Positive Lévy processes in classical and free probability

April 6, 2015

Takahiro Hasebe (Hokkaido Univ.)

- Positive Lévy processes,
- A failure of "functoriality" (= analogy, transfer principle) between classical and free
- What is a free gamma distribution?

My colleague Hayato Saigo says "mathematical definition of 'analogy' is a functor".

 $\mathcal{L}(X)$ denotes the law of a random variable X.

Definition

 \mathbb{R} -valued $(X_t)_{t\geq 0}$ is called a Lévy process iff

- $X_0 = 0$,
- For all $0 = t_0 < t_1 < \dots < t_n$, $X_{t_n} - X_{t_{n-1}}, X_{t_{n-1}} - X_{t_{n-2}}, \dots, X_{t_1} - X_{t_0}$ are indep.,
- For all $0 \leq s < t$, $\mathcal{L}(X_t X_s) = \mathcal{L}(X_{t-s})$.
- $t \mapsto X_t$ is right continuous with left limit,
- The map $t \mapsto \mathcal{L}(X_t)$ is weakly continuous.

 (\mathcal{A}, τ) : II₁ factor, τ : normal faithful finite trace.

Definition

Let a map $t \mapsto X_t$ take values in selfadjoint operators affiliated to \mathcal{A} . $(X_t)_{t \ge 0}$ is called a free Lévy process iff

• $X_0 = 0$,

• For all
$$0 = t_0 < t_1 < \cdots < t_n$$
,
 $X_{t_n} - X_{t_{n-1}}, X_{t_{n-1}} - X_{t_{n-2}}, \dots, X_{t_1} - X_{t_0}$ are free indep.,

- For all $0 \leq s < t$, $\mathcal{L}(X_t X_s) = \mathcal{L}(X_{t-s})$.
- The map $t \mapsto \mathcal{L}(X_t)$ is weakly continuous.

Infinitely divisible distribution

Definition

A probability measure μ on \mathbb{R} is said to be infinitely divisible iff for all $n \in \mathbb{N}$ there exists μ_n such that $\mu = \underbrace{\mu_n * \cdots * \mu_n}_{n \text{ fold}}$.

Proposition

A probability measure μ is ID iff there exists a Lévy process (X_t) such that $\mathcal{L}(X_1) = \mu$.

Proof.

(\Leftarrow) Given a Lévy process (X_t) , let $\mu^{*t} := \mathcal{L}(X_t)$. Then $\mu^{*t} * \mu^{*s} = \mu^{*(t+s)}$. So let $\mu_n := \mu^{*1/n}$. (\Rightarrow) Define $\mu^{*1/n} := \mu_n$, and define $\mu^{*m/n} := (\mu_n)^{*m}$. Then extend the parameter m/n to real numbers by continuity \Rightarrow convolution semigroup $(\mu^{*t})_{t\geq 0}$. Then construct a Lévy process. If X, Y are free indep. selfadjoint operators affiliated to (A, τ) , then $\mathcal{L}(X + Y)$ is denoted as $\mathcal{L}(X) \boxplus \mathcal{L}(Y)$

Definition

A probability measure μ on \mathbb{R} is said to be freely infinitely divisible iff for all $n \in \mathbb{N}$ there exists μ_n such that $\mu = \underbrace{\mu_n \boxplus \cdots \boxplus \mu_n}_{n \text{ fold}}$.

Proposition (Biane '98, Barndorff-Nielsen & Thorbjørnsen '02)

A probability measure μ is FID iff there exists a free Lévy process (X_t) such that $\mathcal{L}(X_1) = \mu$.

Definition

A Lévy process $(X_t)_{t\geq 0}$ is called a subordinator iff $t \mapsto X_t$ is non-decreasing $\Leftrightarrow X_t \geq 0$ for all t > 0 $\Leftrightarrow \mathcal{L}(X_t)$ is supported on $[0, \infty)$ for all t > 0

Definition (Arizmendi-Sakuma-T.H. '13)

A Lévy process $(X_t)_{t\geq 0}$ is called a free subordinator iff $t \mapsto X_t$ is non-decreasing for all t > 0 $\Leftrightarrow X_t \geq 0$ for all t > 0 $\Leftrightarrow \mathcal{L}(X_t)$ is supported on $[0, \infty)$ for all t > 0

Why "subordinator"?

