
Arnold Beckmann Christine Gaßner Benedikt Löwe (Eds.)

Logical Approaches to Barriers
in Computing and Complexity

International Workshop, Greifswald, Germany, February 2010

Organized by the Alfried Krupp Wissenschaftskolleg Greifswald under the
auspices of the Deutsche Vereinigung für Mathematische Logik und für
Grundlagen der Exakten Wissenschaften (DVMLG), the Polskie Towarzystwo
Logiki i Filozofii Nauki (PTLiFN), the Association for Computability in
Europe (ACiE) and the European Association for Computer Science Logic
(EACSL)

Abstract Booklet

Funded by the Alfried Krupp von Bohlen und Halbach-Stiftung, Essen and
the Deutsche Forschungsgemeinschaft, Bonn

Preface

This booklet contains the extended abstracts of talks presented at the workshop on Logical Approaches
to Barriers in Computing and Complexity, held on February 17–20, 2010, in Greifswald, Germany. The
workshop was initiated by the Deutsche Vereinigung für Mathematische Logik und für Grundlagen der
Exakten Wissenschaften (DVMLG), the Polskie Towarzystwo Logiki i Filozofii Nauki (PTLiFN), the
Association for Computability in Europe (ACiE) and the European Association for Computer Science
Logic (EACSL) and organized under the auspices of these four learnèd societies. The workshop was funded
by the Alfried Krupp von Bohlen und Halbach-Stiftung, Essen and the Deutsche Forschungsgemeinschaft,
Bonn, and it was run by and held at the Alfried Krupp Wissenschaftskolleg in Greifswald, Germany.

Scientific Scope. Computability theory and complexity theory have their origins in logic, with connec-
tions to foundations of mathematics. The fundamental goal in these areas is to understand the limits
of computability (that is analysing which problems can be solved on nowadays and future computers in
principle) and effective computability (that is understanding the class of problems which can be solved
quickly and with restricted resources.) Logic provides a multifarious toolbox of techniques to analyse
questions like this, some of which promise to provide a deep insight in the structure of limit of compu-
tation.

The workshop had a focus on the following related aspects: logical descriptions of complexity (e.g.,
descriptive complexity, bounded arithmetic), complexity classes of abstract, algebraic and infinite struc-
tures, barriers in proving complexity results, and Kolmogorov complexity and randomness. Descriptive
complexity and bounded arithmetic are two complementary approaches to describe computational com-
plexity in logical terms. The former is focused on decision problems, while the latter is more concerned
with search problems. Both environments render questions about complexity classes in a natural way,
leading to important open problems in their areas (e.g. finding logics to capture certain complexity
classes, or the separation problem for bounded arithmetic.) Another path to gain more understanding of
complexity classes is to study them in more general settings, e.g. on general algebraic structures or for
computational models with infinite resources. Questions arising in this area are how complexity classes
are rendered in them, and what their relationship is. It is well known that any proof of P 6=NP will
have to overcome two barriers: relativization and natural proofs. To this has recently been added a third
barrier, called algebraic relativization or algebrization. The idea is that, when we relativize some com-
plexity class inclusion, we should give the simulating machine access not only to an oracle A, but also
to a low-degree extension of A over a finite field or ring.

The workshop intended to address current questions in all these areas, and initiate communication
and research between them. In particular, the aim was to inform researcher in these related but separated
areas about current approaches and ideas, to initiate new approaches to current questions. Some of these
aspects were particularly timely: recently, research in these areas became more intense. Part of this is
the new conference series CiE (run by the Association for Computability in Europe) whose range of
interests includes those of our workshop, creating an important focus on the emerging topics of the field.
This workshop was intended as a research-oriented follow-up to the CiE conferences, allowing researchers
ample time for discussions and joint work.

Programme. The Programme Committee had been designed by the four organising scientific organ-
isations and consisted of thirteen members: Zofia Adamowicz (Warschau), Franz Baader (Dresden),
Arnold Beckmann (chair, Swansea), Sam Buss (La Jolla, CA), Manfred Droste (Leipzig), Christine
Gaßner (Greifswald), Peter Koepke (Bonn), Benedikt Löwe (Amsterdam), Janos Makowsky (Haifa),
Elvira Mayordomo (Zaragoza), Damian Niwinski (Warschau), Wolfgang Thomas (Aachen), and Martin
Ziegler (Darmstadt). The DVMLG was represented by its vice president Löwe and members of executive
board Beckmann und Makowsky, the PTLiFN by the member of executive board Niwinski, CiE by the
members of the executive board Beckmann, Löwe and Mayordomo, and the EACSL by its president
Makowsky, vice president Niwinski and member of executive board Löwe.

The Programme Committee has chosen six scientists as keynote speakers: Alessandra Carbone who
spoke on Logical structures, cyclic graphs and genus of proofs, Lance Fortnow on Hardness of Instance
Compression and Its Applications, Erich Grädel on Fixed point logics, games, and polynomial-time com-
plexity, Pascal Koiran on Shallow circuits with high-powered inputs, Leszek Ko lodziejczyk on The scheme

IV

of induction for sharply bounded arithmetic formulas, and Antonina Kolokolova on Axiomatic approach
to barriers in complexity. The programme was enriched through an Öffentliche Abendveranstaltung (pub-
lic evening lecture) given by Janos Makowsky on Spektrum Problem von H. Scholz und G. Asser: Ein
halbes Jahrhundert danach. The workshop received 45 contributed submissions which were reviewed by
the programme committee. The committee decided to accept 34 talks whose abstracts are printed in this
booklet.

The Programme Committee also decided to add to the workshop a Special Session on the topic
Complexity in Arbitrary Structures which was organised by Christine Gaßner and Martin Ziegler, see the
separate introduction to the Special Session on page V.

Organization and Acknowledgements. The workshop was organized by Christine Gaßner (University of
Greifswald). We are delighted to acknowledge and thank the Stiftung Alfried Krupp Kolleg Greifswald
and the Deutsche Forschungsgemeinschaft for their essential financial support. The high scientic quality
of the workshop was possible through the conscientious work of the Programme Committee, and the
Special Session organizers. We thank Andrej Voronkov for his EasyChair system which facilitated the
work of the Programme Committee and the editors considerably.

Swansea, Greifswald and Amsterdam, January 2010 Arnold Beckmann
Christine Gaßner

Benedikt Löwe

Preface V

Special Session on Complexity in Arbitrary Structures

The classical notion of computability is closely related to the classical theory of recursive functions.
This theory deals with functions on natural numbers, on words over a finite alphabet, or on some other
countable sets. For functions on real numbers and other uncountable universes, several non-equivalent
definitions of computability have been introduced. Here, real closed and algebraically closed fields are the
starting point for the development of new theories of computing. Analytical or algebraic properties of the
ring over the real numbers are used for defining notions of computability for real functions. One of the best
known models is the Type-2 Turing machine where real numbers are approximated by rational numbers
and the classical Turing machine is extended to infinite converging computations. Other settings consider
real numbers as entities and one assumes that it is possible to execute exact arithmetic instructions and
comparisons. Algebraic properties of rings and fields yield many interesting results in models of this kind,
such as algebraic circuits and the real Turing machine (i.e. the BSS machine over the reals). More general
models cover computation over arbitrary fields or other structures. Most complexity classes well-known
from classical (i.e. discrete) computational complexity theory have an analogue in the theories to these
computation models and play partially an analogous role in the corresponding theories.

A lot of motivation to investigate these derived classes primary comes from the classical theory as well
as from practical requirements. One hope is that we gain a better understanding of the difficulty of the
P-versus-NP question. This famous problem is open for Turing machines as well as for many algebraic
models of computation, but has been answered (in fact both in the positive and in the negative) for
several structures. Further extending the list of structures with, provably, P = NP or P 6= NP will
provide new insights in the original millennium prize problem.

Another benefit is the development and study of fast algorithms for processing real numbers. In the
classical theory as well as in the theory of computation over arbitrary structures, most proof techniques
are of a logical nature. For more restricted models, topological and algebraic properties are of additional
relevance. Practical real number computation can be separated into a variety of subfields with distinct
objectives and paradigms; e.g. exact vs. approximate input, fixed-precision (floating point) vs. unbounded
precision, relative vs. absolute error goals. This diversity, and the different underlying parameters and
notions of complexity, is better reflected by several models of computation than by a single one.

The special session on this field has been organised in order to foster communication and collaboration
between the various sub communities. In fact, the invited and contributed works cover the topic nicely,
ranging from computability over complexity theory to numeric. The following abstracts are concerned
with questions like these. Which approach is suitable for modelling specific problems? How do hierarchies
of degrees of unsolvability relate in the analytical approaches and the algebraic ones? Which relationships
of complexity classes agree in which models of computation? Do Toda’s and Ladner’s Theorems hold also
for computational settings other than the classical Turing machine? What about fixed point problems
and total search problems? What ways are available to extend the theory to recursive definability? What
role do the various aspects of computing of continuous functions on real and complex numbers play in
the theories to several models?

Christine Gaßner (Greifswald)
Martin Ziegler (Darmstadt)

Table of Contents

Section 1. Regular Talks

Lower bounds for the provability of Herbrand consistency in weak arithmetics 1
Zofia Adamowicz, Konrad Zdanowski

A characterization of one-way functions based on time-bounded Komogorov complexity 3
Lúıs Antunes, André Souto, Andreia Teixeira

A Case Study in Graph Polynomials: The Subgraph Component Polynomial 6
Ilia Averbouch, Johann Makowsky, Peter Tittmann

Proof Complexity of Propositional Default Logic . 9
Olaf Beyersdorff, Arne Meier, Sebastian Müller, Michael Thomas, Heribert Vollmer

Tractable constructions of finite automata from monadic second-order formulas 12
Bruno Courcelle, Irène Durand

Logical structures, cyclic graphs and genus of proofs (keynote talk) . 16
Alessandra Carbone

On Optimal Algorithms for SAT . 17
Yijia Chen, Jörg Flum, Moritz Müller

Pebble Games for Rank Logics . 21
Anuj Dawar, Bjarki Holm

How definitions, equivalent for Turing machines, cease to be equivalent, when generalized to
Ordinal Time Turing Machines . 25

Barnaby Dawson

An Analogue of the Church-Turing Thesis for Computable Ordinal Functions 26
Tim Fischbach, Peter Koepke

Hardness of Instance Compression and Its Applications (keynote talk) . 29
Lance Fortnow

Efficiently Inverting the L2-Invariant through Stability Theory . 33
Cameron Donnay Hill

Randomness and the ergodic decomposition . 38
Mathieu Hoyrup

An Axiomatic Approach to Barriers in Complexity (keynote talk) . 41
Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova

Lower bounds for width-restricted clause learning . 46
Jan Johannsen

A Characterization of ∆1
2 Pointclasses Via Ordinal Machines . 49

Peter Koepke, Benjamin Seyfferth

Ordinal Register Machines and Combinatorial Principles in the Constructible Universe 51
Peter Koepke, Gregor Weckbecker

Shallow Circuits with High-Powered Inputs (keynote talk) . 55
Pascal Koiran

Table of Contents VII

The Scheme of Induction for Sharply Bounded Arithmetic Formulas (keynote talk) 58
Leszek Ko lodziejczyk

Complexity of Problems of Commutative Grammars . 62
Eryk Kopczyñski

Definability of Combinatorial Functions and Their Linear Recurrence Relations 65
Tomer Kotek, Johann Makowsky

A Logic to capture P-time computability on Cantor space . 68
Oleg Kudinov, Victor Selivanov

Complete Problems and Bounded Arithmetic for LOGCFL . 71
Satoru Kuroda

The Isomorphism Problem On Classes of Automatic Structures . 75
Dietrich Kuske, Jiamou Liu, Markus Lohrey

Classification of the classes of finite models in Tarski’ style . 79
Marcin Mostowski

Some results on complexity of µ-calculus evaluation in the black-box model 83
Pawel Parys

Triangular perplexity and a stairway to heaven . 87
Mihai Prunescu

Herbrand Consistency of I∆0 and I∆0 +Ω1 . 95
Saeed Salehi

Unbounded Arithmetic . 98
Sam Sanders, Andreas Weiermann

Fine Hierarchies via Priestley Duality . 102
Victor Selivanov

On Transitive Closure Operators in Finite Order Logic . 106
Artur Wdowiarski

Section 2. Special Session Talks

Polynomial hierarchy, Betti numbers and a real analogue of Toda’s theorem 108
Saugata Basu, Thierry Zell (invited talk)

Noncomputable Functions in the Blum-Shub-Smale Model . 113
Wesley Calvert, Ken Kramer, Russell Miller

Representation Theorems for Analytic Machines . 117
Tobias Gärtner

Computability over Positive Predicate Structures . 121
Margarita Korovina, Oleg Kudinov

Undecidability in Weihrauch Degrees . 124
Oleg Kudinov, Victor Selivanov, Anton Zhukov

Diagonal Sets For Real Number Complexity Classes (invited talk) . 128
Klaus Meer

Nash Equilibria and Fixed Points in the BSS-Model . 132
Arno Pauly

VIII

Une dualité entre fonctions booléennes (keynote talk) . 135
Bruno Poizat

Efficient Synthesis of Exact Real Number Algorithms (invited talk) . 163
Monika Seisenberger, Ulrich Berger

Comparison of Complexity over the Real vs. Complex Numbers . 168
Peter Scheiblechner

Computable Functions of Reals (invited talk) . 172
Katrin Tent, Martin Ziegler

Computational Complexity in Analysis (invited talk) . 178
Klaus Weihrauch

Ball arithmetic (invited talk) . 179
Joris van der Hoeven

Recursive Analysis Complexity in Terms of Discrete Complexity (invited talk) 209
Olivier Bournez, Walid Gomaa, Emmanuel Hainry

Lower bounds for the provability of Herbrand consistency in
weak arithmetics

Zofia Adamowicz1 and Konrad Zdanowski1

Institute of Mathematics, Polish Academy od Science
Śniadeckich 8, Warszawa

email: {zosiaa,kz}@impan.gov.pl

One of the main methods of showing that one set of axioms, say T , is strictly stronger than the other
one, say S ⊆ T , is to show that T ` ConS . However, as it was proved by Wilkie and Paris in [WP87]
this method does not work for bounded arithmetic theories if we use the usual Hilbert style provability
predicate. Indeed, they proved that even the strong arithmetic I∆0 +exp does not prove the Hilbert style
consistency of Robinson’s arithmetic Q, that is I∆0 + exp does not prove that there is no Hilbert prove
of 0 6= 0 from Q. Thus, if we hope to prove that one bounded arithmetic is stronger than the other one
by using consistency statements we should use some other provability notions, like tableux or Herbrand
provability. Indeed, for these notions it is usually easier to show that a given theory is consistent since,
e.g., Herbrand proofs are of a bigger size than Hilbert ones. Thus, it may happen in a model of I∆0 +exp
that a theory S is inconsistent in the Hilbert sense and consistent in the Herbrand sense. Only when we
know that the superexponentiation function is total we can prove the equivalence of the above notions of
provability. For some time it has been even unknown whether the second Gödel incompleteness theorem
holds for arithmetics I∆0 + Ωi and the Herbrand style provability predicate. Adamowicz and Zbierski
in [AZ01] proved, for i ≥ 2, the second incompleteness theorem for I∆0 + Ωi and the Herbrand notion
of consistency and later Adamowicz in [A01] proved this result for I∆0 + Ω1. Recently, Ko lodziejczyk
showed in [K06] a strengthening of these results. He proved that there is a finite fragment S of I∆0 +Ω1

such that no theory I∆0 + Ωi proves the Herbrand consistency of S. Thus, if one wants to prove strict
hierarchy of bounded arithmetics by means of provability of Herbrand consistency one should consider a
thinner notion, e.g., Herbrand proofs restricted to some cuts of a given model of a bounded arithmetic.
Such a study is a main subject of our paper.

For a detailed treatment of bounded arithmetics we refer to [HP93]. We consider bounded arithmetics
theories I∆0 +Ωi, for i ≥ 1. I∆0 is just the first order arithmetic with the induction axioms restricted to
bounded formulas i.e. formulas with quantification of the form Qx ≤ t(z̄), where Q ∈ {∃,∀} and x 6∈ {z̄}.
For i ≥ 1, the axiom Ωi states the totality of the function ωi. The functions ωi are defined as follows.
Let log(x) be the logarithm with the base 2 . Let the length function lh(x) be the length of the binary
representation of x,

lh(x) = plog(x+ 1)q.

Now,

ω1(x) =
{

0 if x = 0
2(lh(x)−1)2 if x > 0.

and

ωi+1(x) =
{

0 if x = 0
2ωi(lh(x)−1) if x > 0.

By exp(x) we denote the exponentiation function 2x.
Let logn be a set of elements a such the n-th iteration of exp on a exists. If exp is not provably total

in T then there are models of T in which not all elements are in logn. For C > 0, C logn is a set of
elements a such that there exists b in logn such that a is less or equal than Cb. Let us observe that the
above notions are definable by existential formulas.

For a term t we define its tree depth by an inductive condition as

tr(f(t1, . . . , tk)) = 1 + max {tr(ti) : i ≤ k} .

By the depth of a term t we define the maximum of its tree depth and the size of the greatest function
symbol in t. That is

dp(t) = max {f : f occurs in t} ∪ {tr(t)} .

2 Zofia Adamowicz and Konrad Zdanowski

For a set of terms Λ, the depth of Λ, dp(Λ) = max {dp(t) : t ∈ Λ}.
An evaluation p on a set Λ is a function from Λ2 into {0, 1}. We define the following notion of

satisfaction for evaluations by induction on the formula ϕ:

– p |= t = t′ if p(t, t′) = 1,
– p |= t ≤ t′ if there is s ∈ Λ such that p |= (t+ s = t′),
– for ϕ quantifier free, p |= ϕ[t̄] if p makes ϕ true in the sense of propositional logic,
– p |= ∃xϕ(x̄, x)[t̄] if p |= ϕ(x̄, x)[t̄, s∃ϕ(t̄)],
– p |= ∀xϕ(x̄, x)[t̄] if for all terms t ∈ Λ, p |= ϕ(x̄, x)[t̄, t].

