosen x.
To show the other direction assume now that the greedy algorithm is optimal for all
cost functions. We have to valid the third axiom.
Let X, Y ∈ F with |X| = |Y |+1, but for any element x ∈ X \Y we have Y ∪{x} /∈ F .
We define a cost function in the following way

c(x) =

 −|Y | − 2 : x ∈ Y
−|Y | − 1 : x ∈ X \ Y
0 : otherwise

Let F the output of the algorithm. Y is independent; and since Y contains all smallest
elements we have Y ⊆ F . On the other hand, it holds Y ∪ {x} /∈ F for all x ∈ X \ Y ,
which implies F ∩ (X \ Y ) = ∅. Hence,

c(F ) = c(Y )
= |Y | · (−|Y | − 2)
= −(|Y |2 + 2|Y |)
> −(|Y |2 + 2|Y |+ 1)
= −(|Y |+ 1)2

Furthermore,

c(F ) ≤ |X| · (−|Y | − 1)
= (|Y |+ 1) · (−|Y | − 1)
= −(|Y |+ 1)2

Altogether we find c(X) < c(F ), which cannot be. 2
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Appendix U

Computational Complexity

U.1 Sources for algorithms in graph theory

As discrete objects we are interested to handle these algorithmically.

1. Böckenhauer, Bongartz: Algoritmische Grundlagen der Bioinformatik; [31].

2. Chartrand, Oellermann: Applied and Algorithmic Graph Theory; [44].

3. Christofides: Graph Theory - An Algorithmic Approach; [48].

4. Jungnickel: Graphen, Netzwerke und Algorithmen; [143].

5. Valiente: Algorithms on Trees and Graphs; [240].

U.2 P versus NP
The class of problems which is solvable by an algorithm running in polynomially
bounded time is usually defined as P.
In theoretical computer science a problem is said to be efficiently solvable if it is in
P. This observation has led to the widely accepted consensus that feasible prob-
lems should have polynomial time complexity. This is reasonable, as polynomial time
complexity does not depend on the machine model provided realistic machines are
considered, [2].1 A problem for which it is conjectured that no polynomial algorithm
exists is said to be intractable. For instance, we saw that the problem of a shortest
path in a network is in P; but the problem of a longest path is intractable, see Garey

1The natural answer that a linear time algorithm is efficient, and an exponential time one not is to
be read with care: Consider two algorithms whose running times are t1(n) = c · n and t2(n) = 2n/c,
where c is a ”very large” number. Then the second algorithm is faster for all practical purposes.
As another example consider chess. There is only a finite number of possible games, seeing as
follows: First we have at most 32 figures on the 64 arrays on the board. Hence, in view of D.2.2 we
have at most

∑
−k = 23264k ≤ 6433 ≤ 1060 possible positions. second, a game is finite sequence

of positions. Since cycles are not are not of interest, we can estiamate the number of games by
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and Johnson [97].

The class NP is the class of decision problems that can be solved in polynomially
bounded time in a nondeterministic way. A nondeterministic algorithm

• Has the property that a state may determine many successor states, and each
of these followed up on simultaneously; or equivalently,

• Has two stages: First it guesses a structure of a potential solution; Secondly it
checks whether it is really a solution.

In other words, NP is the class of problems for which it is ”easy”, i.e. achievable in
polynomially bounded time, to check the correctness of a claimed solution; while P
is the class of problems that are ”easy” to solve.

P ⊆ NP. (U.1)

A problem is NP-hard if it is as ”hard” as any problem in NP; it is NP-complete
if it is both NP-hard and in NP. More exactly, a problem in NP is defined to be
NP-complete if all other problems in NP can be reduced to it with the help of a
transformation which takes polynomial time.
There is a straightforward strategy for proving new NP-complete problems, once we
have at least one (suitably chosen) known NP-complete problem available. To prove
that the problem Π1 is NP-complete, we merely show that

1. Π1 ∈ NP; and

2. Some known NP-complete problem Π2 can be transformed to Π1, using at most
polynomial time.

NPC denotes the class of all NP-complete problems. All the problems in this class
are believed to be intractable.
An important open question in the theory of computation is whether the containment
of these classes is proper; meaning, is P ⊂ NP? Usually, this statement is held to
be true, and is called Cook’s hypothesis, first stated in 1971 [59]. Note that the
statements

• P 6= NP, i.e. P ⊂ NP;

• NPC ∩ P = ∅; and

• NPC ∪ P ⊂ NP, i.e. NPC ∪ P 6= NP;

are pairwise equivalent, compare Garey and Johnson [97]. Roughly speaking, the
class of NPC problems has the following properties:

κ = 1060!. Then

lg κ ≤ lg e + 30 + 1060 lg
1060

e
< 31 + 106060 ≤ 1062.