- In complex analysis: a (analytic) function f is subordinated to g if ∃h s.t. f = g ∘ h.
- In free probability: for X, Y: free, a subordination function (= subordinator) for free convolution is a function F such that

$$G_{X+Y}(z) = G_X(F(z)).$$

 In classical probability, subordination is a random time change: If (X_t)_{t≥0}, (Y_t)_{t≥0} are Lévy processes, Y_t ≥ 0, then Z_t := X_{Yt} is again a Lévy process. Note: C_{Z1}(u) = C_{Y1} ∘ C_{X1}(u), where C(u) is cumulant generating function.

Theorem (See Sato's book)

Let $(X_t)_{t\geq 0}$ be a Lévy process. TFAE:

- **(** X_t) is a subordinator, i.e. $\mathcal{L}(X_t)$ is supported on $[0, \infty)$ for all t > 0.
- **2** $\mathcal{L}(X_t)$ is supported on $[0,\infty)$ for some t > 0.
- **3** $\mathcal{L}(X_1)$ is supported on $[0,\infty)$.

Therefore,

$$\begin{split} \{ \text{the laws of subordinators} \} &= \{ \mu \in \mathsf{ID} \mid \mathsf{supp}(\mu^{*t}) \subset [0,\infty), \forall t > 0 \} \\ &= \{ \mu \in \mathsf{ID} \mid \mathsf{supp}(\mu) \subset [0,\infty) \} \end{split}$$

The free analogue fails to hold.

Example

Let (X_t) be a free Lévy process such that $\mathcal{L}(X_1)$ is the shifted semicircle law $\frac{\sqrt{4-(x-2)^2}}{2\pi} \mathbb{1}_{[0,4]}(x) dx$. Then $\operatorname{supp} \mathcal{L}(X_t) \not\subset [0,\infty)$ for $t \in (0,1)$.

Hence

$$\begin{split} \{ \mathsf{the laws of free subordinators} \} \\ &= \{ \mu \in \mathsf{FID} \mid \mathsf{supp}(\mu^{\boxplus t}) \subset [0,\infty), \forall t > 0 \} \\ &\neq \{ \mu \in \mathsf{FID} \mid \mathsf{supp}(\mu) \subset [0,\infty) \} \end{split}$$

Theorem (T.H. '10)

Let $(X_t)_{t\geq 0}$ be a monotone/Boolean Lévy process. TFAE:

- (X_t) is a monotone/Boolean subordinator, i.e. L(X_t) is supported on [0,∞) for all t > 0.
- **2** $\mathcal{L}(X_t)$ is supported on $[0,\infty)$ for some t > 0.
- 3 $\mathcal{L}(X_1)$ is supported on $[0,\infty)$.

Therefore,

{the laws of Boolean/monotone subordinators}

 $= \{\mu \in \mathsf{all probability measures}/\mathsf{MID} \mid \mathsf{supp}(\mu) \subset [0,\infty)\}$

Proposition

 μ is ID iff

$$\int_{\mathbb{R}} e^{iut} \mu(dt)$$
$$= \exp\left(i\eta u - \frac{1}{2}au^2 + \int_{\mathbb{R}\setminus\{0\}} (e^{iut} - 1 - iut \mathbf{1}_{[-1,1]}(t))\nu(dt)\right)$$

for some $\eta \in \mathbb{R}$, $a \ge 0$ and ν such that $\int_{\mathbb{R}} \min(1, t^2)\nu(dt) < \infty$.