For a set of axioms T an evaluation p is a T -evaluation if it satisfies all axioms from T . We say that
an evaluation p on Λ decides a formula ϕ(x̄), if for any t̄ ∈ Λ, either p |= ϕ(t̄) or p |= ¬ϕ(t̄). Let N be a
standard integer. An evaluation is N -deciding if it decides any formula of a code less than N .

We formalize the notion of Herbrand consistency as a Π1 arithmetical formula HCons(N,T, i) which
states that that for each set of terms Λ of depth not greater than i, there exists an N–deciding, T–
evaluation on Λ.

Let i ≥ 1. We show that for each N there exists ε > 0 such that, I∆0 + Ωi does not prove its
N -deciding Herbrand consistency restricted to the terms of depth in (1 + ε) logi+2, that is

I∆0 +Ωi 6` HCons(N, I∆0 +Ωi, (1 + ε) logi+2). (1)

On the other hand it is known that for each N ,

I∆0 +Ωi ` HCons(N, I∆0 +Ωi, logi+3) (2)

that is I∆0 +Ωi proves its Herbrand consistency restricted to terms of depth logi+3.
It is tempting to close the gap by proving, at least for some i ≥ 1, either for each N ,

I∆0 +Ωi ` HCons(N, I∆0 +Ωi, logi+2) (3)

or
I∆0 +Ωi 6` HCons(N, I∆0 +Ωi, A logi+3), for some N,A ∈ N. (4)

Indeed both conjectures (3) and (4) have interesting consequences for bounded arithmetics. If (3) holds
then I∆0 +Ωi+1 would not be Π1–conservative over I∆0 +Ωi. This is so because logi+2 is closed under
addition in the presence of Ωi+1. Thus, in I∆0 +Ωi+1 the cuts logi+2 and (1 + ε) logi+2 are the same. It
follows then from (3) that I∆0 +Ωi+1 ` HCons(I∆0 +Ωi, A logi+2), for each A ∈ N.

On the other hand, if (4) holds this would mean that we cannot mimic the proof of (2) for the cut
A logi+3. But the only tool needed in that proof which is unavailable in this situation is the existence of
a suitable truth definition for ∆0 formulas. It would follow that there is no such truth definition for ∆0

formulas whose suitable properties are provable in I∆0 +Ωi. This is related to a major open problem in
bounded arithmetics how much exponentiation is needed for a truth definition for bounded formulas.

References

[A01] Z. Adamowicz, On tableaux consistency in weak theories, preprint 618, Institute of Mathematics of the
Polish Academy of Sciences, 2001.

[A02] Z. Adamowicz, Herbrand consistency and bounded arithmetic, in Fundamenta Mathematicae 171(2002),
pp. 279–292

[AZ01] Z. Adamowicz and P. Zbierski, On Herbrand consistency in weak arithmetics, in Archive for Mathemat-
ical Logic, 40(2001), pp. 399–413.

[HP93] P. Hájek and P. Pudlák, Metamathematics of first–order arithmetic, Springer–Verlag, 1993.
[K06] L. A. Ko lodziejczyk, On the Herbrand notion of consistency for finitely axiomatizable fragments of

bounded arithmetic theories, in Journal of Symbolic Logic 71(2006), pp. 624–638.
[WP87] A. J. Wilkie and J. B. Paris, On the scheme of induction for bounded arithmetical formulas, in Annals

of Pure and Applied Logic, 35(1987), pp. 261–302.

A characterization of one-way functions based on time-bounded
Komogorov complexity

Lúıs Antunes ? André Souto ?? Andreia Teixeira ? ? ?

{lfa,andresouto,andreiasofia}@dcc.fc.up.pt

Universidade do Porto
Instituto de Telecomunicações

Address:
Rua do Campo Alegre, no 1021/1055

4169-007 Porto Portugal

The security of most cryptographic schemes is based implicitly on the security of the cryptographic
primitives used, like one-way functions, i.e., functions that are “easy” to compute in polynomial time but
are “hard” to invert in probabilistic polynomial time. In fact, the vast majority of the usual primitives
implies the existence of one-way functions. The existence of these functions is a strong assumption as
it is well known that it implies that P 6= NP, although it is a very important open question to know
if this is also a sufficient condition. To emphasize the importance of the existence of one-way functions
we observe that if they did not exist then pseudo-random generators, digital signatures, identification
schemes and private-key encryption would not be possible, [BM84,GMR88,IL89,ILL89,Rom90].

Given the impact of one-way functions in cryptography and complexity, we believe that it is important
to study these functions at the individual level in opposition to its average case behavior. In this work
we give a first characterization of one-way functions based on time-bounded Kolmogorov complexity. We
hope that this characterization may lead to a finer grained analysis to some cryptographic protocols,
such as commitment schemes.

Classically there are two types of one-way functions: strong and weak one-way functions. In the case
of a strong one-way function, it is required that the inversion happens with low probability and in the
weak version the non inversion must happen with non-negligible probability. An intersecting fact about
these functions is that not every weak one-way function is a strong one-way function but their existence
is equivalent (see [Gol01] for details). Formally:

Definition 1 (Weak one-way function). A function f : {0, 1}∗ → {0, 1}∗ is a weak one-way function
if it is computable in polynomial time, it is total, one-to-one, honest, and there is a polynomial p such
that for every probabilistic polynomial time algorithm G and all sufficiently large n’s,

Pr[G(f(x)) 6= x] >
1

p(n)
.

Definition 2 (Strong one-way function). A function f : {0, 1}∗ → {0, 1}∗ is a strong one-way
function if it is computable in polynomial time, it is total, one-to-one, honest, and for every probabilistic
polynomial time algorithm G, every positive polynomial p, and all sufficiently large n’s,

Pr[G(f(x)) = x] <
1

p(n)
.

To give a characterization of one-way functions using individual instances we will use Kolmogorov
complexity. This notion, defined independently by Kolmogorov [Kol65], Solomonoff [Sol64] and Chaitin
[Cha66], is a rigorous measure of information contained in a string by the size of the smallest program
producing that string.

Definition 3. Let U be a fixed universal Turing machine with a prefix-free domain. For any strings
x, y ∈ {0, 1}∗, the Kolmogorov complexity of x given y is

K(x|y) = min
p
{|p| : U(p, y) = x}.

? All the authors are partially supported by CSI2 (PTDC/EIA- CCO/099951/2008)
?? The author is also supported by the grant SFRH / BD / 28419 / 2006 from FCT

? ? ? The author is also supported by the grant SFRH / BD / 33234 / 2007 from FCT

4 Lúıs Antunes, André Souto, Andreia Teixeira

For any time constructible t, the t-time-bounded Kolmogorov complexity of x given y is defined by

Kt(x|y) = min
p
{|p| : U(p, y) = x in at most t(|x|) steps}.

The higher the Kolmogorov complexity the more information is necessary to recover that string.
Almost all strings have nearly maximum Kolmogorov complexity, however one can easily create, with
high probability, another string just as useful as the first one by using fresh random coins.

We plan to explore the idea that Kolmogorov complexity can be useful within the field of cryptography,
by working at the level of the particular instances instead of the probability distributions involved. Notice
that, for example in the case of zero knowledge communication protocols and in the case of commitment
schemes based on one-way functions, this type of analysis gives an insight of the information that is
leaked on particular communications. In this work we begin this task by analyzing one-way functions. In
particular, we characterize one-way functions based on individual instances and relate it with the classical
notions of one-way functions. We start by studying the expected value of Kolmogorov complexity of x
given f(x) and some randomness and then a characterization based on Kolmogorov complexity of the
individual instances is given. In the former approach we show that to have a weak one-way function the
expectation should be at least larger than any constant but if f is a strong one-way function then this
value is nearly maximum which gives a huge gap between weak one-way functions and strong one-way
functions. Formally we prove the following two results:

Theorem 1. Let t be a fixed polynomial and f a polynomial time computable function. If f is an honest
one-to-one function such that for all constant c the expected value of Kt(x|f(x), f, r) over strings of
length n is larger than c for almost all n then f is a weak one-way function.

Theorem 2. Let t be a fixed polynomial and f a polynomial time computable function. If f is an honest
one-to-one function such that the expected value of Kt(x|f(x), f, r) over strings of length n is larger than
n+O(log n) for almost all n then f is a strong one-way function.

For the later approach the intuition is that the time-bounded Kolmogorov complexity is suitable for
defining one-way functions using individual instances. In this type of primitive we expect that, given x
and a description of f , computing f(x) will be efficiently easy, i.e., x and f give all the information to
compute in polynomial time f(x) and on the other hand, f(x), in polynomial time, does not convey useful
information about x, so the length of the program computing x given f(x) and f would be approximately
equal to the length of the program computing x without any auxiliary input. With this intuition in mind
we define Kolmogorov one-way function in the following way:

Definition 4. Let t be a fixed polynomial, f : Σ∗ → Σ∗ an honest, one-to-one function computable in
polynomial time and δ a fixed constant. We say that an instance x of length n is δ-secure relatively to
the random string r ∈ Σ≤t(n) if:

Kt(x|f, r)−Kt(x|f, f(x), r) ≤ δ.

We say that f is an (ε, δ)-Kolmogorov one-way function if we have:

Prx,r(x is δ-secure for r) ≥ ε

for sufficiently large n and r ∈ Σ≤t(n).

In this work we show that Kolmogorov one-way functions are more restrictive than classical one-
way functions in the sense that the existence of Kolmogorov one-way functions with certain parameters
implies the existence of classical one-way functions. In particular we show:

Theorem 3. Let t be a fixed polynomial and f a function computable in polynomial time. If f is an
honest, one-to-one function that is (1 − 1/p(n), c)-Kolmogorov one-way function for all polynomial and
constant c then f is a weak one-way function.

Theorem 4. Let t be a fixed polynomial and f a function computable in polynomial time. If f is an
honest, one-to-one function that is (1− 1/2n, c)-secure Kolmogorov one-way function for all polynomial
and constant c then f is a classical one-way function.

A characterization of one-way functions based on time-bounded Komogorov complexity 5

Notice that if the previous results are optimal then in particular we can say that a Kolmogorov
one-way function is a function that the probability of inversion would not be significantly larger than
guessing the inverse of each element.

In [LM93] and [LW95], the authors relate the existence of one-way functions and the conjecture
of polynomial time symmetry of information. For the unbounded version of Kolmogorov complexity,
symmetry of information was first proved to be true by Levin (as suggested in [ZL70]), but the proof
is not valid any more when polynomial time-bounds restrictions are imposed. This conjecture has close
connections to several complexity theoretic questions, similar to the ones concerning the existence of
one-way functions. In order to have a full scenario about the existence of Kolmogorov one-way functions,
in this work, we also study its connection to the polynomial time symmetry of information conjecture by
showing that if Kolmogorov one-way functions exist, then the polynomial time symmetry of information
conjecture fails.

References

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits.
SIAM J. Comput., 13(4):850–864, 1984.

[Cha66] G. Chaitin. On the length of programs for computing finite binary sequences. J. ACM, 13(4):547–569,
1966.

[GMR88] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[Gol01] O. Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.
[IL89] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptography. In

SFCS ’89, pages 230–235. IEEE Computer Society, 1989.
[ILL89] R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random generation from one-way functions. In STOC

’89, pages 12–24. ACM, 1989.
[Kol65] A. N. Kolmogorov. Three approaches to the quantitative definition of information. Problems of Infor-

mation Transmission, 1(1):1–7, 1965.
[LM93] L. Longpré and S. Mocas. Symmetry of information and one-way functions. Information processing

Letters, 46(2):95–100, 1993.
[LW95] L. Longpré and O. Watanabe. On symmetry of information and polynomial time invertibility. Infor-

mation and Computation, 121(1):14–22, 1995.
[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In STOC ’90, pages

387–394. ACM, 1990.
[Sol64] R. Solomonoff. A formal theory of inductive inference, part i. Information and Control, 7(1):1–22, 1964.
[ZL70] A. Zvonkin and L. Levin. The complexity of finite objects and the development of the concepts of

information and randomness by means of the theory of algorithms. Russian Mathematics Surveys,
256:83–124, 1970.

A Case Study in Graph Polynomials:
The Subgraph Component Polynomial

I. Averbouch(1), ?, J.A. Makowsky(1), ??, and P. Tittmann(2)

(1)Department of Computer Science,
Technion–Israel Institute of Technology, 32000 Haifa, Israel

(2) Fachbereich Mathematik–Physik–Informatik,
Hochschule Mittweida, Mittweida, Germany

Abstract. Inspired by the study of community structure in social networks, we introduce the
graph polynomial Q (G; x, y), as a bivariate generating function which counts the number of con-
nected components in induced subgraphs. In this case study we analyze the features of the new
polynomial. First, we re-define it as a subset expansion formula. Second, we give a recursive defini-
tion of Q (G; x, y) using vertex deletion, vertex contraction and deletion of a vertex together with
its neighborhood, and prove a universality property. We relate Q (G; x, y) to the universal edge
elimination polynomial introduced by I. Averbouch, B. Godlin and J.A. Makowsky (2008), which
subsumes other known graph invariants and graph polynomials, among them the Tutte polyno-
mial, the independence and matching polynomials, and the bivariate extension of the chromatic
polynomial introduced by K. Dohmen, A. Pönitz, and P. Tittmann (2003). Finally we show that
the computation of Q (G; x, y) is]P-hard, but Fixed Parameter Tractable for graphs of bounded
tree-width and clique-width.

1 Introduction

There is a variety of graph polynomials studied in the literature. Those polynomials differ in many aspects:
their origins come from different research areas, they are defined by different ways, and their authors use
different terminology in their papers. In [12] the second author outlined a general framework for studying
graph polynomials, further developed in [10]. This framework allows to compare graph polynomials with
respect to their ability to distinguish graphs, to encode other graph polynomials or numeric graph
invariants, and their computational complexity. In [17] we introduced a new graph polynomial, the
subgraph component polynomial Q(G;x, y), which arises naturally from studying community structures
in social networks.

In this case study, we present the results from [17] according to the following checklist:

– Can the polynomial be presented as a subset expansion formula?
What logic formalism is needed to define this formula?

– Does this polynomial satisfy some linear recurrence relation?
Has it some universality property with respect to that recurrence relation?

– Is it definable as a partition function using counting of weighted graph homomorphisms?
– How hard is the polynomial to compute?

Does it have a dichotomy property, cf. the Difficult Point Conjecture of [12])?
– What is its connection to known graph polynomials?
– And finally: is it really new?

2 Motivation: Community Structure in Networks

In the last decade stochastic social networks have been analyzed mathematically from various points
of view. Understanding such networks sheds light on many questions arising in biology, epidemology,
sociology and large computer networks. Researchers have concentrated particularly on a few properties
? Partially supported by a grant of the Graduate School of the Technion–Israel Institute of Technology

?? Partially supported by a grant of the Fund for Promotion of Research of the Technion–Israel Institute of
Technology and grant ISF 1392/07 of the Israel Science Foundation (2007-2010)

A Case Study in Graph Polynomials: The Subgraph Component Polynomial 7

that seem to be common to many networks: the small-world property, power-law degree distributions,
and network transitivity. For a broad view on the structure and dynamics of networks, see [15]. M. Girvan
and M.E.J. Newman, [9], highlight another property that is found in many networks, the property of
community structure, in which network nodes are joined together in tightly knit groups, between which
there are only looser connections.

Motivated by [14], and the third author’s involvement in a project studying social networks, we were
led to study the graph parameter qij (G), the number of vertex subsets X ⊆ V with i vertices such that
G [X] has exactly j components. qij (G), counts the number of degenerated communities which consist
of i members, and which split into j isolated subcommunities.

The ordinary bivariate generating function associated with qij (G) is the two-variable graph polyno-
mial

Q (G;x, y) =
n∑

i=0

n∑
j=0

qij (G)xiyj .

We call Q (G;x, y) the subgraph component polynomial of G. The coefficient of yk in Q (G;x, y) is the
ordinary generating function for the number of vertex sets that induce a subgraph of G with exactly k
components.

3 Q(G; x, y) as a Graph Polynomial

In this paper we study the subgraph component polynomial Q (G;x, y) as a graph polynomial in its own
right and explore its properties along the checklist from Section 1.

Like the bivariate Tutte polynomial, see [6, Chapter 10], the polynomial Q (G;x, y) has several re-
markable properties. However, its distinguishing power is quite different from the Tutte polynomial and
other well studied polynomials.

Our main findings are 1:

– The Tutte polynomial satisfies a linear recurrence relation with respect to edge deletion and edge
contraction, and is universal in this respect. Q (G;x, y) also satisfies a linear recurrence relation, but
with respect to three kinds of vertex elimination, and is universal in this respect.

– A graph polynomial in three indeterminates, ξ(G;x, y, z), which satisfies a linear recurrence relation
with respect to three kinds of edge elimation, and which is universal in this respect, was introduced
in [2]. It subsumes both the Tutte polynomial and the matching polynomial. For line graph L(G) of
a graph G, we have Q (L(G);x, y) is a substitution instance of ξ(G;x, y, z).

– Distinguishing power of Q (G;x, y) is incomparable with that of the Tutte polynomial, the charac-
teristic polynomial and the bivariate chromatic polynomial introduced in [7].

– Also like for the Tutte polynomial, cf. [11], Q(G;x0, y0) has the Difficult Point Property, i.e. it is
]P-hard to compute for all fixed values of (x0, y0) ∈ R2 −E where E is a semi-algebraic set of lower
dimension. In [12] it is conjectured that the Difficult Point Property holds for a wide class of graph
polynomials, the graph polynomials definable in Monadic Second Order Logic. The conjecture has
been verified for various special cases, [3–5].

– Q(G;x, y) is fixed parameter tractable in the sense of [8] when restricted to graphs classes of bounded
tree-width or even to classes of bounded clique-width. For the Tutte polynomial, this is known only
for graph classes of bounded tree-width, [16, 1, 13].

