QUANTUM AUTOMORPHISM GROUPS OF FINITE QUANTUM GROUPS

ALGEBRAIC AND ANALYTIC ASPECTS OF QUANTUM LÉVY PROCESSES

ALFRIED KRUPP WISSENSCHAFTSKOLLEG GREIFSWALD

Piotr M. Sołtan (joint work with P. Kasprzak & S.L. Woronowicz)

> Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

March 11, 2015

P.M. SOLTAN (WARSAW)

AUTOMORPHISMS OF QUANTUM GROUPS

PLAN OF TALK

QUANTUM AUTOMORPHISM GROUP OF A FINITE Q.G. 2

3 A COMMUTATIVITY RESULT

4 Commutativity of $C(\mathbb{G})$

2/18

FINITE QUANTUM GROUPS

- ${\ensuremath{\, \bullet }}$ Let (A,Δ) be a finite quantum group i.e.
 - ► A is a finite dimensional C*-algebra,
 - (A, Δ) is a Hopf *-algebra.
- Let **h** be the Haar measure of (A, Δ) :

$$(\mathbf{h}\otimes \mathrm{id})\Delta(a) = \mathbf{h}(a)\mathbb{1} = (\mathrm{id}\otimes \mathbf{h})\Delta(a), \qquad a\in\mathsf{A}.$$

Let *H* be the GNS-Hilbert space for (A, *h*), so that A ⊂ B(*H*).
As *H* ≅ A the map

$$\mathsf{A} \otimes \mathsf{A} \ni a \otimes b \longmapsto \Delta(a)(\mathbb{1} \otimes b) \in \mathsf{A} \otimes \mathsf{A}$$

can be transported to an operator $W \in B(\mathcal{H} \otimes \mathcal{H})$. • *W* is unitary and

$$W_{23}W_{12}W_{23}^* = W_{12}W_{13}$$

on $\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}$.

FINITE QUANTUM GROUPS

• We have

$$\mathsf{A} = \big\{ (\omega \otimes \mathrm{id})(W) \, \big| \, \omega \in \mathsf{B}(\mathcal{H})^* \big\},$$

so $W \in B(\mathcal{H}) \otimes A$.

• For $a \in A$ the operator of multiplication by $\Delta(a)$ on $A \otimes A \cong \mathcal{H} \otimes \mathcal{H}$ is

 $W(a\otimes \mathbb{1})W^*.$

• It follows that $(\mathrm{id}\otimes\Delta)(W) = W_{12}W_{13}$.

Define

$$\widehat{\mathsf{A}} = \big\{ (\mathrm{id} \otimes \omega)(W) \, \Big| \, \omega \in \mathrm{B}(\mathcal{H})^* \big\}.$$

Then $W \in \widehat{A} \otimes A$.

- The map $\Gamma \colon A^* \ni \varphi \mapsto (\mathrm{id} \otimes \varphi)(W) \in \widehat{A}$ is an isomorphism of vector spaces.
- A* carries a Hopf *-algebra structure, and Γ is a *-algebra isomorphism.

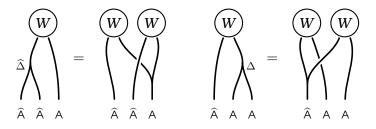
4 / 18

FINITE QUANTUM GROUPS

• Transporting the comultiplication from A^* to \widehat{A} (via Γ) we obtain $\widehat{\Delta} : \widehat{A} \to \widehat{A} \otimes \widehat{A}$ and

$$(\widehat{\Delta} \otimes \mathrm{id})(W) = W_{13}W_{23}.$$

• Pictures:



 Let (A, Δ) be a finite quantum group, let B be a C*-algebra. A *-homomorphism α: A → A ⊗ B represents a quantum family of invertible maps if

 $\alpha(\mathsf{A})(1\!\!1\otimes \mathsf{B}) = \mathsf{A}\otimes\mathsf{B}. \tag{Podleś condition}$

• Given $\alpha \colon A \to A \otimes B$ define a linear map $\widehat{\alpha} \colon \widehat{A} \to \widehat{A} \otimes B$ by

$$\widehat{\alpha} = (\mathcal{F} \otimes \mathrm{id}) \circ \alpha \circ \mathcal{F}^{-1},$$

where

$$\mathcal{F} \colon \mathsf{A} \ni a \longmapsto (\mathrm{id} \otimes \boldsymbol{h}(\cdot a))(W) \in \widehat{\mathsf{A}}$$

is the Fourier transform.