Proposition

 μ is ID and supported on $[0,\infty)$ iff

$$\int_{\mathbb{R}} e^{\mathrm{i}ut} \mu(dt) = \exp\left(\mathrm{i}\eta' u + \int_{(0,\infty)} (e^{\mathrm{i}ut} - 1)\nu(dt)\right)$$

for some $\eta' \geq 0$ and ν such that $\int_{(0,\infty)} \min(1,t)\nu(dt) < \infty$.

Let $G_X(z) = \tau((z - X)^{-1})$ and $\mathcal{R}_X(z) = zG_X^{-1}(z) - 1$. If X, Y are free indep. then

$$\mathcal{R}_{X+Y}(z) = \mathcal{R}_X(z) + \mathcal{R}_Y(z).$$

Rem: $\mathcal{R}_X(z) = \sum_{n=1}^{\infty} R_n(X) z^n$.

Proposition

 μ is FID iff

$$\mathcal{R}_{\mu}(z)=\eta z+\mathsf{a} z^2+\int_{\mathbb{R}\setminus\{0\}}\left(rac{1}{1-zt}-1-zt\,\mathbf{1}_{[-1,1]}(t)
ight)
u(dt)$$

for some $\eta \in \mathbb{R}$, $a \ge 0$ and ν such that $\int_{\mathbb{R}} \min(1, t^2)\nu(dt) < \infty$.

Free Lévy-Khintchine representation for free subordinators

Proposition

Suppose μ is FID. Then μ is the law of a free subordinator (i.e. $\mu^{\boxplus t}$ is supported on $[0, \infty)$ for all t > 0) iff

$$\mathcal{R}_{\mu}(z)=\eta'z+\int_{(0,\infty)}\left(rac{1}{1-tz}-1
ight)
u(dt)$$

for some $\eta' \geq 0$ and u such that $\int_{(0,\infty)} \min(1,t)
u(dt) < \infty$.

Rem: In terms of Bercovici-Pata bijection, the laws of classical subordinators are in one-to-one correspondence with the laws of free subordinators.

Examples of laws of subordinators

- Poisson distributions
- Gamma distributions:
 - $\gamma(p,\theta)(dx) = C \cdot x^{p-1} e^{-x/\theta} \mathbb{1}_{(0,\infty)}(x) \, dx$
- Positive stable distributions: ∫_(0,∞) e^{-ux}n_α(dx) = exp(-u^α) (α ∈ (0,1)).
- Free Poisson distributions $\mathcal{R}_{\pi_t}(z) = \frac{tz}{z-1}$:

$$\pi_t(dx) = \max\{1-t,0\}\delta_0 + \frac{\sqrt{((1+\sqrt{t})^2 - x)(x - (1-\sqrt{t})^2)}}{2\pi x} \mathbf{1}_{((1-\sqrt{t})^2,(1+\sqrt{t})^2)}(x) \, \mathrm{d}x.$$

Boolean stable law: **b**_α(dx) = sin(απ)/π · x^{α-1}/x^{2α+2}cos(απ)x^{α+1} 1_(0,∞)(x) dx, α ∈ (0, 1/2].
Positive free stable distributions **f**_α: R_{f_α}(z) = -(-z)^α (α ∈ (0, 1)).

Generalized gamma convolutions

GGC is the weak closure of

$$\{\delta_{a} * \gamma(p_{1}, \theta_{1}) * \cdots * \gamma(p_{n}, \theta_{n}) \mid a, p_{i}, \theta_{i} > 0, n \in \mathbb{N}\} \subset \mathrm{ID}(\mathbb{R}_{+})$$

GGC was introduced by Thorin '77, who is famous for interpolation theory. The motivation for introducing GGC was to prove the infinite divisibility of the log normal distribution $\frac{x^{-1}}{\sqrt{2\pi\sigma^2}}e^{-(\log x-m)^2/2\sigma^2}1_{(0,\infty)}(x) dx \text{ (the law of } e^X \text{ when } X \sim N(m, \sigma^2)).$

Example

- Positive stable laws,
- beta distributions of 2nd kind $\frac{1}{B(p,q)} \cdot \frac{x^{p-1}}{(1+x)^{p+q}} \mathbf{1}_{(0,\infty)}(x) dx$,
- measures of the form $C \cdot x^{\beta-1} \prod_{i=1}^{n} \frac{1}{(1+\gamma_i x)^{p_i}} \mathbf{1}_{(0,\infty)}(x) dx$.