References

1. A. Andrzejak. Splitting formulas for Tutte polynomials. Journal of Combinatorial Theory, Series B, 70.2:346–
366, 1997.

2. I. Averbouch, B. Godlin, and J.A. Makowsky. An extension of the bivariate chromatic polynomial. European
Journal of Combinatorics, 31.1:1–17, 2010.

3. M. Bläser and H. Dell. Complexity of the cover polynomial. In L. Arge, C. Cachin, T. Jurdziński, and
A. Tarlecki, editors, Automata, Languages and Programming, ICALP 2007, volume 4596 of Lecture Notes in
Computer Science, pages 801–812. Springer, 2007.

1 More results regarding Q(G; x, y) are available in preprint [17].

8 I. Averbouch(1),, J.A. Makowsky(1),, and P. Tittmann(2)

4. M. Bläser, H. Dell, and J.A. Makowsky. Complexity of the Bollobás-Riordan polynomia. exceptional points
and uniform reductions. In Edward A. Hirsch, Alexander A. Razborov, Alexei Semenov, and Anatol Slissenko,
editors, Computer Science–Theory and Applications, Third International Computer Science Symposium in
Russia, volume 5010 of Lecture Notes in Computer Science, pages 86–98. Springer, 2008.

5. Markus Bläser and Christian Hoffmann. On the complexity of the interlace polynomial. In STACS, volume
08001 of Dagstuhl Seminar Proceedings, pages 97–108. Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2008.

6. B. Bollobás. Modern Graph Theory. Springer, 1999.
7. K. Dohmen, A. Pönitz, and P. Tittmann. A new two-variable generalization of the chromatic polynomial.

Discrete Mathematics and Theoretical Computer Science, 6:69–90, 2003.
8. R.G. Downey and M.F Fellows. Parametrized Complexity. Springer, 1999.
9. M. Girvan and M.E.J. Newman. Community structure in social and biological networks. Proc. Natl. Acad.

Sci. USA, 99:7821–7826, 2002.
10. B. Godlin, E. Katz, and J.A. Makowsky. Graph polynomials: From recursive definitions to subset expansion

formulas. arXiv http://uk.arxiv.org/pdf/0812.1364.pdf, to appear in the Journal of Logic and Compu-
tation, 2008.

11. F. Jaeger, D.L. Vertigan, and D.J.A. Welsh. On the computational complexity of the Jones and Tutte
polynomials. Math. Proc. Camb. Phil. Soc., 108:35–53, 1990.

12. J.A. Makowsky. From a zoo to a zoology: Towards a general theory of graph polynomials. Theory of
Computing Systems, 43:542–562, 2008.

13. J.A. Makowsky, U. Rotics, I. Averbouch, and B. Godlin. Computing graph polynomials on graphs of bounded
clique-width. In F. V. Fomin, editor, Graph-Theoretic Concepts in Computer Science, 32nd International
Workshop, WG 2006, Bergen, Norway, June 22-23, 2006, Revised Papers, volume 4271 of Lecture Notes in
Computer Science, pages 191–204. Springer, 2006.

14. M.E.J. Newman. Detecting community structure in networks. Eur. Phys. J.B., 38:321–330, 2004.
15. M.E.J. Newman, A.L. Barabasi, and D. Watts. The Structure and Dynamics of Networks. Princeton Uni-

versity Press, 2006.
16. S.D. Noble. Evaluating the Tutte polynomial for graphs of bounded tree-width. Combinatorics, Probability

and Computing, 7:307–321, 1998.
17. P. Tittmann, I. Averbouch, and J.A. Makowsky. The enumeration of vertex induced subgraphs with respect

to the number of components. European Journal of Combinatorics, 3x.x:xx–yy, 2010.

Proof Complexity of Propositional Default Logic?

Olaf Beyersdorff1, Arne Meier2, Sebastian Müller3, Michael Thomas2, and Heribert Vollmer2

1 Institute of Computer Science, Humboldt University Berlin, Germany beyersdo@informatik.hu-berlin.de
2 Institute of Theoretical Computer Science, Leibniz University Hanover, Germany

{meier,thomas,vollmer}@thi.uni-hannover.de
3 Faculty of Mathematics and Physics, Charles University Prague, Czech Republic

smueller@informatik.hu-berlin.de

Abstract. Default logic is one of the most popular and successful formalisms for non-monotonic
reasoning. In 2002, Bonatti and Olivetti introduced several sequent calculi for credulous and skep-
tical reasoning in propositional default logic. In this paper we examine these calculi from a proof-
complexity perspective. In particular, we show that the calculus for credulous reasoning obeys
almost the same bounds on the proof size as Gentzen’s system LK . Hence proving lower bounds
for credulous reasoning will be as hard as proving lower bounds for LK . On the other hand we
show an exponential lower bound to the proof size in Bonatti and Olivetti’s enhanced calculus for
skeptical default reasoning.

1 Barriers in Computing: Lower Bounds to Lengths of Proofs

Proving lower bounds for propositional proof systems constitutes one of the major objectives in proposi-
tional proof complexity. By a classical result of Cook and Reckhow [9], showing super-polynomial lower
bounds to the lengths of proofs in increasingly stronger propositional proof systems is one approach
toward separating NP from coNP, and consequently also P from NP. Frege systems currently form a
strong barrier with respect to lower bounds to proof lengths. Though exponential lower bounds have
been shown for bounded-depth Frege systems [1, 3, 4, 18], no non-trivial lower bound is known for the
general system.

While there is a rich body of results for propositional proof systems (cf. [17]), proof complexity of
non-classical logics has only recently attracted more attention, and a number of exciting results have
been obtained for modal and intuitionistic logics [14–16]. In particular, Hrubeš [14] has shown exponential
lower bounds for the proof size for Frege systems in many modal and intuitionistic logics. As non-classical
logics are often more expressive than propositional logic, they are usually associated with large complexity
classes like PSPACE. Intuitively therefore, lower bounds to the lengths of proofs in non-classical logic
should be easier to obtain, as they “only” target at separating NP and PSPACE. The results of Hrubeš [14]
and Jeřábek [15, 16] on non-classical Frege systems are very interesting to contrast with our knowledge
on classical Frege as they shed new light on this topic from a different perspective.

In this paper, we investigate the proof complexity of propositional default logic. In particular, we
analyse the sequent calculi of Bonatti and Olivetti [5] for propositional default logic. We show that the
sequent calculus for credulous default reasoning has almost the same upper and lower bounds on lengths
of proofs as classical Frege systems. Thus, the current barrier in classical proof complexity admits a
natural restatement in terms of non-monotonic logic.

2 Default Logic

Trying to understand the nature of human reasoning has been one of the most fascinating adventures
since ancient times. It has long been argued that due to its monotonicity, classical logic is not adequate
to express the flexibility of commonsense reasoning. To overcome this deficiency, a number of formalisms
have been introduced (cf. [21]), of which Reiter’s default logic [22] is one of the most popular and widely
used systems. Default logic extends the usual logical (first-order or propositional) derivations by patterns
for default assumptions. These are of the form “in the absence of contrary information, assume . . . ”.
? Supported in part by DFG grants KO 1053/5-2 and VO 630/6-1 and by a grant from the John Templeton

Foundation.

10 Olaf Beyersdorff, Arne Meier, Sebastian Müller, Michael Thomas, and Heribert Vollmer

Reiter argued that his logic adequately formalizes human reasoning under the closed world assumption.
Today default logic is widely used in artificial intelligence and computational logic.

The semantics and the complexity of default logic have been intensively studied during the last
decades (cf. [8] for a survey). In particular, Gottlob [13] has identified and studied two reasoning tasks
for propositional default logic: the credulous and the skeptical reasoning problem which can be understood
as analogues of the classical problems SAT and TAUT. Due to the stronger expressibility of default logic,
however, credulous and skeptical reasoning become harder than their classical counterparts—they are
complete for the second level Σp

2 and Πp
2 of the polynomial hierarchy, see [13].

Less is known about the complexity of proofs in default logic. Starting with Reiter’s work [22], several
proof-theoretic methods have been developed for default logic (cf. [2,12,19,20,23] and [10] for a survey).
However, most of these formalisms employ external constraints to model non-monotonic deduction and
thus cannot be considered purely axiomatic (cf. [11] for an argument). This was achieved by Bonatti and
Olivetti [5] who designed simple and elegant sequent calculi for credulous and skeptical default reasoning.
Subsequently, Egly and Tompits [11] extended Bonatti and Olivetti’s calculi to first-order default logic
and showed a speed-up of these calculi over classical first-order logic, i. e., they construct sequences of
first-order formulae which need long classical proofs but have short derivations using default rules.

3 Our Results

In the present paper we investigate the original calculi of Bonatti and Olivetti [5] from a proof-complexity
perspective. Apart from some preliminary observations in [5], this comprises, to our knowledge, the first
comprehensive study of lengths of proofs in propositional default logic. Our results can be summarized
as follows. Bonatti and Olivetti’s credulous default calculus BOcred obeys almost the same bounds to the
proof size as Gentzen’s propositional sequent calculus LK , i. e., we show that upper bounds to the proof
size in both calculi are polynomially related. The same result also holds for the proof length (the number
of steps in the system). Thus, proving lower bounds to the size of BOcred will be as hard as proving lower
bounds to LK (or, equivalently, to Frege systems), which constitutes a major challenge in propositional
proof complexity [6, 17]. This result also has implications for automated theorem proving. Namely, we
transfer the non-automatizability result of Bonet, Pitassi, and Raz [7] for Frege systems to default logic:
BOcred -proofs cannot be efficiently generated, unless factoring integers is possible in polynomial time.

While already BOcred appears to be a strong proof system for credulous default reasoning, admitting
very concise proofs, we also exhibit a general method of how to construct a proof system Cred(P) for
credulous reasoning from a propositional proof system P . This system Cred(P) bears the same relation
to P with respect to proof size as BOcred does to LK . Thus, choosing for example P as extended Frege
might lead to stronger proof systems for credulous reasoning.

For skeptical reasoning, the situation is different. Bonatti and Olivetti [5] construct two proof systems
for this task. While they already show an exponential lower bound for their first skeptical calculus, we
obtain also an exponential lower bound to the proof length in their enhanced skeptical calculus. Thus,
searching for natural proof systems for skeptical default reasoning with more concise proofs will be a
rewarding task for future research.

Acknowledgement

The first author wishes to thank Neil Thapen for interesting discussions on the topic of this paper during
a research visit to Prague.

References

1. M. Ajtai. The complexity of the pigeonhole-principle. Combinatorica, 14(4):417–433, 1994.
2. G. Amati, L. C. Aiello, D. M. Gabbay, and F. Pirri. A proof theoretical approach to default reasoning I:

Tableaux for default logic. Journal of Logic and Computation, 6(2):205–231, 1996.
3. P. W. Beame, R. Impagliazzo, J. Kraj́ıček, T. Pitassi, P. Pudlák, and A. Woods. Exponential lower bounds

for the pigeonhole principle. In Proc. 24th ACM Symposium on Theory of Computing, pages 200–220, 1992.
4. P. W. Beame, T. Pitassi, and R. Impagliazzo. Exponential lower bounds for the pigeonhole principle. Com-

putational Complexity, 3(2):97–140, 1993.

Proof Complexity of Propositional Default Logic 11

5. P. A. Bonatti and N. Olivetti. Sequent calculi for propositional nonmonotonic logics. ACM Transactions on
Computational Logic, 3(2):226–278, 2002.

6. M. L. Bonet, S. R. Buss, and T. Pitassi. Are there hard examples for Frege systems? In P. Clote and
J. Remmel, editors, Feasible Mathematics II, pages 30–56. Birkhäuser, 1995.

7. M. L. Bonet, T. Pitassi, and R. Raz. On interpolation and automatization for Frege systems. SIAM Journal
on Computing, 29(6):1939–1967, 2000.

8. M. Cadoli and M. Schaerf. A survey of complexity results for nonmonotonic logics. Journal of Logic Pro-
gramming, 17(2/3&4):127–160, 1993.

9. S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof systems. The Journal of
Symbolic Logic, 44(1):36–50, 1979.

10. J. Dix, U. Furbach, and I. Niemelä. Nonmonotonic reasoning: Towards efficient calculi and implementations.
In Handbook of Automated Reasoning, pages 1241–1354. Elsevier and MIT Press, 2001.

11. U. Egly and H. Tompits. Proof-complexity results for nonmonotonic reasoning. ACM Transactions on
Computational Logic, 2(3):340–387, 2001.

12. D. Gabbay. Theoretical foundations of non-monotonic reasoning in expert systems. In Logics and Models of
Concurrent Systems, pages 439–457. Springer-Verlag, Berlin Heidelberg, 1985.

13. G. Gottlob. Complexity results for nonmonotonic logics. Journal of Logic and Computation, 2(3):397–425,
1992.

14. P. Hrubeš. On lengths of proofs in non-classical logics. Annals of Pure and Applied Logic, 157(2–3):194–205,
2009.

15. E. Jeřábek. Frege systems for extensible modal logics. Annals of Pure and Applied Logic, 142:366–379, 2006.
16. E. Jeřábek. Substitution Frege and extended Frege proof systems in non-classical logics. Annals of Pure and

Applied Logic, 159(1–2):1–48, 2009.
17. J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory, volume 60 of Encyclopedia of

Mathematics and Its Applications. Cambridge University Press, Cambridge, 1995.
18. J. Kraj́ıček, P. Pudlák, and A. Woods. Exponential lower bounds to the size of bounded depth Frege proofs

of the pigeonhole principle. Random Structures and Algorithms, 7(1):15–39, 1995.
19. S. Kraus, D. J. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and cumulative

logics. Artificial Intelligence, 44(1–2):167–207, 1990.
20. D. Makinson. General theory of cumulative inference. In Proc. 2nd International Workshop on Non-

Monotonic Reasoning, pages 1–18. Springer-Verlag, Berlin Heidelberg, 1989.
21. V. W. Marek and M. Truszczyński. Nonmonotonic Logics—Context-Dependent Reasoning. Springer-Verlag,

Berlin Heidelberg, 1993.
22. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
23. V. Risch and C. Schwind. Tableaux-based characterization and theorem proving for default logic. Journal

of Automated Reasoning, 13(2):223–242, 1994.

Tractable constructions of finite automata from monadic
second-order formulas

Bruno Courcelle, Irène Durand

Université Bordeaux-1, LaBRI, CNRS
351, Cours de la Libération

33405, Talence cedex, France
courcell@labri.fr ; idurand@labri.fr

It is well-known from [DF, FG, CMR] that the model-checking problem for MSO logic on graphs
is fixed-parameter tractable (FPT) with respect to tree-width and clique-width. The proof uses tree-
decompositions (for tree-width as parameter) and k-expressions (for clique-width as parameter; see
below), and the construction of a finite tree-automaton from an MSO sentence, expressing the property
to check.

These two points are difficult : although tree-width ≤ k can be checked in linear time, the correspond-
ing algorithm (by Bodlaender, see [DF]) is not practically usable. The situation is similar for bounded
clique-width (see [HliOum]). Graphs can be given with their decompositions witnessing tree-width or
clique-width ≤ k, but another difficulty arises : the automata to be constructed are much too large and
computations abort by lack of memory space. This is actually unavoidable if one wants an algorithm
taking as input any MSO sentence (see, e.g., [FriGro]). One possibility is to forget the idea of imple-
menting the general theorem, and to work directly on particular problems: see [G1,G2] or [GH]. Another
one, explored here (also in [KL] in a different way) consists in finding fragments of MSO logic having an
interesting expressive power, and for which automata constructions (or other constructions) are tractable.

What we propose is based on the following ideas :
(1) Do not alternate quantifiers and do not determinize automata.
(2) Write MSO formulas with Boolean set terms (see below definitions).
(3) Precompile basic graph properties into ”small” finite automata.

We do not capture all MSO graph properties, but we can formalize in this way coloring and parti-
tionning problems, and also some domination problems to take a few examples. We only discuss graphs
of bounded clique-width, but the ideas extend to graphs of bounded tree-width and MSO formulas with
edge set quantifications. The problems considered successfully in [BK] use automata with smaller num-
bers of states than what we need.

Definition 1 : Clique-width and k-expressions.
Graphs are finite, simple, directed, loop-free. Each vertex has a label in [k] := {1, ..., k}. The operations

on graphs are ⊕, the union of disjoint graphs, the unary edge-addition
−−→
adda,b that adds the missing

edges from every vertex labelled a to every vertex labelled b, the relabelling relaba→b that changes a to
b (with a 6= b in both cases). The constant a denotes one vertex (with no edge) labelled by a ∈ [k].Let
Fk be the set of these operations and constants. Every term t in T (Fk) called a k-expression defines a
graph G(t) with vertex set equal to the set of occurrences of constants in t. A graph has clique-width at
most k if it is defined by some t in T (Fk).

As a logical structure, a graph is defined as 〈VG, edgG〉 where VG is the vertex set and edgG the binary
relation that describes edges.

Definition 2 : The set of terms representing a graph property.
Let P (X1, ..., Xn) be a property of sets of vertices X1, ..., Xn of a graph G denoted by a term t in

T (Fk). Examples are : E(X,Y) : there is an edge from some x in X to some y in Y ; H(X,Y) : for every
x in X, there is an edge from some y in Y to x ; Path(X,Y) : X has two vertices linked by a path in
G[Y], the subgraph of G induced by Y and Conn(X) : G[X] is connected.

Let F (n)
k be obtained from Fk by replacing each constant a by the constants (a,w) where w ∈ {0, 1}n.

For fixed k, let LP,(X1,...,Xn),k be the set of terms t in T (F (n)
k) such that P (A1, ..., An) is true in G(t),

where Ai is the set of vertices which are occurrences of constants (a,w) where the i-th component of w

Tractable constructions of finite automata from monadic second-order formulas 13

is 1. Hence t in T (F (n)
k) defines a graph G(t) and an assignment of sets of vertices to the set variables

X1, ..., Xn.