THEOREM

Let $\alpha \colon A \to A \otimes B$ represent a quantum family of invertible maps. Then the following are equivalent:

- (1) α preserves the convolution product on A, the convolution adjoint and the Haar element;
- (2) $\hat{\alpha}$ represents a quantum family of invertible maps.

Moreover in this case $\widehat{\widehat{\alpha}} = \alpha$.

• Convolution:
$$a \star b = (\mathbf{h} \otimes \mathrm{id}) \Big(\big((\mathbf{S} \otimes \mathrm{id}) \Delta(b) \big) (a \otimes \mathbb{1}) \Big).$$

- Convolution adjoint: $a^{\bullet} = S(a)^*$.
- Haar element: there exists $\eta \in A$ such that for all $a \in A$

$$a\eta = \eta a = \varepsilon(a)\eta.$$

THEOREM

Let $\alpha \colon A \to A \otimes B$ represent a quantum family of invertible maps. Then the following are equivalent:

- (1) α preserves the convolution product on A, the convolution adjoint and the Haar element;
- (2) $\hat{\alpha}$ represents a quantum family of invertible maps.

Moreover in this case $\hat{\hat{\alpha}} = \alpha$.

DEFINITION

A q.f.i.m. $\alpha \colon A \to A \otimes B$ is a **quantum family of automorphisms** of (A, Δ) when the conditions of the theorem are satisfied.

THEOREM

1 There exists a q.f.a. $\alpha : A \to A \otimes S$ such that for any q.f.a. $\beta : A \to A \otimes B$ there exists a unique $\Lambda : S \to B$ such that

$$\beta = (\mathrm{id} \otimes \Lambda) \circ \boldsymbol{\alpha}.$$

- ② S carries a structure of the C*-algebra of functions on a compact quantum group G and α is and action of G on A (G is the quantum automorphism group of (A, Δ)).
- (3) The Haar measure **h** is invariant for α :

$$(\boldsymbol{h}\otimes \mathrm{id})\boldsymbol{lpha}(a)=\boldsymbol{h}(a)\mathbb{1},\qquad a\in\mathsf{A}.$$

④ The quantum automorphism group of $(\widehat{A}, \widehat{\Delta})$ is canonically isomorphic to that of (A, Δ) .

 ${\ensuremath{\, \bullet }}$ Let ${\ensuremath{\mathbb G}}$ be the quantum automorphism group of (A,Δ) and let

$$\alpha \colon \mathsf{A} \longrightarrow \mathsf{A} \otimes \mathsf{C}(\mathbb{G})$$

be its action on A.

- \mathbb{G} is of Kac type this is related to invariance of **h** under α .
- The C*-algebra $C(\mathbb{G})$ is generated by

$$\{(\omega \otimes \mathrm{id}) \alpha(a) \, | \, a \in \mathsf{A}, \, \omega \in \mathsf{A}^* \}.$$

 The Gelfand spectrum of C(G) (the classical points of G) is naturally identified with the set of Hopf *-automorphisms of the Hopf *-algebra (A, Δ).

A COMMUTATIVITY RESULT

THEOREM

Let C be a C*-algebra and let

$$\beta: A \longrightarrow C \otimes A$$
 and $\gamma: \widehat{A} \longrightarrow \widehat{A} \otimes C$

be *-homomorphisms such that

$$(\mathrm{id}\otimes\beta)(W)=(\gamma\otimes\mathrm{id})(W).$$

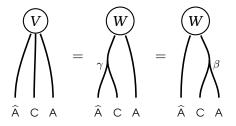
Then the algebra generated by

$$\left\{ (\mathrm{id}\otimes\omega)\beta(a)\,\middle|\,a\in\mathsf{A},\,\omega\in\mathsf{A}^{*}
ight\} \subset\mathsf{C}$$

is commutative.