Hence, there are at most 10κ = 101062
possible games, and the question ”Has white a winning

strategy?” can be solved in constant time!
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1. If an efficient solution is found for one, then it will work for all;

2. No such general solution has been found for any; but

3. There is no proof that an efficient solution cannot exist.

We assume that Cook’s hypothesis is true. By now there are several thousands of
problems known to be NP-complete. For none of these a polynomial algorithm has
been found. Furthermore, Strassen [230]:

”The evidence in favor of Cook’s hypothesis is so overwhelming, and the
consequences of their failure are so grotesque, that their status may per-
haps be compared to that of physical laws rather than that of ordinary
mathematical conjectures.”

Remember Church thesis; now we give the Polynomial-Time Church-Turing the-
sis: The class P captures the true notion of those problems that are computable in
polynomial time by sequential machines, and is the same for any physically relevant
model and minimally reasonable time measure of sequential computation that will
ever be devised. In other terms, in ”our world” P 6= NP holds.2

The set
NPI := NP \ (P ∪NPC) (U.2)

consists of the problems having ”intermediate” difficulty between P and NPC. It is
reasonable to ask if there is any ”usual” problem that is a candidate for membership
in NPI. A potential member is the problem of graph isomorphism.

U.3 The asymmetry of NP
Note that the definition of efficient computation, and hence of NP, is essentially
asymmetric. That means: When we have a ”yes” solution, we can provide a relatively
short proof of this fact. But when we have ”no” solution, no such short proof is
guaranteed.
For each problem Π, there is a natural complementary problem Πc: For all inputs x,
we say x ∈ Πc if and only if x /∈ Π. Of course, If Π ∈ P then Πc ∈ P.
Such a result for NP is far from to be clear. There is a class related to NP that
is designed to model this issue, called co-NP, defined by Π ∈ co-NP if and only if
Πc ∈ NP. It is unknown whether NP and co-NP are different.

2There are ”worlds” in which P = NP and others in which P 6= NP. Furthermore, if a ”world”
is chosen at random, the probability is 1 that it will be a world in which P 6= NP. For a proof and
a broader discussion see Schöning and Pruim [216].
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U.4 The complexity of enumeration problems

Sometimes we need the number of solutions to a problem. Enumeration problems
provide natural candidates for the type of problems that might be intractable even if
P = NP. Many such problems appear to be quite difficult. Clearly,

Observation U.4.1 An enumeration problem associated with an NP-complete prob-
lem is NP-hard.

The class #P (read: number-P) captures the problems of counting the number of
solutions of NP-problems. Moreover, some enumeration problems seem to be even
harder than the corresponding decision problems. On the basis of such observations
we have the class of the #P-complete problems (read: number-P-complete) which
is designed to reflect the difficulty of enumeration; see Garey and Johnson [97]. For
instance,

Remark U.4.2 (Jerrum [140]) Counting the number of trees with a given number
of vertices is #P-complete.

On the other hand, some nontrivial enumeration problems can be solved in poly-
nomial time. Consider the following problem:

The number of spanning trees
Given: A graph G.
Question: How many distinct spanning trees are there for G?

This question can be solved in polynomial time using Kirchhoff’s theorem 13.6.1.
Counting spanning trees is one of the few enumeration problems which has a polyno-
mially bounded time algorithm.

There are problems which decision version is in P, but the counting version is
#P-complete. For instance Vazirani [241] named:

• Perfect matching in general graphs.

• Number of trees in an undirected graph.3

• Counting graphs with a given degree sequence.