Definition 3 : ∃MSO(P) sentences
We let P be a set of basic graph properties like those of Definition 2 together with the atomic formu-

las X1 ⊆ X2, X1 = ∅ , Sgl(X1) (the last one means that X1 denotes a singleton set). Let {X1, ..., Xn}
be a set of set variables. A Boolean set term is a term over these variables, ∩,∪ and complementation
(example below). A P -atomic formula is a formula of the form P (S1, ..., Sm) where S1, ..., Sm are
Boolean set terms and P belongs to P. An ∃MSO(P) sentence is a sentence of the form ∃X1, ..., Xn.ϕ
where ϕ is a positive Boolean combination of P -atomic formulas.

Examples 4 :
We give some examples of ∃MSO(P) sentences.

(1) The property of p-vertex colorability can be expressed as follows :

∃X1, ..., Xp.(Part(X1, ..., Xp) ∧ St(X1) ∧ · · · ∧ St(Xp)),

where Part(X1, ..., Xp) expresses that X1, ..., Xp define a partition of the vertex set and St(Xi)
expresses that Xi is stable, i.e., that the induced graph G[Xi] has no edge.

A p-vertex coloring defined by X1, ..., Xp is acyclic if furthermore, each induced graph G[Xi ∪Xj] is
acyclic (is a forest). These properties are thus in ∃MSO(P) if we let in P the properties Part(X1, ..., Xp),
St(X1) and NoCycle(X1) expressing that G[X1] is acyclic.

(2) Minor inclusion. That a graph G contains a fixed simple loop-free graph H with vertex set
{v1, ..., vp} as a minor, can be expressed by the sentence µ :

∃X1, · · · , Xp.(Disjoint(X1, ..., Xp) ∧ Conn(X1) ∧ · · · ∧ Conn(Xp) ∧ · · ·Link(Xi, Xj) ∧ · · ·)

where Disjoint(X1, ..., Xp) expresses that X1, ..., Xp are pairwise disjoint, Conn(Xi) expresses that
G[Xi] is connected and Link(Xi, Xj) expresses that there exists an edge between a vertex of Xi and one
of Xj ; in µ, there is one formula Link(Xi, Xj) for each edge {vi, vj} of H.

(3) Constrained domination. The sentence ∃X1.(P (X1) ∧ Dom(X1, X1)) expresses that there exists
a set X1 satisfying a property P and which also dominates all other vertices. The formula Dom(Y,X)
expresses that every vertex of Y is linked by an edge to some vertex of X.

(4) Many vertex partitionning problems considered by Rao in [Rao] can be expressed in this way.

Definition 5 : From ∃MSO(P) sentences to ”reasonable sized” automata.
Let us assume that for each basic property P (X1, ..., Xm) we have constructed a finite automaton

AP,(X1,..., Xm),k that accepts the set LP,(X1,...,Xm),k.

Claim 6 : For set terms S1, ..., Sm over {X1, ..., Xn}, the set of terms LP (S1,...,Sm),(X1,...,Xn),k is
h−1(LP,(X1,...,Xm),k) where h is the alphabetic homomorphism : T (F (n)

k) → T (F (m)
k) that replaces a

constant symbol (a,w) for w ∈ {0, 1}n by (a,w′) for some w′ ∈ {0, 1}m and does not modify the
nonnullary function symbols. We give an example : consider P (X1), n = 3 and S = X1 ∪ X3. Then
LP (S),(X1,X2,X3),k = h−1(LP,(X1),k) where h(1x0) = h(1x1) = 1, h(0x0) = 1, h(0x1) = 0, for every
x = 0, 1, i.e., h(x1, x2, x3) = x1 ∨ ¬x3.

Claim 7 : From an automaton AP,(X1,...,Xm),k that accepts LP,(X1,...,Xm),k one gets an automaton
AP (S1,...,Sm),(X1,...,Xn),k with same number of states that accepts LP (S1,...,Sm),(X1,...,Xn),k . IfAP,(X1,...,Xm),k

is deterministic, then AP (S1,...,Sm),(X1,...,Xn),k is also deterministic.

Claim 8 : If ϕ is a positive Boolean combination of P -atomic formulas α1, ..., αd for which we
have constructed non-deterministic (resp. deterministic) automata A1, ...,Ad with respectively N1, ..., Nd
states, one can construct a ”product” non-deterministic (resp. deterministic) automaton for ϕ with
N1 × ...×Nd states (perhaps less after deletion of useless states).

14 Bruno Courcelle, Irène Durand

Claim 9 : If θ is the sentence ∃X1, ..., Xn.ϕ , and we have constructed an automaton A for ϕ, we
obtain one, usually not deterministic even if A is, for θ with same number of states, by the classical
”projection” that deletes the Boolean sequences from the constant symbols of F (n)

k .

Theorem 10 : Let P be a set of basic graph properties. For each P ∈ P and for each k, let a
nondeterministic automaton AP,(X1,...,Xm),k with at most N(k) states be known. For every sentence θ
of the form ∃X1, ..., Xn.ϕ where ϕ is a positive Boolean combination of d P-atomic formulas, a non-
deterministic automaton Aθ,ε,k (over the signature Fk) with at most N(k)d states can be constructed.

In many cases (see below) deterministic automata for the properties of P are such that N(k) = 2O(k2).
The only nondeterministic transitions of Aθ,ε,k are those associated with the constants. Then, with these
hypotheses and the notation of Theorem 6:

Theorem 11 : For every term t in T (Fk), one can decide in time O(| t | .N(k)2d) if the graph G(t)
satisfies θ.

Proof : One can decide in time O(| t | .N2) if a nondeterministic automaton with N states over a
binary signature and nondeterministic transitions limited to constants accepts a term t. In this compu-
tation, one considers θ as fixed, and the time to fire a transition constant.

Application 12: Some basic graph properties and their automata; experiments1

We classify graph properties in terms of the numbers of states N(k) of deterministic automata that
check them.

Polynomial-sized automata.
The automata for X1 ⊆ X2, X1 = ∅ , Sgl(X1) have no more than 4 states. For E(X1, X2) we can

build an automaton with k2 + k + 2 states.
Single-exponential sized automata.
For Part(X1, ..., Xp) , Disjoint(X1, ..., Xp) and St(Xi) : 2k states.
For Link(Xi, Xj) and Dom(Xi, Xj) : 22k states.
For Path(X1, X2) , we have constructed a (non-minimal) automaton with 2k

2
states. Its minimization

(with the software ATUOWRITE [Dur]) has given the results shown in the following table.

Path(X1, X2)
cwd A min(A)

2 25 12
3 214 128
4 3443 2197

For NoCycle(X1) : 2O(k2) states.
For d-vertex coloring, we get, by Theorem 10, a nondeterministic automaton with 2kd states.
We have been able to construct minimal deterministic automata for the following values of (k, d)

shown in the following table.

Vertex coloring
cwd d A det(A) min(A)

2 2 16 12 8
2 3 64 37 14
2 4 256 96 23
2 5 1024 213 36
3 2 64 406 56
3 3 512 ∞

1 The tables contain the number of states of the considered automata. The symbol∞means that the computation
did not finish but did not run out of memory.

Tractable constructions of finite automata from monadic second-order formulas 15

Double-exponential sized automata.
For checking connectivity, one can build a deterministic automaton with 22k

states. If k = 2p + 1,
the corresponding minimal deterministic automaton has more than 22p

states. However, for connectivity
of graphs of degree at most d, which may be enough in practice, we can build a single-exponential sized
automaton with 2O((dk)2) states.

For having a circuit, we get 9 states for cwd = 2 and 81 for cwd = 3 and the program runs out of
memory for cwd = 4. For indegree at most 1, we get :

cwd 2 3 4 5
A 24 123 621 3120

Perspectives: To make these constructions usable, we will not try to tabulate and minimize au-
tomata, but rather, we will describe their transitions by clauses. We will compute a transition each time
it is necessary for running the automaton on a given term.

References

[BK] D.Basin, N. Klarlund, Automata based reasoning in hardware verification, J. of Formal Methods
in System Design, 13 (1998) 255-288.

[CMR] B. Courcelle, J. A. Makowsky, U. Rotics, On the fixed parameter complexity of graph enu-
meration problems definable in monadic second-order logic. Discrete Applied Mathematics 108 (2001)
23-52

[DF] R. Downey et M. Fellows, Parameterized complexity, Springer-Verlag, 1999
[Dur] I. Durand, Autowrite: A Tool for Term Rewrite Systems and Tree Automata, Electronic Notes

TCS 124(2005) 29-49
[FG] J. Flum, M. Grohe, Parametrized complexity theory, Springer, 2006.
[FriGro] M. Frick, M. Grohe: The complexity of first-order and monadic second-order logic revisited.

Ann. Pure Appl. Logic 130 (2004) 3-31
[GH] R. Ganian, P. Hlineny, On Parse Trees and Myhill-Nerode-type Tools for handling Graphs of

Bounded Rank-width.
Discrete Applied Maths, In press.
[G1] G. Gottlob, R. Pichler, F. Wei: Abduction with Bounded Treewidth: From Theoretical Tractabil-

ity to Practically Efficient Computation. Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, Chicago, July 2008, AAAI Press, 2008, pp. 1541-1546

[G2] G. Gottlob, R. Pichler, F. Wei: Monadic Datalog over Finite Structures with Bounded Treewidth,
2008, ArXiv, CoRR abs/0809.3140

[HliOum] P. Hlineny, S. Oum: Finding Branch-Decompositions and Rank-Decompositions. SIAM J.
Comput. 38(2008) 1012-1032.

[KL] J. Kneis, A. Langer, A Practical Approach to Courcelle’s Theorem, Electronic Notes TCS, 251
(2009) 65-81.

[Rao] M. Rao, MSOL partitioning problems on graphs of bounded treewidth and clique-width. Theor.
Comput. Sci. 377(2007) 260-267.

Logical structures, cyclic graphs and genus of proofs

A. Carbone

Department of Computer Science, Université Pierre et Marie Curie-Paris 6
Alessandra.Carbone@lip6.fr

Abstract. We report on two recent results concerning the logical structure and the underlying
graphs of propositional proofs.

First, we consider the genus of a proof as a measure of proof complexity and we discuss a few
geometrical properties of logical flow graphs of proofs, with and without cuts, with the purpose in
mind to represent how complicated a cut-free proof can be. The main result says that arbitrarily
complicated non oriented graphs, that is graphs of arbitrarily large genus, can be encoded in a
cut-free proof. This fact was proved by Richard Statman in his thesis written in the early seventies
and never published. We reformulate Statman’s result in a purely graph theoretical language and
give a proof of it. We show that there are several ways to embed non oriented graphs of arbitrary
complexity into cut-free proofs and provide some other direct embeddings of arbitrarily complex
non oriented graphs into proofs possibly with cuts. We also show that given any formal circuit, we
can codify it into a proof in such a way that the graph of the circuit corresponds to the logical flow
graph of the encoding proof [1].

Second, we look at propositonal proofs by reformulating them in the more general framework of
combinatorial mappings. Combinatorial proofs are abstract invariants for sequent calculus proofs,
similarly to homotopy groups which are abstract invariants for topological spaces. Starting from
the observation that sequent calculus fails to be surjective onto combinatorial proofs, we extract
a syntactically motivated closure of sequent calculus from which there is a surjection onto a com-
plete set of combinatorial proofs. We characterize a class of canonical sequent calculus proofs for
the full set of propositional tautologies and derive a new completeness theorem for combinatorial
propositions. The result is based on a definition of a mapping between combinatorial proofs and
sequent calculus proofs which explicitly links the logical flow graph of a proof to a skew fibration
between graphs of formulas. The categorical properties relating the original and the new mappings
are explicitly discussed [2].

References

1. A. Carbone (2009) Logical structures and genus of proofs. Annals of Pure and Applied Logic, 161(2), 139-149.
2. A. Carbone (2009) A new mapping between combinatorial proofs and sequent calculus proofs read out from

logical flow graphs, Information and Computation, 1-15, doi:10.1016/j.ic.2009.01.007

On Optimal Probabilistic Algorithms for SAT

Yijia Chen1, Jörg Flum2, and Moritz Müller3

1 Shanghai Jiaotong University
BASICS, Department of Computer Science, Dongchuan Road 800, Shanghai 200240, China

Email: yijia.chen@cs.sjtu.edu.cn
2 Albert-Ludwigs-Universität Freiburg

Abteilung für Mathematische Logik, 79104 Freiburg, Eckerstr. 1, Germany
Email: joerg.flum@math.uni-freiburg.de

3 Centre de Recerca Matemàtica
Universitat Autònoma de Barcelona, Facultat de Ciències, 08193 Bellaterra, Spain

Email: mmueller@crm.cat

1. Introduction. A major aim in the development of algorithms for hard problems is to decrease the running time.
In particular one asks for algorithms that are optimal: A deterministic algorithm A deciding a language L ⊆ Σ∗

is optimal (or (polynomially) optimal or p-optimal) if for any other algorithm B deciding L there is a polynomial
p such that

tA(x) ≤ p(tB(x) + |x|) (1)

for all x ∈ Σ∗. Here tA(x) denotes the running time of A on input x. If (1) is only required for all x ∈ L, then A
is said to be an almost optimal algorithm for L (or to be optimal on positive instances of L).

Various recent papers address the question whether such optimal algorithms exist for NP-complete or coNP-
complete problems (cf. [1]), even though the problem has already been considered in the seventies when Levin [4]
observed that there exists an optimal algorithm that finds a witness for every satisfiable propositional formula. Fur-
thermore the relationship between the existence of almost optimal algorithms for a language L and the existence
of “optimal” proof systems for L has been studied [3, 5].

Here we present a result (see Theorem 2.1) that can be interpreted as stating that (under the assumption of the
existence of one-way functions) there is no optimal probabilistic algorithm for SAT.

2. Probabilistic speed-up. For a propositional formula α we denote by ‖α‖ the number of literals in it, counting
repetitions. Hence, the actual length of any reasonable encoding of α is polynomially related to ‖α‖.

The main result of this abstract reads as follows:

Theorem 2.1. Assume one-way functions exist. Then for every probabilistic algorithm A deciding SAT there exists
a probabilistic algorithm B deciding SAT such that for all d ∈ N and sufficiently large n ∈ N

Pr
[
there is a satisfiable α with ‖α‖ = n such that A does not accept α in at most (tB(α) + ‖α‖)d steps

]
≥ 1

5

Note that tA(α) and tB(α) are random variables, and the probability is taken over the coin tosses of A and B on
α.

Here we say that a probabilistic algorithm A decides SAT if it decides SAT as a nondeterministic algorithm,
that is

α ∈ SAT =⇒ Pr[A accepts α] > 0,
α /∈ SAT =⇒ Pr[A accepts α] = 0.

In particular, A can only err on ‘yes’-instances.
Note that in the first condition the error probability is not demanded to be bounded away from 0, say by a

constant ε > 0. As a more usual notion of probabilistic decision, say A decides SAT with one-sided error ε if

α ∈ SAT =⇒ Pr[A accepts α] > 1− ε,
α /∈ SAT =⇒ Pr[A accepts α] = 0.

For this concept we get

18 Yijia Chen, Jörg Flum, and Moritz Müller

Corollary 2.2. Assume one-way functions exist and let ε > 0. Then for every probabilistic algorithm A deciding
SAT with one-sided error ε there exists a probabilistic algorithm B deciding SAT with one-sided error ε such that
for all d ∈ N and sufficiently large n ∈ N

Pr
[
there is a satisfiable α with ‖α‖ = n such that A does not accept α in at most (tB(α) + ‖α‖)d steps

]
≥ 1

5

This follows from the fact that in the proof of Theorem 2.1 we choose the algorithm B in such way that on any
input α the error probability of B on α is not worse than the error probability of A on α.

3. Witnessing failure. The proof of Theorem 2.1 is based on the following result.

Theorem 3.1. Assume that one-way functions exist. Then there is a probabilistic polynomial time algorithm C
satisfying the following conditions.
(1) On input n ∈ N in unary the algorithm C outputs with probability one a satisfiable formula β with ‖β‖ = n.
(2) For every d ∈ N and every probabilistic algorithm A deciding SAT and sufficiently large n ∈ N

Pr
[
A does not accept C(n) in nd steps

]
≥ 1

3
.

In the terminology of fixed-parameter tractability this theorem tells us that the parameterized construction
problem associated with the following parameterized decision problem p-COUNTEREXAMPLE-SAT is in a suit-
ably defined class of randomized nonuniform fixed-parameter tractable problems.

Instance: An algorithm A deciding SAT and d, n ∈ N in unary.
Parameter: ‖A‖+ d.

Problem: Does there exist a satisfiable CNF-formula α with ‖α‖ = n such
that A does not accept α in nd many steps?

Note that this problem is a promise problem. We can show:
Theorem 3.2. Assume that one way functions exist. Then p-COUNTEREXAMPLE-SAT is nonuniformly fixed-
parameter tractable.4

This result is an immediate consequence of the following result interesting in its own right:

Theorem 3.3. Assume that one way functions exist. For every infinite I ⊆ N the problem

SATI
Instance: A CNF-formula α with ‖α‖ ∈ I .
Problem: Is α satisfiable?

is not in PTIME.

We consider the construction problem associated with p-COUNTEREXAMPLE-SAT, that is, the problem

Instance: An algorithm A deciding SAT and d, n ∈ N in unary.
Parameter: ‖A‖+ d.

Problem: Construct a satisfiable CNF-formula α with ‖α‖ = n such that
A does not accept α in nd many steps, if one exists.

We do not know anything on its (deterministic) complexity; its nonuniform fixed-parameter tractability would rule
out the existence of strongly almost optimal algorithms for SAT. By definition, an algorithm A deciding SAT is a
strongly almost optimal algorithm for SAT if there is a polynomial p such that for any other algorithm B deciding
SAT

tA(α) ≤ p(tB(α) + |α|)

for all α ∈ SAT. Then the precise statement of the result just mentioned reads as follows:

4 This means, there is a c ∈ N such that for every algorithm A deciding SAT and every d ∈ N there is an algorithm that
decides for every n ∈ N whether (A, d, n) is a positive instance of p-COUNTEREXAMPLE-SAT in time O(nc); here the
constant hidden in O() may depend on A and d.