An application of GGC method: If $X \sim N(0,1)$ then $X^n \in ID$ for $n \in \mathbb{N}$.

Theorem (Bondesson '13)

If $X, Y \in GGC$ and indep. then $XY \in GGC$.

The proof is not easy. This problem had been open for 20 \sim 30 years.

Theorem (Bondesson '13)

If $X \in GGC$ then $e^X \in GGC$.

Conjecture

If $X \in GGC$ and $p \ge 1$, then $X^p \in GGC$.

This conjecture was proved for some subclasses of GGC. If this conjecture is true, then $X \in \text{GGC} \Rightarrow 1 + \frac{X}{p} \in \text{GGC} \Rightarrow (1 + \frac{X}{p})^p \in \text{GGC} \Rightarrow e^X \in \text{GGC}.$ Is there a set of probability measures $\mathcal P$ on $[0,\infty)$ such that

- If $X \in \mathcal{P}$ and c > 0 then $cX \in \mathcal{P}$.
- If $X, Y \in \mathcal{P}$ are indep. then $X + Y, XY \in \mathcal{P}$.
- $\bullet \ \mathcal{P}$ is closed wrt the weak convergence.

GGC is only the nontrivial example of such \mathcal{P} ("trivial" means that $\mathcal{P} = \{\delta_0\}$ or \mathcal{P} is the set of all probability measures on $[0, \infty)$.

Bondesson's question in the free probability setting

Consider the free analogue of Bondesson's question:

- If $X \in \mathcal{P}$ and c > 0 then $cX \in \mathcal{P}$.
- If $X, Y \in \mathcal{P}$ are free indep. then $X + Y, \sqrt{X}Y\sqrt{X} \in \mathcal{P}$.
- \mathcal{P} is closed wrt the weak convergence.

Is there such a nontrivial class \mathcal{P} ? \Rightarrow Yes! Let FS be the set of distributions of free subordinators, i.e.

$$\mathsf{FS} = \{\mu \in \mathsf{FID} \mid \mathsf{supp}(\mu^{\boxplus t}) \subset [0,\infty), orall t > 0\}$$

Theorem (Arizmendi-Sakuma-T.H. '13)

If $X, Y \in FS$ and free indep. then $X + Y, \sqrt{X}Y\sqrt{X} \in FS$.

Proof.

Use the identity
$$(\mu \boxtimes \nu)^{\boxplus t} = D_{1/t}(\mu^{\boxplus t} \boxtimes \nu^{\boxplus t}).$$

What is a free gamma distribution?

- The 1st definition (Bożejko-Bryc '06): Free gamma distributions as a special case of free Meixner distributions.
- The 2nd definition (Haagerup & Thorbjørnsen '14): The classical gamma distribution has LK representation

$$\int_{(0,\infty)} e^{ixu} \gamma(p,1)(dx) = \exp\left(p \int_0^\infty (e^{iux} - 1) \frac{e^{-x}}{x} dx\right)$$

In terms of Bercovici-Pata bijection we may define

$$\mathcal{R}_{\mathrm{free gamma}}(z) = p \int_0^\infty \left(\frac{1}{1-xz}-1\right) \frac{e^{-x}}{x} dx.$$

• The 3rd definition: free gamma = free Poisson. Why?

Theorem (Lukacs '55)

Suppose X, Y are indep. Then X, Y have gamma distributions $\gamma(p_1, \theta), \gamma(p_2, \theta)$ iff $\frac{X}{X+Y}, X + Y$ are indep.

Theorem (Szpojankowski)

Suppose X, Y are free indep. Then X, Y have free Poisson distributions $\pi(p_1, \theta), \pi(p_2, \theta)$ such that $p_1 + p_2 > 1$ "iff" $(X + Y)^{-1/2}X(X + Y)^{-1/2}, X + Y$ are free indep.