U.5 The spectrum of computational complexity

Tarjan [235] and [234] illustrates what one calls the ”Spectrum of computational com-
plexity”, a plot of problems, versus the complexities of their fastest known algorithms.
We generalize this concept to three regions, dividing all problems in the tractable,
the intractable ones and in a class for which the complexity is still unknown.4

3Not necessarily spanning trees and connected graphs.
4Provided P 6= NPC.
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Tractable log n Searching in an ordered universe
n Selection

Searching
Planarity

n log n Sorting
n2 Optimal pairwise alignment

Eulerian cycle
Shortest path
Tree isomorphism
Dynamic programing

n2 log n Minimum spanning tree
nlog 7 Matrix multiplication

n3 Metric closure
polynomially bounded Linear programming

Intermediate ? Graph isomorphism

Intractable NP-complete problems
exponential Traveling salesman problem

Hamiltonian cycle
Longest path
Shortest common superstring
Steiner’s problem
Chromatic number

superexponential Presburger arithmetic
undecidable The halting problem

Hilbert’s tenth Problem

At the bottom of the plot are the undecidable problems, those with no algorithms at
all. Above these are the problems that do have algorithms but only inefficient ones.
These problems form the subject matter of high-level complexity. The emphasis in
such a class is on proving non-polynomial lower bounds on the time requirements.5

At the top is the class of low-level complexity. For such problems lower bounds are
almost nonexistent; the emphasis is on obtaining even faster algorithms.
For a broader discussion of almost all these problems see Korte, Vygen [158] or Pa-
padimitiou, Steiglitz [186].

U.6 Bioinformatics

Computers are useless. They can only give you answers.
5In literature there is a little bit confusion about the term ”exponential”. We use it in the sense,

that there is a polynomial p such that the function grows how 2O(p(n)), since for any polynomial q
we have

q(n)p(n) = 2p(n)·log q(n) = 2O(p(n)).

But, on the other hand, we are already interested in the degree of the polynomial p(.).
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Pablo Picasso

It is extremely remarkable that the molecules which are the carriers of information
and the operational units which make life work are all linear polymers. Such polymers
can be written as sequences or words; and exactly these entities are the subjects which
can be handled by computers.

Bioinformatic stands for discussing biological questions with a computer, for ex-
ample about

• Searching in biological databases, in particular using public databases;

• Comparing sequences, in particular alignment sequences;

• Looking at protein structures;

• Phylogenetic analysis.

It may be of importance here to note that the culture of computational biology
differs from the culture of bioinformatics, Konopka, Crabbe [157]:

Sequence analysis plays an important role in both fields, but its methods
and goals are understood differently by computational biologists and by
bioinformaticians. Computational biology originally attracted a consider-
able number of practically minded theoretical biologists in the 1970s and
1980s who were both curious about the phenomenon of life and mathe-
matical literate. They wanted to study nucleic acid and protein sequences
in order to better understand life itself. In contrast, bioinformatics has
attracted a large number of skilled computer enthusiasts with knowledge
of computer programs that could serve as tools for laboratory biologists.
. . . Today’s split between computational biology and bioinformatics ap-
pears to be a reflection of a profound cultural clash between curiosity-
driven attitude of computational scientists and adversarial competitivness
of molecular biology software providers.

302



Appendix V

The genetic code

A block code is a code having all its words of the same length; this number of letters.
Of course, a block code is a prefix code.
The famous genetic code hardwired into every cell in your body is a good example for
another type of a block code. Because there are four possible nucleic acids: adenine
(a), cytosine (c), guanine (g), and uracil (u), that can appear at each location in a
code word. 20 amino acids: alanine, arginine, . . ., valine, are coded. Hence, each code
word must be of length 3.

u c a g

u phenylalanine serine tyrosine cysteine u
phenylalanine serine tyrosine cysteine c
leucine serine punctuation punctuation a
leucine serine punctuation tryptophan g

c leucine proline histidine arginine u
leucine proline histidine arginine c
leucine proline glutamine arginine a
leucine proline glutamine arginine g

a isoleucine threonine asparagine serine u
isoleucine threonine asparagine serine c
isoleucine threonine lysine arginine a
methionine threonine lysine arginine g

g valine alanine aspartic acid glycine u
valine alanine aspartic acid glycine c
valine alanine glutamic acid glycine a
valine alanine glutamic acid glycine g