On Optimal Probabilistic Algorithms for SAT 19

Proposition 3.4. Assume that P 6= NP. If the construction problem associated with p-COUNTEREXAMPLE-SAT
is nonuniformly fixed-parameter tractable, then there is no strongly almost optimal algorithms for SAT.

4. Some Proofs. We now show how to use an algorithm C as in Theorem 3.1 to prove Theorem 2.1.

Proof of Theorem 2.1 from Theorem 3.1: Let A be an algorithm deciding SAT. We choose a ∈ N such that for
every n ≥ 2 the running time of the algorithm C (provided by Theorem 3.1) on input n is bounded by na. We
define the algorithm B as follows:

B(α) // α ∈ CNF

1. β ← C(‖α‖).
2. if α = β then accept and halt.
3. else Simulate A on α.

Let d ∈ N be arbitrary. Set e := d · (a+2)+1 and fix a sufficiently large n ∈ N. Let Sn denote the range of C(n).
Furthermore, let Tn,β,e denote the set of all strings r ∈ {0, 1}ne

that do not determine a (complete) accepting run
of A on β that consists in at most ne many steps. Observe that a (random) run of A does not accept β in at most
ne steps if and only if A on β uses Tn,β,e, that is, its first at most ne many coin tosses on input β are described by
some r ∈ Tn,β,e. Hence by (2) of Theorem 3.1 we conclude∑

β∈Sn

(
Pr[β = C(n)] · Pr

r∈{0,1}ne
[r ∈ Tn,β,e]

)
≥ 1

3
. (2)

Let α ∈ Sn and apply B to α. If the execution of β ← C(‖α‖) in Line 1 yields β = α, then the overall running
time of the algorithm B is bounded by O

(
n2 + tC(n)

)
= O(na+1) ≤ na+2 for n is sufficiently large. If in such

a case a run of the algorithm A on input α uses an r ∈ Tn,α,e, then it does not accept α in time ne = n(a+2)·d+1

and hence not in time (tB(α) + ‖α‖)d. Therefore,

Pr
[
there is a satisfiable α with ‖α‖ = n such that A does not accept α in at most (tB(α) + ‖α‖)d steps

]
≥ 1− Pr

[
for every input α ∈ Sn the algorithm B does not generate α in Line 3, or A does not use Tn,α,e

]
= 1−

∏
α∈Sn

(
(1− Pr[α = C(n)]) + Pr[α = C(n)] · Pr

r∈{0,1}ne
[r /∈ Tn,α,e]

)
= 1−

∏
α∈Sn

(
1− Pr[α = C(n)] · Pr

r∈{0,1}ne
[r ∈ Tn,α,e]

)
≥ 1−

(∑
α∈Sn

(
1− Pr[α = C(n)] · Prr∈{0,1}ne [r ∈ Tn,α,e]

)
|Sn|

)|Sn|

= 1−
(

1−
∑
α∈Sn

Pr[α = C(n)] · Prr∈{0,1}ne [r ∈ Tn,α,e]
|Sn|

)|Sn|

≥ 1−
(

1− 1
3 · |Sn|

)|Sn|

(by (2))

≥ 1
5
. 2

Theorem 3.1 immediately follows from the following lemma.

Lemma 4.1. Assume one-way functions exist. Then there is a randomized polynomial time algorithm H satisfying
the following conditions.

(H1) Given n ∈ N in unary the algorithm H computes with probability one a satisfiable CNF α of size ‖α‖ = n.
(H2) For every probabilistic algorithm A deciding SAT and every d, p ∈ N there exists an nA,d,p ∈ N such that for

all n ≥ nA,d,p

Pr
[
A accepts H(n) in time nd

]
≤ 1

2
+

1
np
,

where the probability is taken uniformly over all possible outcomes of the internal coin tosses of the algorithms
A and H.

20 Yijia Chen, Jörg Flum, and Moritz Müller

(H3) The cardinality of the range of (the random variable) H(n) is superpolynomial in n.

Sketch of proof: We present the construction of the algorithm H. By the assumption that one-way functions exist,
we know that there is a pseudorandom generator (e.g. see [2]), that is, there is an algorithm G such that:

(G1) For every s ∈ {0, 1}∗ the algorithm G computes a string G(s) with |G(s)| = |s| + 1 in time polynomial in
|s|.

(G2) For every probabilistic polynomial time algorithm D, every p ∈ N, and all sufficiently large ` ∈ N we have∣∣∣∣ Pr
s∈{0,1}`

[
D(G(s)) = 1

]
− Pr
r∈{0,1}`+1

[
D(r) = 1

]∣∣∣∣ ≤ 1
`p

(In the above terms, the probability is also taken over the internal coin toss of D.)

Let the language Q be the range of G,

Q :=
{
G(s)

∣∣ s ∈ {0, 1}∗}.
Q is in NP by (G1). Hence, there is a polynomial time reduction S from Q to SAT, which we can assume to be
injective. We choose a constant c ∈ N such that ‖S(r)‖ ≤ |r|c for every r ∈ {0, 1}∗. For every propositional
formula β and every n ∈ N with n ≥ ‖β‖ let β(n) be an equivalent propositional formula with ‖β(n)‖ = n. We
may assume that β(n) is computed in time polynomial in n.

One can check that the following algorithm H has the properties claimed in the lemma.

H(n) // n ∈ N

1. m←
⌊

c
√
n− 1

⌋
− 1

2. Choose an s ∈ {0, 1}m uniformly at random.
3. β ← S(G(s)).
4. Output β(n)

2

Acknowledgements. We wish to thank an anonymous referee for pointing out a mistake in an earlier formulation
of Theorem 2.1. The third author thanks the John Templeton Foundation for its support under Grant #13152, The
Myriad Aspects of Infinity.

References

1. O. Beyersdorff and Z. Sadowski. Characterizing the existence of optimal proof systems and complete sets for promise
classes. Electronic Colloquium on Computational Complexity, Report TR09-081, 2009.

2. O. Goldreich. Foundations of Cryptograph, Volume 1 (Basic Tools). Cambridge University Press, 2001.
3. J. Krajicèk and P. Pudlák. Propositional proof systems, the consistency of first order theories and the complexity of

computations. Jour. Symb. Logic, 54(3):1063–1079, 1989.
4. L. Levin. Universal search problems (in russian). Problemy Peredachi Informatsii 9(3):115-116, 1973.
5. J. Messner. On optimal algorithms and optimal proof systems. STACS’99, LNCS 1563:541–550 1999.

Pebble Games for Rank Logics

Anuj Dawar and Bjarki Holm

University of Cambridge Computer Laboratory
{anuj.dawar, bjarki.holm}@cl.cam.ac.uk

Abstract. We show that equivalence in finite-variable infinitary logic with rank operators can be
characterised in terms of pebble games based on set partitions. This gives us a game-based method
for proving lower bounds for FOR and IFPR, the extensions of first-order and fixed-point logic
with rank operators, respectively. As an illustration of the game method, we establish that over
finite structures, IFPR

[2]
p 6= IFPR

[2]
q for distinct primes p and q, where IFPR

[m]
p is the restriction

of IFPR that only has operators for defining rank of matrices of arity at most m over GFp.

1 Introduction

The question of whether there is a logical characterisation of the complexity class PTIME remains the
fundamental open problem of descriptive complexity. Most attempts to answer this question have focused
on finding suitable extensions of first-order logic that can describe exactly all properties decidable in
PTIME. In this way, Immerman and Vardi independently showed that on inputs equipped with a linear
order, inflationary fixed-point logic (IFP) expresses exactly the properties in PTIME [6, 9]. In the absence
of an order, IFP is too weak to express all properties in PTIME. In particular, it fails to define very simple
cardinality properties. This immediate deficiency is easily solved by extending the logic with counting
terms, which gives us fixed-point logic with counting (IFPC), which was at one time conjectured to be
a logic for PTIME. However, Cai, Fürer and Immerman later showed that this logic still falls short of
capturing PTIME [2].

Since the result of Cai et al., a number of examples have been constructed of polynomial-time decidable
properties that are not expressible in IFPC. Recently it was observed that all these examples can be
reduced to the problem of determining the solvability of systems of linear equations (see [1, 3, 4]). Over
finite fields, this can be further reduced to the problem of computing the rank of a definable (unordered)
matrix. Computing rank can be understood as a generalised form of counting where, rather than counting
the cardinality of a definable set, one is allowed to count the dimension of a definable vector space.
This suggests that the key weakness of IFPC is that the form of counting it incorporates is too weak.
In [4], Dawar et al. proposed fixed-point logic with rank (IFPR), an extension of IFP with operators for
computing the rank of a matrix over a fixed prime field. It is shown in [4] that IFPR can express various
polynomial-time properties known to separate IFPC from PTIME. It is an open question whether IFPR
captures PTIME.

Despite some positive results on the expressive power of logical rank operators, not much is known
about their limitations. For instance, it is not even known whether first-order logic with rank (FOR) is
strictly less expressive than IFPR over finite structures, although that would seem likely. To establish
such separations we seem to lack general methods for proving inexpressiblity in FOR and IFPR. This
leads us to consider variations of Ehrenfeucht-Fräıssé-style pebble games, which form an essential tool
for analysing expressiveness of other extensions of first-order logic, such as IFP and IFPC.

In this abstract we introduce a new pebble game based on set partitions that characterises expressivity
in an infinitary logic with rank quantifiers, which subsumes both FOR and IFPR. This type of game
turns out to be quite generic, with standard games for both IFP and IFPC occurring as special cases.
As an illustration of the game method, we establish that over finite structures, IFPR[2]

p 6= IFPR[2]
q for

distinct primes p and q, where IFPR[m]
p is the restriction of IFPR that only has operators for defining

rank of matrices of arity at most m over GFp. This partially resolves one of the open questions posed in
[4]. Due to space constraints, details of all proofs are omitted.

22 Anuj Dawar and Bjarki Holm

2 Rank Logics

We assume that all structures are finite and all vocabularies are finite and relational. For a logic L, we
write A ≡L B to denote that the structures A and B are not distinguished by any sentence of L. We
write |A| for the universe of a structure A and write ||A|| for the cardinality of |A|. We often denote
tuples (v1, . . . , vk) by v and denote their length by |v|.

Inflationary fixed-point logic (IFP) is obtained by adding to first-order logic the ability to define
inflationary fixed-points of inductive definitions. It is easily shown that on finite structures, IFP fails to
express very simple cardinality queries. We define counting terms #xϕ to denote the number of elements
that satisfy the formula ϕ. By adding to IFP rules for building counting terms, we obtain inflationary
fixed-point logic with counting (IFPC). For a detailed discussion of these logics we refer to the standard
literature [5, 7].

Definable matrices over finite fields. We write [m] to denote the set {0, . . . ,m − 1}, for m ≥ 1.
For sets I and J , an I × J matrix over the prime field GFp can be seen as a function M : I × J → [p].
Here the rows of M are indexed by I and the columns of M are indexed by J . Observe that the sets I
and J are not necessarily ordered. Natural matrix properties, such as singularity and rank, are invariant
under permutations of rows and columns, and are therefore well-defined in the context of unordered row
and column sets.

Using our notation for describing matrices, a formula ϕ(x,y) interpreted in a structure A defines
a GF2 matrix MA

ϕ : A|x| × A|y| → {0, 1} given by MA
ϕ (a, b) = 1 if, and only if, (A,a, b) |= ϕ. More

generally, let Φ = (ϕ1(x,y), . . . , ϕl(x,y)) be an l-tuple of formulas, with 1 ≤ l < p and p prime.
Interpreted in a structure A, these formulas define a matrix MA

Φ : A|x| ×A|y| → [p] given by

MA
Φ (a, b) =

l∑
i=1

iMA
ϕi

(a, b) (mod p).

For example, for any formula ϕ(x), the formula (x = y ∧ ϕ(x)) interpreted in a structure A defines a
square diagonal matrix, with 1 in position (a, a) ∈ A×A on the diagonal if, and only if, (A, a) |= ϕ.

Fixed-point logic with rank. We recall the basic definition of rank logics. To simplify the transition
to infinitary rank logics later, our presention of rank operators differs slightly from that of Dawar et
al. [4], although the two definitions can be seen to be equivalent. Specifically, in [4] we consider matrices
over GFp defined by a single number term modulo p, instead of looking at tuples of formulas as we do
below.

Inflationary fixed-point logic with rank (IFPR) has two sorts of variables: x1, x2, . . . ranging over the
domain elements of the structure, and ν1, ν2, . . . ranging over the non-negative integers. All quantification
of number variables has to be bounded. Thus, is if ν is a number variable, its binding quantifier must
appear in the form (∀ν ≤ t ϕ) or (∃ν ≤ t ϕ) for a numeric term t and a formula ϕ. In addition,
we also have second-order variables X1, X2, . . ., each of which has a type which is a finite string in
{element,number}∗. Thus, if X is a variable of type (element,number), it is to be interpreted by a binary
relation relating elements to numbers. We write ifpX←xν≤tϕ for the inflationary fixed-point of ϕ over
the relation variable X of type (element|x|,number|ν|), where the number variables in ν are bounded by
the numeric terms in t. By closing first-order logic under the formation of inflationary fixed-points, we
get IFP in a two-sorted setting. The logic IFPR is obtained by extending the formula-formation rules of
IFP with a rule for building rank terms in the following way:

for prime p and l ∈ {1, . . . , p− 1}, if Φ = (ϕ1(x,y), . . . , ϕl(x,y)) is an l-tuple of formulas and x
and y are tuples of variables of the first sort, then rkp(x,y)Φ is a term.

The intended semantics is that rkp(x,y)Φ denotes the rank (i.e. the member of the number sort) over
GFp of the matrix defined by the formulas Φ. More generally, we can define rank terms for formulas Φ
with number variables. In this case, all free number variables have to be bounded by number terms, as
is described in more detail in [4]. The arity of a rank operator rkp(x,y) is |x|+ |y|, where x and y are
assumed to be tuples of distinct variables.

Pebble Games for Rank Logics 23

We write IFPR[m] for the fragment of IFPR in which all rank operators have arity at most m and
write IFPRp to denote the fragment where only rank operators rkp are allowed. Putting the two together,
we obtain logics IFPR[m]

p where only rank operators rkp of arity at most m are allowed.
It is easy to see that rank logics can express the cardinality of any definable set. Indeed, for a formula

ϕ(x) and prime p, the rank term rkp(x, y)(x = y ∧ ϕ(x)) is equivalent to the counting term #xϕ, as the
rank of a diagonal matrix is exactly the number of non-zero entries along the diagonal. This immediately
implies that each of the rank logics IFPRp is at least as expressive as IFPC.

Infinitary rank logics. For each natural number i and prime p, we consider a quantifier rkip where A |=
rkipxy (ϕ1, . . . , ϕp−1) if, and only if, the rank of the |A||x|×|A||y| matrix defined by (ϕ1(x,y), . . . , ϕp−1(x,y))
over A is i. Here the rank is taken over GFp. Let Rk denote k-variable infinitary logic with rank quan-
tifiers. The logic Rω is given by Rω =

⋃
k∈ω R

k. That is, Rω consists of infinitary rank formulas in
which each formula has only finitely many variables. We let Rkp denote the sublogic of Rk where only

rank quantifiers of the form rkip are allowed. We also write Rk;[m] and R
k;[m]
p to denote the fragments

of Rk and Rkp , respectively, with rank quantifiers of arity at most m, where the arity of a quantifier
rkipxy is |x| + |y|. Clearly, m ≤ k. It can be shown that every formula of IFPR[m]

p is equivalent to one

of Rω;[m]
p =

⋃
k∈ω R

k;[m]
p . Hence, IFPR ⊆ Rω. It is shown in [4] that for any m ≥ 2, Rk;[m] is strictly less

expressive than Rk;[m+1]. Hence also IFPR[m] (IFPR[m+1].

3 Games for Logics with Rank

We give a game characterisation of equivalence in the logics Rk;[m]
p . To describe the game we will use the

following notation. Let I and J be finite sets, P a set partition of I × J , and γ : P → [p] a labeling of
the parts in P, with p prime. Then MP

γ denotes the I × J matrix over GFp defined by

MP
γ (i, j) = α ∈ [p]⇔ ∃P ∈ P

(
(i, j) ∈ P ∧ γ(P) = α

)
.

We first consider the game for Rk;[m]
p when m = 2. The game board of the k-pebble 2-ary rank partition

game over GFp consists of two structures A and B and k pairs of pebbles (ai, bi), 1 ≤ i ≤ k. The pebbles
a1, . . . , al are initially placed on the elements of an l-tuple s of elements in A, and the pebbles b1, . . . , bl
on an l-tuple t in B, l ≤ k. There are two players, Spoiler and Duplicator. At each round, Spoiler picks
up two pairs of corresponding pebbles (ai, bi) and (aj , bj) for some i and j. Duplicator has to respond
by choosing (a) partitions P of A× A and Q of B ×B, with |P| = |Q|; and (b) a bijection f : P→ Q,
such that for all labelings γ : P→ [p],

rkp(MP
γ) = rkp(M

Q
f(γ)).

Here f(γ) : Q → [p] is the labeling of Q defined by f(γ)(Q) = γ(f−1(Q) for all Q ∈ Q. Spoiler next
picks a part P ∈ P, and places the pebbles (ai, aj) on an element in P ⊆ A× A and places the pebbles
(bi, bj) on an element in f(P) ⊆ B × B. This completes one round in the game. If, after this exchange,
the partial map f : A → B given by ai 7→ bi is not a partial isomorphism, or Duplicator is unable to
produce the required partitions, then Spoiler has won the game; otherwise it can continue for another
round.

For the more general case of m-ary rank quantifiers over GFp, we modify the above game so that
at each round, Spoiler starts by choosing two integers r and s with r + s = m. He then picks up m
pebbles in some order from A and the m corresponding pebbles in the same order from B. Duplicator
has to respond by choosing partitions P and Q of Ar × As and Br × Bs, respectively, and a bijection
f : P→ Q between the two partitions. The rest of the round proceeds in exactly the same way as above,
with Spoiler finally choosing a part P ∈ P and placing the m pebbles in A on an element in P (in the
order they were chosen earlier) and the corresponding m pebbles in B on an element in f(P) (in the
same order). We denote the k-pebble m-ary rank partition game over GFp played on structures A and
B by Gk;[m]

p (A,B).