Rem:
$$\mathcal{R}_{\pi(p,\theta)}(z) = \frac{p\theta z}{1-\theta z} = \int_0^\infty \left(\frac{1}{1-xz} - 1\right) p\delta_\theta(dx), \ p, \theta > 0.$$

Another fact supporting the definition:

• $X \sim N(0,1) \Rightarrow X^2 \sim \gamma(1/2,2).$ • $X \sim S(0,1) \Rightarrow X^2 \sim \pi(1,1).$

- \circledast : classical multiplicative convolution
- \boxtimes : free multiplicative convolution

Theorem (Steutel '70, '80, Kristiansen '94)

Let $p \leq 2$. Then for any μ on $[0,\infty)$ we have

 $\mu \circledast \gamma(p, 1) \in \mathit{ID}.$

p = 2 is optimal.

Theorem (Arizmendi et al. '10, Perez-Abreu & Sakuma '12)

Let $p \leq 1$. Then for any μ on $[0,\infty)$ we have

 $\mu \boxtimes \pi(p, 1) \in FS.$

GFGC (Generalized Free Gamma Convolution)

 $\mathsf{GFGC}{:=} \mathsf{the weak \ closure \ of}$

 $\{\delta_{a} \boxplus \pi(p_1, \theta_1) \boxplus \cdots \boxplus \pi(p_n, \theta_n) \mid a, p_i, \theta_i > 0, n \in \mathbb{N}\} \subset \mathrm{FS}.$

Actually

$$\mathsf{GFGC} = \mathsf{FS}$$

because:

Recall

$$\mathcal{R}_{\pi(p, heta)}(z) = rac{p heta z}{1- heta z} = \int_0^\infty \left(rac{1}{1-xz}-1
ight) p\delta_ heta(dx);$$

• $\mu \in \mathsf{FS}$ is characterized by free LK

$$\mathcal{R}_{\mu}(z) = az + \int_0^\infty \left(rac{1}{1-xz} - 1
ight)
u(dx).$$

Bondesson's conjecture for the free case

Question

If $X \in FS$ and $p \ge 1$, is it true that $X^p \in FS$?

Question

If $X \in FS$, is it true that $e^X \in FS$?

Theorem (Arizmendi-Sakuma-T.H. '13)

- If $X, Y \in FID$ are free, then $i(XY YX) \in FID$.
- If $\mathcal{L}(X)$ is symmetric (around 0), then

 $X \in FID \Leftrightarrow \mathcal{L}(X^2) = \pi(1,1) \boxtimes \sigma$ for some $\sigma \in FS$.

Problem

Find a polynomial P(X, Y) which preserves the FID property.

Proposition (Arizmendi-Sakuma-T.H. '13, Lehner, Chistyakov)

If
$$X \sim S(0,1)$$
 then $X^2, X^4, X^6 \in FID$.

Conjecture

If $X \sim S(0,1)$ then $X^n \in FID$ for all $n \in \mathbb{N}$.

Definition (Speicher-Woroudi '97)

A positive Boolean stable law \mathbf{b}_{α} is defined by

$$G_{\mathbf{b}_{lpha}}(z)=rac{1}{z-(-z)^{1-lpha}},\quad lpha\in(0,1].$$

 \circledast : classical multiplicative convolution

Theorem (Arizmendi-T.H.)

Suppose $\alpha \leq \frac{1}{2}$. Then $\mu \circledast \mathbf{b}_{\alpha} \in FS \cap ID$ for any probability measure μ on $[0, \infty)$.

Strange identity

- $\circledast:$ classical multiplicative convolution
- \boxtimes : free multiplicative convolution

$$\mu^p$$
: the law of X^p when $\mathcal{L}(X) = \mu$

Theorem (Arizmendi-T.H.)