Nature uses a similar approach, namely using ”supersymbols”, for the genetic code.
In the genetic code each codeword has a length of 6 bits, but this is not necessary,
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when we additionally use the binary alphabet A′ = {r, y} in which r codes for a purine
(a or g), y codes for a pyrimidine (c or u), each of 1 bit, and − codes for any one of
0 bit.1

u c a g

u y: phenylalanine -: serine y: tyrosine y: cysteine

r: leucine r: punctuation a: punctuation
g: tryptophan

c -: leucine -: proline y: histidine -: arginine

r: glutamine

a y: isoleucine -: threonine y: asparagine y: serine

a: isoleucine r: lysine r: arginine
g: methionine

g -: valine -: alanine y: aspartic acid -: glycine

r: glutamic acid

Glancing at this structure, it is clear that the genetic code is fault-tolerant, in the
sense that transcription errors in the third codon position frequently do not influence
the amino acid expressed. This is called the wobble-hypothesis-hypothesis.2

1− is a ”dummy” letter.
2Consider the amino acid composition given by the Swiss-Prot protein sequence data bank

www.expasy.ch
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Appendix W

The Linnaeus’ System

Classifications are of great relevance in biology. Here a class is defined as a group of
entities which are similar and related. In the book The System of Nature Linnaeus
introduced a system still in use today. We divide life into

• Domain: There are three domains. The first two, Bacteria and Archea, are made
up of many microscopic single-celled organisms. The third domain, Eukarya, is
diverse.

• Kingdom: Part of the Eukarya, namely protists, fungi, animals and plants;

• Phylum: Organisms built to the same underlying plan.

• Class: (not our mathematical sense of a class.) Part of a phylum. Contains
organisms that share important features.

• Order: Part of a class. Organisms in an order are usually similar in shape.

• Family: Part of an order. Organisms in a family have similar ways of life.

• Genus: Part of a family. A number of different species that are very closely
related.

• Species: A maximal group of individual organisms that are able to interbreed
and produce fertile offspring.

More or less all these groups are artificial, insofar as their members are categorized
according to agreed-upon levels of similarity rather than precise definitions. The
exceptions are species.1

This task is more complicated than it seems at first glance; Gould [102] wrote:

When systematists, also known as taxonomists, set out to reconstruct the
phylogeny (evolutionary history) of a group of species that they think

1A nice illustration of this point of view is given by Gould and Keeton [102]:
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are related, they have before them the species living today and the fossil
record. To reconstruct a phylogenetic history as closely as possible, they
must make inferences based on observational and experimental data. The
difficulty is that what can be measured is similarity, whereas the goal is
to determine relatedness.

Note that the definition of similarity cannot be the problem of the mathematical
analysis. This is, in any case, the task of the biological sciences. But mathematics
can help to check if the choice was not false.

Biological Postal

Domain Old/New World
Kingdom Country
Phylum State/Province
Class City
Order Street
Family Number
Genus Last name
Species First name
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logenetic combinatorics. Shaker Verlag, 2008.

[71] S.E. Dreyfus and R.A. Wagner. The Steiner Problem in Graphs. Networks,
1:195–207, 1972.

310



[72] V. Eberhard. Zur Morphologie der Polyeder. Leipzig, 1891.

[73] M. Eigen. Das Urgen. Nova Acta Leopoldina 243/52, Deutsche Akademie der
Naturforscher Leopoldina, 1980.

[74] M. Eigen. Stufen zum Leben. Serie Piper, 1992.

[75] K. Engel and H.D.O.F. Gronau. Sperner Theory in Partially Ordered Sets.
Leipzig, 1985.

[76] E.M. Engels. Charles Darwin. beck’sche reihe, 2007.

[77] P. Erdös and P.Szekeres. A combinatorial problem in geometry. Compositio
Math., 2:463–470, 1935.

[78] P. Erdös and T.Gallai. Graphs with prescribed degrees of vertices (Hungarian).
Mat. Lapok, 11:264–274, 1960.

[79] P. Erdös, C.Ko, and R.Rado. Intersection theorems for systems of of finite sets.
Quart. J. Math., 12:313–320, 1961.
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[216] U. Schöning and R. Pruim. Gems of Theoretical Computer Science. Springer,
1998.

[217] R.-H. Schulz. Codierungstheorie. Vieweg, 1991.

[218] J. Sedlacek. Ungerichtete Graphen und ihre Gerüste. Beiträge zur Graphenthe-
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