Theorem 1. Duplicator has a strategy for playing Gk;[m]
p (A,B) forever if, and only if, A ≡R

k;[m]
p B.

24 Anuj Dawar and Bjarki Holm

Write Lk to denote k-variable infinitary logic and Ck to denote the extension of Lk with counting
quantifiers (see [7] for more details). The idea behind the rank partition game can also be used to give
alternative characterisations of the relations ≡Lk

and ≡Ck

. At each round in the k-pebble cardinality
partition game on A and B, the Spoiler picks up a pair of pebbles (ai, bi) for some i. Duplicator has to
respond by choosing (a) partitions P of A and Q of B, with |P| = |Q|; and (b) a bijection f : P → Q,
such that for all parts P ∈ P: |P | = |f(P)|. Spoiler then picks a part P ∈ P, and places ai on an
element in P ⊆ A and places bi on an element in f(P) ⊆ B. This completes one round in the game. If
Duplicator fails to produce the required partitions or the partial map defined by the pebbled elements
is not a partial isomorphism, then Spoiler wins the game. Otherwise it can continue for another round.
It can be shown that Duplicator has a strategy to play this game forever if, and only if, A ≡Ck

B.
Similarly, we can define the k-pebble partition game in exactly the same way as above, except we drop
the requirement that the corresponding parts have to have the same size, i.e. Duplicator does not have
to show that |P | = |f(P)| for all P ∈ P. It can be shown that Duplicator has a strategy to play this
game forever if, and only if, A ≡Lk

B. These two games can be seen as special cases of the generic rank
partition game, which of course reflects the fact that the corresponding infinitary logics are both certain
restrictions of infinitary rank logic.

4 Separation Results

The rank partition game can be used to delimit the expressive power of the rank logics restricted to a
fixed arity and prime p. Specifically, using the game, we can show the following.

Theorem 2. For all primes p and q where q ≡ 1 (mod p), there is a property of finite graphs which is
definable in FOR[2]

q but not in R
ω;[2]
p .

The basic idea of the proof is as follows. For all primes p and q where q ≡ 1 (mod p), and each k ≥ 2,
we construct a pair of non-isomorphic graphs (Aq

k,B
q
k) which can be separated by a sentence of FOR[2]

q .

We then show that Duplicator has a winning strategy in the game Gk;[2]p (Aq
k,B

q
k), which shows that the

classes of graphs (Aq
k)k≥2 and (Bq

k)k≥2 are not definable in R
ω;[2]
p . The graphs (Aq

k,B
q
k) are based on

a construction of Torán [8]. This is essentially a way of encoding an arithmetic circuit modulo q into
a given graph G. For instance, for q = 2 we get the graphs defined by Cai et al. [2] used to separate
IFPC from PTIME. By starting with graphs G of large enough treewidth, we can ensure that for each k,
Duplicator can hide the difference between Aq

k and Bq
k when playing the k-pebble rank partition game.

Note that q ≡ 1 (mod p) is required only for technical reasons in the proof; we believe the same method
can be generalised for all distinct primes p and q. This gives us the following corollary, which partially
resolves one of the open questions posed in [4].

Corollary 1. For all primes p and q where q ≡ 1 (mod p), IFPR[2]
p 6= IFPR[2]

q .

References

1. A. Atserias, A. Bulatov, and A. Dawar. Affine systems of equations and counting infinitary logic. Theor.
Comput. Sci., 410:1666–1683, 2009.

2. J-Y. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for graph
identification. Combinatorica, 12(4):389–410, 1992.

3. A. Dawar. On the descriptive complexity of linear algebra. In WoLLIC ’08, volume 5110 of LNCS, pages
17–25. Springer, 2008.

4. A. Dawar, M. Grohe, B. Holm, and B. Laubner. Logics with rank operators. In Proc. 24th IEEE Symp. on
Logic in Computer Science, pages 113–122, 2009.

5. H. D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1999.
6. N. Immerman. Relational queries computable in polynomial time. Information and Control, 68:86–104, 1986.
7. M. Otto. Bounded Variable Logics and Counting — A Study in Finite Models, volume 9 of LNL. Springer,

1997.
8. J. Torán. On the hardness of graph isomorphism. SIAM Journal on Computing, 33(5):1093–1108, 2004.
9. M. Y. Vardi. The complexity of relational query languages. In Proc. of the 14th ACM Symp. on the Theory

of Computing, pages 137–146, 1982.

How definitions, equivalent for Turing machines, cease to be
equivalent, when generalized to Ordinal Time Turing Machines

Barnaby Dawson

University of Bristol

1 Extended Abstract

Mathematical models of hypercomputation, generalise Turing machines to allow for calculations that can be
rigorously defined, but which could not be performed on a Turing machine, regardless of the time or memory
it is assumed to possess. Various mathematical models of hypercomputation have been proposed in the past,
notably the infinite time Turing machines of Hamkins & Lewis [1] and the Ordinal Time Turing Machines
(OTTMs) of Koepke, Dawson and Bissell-Siders [2]. In recent years, other machine configurations have been
proposed, including several bounded versions of OTTMs and ordinal time register machines. Koepke and
Bissell-Siders [3] have even defined a programming language for an ordinal time register machine [4].

The OTTM is particularly interesting from a set theoretic point of view, as it is potentially unbounded in
its operation, takes sequences of ordinal length as input, and returns such sequences as output. Its operation
is pleasingly concrete, and has been linked to constructibility in set theory.

Unlike the situation for finite binary sequences, not all infinite binary sequences can be generated by an
OTTM. Those that can, are called computable. Some sets are not computable, but can be recognised using
a computable test. Those sets are called recognisable. The study of which sets are computable, and which
recognisable, is of interest in applying ideas from Hypercomputation in set theory. OTTMs may also be run
for α much time where α is a limit ordinal with weak closure properties (for instance admissibility). An
admissible ordinal α is an ordinal with the property Lα |= KP (where KP is Kripke-Platek set theory).

Furthermore for Turing computation many concepts have multiple equivalent definitions. In particular, com-
puting from an oracle, and the Turing computability relation, both admit several apparently distinct, yet
nevertheless equivalent definitions. We define various α-computers from OTTMs operating with an α length
tape (where α is admissible). We show that many definitions that are equivalent for Turing machines are no
longer equivalent, when generalized to α-time.

For the α-computers we present the varying alternative definitions and investigate their differing con-
sequences. We also give example sets which are recognisable for the OTTM. Finally we will describe several
basic features a computability notion should be expected to possess and discuss which of the varying α-
computers deliver these features.

(1) J. Hamkins and A. Lewis. Infinite time turing machines. Journal of Symbolic Logic, 65(2):567-604, 2000.
(2) P. Koepke. Turing computations on ordinals. Bulletin of Symbolic Logic, 11(3):377-397, 2005.
(3) R. Bissell-Siders P. Koepke. Register computations on ordinals. 47(6):529-548, 2008.
(4) R. Miller P. Koepke. An enhanced theory of infinite time register machine, In C. Dimitracopoulos A.
Beckmann and B. Loewe, editors, Logic and theory of algorithms, volume 5028 of Lecture. Notes in Com-
puter Science, pages 306-315. Athens University, Springer. 2008.

An Analogue of the Church-Turing Thesis for Computable
Ordinal Functions

Tim Fischbach1, Peter Koepke2

1 Mathematisches Institut, Universität Bonn, Germany, fischbach@uni-bonn.de
2 Mathematisches Institut, Universität Bonn, Germany, koepke@math.uni-bonn.de

1 Introduction

Classical computability theory introduces a wide range of computational models which attempt to for-
malise the intuitive notion of effective computability. Despite their vast dissimilarity all these approaches
turn out to define the same class of computable functions. This equivalence gives rise to the Church-
Turing thesis proposing the notion of recursiveness as the formal counterpart of the concept of effective
computability.

Theorem 1 (P. Odifreddi [7]). For f : ω → ω the following are equivalent:

1. f is recursive.
2. f is finitely definable.
3. f is Turing machine computable.
4. f is register machine computable.
5. f is Gödel-Herbrand computable.
6. f is λ-definable.

Ordinal computability generalises these models of computation from a set theoretical point of view.
In this paper we present ordinal versions of the notions referred to in Theorem 1 and establish their
equivalence. Just like in the finitary case the identified class of functions proves resistant to technical
variations of its definition. It is thus a stable and well-characterised class of effectively computable ordinal
functions.

2 Ordinal Recursive Functions

The following definition proceeds in close analogy to the definition of (primitive) recursive functions on
the natural numbers.

Definition 1 (R. Jensen, C. Karp [2]). f : Ord → Ord is a primitive recursive ordinal function iff
it is generated by the following scheme.

– Initial functions Pn,i(x1, . . . , xn) = xi (for 1 ≤ i ≤ n < ω), F (x) = 0, F (x) = x+ 1,
– Case distinction C(x, y, u, v) = x, if u < v, = y otherwise.
– Substitution F (x,y) = G(x, H(y),y), F (x,y) = G(H(y),y)
– Primitive recursion F (z,x) = G(

⋃
{F (u,x) | u ∈ z}, z,x)

f : Ord→ Ord is an ordinal recursive function iff it is generated by the above scheme together with:

– Minimisation rule F (x) = min{ξ | G(ξ,x) = 0}, provided ∀x∃ξ G(ξ,x) = 0

Theorem 2 (R. Jensen, C. Karp [2]). f : Ord→ Ord is ordinal recursive iff it is 41(L).

An Analogue of the Church-Turing Thesis for Computable Ordinal Functions 27

3 Ordinal Turing Machines

We use the notion of ordinal Turing machines (OTM) introduced in [3]. A standard Turing program
operates on a tape of ordinal length for possibly ordinal many steps. The behaviour at successor stages
resembles that of finite Turing machines. At limit times the configuration is determined by a limit
rule: Program state, position of the read-write head and cell contents are set to inferior limits of their
respective prior values.

Ordinals α can be represented on the tape as characteristic functions χ{α} of singleton sets. A function
f : Ord → Ord is said to be OTM computable if there is a Turing program which generates the tape
content χ{f(α)} from such a representation of α.

In view of the desired equivalence we state:

Theorem 3 (P. Koepke, B. Seyfferth [5]). f : Ord→ Ord is OTM computable iff it is 41(L).

Since any OTM computation can be carried out inside the constructible universe L, the first half of
the proof amounts to verifying absoluteness properties of OTM computations. The proof of the other
implication proceeds by computing a bounded truth predicate for the constructible universe L.

4 Ordinal Register Machines

Pursuing the strategy of the previous section ordinal register machines (ORM) are obtained by general-
ising standard register machines. We permit arbitrary ordinals as contents for the finitely many registers
and again use inferior limit rules to allow for computations of ordinal length.

Theorem 4 (P. Koepke, R. Siders [4]). f : Ord→ Ord is ORM computable iff it is 41(L).

The proof again involves the recursive computation of a bounded truth predicate. Coding stacks of
ordinals as ordinal values this recursion can be implemented in the seemingly restricted setting of having
only finitely many registers at one’s disposal.

5 Ordinal Gödel-Herbrand Computability

Section 5 and 6 represent work in progress. Standard Gödel-Herbrand computability applies sub-
stitution and replacement rules to finite systems of equations. In close analogy to the definitions of
Kripke [6] we allow assignments of ordinal values and obtain the notion of ordinal Gödel-Herbrand
computability.

Conjecture 1. f : Ord→ Ord is ordinal Gödel-Herbrand computabable iff it is 41(L).

6 Ordinal λ-Calculus

Ongoing joint work with B. Seyfferth suggests the possibility to extend the λ-calculus to transfinite
strings. The generalisations are motivated by the aim to make λ-computability as strong as the other
notions of ordinal computability.

Conjecture 2. f : Ord→ Ord is ordinal λ-definable iff it is 41(L).

7 Conclusion

Summarising the above results we formulate an ordinal version of Theorem 1:

Corollary 1. For f : Ord→ Ord the following are equivalent:
1. f is ordinal recursive.
2. f is 41(L).
3. f is OTM computable.
4. f is ORM computable.

The conjectures of Section 5 and 6 would complete the picture. The models presented in the previous
sections give different characterisations of effectively computable ordinal functions. Their equivalence
suggests to accept the following analogue of the classical Church-Turing thesis:

Thesis 1. Every effectively computable ordinal function is ordinal recursive.

28 Tim Fischbach, Peter Koepke

References

[1] Keith Devlin. Constructibility. Perspectives in Mathematical Logic, Berlin, 1984.
[2] Ronald B. Jensen and Carol Karp. Primitive recursive set functions. In: Axiomatic Set Theory, Proceedings

of Symposia in Pure Mathematics, Volume XIII, Part I, American Mathematical Society, Providence, Rhode
Island, 1971, 143-176.

[3] Peter Koepke. Turing computations on ordinals. The Bulletin of Symbolic Logic 11 (2005), 377-397.
[4] Peter Koepke and Ryan Siders. Register computations on ordinals. Archive for Mathematical Logic 47 (2008),

529-548.
[5] Peter Koepke and Benjamin Seyfferth. Ordinal Machines and Admissible Recursion Theory. Annals of Pure

and Applied Logic, Volume 160, Issue 3, September 2009, Computation and Logic in the Real World: CiE
2007, 310-318.

[6] Saul Kripke. Transfinite recursion on admissible ordinals I,II (abstracts). Journal of Symbolic Logic 29 (1964),
161-162.

[7] Piergiorgio Odifreddi. Classical Recursion Theory. Studies in Logic and the Foundations of Mathematics,
Volume 125, North-Holland, 1992.

Hardness of Instance Compression and Its Applications?

Lance Fortnow??

Northwestern University

Bodlaender, Downey, Fellows and Hermelin [2] and Harnik and Naor [3] raise the following question
which has relevance to a wide variety of areas, including parameterized complexity, cryptography, proba-
bilistically checkable proofs and structural complexity. This question asks whether the OR-SAT problem
(given a list of formulae, is at least one satisfiable) is compressible.

Question 1. Is there a function f that, given as input m Boolean formula φ1, . . . , φm where each φi has
length at most n (possibly much less than m), has the following properties?

– f is computable in time polynomial in m and n,
– f(φ1, . . . , φm) is satisfiable if and only if at least one of the φi are satisfiable, and
– |f(φ1, . . . , φm)| is bounded by a polynomial in n.

Fortnow and Santhanam [1] essentially settle this question in the negative by showing that a positive
answer to Question 1 implies that the polynomial-time hierarchy collapses. They actually show the
following stronger statement, in which f is allowed to map to an arbitrary set.

Theorem 1. If NP is not contained in coNP/poly then there is no set A and function f such that given
m Boolean formula φ1, . . . , φm where each φi has length at most n, f has the following properties

– f is computable in time polynomial in m and n,
– f(φ1, . . . , φm) ∈ A if and only if at least one of the φi are satisfiable, and
– |f(φ1, . . . , φm)| is bounded by a polynomial in n.

Bodlaender et al. [2] arrive at Question 1 from the perspective of parameterized complexity. Param-
eterized complexity asks about the complexity of NP problems based on some inherent parameter, like
the number of variables in a formula or clique size in a graph. In parameterized complexity, feasibility
is identified with fixed-parameter tractability. A problem is fixed-parameter tractable (FPT) if it has an
algorithm running in time f(k)nO(1) where n is the input size and f(k) is an arbitrary function of the
parameter k. One technique to show fixed-parameter tractability is kernelization, where one reduces the
solution of the given instance to the solution of an instance of size depending only on the parameter; this
new instance is called a “problem kernel”. Chen et al. [4] show that a problem is FPT if and only if it has
a kernelization. However, in general, the kernel can be arbitrarily long as a function of the parameter.

It is a fundamental question in parameterized complexity as to which problems have polynomial-size
kernels [5, 6]. Bodlaender et al. [2] develop a theory of polynomial kernelizability, and define a notion
of strong distillation which is useful in this context. A problem L has a strong distillation function if
there is a polynomial-time computable function f that takes inputs x1, . . . , xm and outputs a y with |y|
bounded by a polynomial in maxi |xi|, such that y is in L if and only if at least one of the xi’s are in
L. Question 1 is equivalent to asking if SAT has a strong distillation. Bodlaender et al. conjectured that
the answer to Question 1 is negative, and under that conjecture showed that the parameterized versions
of several NP-complete problems do not have polynomial kernelizations, including k-Path and k-Cycle.
Theorem 1 confirms the conjecture of Bodlaender et al. modulo a widely-believed complexity-theoretic
assumption, a rare connection between parameterized complexity and a traditional complexity-theoretic
hypothesis.

Harnik and Naor [3] arrived at essentially Question 1 with a very different motivation, cryptographic in
nature. An NP language L is instance compressible if there is some polynomial-time computable function
f and a set A in NP such that x is in L if and only if (f(x), 1|x|) is in A, and |f(x)| is bounded by a
polynomial in the length of a witness for x.1 They showed that if the Satisfiability problem is compressible
? Much of this extended abstract draws from the paper by Fortnow and Santhanam [1].

?? Supported in part by NSF grants CCF-0829754 and DMS-0652521.
1 Harnik and Naor actually allow |f(x)| to be bounded by a polynomial in both the length of the witness and

log |x| though Fortnow and Santhanam [1] observe this variation is actually equivalent to the above formulation.

30 Lance Fortnow

then collision resistant hash functions can be constructed from one-way functions. If an even stronger
compressibility assumption holds, then oblivious transfer protocols can be constructed from one-way
functions. This would imply that public-key cryptography can be based on one-way functions, solving
one of the outstanding open problems in theoretical cryptography.