P.M. SOŁTAN (WARSAW)

Define $V = (id \otimes \beta)(W) \in \widehat{A} \otimes \mathbb{C} \otimes A$ (then also $V = (\gamma \otimes id)(W)$). In pictures:



We have

$$(\widehat{\Delta} \otimes \mathrm{id} \otimes \mathrm{id})(V) = V_{134}V_{234}$$

and

$$(\mathrm{id}\otimes\mathrm{id}\otimes\Delta)(V)=V_{123}V_{124}.$$

Indeed:

$$\widehat{\Delta} \otimes \operatorname{id} \otimes \operatorname{id})(V) =$$

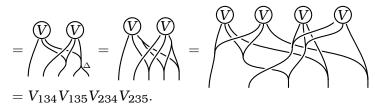
$$= \bigvee_{\widehat{\Delta}} \bigvee_{\beta} = \bigvee_{\beta} \bigvee_{\beta} \otimes \bigvee_{\beta} = \bigvee_{\beta} \otimes \bigvee_{\beta}$$

Similarly:

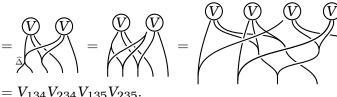
 $(\mathbf{id} \otimes \mathbf{id} \otimes \Delta)(V) =$ $= \bigvee_{\gamma} \bigvee_{\lambda} = V_{123}V_{124}.$

This gives us two ways of computing $(\widehat{\Delta} \otimes id \otimes \Delta)(V)$.

On one hand $(\widehat{\Delta} \otimes \mathrm{id} \otimes \Delta)(V) = (\mathrm{id} \otimes \mathrm{id} \otimes \mathrm{id} \otimes \Delta)(V_{134}V_{234}) =$



And on the other $(\widehat{\Delta} \otimes \mathrm{id} \otimes \Delta)(V) = (\widehat{\Delta} \otimes \mathrm{id} \otimes \mathrm{id} \otimes \mathrm{id})(V_{123}V_{124}) =$



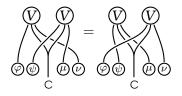
It follows that

$$V_{134}V_{135}V_{234}V_{235} = V_{134}V_{234}V_{135}V_{235}$$

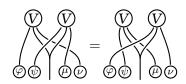
and, since V is unitary, we obtain

$$V_{135}V_{234} = V_{234}V_{135}$$
 i.e.

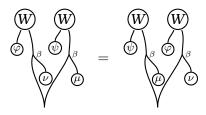
Apply $(\varphi \otimes \psi \otimes id \otimes \mu \otimes \nu)$ to both sides:



From



(recalling that $V = (id \otimes \beta)(W)$) we get



Which shows that $(\mathrm{id} \otimes \nu)\beta(a)(\mathrm{id} \otimes \mu)\beta(b) = (\mathrm{id} \otimes \mu)\beta(b)(\mathrm{id} \otimes \nu)\beta(a)$ for all $a, b \in A$.

\mathbb{G} is classical

- Let $\alpha \colon A \to A \otimes C(\mathbb{G})$ be the action of the quantum automorphism group of (A, Δ) .
- Since G is of Kac type the map

$$\gamma = \sigma \circ (\mathbf{S} \otimes \mathbf{S}_{\mathbb{G}}) \circ \boldsymbol{\alpha} \circ \mathbf{S} \colon \mathsf{A} \longrightarrow \mathsf{C}(\mathbb{G}) \otimes \mathsf{A}$$

is a *-homomorphism.

THEOREM

We have

$$(\mathrm{id}\otimes \boldsymbol{\gamma})(W)=(\widehat{\boldsymbol{\alpha}}\otimes \mathrm{id})(W).$$

COROLLARY

The algebra $C(\mathbb{G})$ is commutative. In particular, \mathbb{G} is the classical group of Hopf *-algebra automorphisms of (A, Δ) .

P.M. SOŁTAN (WARSAW)

AUTOMORPHISMS OF QUANTUM GROUPS

Graduate school on topological quantum groups

June 28 - July 11, 2015, Będlewo, Poland

Speakers:

- Teodor Banica
- Sergey Neshveyev
- Kenny De Commer
- Roland Speicher
- Martijn Caspers
- Reiji Tomatsu
- Michael Brannan
- Zhong-Jin Ruan

http://bcc.impan.pl/15TQG/