Suppose $\alpha \in (0, 1)$. Then

$$\mu^{1/\alpha} \circledast \mathbf{b}_{\alpha} = \mu^{\boxtimes 1/\alpha} \boxtimes \mathbf{b}_{\alpha}$$

for any probability measure μ on $[0,\infty)$.

Proof.

We show that
$$G_{\mu^{1/\alpha} \circledast \mathbf{b}_{\alpha}}(z) = -(-z)^{\alpha-1}G_{\mu}(-(-z)^{\alpha})$$
. Then
 $\eta_{\mu^{1/\alpha} \circledast \mathbf{b}_{\alpha}}(z) = \eta_{\mu}(-(-z)^{\alpha})$. Then $\Sigma_{\mu^{1/\alpha} \circledast \mathbf{b}_{\alpha}}(z) = \frac{1}{z}\eta_{\mu^{1/\alpha} \circledast \mathbf{b}_{\alpha}}^{-1}(z) = \Sigma_{\mu}(z)^{1/\alpha}(-z)^{\frac{1-\alpha}{\alpha}} = \Sigma_{\mu^{\boxtimes 1/\alpha}}(z)\Sigma_{\mathbf{b}_{\alpha}}(z)$.

Examples of FID

Theorem (Belinschi-Bożejko-Lehner-Speicher '11)

The normal law N(0,1) is FID.

Theorem (T.H. '14)

- Beta distribution $C \cdot x^{p-1}(1-x)^{q-1} \mathbb{1}_{(0,1)}(x) dx \in FID$ if $(p,q) \in D$,
- Beta distribution of the 2nd kind: $C \cdot \frac{x^{p-1}}{(1+x)^{p+q}} 1_{(0,\infty)}(x) dx \in FID \text{ if } p \in (0, \frac{1}{2}] \cup [\frac{3}{2}, \infty).$

Figure : The region D

Corollary

•
$$\gamma(p,\theta): C \cdot x^{p-1}e^{-x/\theta} \mathbb{1}_{(0,\infty)}(x) \, dx \in FID$$
 for $p \in (0, \frac{1}{2}] \cup [\frac{3}{2}, \infty)$

• Inverse gamma: $C \cdot x^{-p-1}e^{-\theta/x} \mathbbm{1}_{(0,\infty)}(x) \, dx \in FID$ for all p > 0.

Rem: $X \sim \gamma(p, \theta) \Rightarrow 1/X \sim \text{inverse gamma}$

$$D_c\mu$$
 is the law of cX when $\mathcal{L}(X) = \mu$.

Definition

A measure μ on \mathbb{R} is selfdecomposable (SD), if

$$\forall c \in (0,1) \exists \mu_c \text{ s.t. } \mu = D_c \mu * \mu_c.$$

Rem: μ and μ_c are necessarily ID.

Definition

A measure μ on \mathbb{R} is FSD if

$$\forall c \in (0,1) \exists \mu_c \text{ s.t. } \mu = D_c \mu \boxplus \mu_c.$$

Rem: μ and μ_c are necessarily FID.

Definition

A measure μ on $\mathbb R$ is called unimodal, if, for some a in $\mathbb R,$ it has the form

$$\mu = \mu(\{a\})\delta_a + f(x)\,\mathrm{d}x,$$

where f is increasing on $(-\infty, a)$ and decreasing on (a, ∞) .

Theorem (Yamazato '78)

All SD distributions are unimodal.

Theorem (Thorbjørnsen-T.H. '15)

All FSD distributions are unimodal.

- Show that if $X \in GGC$ and $p \ge 1$, then $X^p \in GGC$.
- Show that if $X \in FS$ and $p \ge 1$, then $X^p \in FS$. If this is true, then $\mathcal{L}(X^{q/2}) = \mathcal{L}(|Y|^q) \in FS$ for $X \sim \pi(1,1), Y \sim S(0,1), q \ge 2$.
- Show that if $X \sim S(0, 1)$ then $X^n \in FID$ for all $n \in \mathbb{N}$.
- Find a selfadjoint polynomial P(X, Y) which preserves the FID property.
- Positive Lévy processes in quantum groups?