The cryptographic reductions of Harnik and Naor also follow from a weaker assumption than com-
pressibility of SAT, namely the compressibility of the OR-SAT problem. In the OR-SAT problem, a list
of m formulae φ1 . . . φm each of size at most n is given as input, and a “yes” instance is one in which at
least one of these formulae is satisfiable. Note that the size of a witness for OR-SAT is bounded above by
n, hence compressibility of OR-SAT implies a positive answer to Question 1. Harnik and Naor describe
a hierarchy of problems including Satisfiability, Clique, Dominating Set and Integer Programming, the
compression of any of which would imply the compression of the OR-SAT problem. Thus Theorem 1
shows that none of these problems are compressible unless the polynomial-time hierarchy collapses. From
a cryptographic point of view, this result indicates that the approach of Harnik and Naor may not be
viable in its current form.

Theorem 1 is directly relevant to the question of whether there are succinct PCPs for NP, which has
been raised recently by Kalai and Raz [7]. A succinct PCP for an NP language L is a probabilistically
checkable proof for L where the size of the proof is polynomial in the witness size n rather than in
the instance size m. Current proofs of the PCP theorem [8–10] do not yield such PCPs. Kalai and Raz
state that the existence of succinct PCPs “would have important applications in complexity theory and
cryptography, while a negative result would be extremely interesting from a theoretical point of view”.
Fortnow and Santhanam [1] show such a negative result: unless NP ⊆ coNP/poly and the Polynomial
Hierarchy collapses, SAT does not have succinct PCPs, nor do problems like Clique and DominatingSet.
On the other hand, polynomially kernelizable problems such as VertexCover do have succinct PCPs.

Chen, Flum and Müller [11] give further applications to kernelization.
Buhrman and Hitchcock [12] use Theorem 1 to show implications of NP-complete problems reducing

to subexponential-size sets. Mahaney [13] showed that if there are NP-complete sparse sets (polynomial
number of strings at every length) then P=NP. Karp and Lipton [14] show that if NP has a Turing-
reduction to sparse sets than NP is in P/poly. But we had no known polynomial-time consequences of
reductions to larger sets. Buhrman and Hitchcock use the proof of Theorem 1 to show that there are no
NP-complete sets of size 2n

o(1)
unless NP is in coNP/poly. More generally they show that if NP is not in

coNP/poly then for every set A of size 2n
o(1)

, there is no reduction from Satisfiability to A using n1−ε

adaptive queries to A for any fixed ε > 0.
Dell and van Melkebeek [15] generalize Theorem 1 and show limitations on getting even small im-

provements on certain NP-complete problems. For example they show that one cannot compress k-CNF
satisfiability or vertex cover on k-uniform hypergraphs to inputs of length nk−ε for any ε > 0.

Proof. (Theorem 1) Let φ be any formula of size at most m consisting of the disjunction of formulae
each of size at most n. By the assumption on compressibility of OR-SAT, there is a language A and a
function f computable in deterministic time poly(m) such that |f(φ, 1n)| 6 O(poly(n, log(m))), and φ is
satisfiable iff f(φ, 1n) ∈ A. Let c be a constant such that the length of compressed instances on OR-SAT
formulae of size at most m and parameter at most n is at most k = (n+ log(m))c.

Now let S be the set of unsatisfiable formulae of size at most n and T be the set of strings in Ā of
length at most k. The function f induces a map g : Sm/n → T , since a tuple of m/n formulae of size n
can be represented in size m in a natural encoding scheme, and the correctness of the reduction implies
that a disjunction of m/n unsatisfiable formulae maps to a string in Ā of length at most k.

Our strategy will be as follows: we will attempt to find a poly(n) size set C of strings in T , such that
any formula in S is contained in at least one tuple that maps to a string in C under the mapping g. If such
a set C exists, then we have a proof with advice of unsatisfiability of a formula z of size n, by guessing a
tuple of m/n formulae of size at most n such that z belongs to the tuple, and then checking if the tuple
maps to a string in C. The check whether the tuple maps to a string in C can be done with polynomial
advice, by enumerating the strings in C in the advice string. Any unsatisfiable formula will have such a
proof with advice, just by the definition of C. Conversely, any tuple containing a satisfiable formula will
map to a string in A and hence to a string in C̄, implying that no satisfiable formula will have such a
proof. If m = poly(n), then the proof is polynomial-size, and since the advice is polynomial-size as well
by assumption on C, we get that coNP ⊆ NP/poly.

Hardness of Instance Compression and Its Applications 31

Thus the proof reduces to showing the existence of a set C with the desired properties. The proof is
via a purely combinatorial argument. We employ a greedy strategy, trying to “cover” as many strings
in S as possible with each string we pick in C. We prove that such a greedy strategy terminates after
picking polynomially many strings.

We pick the set C in stages, with one string picked in each stage. Let Ci be the set of strings picked
at or before stage i, |Ci| = i. Let Si denote the set of strings y in S, such that y is not part of a tuple
that maps to a string in Ci under g. Let X = Sm/n, and Xi ⊆ X be the set of tuples that do not belong
to the pre-image set of Si (under the mapping g).

At stage 0, Ci is the empty set, Si = S and Xi = X. We proceed iteratively as follows. If Si is empty,
we stop. Otherwise, at stage i, we pick the string in T with the maximum number of pre-images in Xi−1,
and add it to Ci.

We show that if m is picked appropriately as a function of n, then this process concludes within
poly(n) stages. It is enough to show that the size of Si decreases by at least a constant factor in each
stage. Since |S| 6 2n+1, this implies that the process concludes after O(n) stages.

Now we analyze the decrease in the size of Si. By the pigeonhole principle, at least |Xi−1|/2k+1

tuples are in Xi−1 − Xi, i.e., are pre-images of the newest string in Ci. This implies that at least
|Xi−1|n/m/2kn/m elements are in Si−1 − Si, since the set of all m/n-tuples with elements in Si−1 − Si
is contained in Xi−1 − Xi and has cardinality |Si−1 − Si|m/n. But we have |Xi−1|n/m > |Si−1|, since
the set of m/n-tuples of elements in Si−1 is contained in Xi−1. Hence |Si−1 − Si| > |Si−1|/2kn/m. Since
k 6 (log(m) + n)c for some constant c, we can pick a constant c′ > c large enough so that kn < m when
m = nc

′
. For this choice of m, we have that |Si−1 − Si| > |Si−1|/2, and therefore that |Si| 6 |Si−1|/2.

Thus, for this choice of m, we have that the set C has size O(n) and that m is polynomially bounded
in n. By the argument given earlier, this gives polynomial-sized proofs with polynomial advice for un-
satisfiable formulae, and implies that coNP ⊆ NP/poly. From a result of Yap [16], it follows that PH
collapses to the third level. �

Two open questions: The first is whether some negative results can be shown under a standard
assumption for the probabilistic or closely-related average-case version of compression. Such results would
have relevance to parametric hardness of approximation, and provide further evidence for the inviability
of certain approaches to cryptographic constructions. The second is the general question of characterizing
for which functions f , the compressibility of f -SAT implies collapse of PH. Here f -SAT is the natural
generalization of the OR-SAT problem to Boolean functions other than OR. This question basically
reduces to the question of whether AND-SAT is compressible, since the compression of f -SAT for non-
monotone f directly implies NP ⊆ coNP/poly, and every monotone f that depends on all its m variables
embeds either a

√
m sized OR or AND. Thus if we can show that (assuming NP not in co-NP/poly)

AND-SAT is not compressible, then under that same assumption f -SAT is not compressible for any f
that has no useless variables.

References

1. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: Proceedings
of the 40th ACM Symposium on the Theory of Computing. ACM, New York (2008) 133–142

2. Bodlaender, H., Downey, R., Fellows, M., Hermelin, D.: On problems without polynomial kernels. Journal
of Computer and System Sciences 75(8) (December 2009) 423–434

3. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic applications. In: Proceedings
if the 47th Annual IEEE Symposium on Foundations of Computer Science. (2006) 719–728

4. Cai, L., Chen, J., Downey, R., Fellows, M.: Advice classes of parameterized tractability. Annals of Pure and
Applied logic 84(1) (1997) 119–138

5. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
6. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1)

(2007) 31–45
7. Kalai, Y.T., Raz, R.: Interactive PCP. Electronic Colloquium on Computational Complexity 7(31) (2007)
8. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP. Journal of the ACM

45(1) (1998) 70–122
9. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approxi-

mation problems. Journal of the ACM 45(3) (1998) 501–555
10. Dinur, I.: The PCP theorem by gap amplification. Journal of the ACM 54(3) (2007)

32 Lance Fortnow

11. Chen, Y., Flum, J., Müller, M.: Lower bounds for kernelization. In: Proceedings of the 5th Computability
in Europe, Mathematical Theory and Computational Practice. Volume 5635 of Lecture Notes in Computer
Science. Springer (2009) 118–28

12. Buhrman, H., Hitchcock, J.: NP-complete sets are exponentially dense unless NP ⊆ co-NP/poly. In: Pro-
ceedings of 23rd Annual IEEE Conference on Computational Complexity. (2008) 1–7

13. Mahaney, S.: Sparse complete sets for NP: Solution of a conjecture of berman and hartmanis. Journal of
Computer and System Sciences 25(2) (1982) 130–143

14. Karp, R., Lipton, R.: Turing machines that take advice. L’Enseignement Mathématique 28(2) (1982) 191–209
15. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time

hierarchy collapses. Manuscript (2009)
16. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. Theoretical Computer Science

26 (1983) 287–300

Efficiently Inverting the L2-Invariant through Stability Theory.

Cameron Donnay Hill

University of California, Berkeley
Department of Mathematics

970 Evans Hall #3840, Berkeley, CA 94720-3840 USA
chill@math.berkeley.edu

Abstract. In [4], an efficient algorithm for inverting the L2-invariant is presented, which amounts
to a reduction to resolving a certain combinatorial-design problem, the so-called magic square.
While elegant, this approach does not lend itself to generalization to greater numbers of variables.
In this paper, I approach the L2-canonization problem by explicitly seeking to exploit the well-
behaved geometry of L2-theories. Specifically, I present an algorithm to invert the L2-invariant
which relies on the fact that all complete L2-theories are stable with “trivial” forking-dependence.

1 Introduction

Classically, forking-dependence is a means for developing a geometric structure theory for the class of
models of a given complete first-order theory. A structure theory generally amounts to a recipe for
building models of the theory from a reasonably succinct parametric specification – e.g. a system of
cardinal invariants – and the parameters are commonly dimensions of certain “uncomplicated building
blocks.” Thus, we can think of a “structure theory” as the infinitary analog of a model-building algorithm.
Analysis of forking-dependence is a pre-requisite of understanding the “uncomplicated building blocks”
and their interactions, and in some cases, this analysis comprises essentially all of the interesting/hard
work to be done.

In [4], an efficient algorithm for inverting the L2-invariant is presented, which amounts to a reduction
to resolving a certain combinatorial-design problem, the so-called magic square. While elegant, this
approach does not lend itself to generalization to greater numbers of variables – a resolvable higher-
dimensional magic “square” problem seems rather difficult to characterize in this case. By contrast, the
algorithm I have in mind is an adaptation of early work on ω-stable and superstable theories. Ultimately,
the efficient construction of models is made possible by the availability of a uniform coordinatization
of (some of) the models over the geometries of strongly-minimal types. It then suffices to show how to
recover such a coordinatization efficiently from the L2-invariant – for this, I draw an analogy with one
of the several characterizations of forking in stable theories, the machinery of heirs and the fundamental
order on types. In the L2-scenario, one can get away with defining the fundamental order exclusively
for a certain small collection of formulas in such a way that (i) a complete analysis of forking for a
given L2-theory can be performed efficiently using only these formulas, and (ii) a coordinatization can
be recovered efficiently from the input data I2(M).

My approach does not yield a more efficient algorithm for inverting the L2-invariant, but it does
shed some light on the underlying structural properties of L2 that make efficient inversion possible. In
particular, it is possible to generalize the analysis to invert the Lk-invariant, k ≥ 2, for certain well-
behaved classes of finite structures – namely, those finite structures M such that forking-dependence is
trivial in Thk(M) and in which forking can be analyzed uniformly in terms of a fixed class of “simplicial”
configurations of Lk-k-types over ∅. Going forward, this suggests that a parametrized-complexity analysis
of the Lk-canonization problem for well-behaved class of structures will be fruitful. It also suggests that
more extensive investigation of the notion of “triviality” is warranted for Lk-theories. (This generalization
is pursued as a coda in the full paper, but not in this extended abstract.)

1.1 Preliminaries and notation

Throughout, we assume that T is the complete L2-theory of a finite ρ-structure M0, where ρ is a finite
relational language such that ari(R) ≤ 2 for all R ∈ ρ. For brevity, set S = S2

2(T). We consider a
structure

G = G2(M0) = (S,<,E,Rτ , ∆)

34 Cameron Donnay Hill

where

– < is a linear order of the universe
– (p, q) ∈ E ⇐⇒ (∀a1, a2 ∈M0)[M0 |= p(a1, a2) =⇒ (∃b ∈M0)(M0 |= q(a1, b)]
– (∀p)(∃!q)(Rτ (p, q)); thus, we write q = pτ to mean that Rτ (p, q) holds.
– (p, q) ∈ Rτ ⇐⇒ (∀a1, a2 ∈M0)[M0 |= p(a1, a2) ⇐⇒ M0 |= q(a2, a1)]
– p ∈ ∆ ⇐⇒ (∀a1, a2 ∈M0)[M0 |= p(a1, a2) =⇒ a1 = a2]

The structure G2(M0) is called the game-tableau of M0. Given new unary predicates, {Pθ}θ, where
θ ranges over complete quantifier-free 2-types, the natural expansion I2(M0) of G, in which Pθ =
{p ∈ S : p |= θ}, is often called the complete L2-invariant of M0. That Th2(M0) = Th2(M1) if and
only if I2(M0) = I2(M1) was established in [1]. Thus, G2(M0) and I2(M0) are actually invariants of
T = Th2(M0), so I am justified in writing G2(T) and I2(T).

If A is a non-empty set, then a map h : A×A→ S is called a realization1 if for all a1, a2 ∈ A,

– (h(a1, a2), q) ∈ E ⇐⇒ (∃b ∈ A)(h(a1, b) = q)
– h(a1, a2)τ = h(a2, a1)
– h(a1, a2) ∈ ∆ ⇐⇒ a1 = a2

Clearly, the map hM0 : M0×M0 → S, hM0(a1, a2) = tp2(a1a2;M0) is a realization, and it is not difficult
to verify that if h : A×A→ S is a realization, then the structure Ah on A given by (a1, a2) ∈ RAh ⇐⇒
R(x1, x2) ∈ θ ∈ h(a1, a2) (again, θ ranges over complete quantifier-free 2-types), is a model of T . In
particular, it’s easy to see that M0 = (M0)hM0

. If h : M ×M → S is a realization and C ⊆ M , then
h � (C×C) corresponds to the (quantifier-free) diagram diag(C;M) of (C;M) in the language obtained
by naming each L2-2-type as a binary predicate; in the specification of the algorithm, I have found it
more convenient to speak of diagrams rather than realizations.

Again following [4], the set oT = {q(x, x) ∈ S2
1(T) : T |= ∃≤1x q(x, x)} can be read off from G2(T),

and T has a unique model just in case oT = S2
1(T). For brevity, I will assume that T has arbitrarily large

finite models – the alternative case being “easy.” I will also identify oT with the diagram comprising the
union {q(cq) : q ∈ oT } and {tp2(cq, cq′) : q, q′ ∈ oT }, and further I will assume that for every model M
of T , cq ∈M and M |= q(cq) for all q ∈ oT – that is, M contains the diagram oT . Finally, the following
proposition is extremely useful in the stability-theoretic analysis:

Proposition 1 (Amalgamation). Suppose h : A× A→ S and h′ : A′ × A′ → S are realizations such
that h � (A0×A0) = h′ � (A0×A0), where oT ⊆ A0 = A∩A′. Then there is a realization H : B×B → S
such that h ∪ h′ ⊆ H.

2 Non-forking independence

Following [2], [3], I define forking in terms of an adaptation of Morley rank (and of the local ranks; these
notions essentially coincide in the context of finite-variable logics on finite structures). Suppose M0 is a
model, A ⊆M0 and π is a partial type over A.

– R(π) ≥ 0 just in case there is a model M containing (dom(π);M0) in which p is realized.
– R(π) ≥ n+ 1 iff for every m < ω, there are a modelM containing (dom(π);M0), dom(π) ⊆ B ⊆M ,

and types q0, ..., qm−1 ∈ S2(B;M) such that
• π ⊆ qi and R(qi) ≥ n for each i < m;
• For all i < j < m, there are φ(x, y) ∈ S2

2(T) and b ∈ B such that φ(x, b) ∈ qi and ¬φ(x, b) ∈ qj .
– R(π) =∞ just in case R(π) ≥ n for all n < ω.

Assuming R(π) is finite, I define deg(π) to be the smallest number m < ω such that there areM contain-
ing (dom(π);M), dom(π) ⊆ B ⊆ M , and pairwise (explicitly) contradictory extensions q0, ..., qm−1 ∈
S2(B;M) of π such that R(qi) = R(π) for each i < m. I abbreviate R(tp2(b/A;M)) by R(b/A). If
A ⊆ B ⊆M and p ∈ S2(B), I say that p does not fork over A just in case R(p) = R(p � A) – otherwise,
of course, p forks over A. As is usual, I define

A |̂
C
B ⇐⇒ R(a/BC) = R(a/C) for all a ∈ A<ω . (1)

1 This notion is due to [4]

Efficiently Inverting the L2-Invariant through Stability Theory. 35

Naturally, the relation |̂ is called “non-forking independence.” In [2] and [3], the following standard
facts about non-forking independence are recovered for stable finite-variable theories (with finite models).
(Total triviality does not hold for all stable theories, but all L2-theories do have this property.)

Theorem 1. For any finite structure N , if T = Th2(N), then R(−) is always finite, and |̂ has the
following properties:

1. Invariance: If (A,B,C) ≡2 (A′, B′, C ′), then A |̂ CB iff A′ |̂ C′B′.
2. Existence: A |̂ BB.
3. Symmetry: A |̂ CB iff B |̂ CA.
4. Transitivity: A |̂ CB1B2 iff A |̂ CB1 and A |̂ CB1

B2.
5. Extension: If A |̂ CB and B ⊆ B1, then A′ |̂ CB1 for some A′ ≡2

BC A.
6. Total triviality: If A |̂/ CB1B2, then A |̂/ CB1 or A |̂/ CB2.

2.1 Triangles

A triangle is simply a set {φ1(x, y1), φ2(x, y2), φ3(y1, y2)}, where x, y1, y2 are pairwise distinct variables
and φ1, φ2, φ3 ∈ S2

2(T), such that (i) for some M |= T , there are b, a1, a2 ∈ M such that M satisfies
φ1(b, a1), φ2(b, a2), and φ3(a1, a2), and (ii) φ3 induces the same L2-1-type on both y1 and y2. Let Tri(T)
be the set of triangles with respect to T . We sometimes identify {φ1(x, y1), φ2(x, y2), φ3(y1, y2)} with the
formula φ1(x, y1)∧φ2(x, y2)∧φ3(y1, y2), or with the expression (φ)(x, y1, y2), suppressing the subscripts.

Now, suppose M |= T , A ⊆M , and p(x) ∈ S2
1(A;M). Then

Tri(p) = {(φ)(x, y1, y2) ∈ Tri(T) : (∃a1, a2 ∈ A ∪ oT)({φ1(x, a1), φ2(x, a2), φ3(a1, a2)} ⊆ p)} . (2)

I define the fundamental (pre-)order, and the associated equivalence relation, as follows: for any pair of
types p, q, not necessarily over the same domain,

p ≤ q ⇐⇒ Tri(p) ⊇ Tri(q) ; p ∼ q ⇐⇒ p ≤ q ∧ q ≤ p ⇐⇒ Tri(p) = Tri(q) . (3)

If M is a model, A ⊆ M and p ∈ S2(A), I define 〈p〉 to be the set of types q ∈ S2(N) such that p ⊆ q
and N is a model containing (A;M). The following theorem is proved in much the same way as the
analogous theorem of infinitary stability theory (cf. [5], proposition 17.25).

Theorem 2. For every type p, 〈p〉/∼ has a unique ≤-maximal class, denoted β(p). Moreover, if A ⊆
B ⊆M , where M is a model, and p ∈ S2

1(B;M), then p forks over A if and only if β(p) 6= β(p � A).

3 Strongly-minimal types and the algorithm

I feel it adds a bit of clarity to the presentation to expose, first, an inadequate approach to model-building
– the moving parts of this method are essentially the same as those of the correct solution, but there is
less bookkeeping to contend with. Thus, we first consider the situation of a single strongly-minimal type

Abusing notation somewhat, I define a strongly-minimal type to be a pair (C, p(x)), where C is
the diagram diag(C;M1) and p(x) ∈ S2

1(C), such that R(p) = deg(p) = 1. Suppose (C, p(x)) is a
strongly-minimal type. IfM is a model containing (C;M1), where C = diag(C;M1), and A ⊆M , then

clp(A) = {b ∈ p(M) : R(b/AC) = 0} =
{
b ∈ p(M) : b |̂/ CA

}
(4)

When b ∈ clp(a), I say that b is a p-coordinate of a.

Lemma 1. Suppose (C, p) is a strongly-minimal type, C = diag(C;M1). Suppose M |= T contains
(C;M1).

1. If C ⊆ A ⊆ M , then p(x) has a unique non-forking extension to (A;M). In particular, for any
a1, a2, b1, b2 ∈ p(M), if a2 /∈ clp(a1) and b2 /∈ clp(b1), then tp2(a1a2) = tp2(b1b2).

2. (p(M), cl) is pregeometry/matroid.
3. If A ⊆M , then clp(A) =

⋃
a∈A clp(a).

36 Cameron Donnay Hill

4. If {d1, d2, d3} ⊆ p(M) is independent, then clp(d1, d2) ∩ clp(d1, d3) = clp(d1).
5. If B ⊆ p(M) is a basis of p(M) (i.e. a maximal independent subset), then every permutation of B

extends to an automorphism of a model M′ such that p(M ′) = p(M).

Proposition 2. There is an algorithm Φ0 which solves the following problem:

Given: G2(T); Return: A strongly-minimal type (C, p).

Moreover, the running time of Φ0 is bounded by poly(|G2(T)|).

Proof (Sketch). Starting with C0 = oT and p0,0(x),..., p0,t−1(x), an enumeration of 1-types over oT , the
algorithm greedily builds (Ci+1, pi+1,j : j < t) from (Ci, pi,j : j < t): obtain Ci+1) Ci+1 by adding
realizations of each pi,j , j < t, and then, using theorem 2, choose a forking extension pi+1,j ∈ S2

1(Ci+1) of
pi,j , j < t, such that R(pi+1,j) ≥ 1 if R(pi,j) > 1 – choosing a non-forking extension pi+1,j ∈ S2

1(Ci+1) of
pi,j when R(pi,j) = 1. Then R(pn,0) = 1 after n ≤ |Tri(T)| ≤ |S2

2(T)|3 steps. Some additional processing
is required to choose an non-forking extension p(x) of p0,n(x) such that deg(p) = 1, but I omit this for
the sake of brevity.

Proposition 3. There is an algorithm Φ1 which solves the following problem:

Given: G2(T), a strongly-minimal type (C, p) and a number 2 ≤ m < ω;
Return: The diagram D of a set (D;M1) such that D = C∪̇p(M1) and dim(p(M1)) = m,
together with an ordered basis (B,<) of p(M).

Moreover, the running time of Φ1 is bounded by poly(|G2(T)|, |C|,m).

Proof (Sketch). The algorithm first invents an ordered basis b0, ..., bm−1, asserting p(bi) for each i < m
and bi |̂ Cbj whenever i < j < m (by part 1 of lemma 1, there is a unique 2-type over C associated with
this independence statement). Next, the procedure invents elements to realize all of the dependent types
in S2

2(Cb0b1) extending p(x)∪ p(y) – thus, inventing the substructure clp(b0, b1). Note that S2
2(Cb0b1) is

(essentially) a subset of {q(x, y) ∈ S2
2(T) : qx = qy = p}. By parts 4 and 5 of lemma 1, it then suffices

to “copy” clp(b0, b1) to clp(bi, bj), i 6= j, by labeling the elements of clp(b0, b1) by permutations of m.
(Some care is needed in the bookkeeping here.) Further, it’s only necessary to consider “short” products
of transpositions, and this observation yields the bound on the running time.

From this point, the next logical step would be to simply complete the pair ((C, p), p(M)) returned by
the composition Φ1 ◦Φ0 to a model, perhaps in a manner similar to that of proposition 3. Unfortunately,
it’s not obvious (to me, in any case), how to do this efficiently. The difficulty lies in the fact that
S2

2(Cb0b1) may be exponentially large compared to S2
2(T). To deal with this, I introduce the somewhat

more complicated notion of a coordinate system. A coordinate system is a tuple (C, p0, ..., pt−1) (say
C = diag(C;M1)) such that

– (C, pi) is a strongly-minimal type for each i < t;
– {p0, ..., pt−1} is ⊆-maximal subject to the following orthogonality condition:

For any model M containing C, C ⊆ D ⊆ M and any i < j < t, if a ∈ pi(M), b ∈ pj(M), a |̂ CD
and b |̂ CD, then a |̂ Cb.

The last condition allows the algorithm to ignore the C-part of a type when trying to realize it. Thus,
it should suffice to keep t small, and in fact, it does. The algorithm Ψ0 of the next proposition is largely
the same as Φ0 above.

Proposition 4. There is an algorithm Ψ0 which solves the following problem:

Given: G2(T); Return: A coordinate system (C, p0, ..., pt−1).

Moreover, the running time of Ψ0 is bounded by poly(|G2(T)|).

Proposition 5. There is an algorithm Ψ which solves the following problem:

Given: G2(T), a coordinate system (C, p0, ..., pt−1) of T and parameters 2 ≤ m0, ...,mt−1 < ω.
Return: A model M containing C such that dim(pi(M)) = mi for each i < t.

Efficiently Inverting the L2-Invariant through Stability Theory. 37

Moreover, the running time of Φ is bounded by poly(|G2(T)|, |C|,m).

Proof (Sketch). Running Φ0 and then running Φ1 on each instance (G2(T), (C, pi),mi), i < t, recover
the data pi(M) – with dim(pi(M)) = mi – and ordered bases Bi of pi(M) for some modelM containing
(C;M1). Say Bi = {bi0, ..., bimi−1}, and let B∗ = {bi0, bi1 : i < t}. Subsequently, the method is a pertur-
bation of the method in proposition 3. That is, the algorithm invents realizations of those types q(x, y)
in S2

2(CB∗) such that if a1a2 |= q, then aj |̂/ Cb
i
0b
i
1, for each j = 1, 2 and some i < t (so either bi0 or bi1 is

a coordinate of aj); it then uses the same copying-via-permutations method of Φ1 to invent realizations
having coordinates in {bir, bis}, i < t, r < s < m. It can then be shown that the resulting diagram is
a model of the game tableau of T , and this amounts to a model of T . The fact of searching only over
forking extensions yields the bound on the running time.

References

1. S. Abiteboul and V. Vianu. Computing with first-order logic. Journal of Computer and System Sciences, Vol.
50 (1995) pp. 309-335.

2. T. Hyttinen. On stability in nite models. Archive for Mathematical Logic, Vol. 39 (2000), 89-102.
3. T. Hyttinen. Forking in finite models. (Unpublished manuscript).
4. M. Otto. Canonization for Two Variables and Puzzles on the Square. Annals of Pure and Applied Logic, Vol.

85, 1997, pp. 243-282.
5. B. Poizat. A Course in Model Theory: An Introduction to Contemporary Mathematical Logic. Tr. by M. Klein.

Universitext. Springer-Verlag, New York, 2000.

Randomness and the ergodic decomposition

Mathieu Hoyrup

LORIA
615, rue du jardin botanique

BP 239
54506 Vandoeuvre-lès-Nancy

France mathieu.hoyrup@loria.fr

Abstract. We briefly present ongoing work about Martin-Löf randomness and the ergodic decom-
position theorem.

In [ML66], Martin-Löf defined the notion of an algorithmically random infinite binary sequence. The
idea was to have an individual notion of a random object, an object that is acceptable as an outcome
of a probabilistic process (typically, the tossing of a coin). This notion has proved successful, as it turns
out that random sequences in the sense of Martin-Löf have all the usual properties that are proved to
hold almost surely in classical probability theory. A particularly interesting property is typicalness in the
sense of Birkhoff’s ergodic theorem. This theorem embodies many probability theorems (strong law of
large numbers, diophantine approximation, e.g.). Whereas the algorithmic versions of many probability
theorems are straightforward to derive from their classical proofs, whether the ergodic theorem has a
version for random elements has been an open problem for years, finally proved by V’yugin [V’y97]
(improvements of this result, extending the class of functions for which the algorithmic version holds,
have been established later in [Nan08], [HR09]). The reason for this difficulty is that the classical proof
of Birkhoff’s theorem is in some sense nonconstructive. In [V’y97], V’yugin gave it a precise meaning:
the speed of convergence is not computable in general.

Recently, Avigad, Gerhardy and Towsner [AGT10] proved that the speed of convergence is actu-
ally computable in the ergodic case, i.e. when the system is undecomposable. As a result, the non-
constructivity of the theorem lies in the ergodic decomposition. Let us recall two ways of talking about
the ergodic decomposition (see Section 1 for definitions and details):

1. Let E be the set of points x such that Px is ergodic. E has measure one for every invariant measure.
2. For each invariant measure µ, there is a measure m supported on the ergodic measures, such that µ

is the barycenter of m, i.e. for every Borel set A, µ(A) =
∫
ν(A) dm(ν).

One can easily derive each formulation from the other, but not constructively.
We are interested in the precise extent to which the ergodic decomposition is non-constructive, or

non-computable. We briefly survey a few investigations about this problem, especially from the point of
view of Martin-Löf randomness.

1 The ergodic decomposition

We work with a topological dynamical system, i.e. a compact metric space X and a continuous trans-
formation T : X → X. B is the σ-field of Borel subsets of X. Let µ be a T -invariant Borel probability
measure over X (i.e., µ(A) = µ(T−1A) for A ∈ B). Birkhoff’s ergodic theorem states that for every
observable f ∈ L1(X,B, µ), the following limit exists

f∗(x) := lim
n→∞

1
n

∑
i<n

f ◦ T i(x) for µ-almost every x ∈ X. (1)

Moreover, the function f∗ is integrable and
∫
f∗ dµ =

∫
f dµ.

In general one cannot expect, for a single point x, convergence (1) for every f ∈ L1(X,B, µ). Nev-
ertheless, using a separability argument it is easy to see that for µ-almost every x, convergence holds
for every bounded continuous f . Let us denote the set of continuous functions from X to R by C(X).

Randomness and the ergodic decomposition 39

A point is called generic for T if f∗(x) exists for all f ∈ C(X) (this notion does not depend on µ).
Now, given a generic point x, the functional which maps f ∈ C(X) to f∗(x) is positive and linear, so it
extends to a probability measure, denoted Px. In other words,

f∗(x) =
∫
f dPx

for every f ∈ C(X).
From the definition of f∗(x), one can prove that for every generic x, Px is T -invariant. Now, the

ergodic decomposition theorem states if µ is T -invariant then Px is ergodic for µ-almost every x. This
theorem admits (at least) two different proofs, one is an application of Choquet’s theorem from convex
analysis: the set of invariant measures is a compact convex set whose extreme points are the ergodic
measures; hence, any invariant measure µ can be expressed as a barycenter of the ergodic measures, i.e.
there is a probability measure m over the set of probability measures over X assigning full weight to the
set E(T) of ergodic invariant measures, such that for every Borel set A,

µ(A) =
∫
ν(A) dm(ν). (2)

2 Martin-Löf random points

A natural way of investigating the constructivity of the ergodic decomposition is the following: given
a topological system with appropriate computability assumptions, given an invariant measure µ, is Px
ergodic for every µ-ML random point x?

Precisely we will assume X is a computable metric space that is compact in an effective way, T : X →
X a computable map and µ a Borel probability measure over X that is T -invariant. Observe that it is a
consequence of V’yugin’s theorem that if x is µ-ML random then x is generic, so Px is well-defined. It is
important to note that while V’yugin’s theorem was originally proved when X is the Cantor space and µ
is computable, it can be extended to arbitrary computable metric spaces and arbitrary Borel probability
measures [GHR], [Hoy08].

We briefly investigate the question: is Px ergodic?

Remark 1. First, if µ is itself ergodic, then from V’yugin’s theorem, Px = µ, so Px is ergodic.

2.1 Naive strategy

Let x be a generic point and Fx be the class of Borel sets A such that 1∗A(x) = µ(A) (1A is the indicator
of A and 1∗A is defined by (1)). All T -invariant sets A ∈ Fx have Px-measure 0 or 1, as the whole
trajectory of x lies either inside A, or outside A. If Fx were the whole class of Borel sets (which is almost
never the case) then Px would be automatically ergodic.

Hence this approach (which does not work) raises two questions:

1. Find a characterization of Fx for µ-random x. For instance, does Fx contain all the r.e. open sets?
We know that it contains all the r.e. open sets whose µ-measure is computable (see [HR09]).

2. Which classes F are sufficient to characterize ergodicity? A class F of Borel sets characterizes er-
godicity if the system is ergodic as soon as all the T -invariant sets in F have measure 0 or 1. In
particular, can we restrict to sets that are constructive in some sense?

2.2 Other strategy

The following proposition is an easy consequence of classical results.

Proposition 1. Every m-random measure is ergodic.

Proof. It is known that the set of ergodic measures is a Gδ-set. When (X,T) is a computable system, it
is a computable Gδ-set. As it has measure one, it contains all the random elements, by a result proved
by Kurtz (actually, its relativized version for non-computable measures).

40 Mathieu Hoyrup

We prove the following result:

Theorem 1. Assume m and µ are computable. The following are equivalent:

1. x is µ-random,
2. there exists a m-random measure ν such that x is ν-random.

Hence, if m is computable the problem is solved: if x is a µ-random point, then there is a m-random
measure ν such that x is ν-random. By the preceding proposition, ν is ergodic, so by Remark 1, Px = ν.

The problem boils down to the computability of m and µ. As µ can be simply derived from m by
equality (2), it follows that µ is always computable relative to m (this can be formalized using Weirauch’s
type-two machines or Ko’s oracle machines for instance, see [Wei00], [Ko91]). But it might be possible
that a computable measure µ induces a non-computable m.

When m is not computable, a relativized version of Theorem 1 gives that if x is µ-random relative
to m, then there exists a m-random measure ν such that x is ν-random, so as above, ν is ergodic and
ν = Px. But we do not know what happens for µ-random points that are no more random when m is
added as an oracle.

3 Summary

We can identify three ways of defining the computability of the ergodic decomposition:

1. Given a generic point x, is Px computable from x? In what sense?
– The point in V’yugin’s counter-example is that the mapping x 7→ Px is non-effective, in some

sense. In particular, there is a computable observable f such that f∗ is not L1-computable.
2. Is the measure m computable?

– In V’yugin’s counter-example, even if x 7→ Px is non-effective, the measure m is computable.
3. Given a µ-random point x, is Px ergodic?

For the moment we only know that 1. =⇒ 2. =⇒ 3., for a suitable notion of computability of the
mapping x 7→ Px.

In the introduction, we said that in V’yugin’s example the ergodic decomposition is non-constructive.
Actually, it is computable in the sense of 2. (and hence 3.) but not in the sense of 1. We still do not
know whether the ergodic decomposition is always computable in the sense of 2. (while we conjecture it
is not the case) and 3.

References

AGT10. J. Avigad, P. Gerhardy, and H. Towsner. Local stability of ergodic averages. Trans. Amer. Math. Soc.,
362:261–288, 2010. 39

GHR. S. Galatolo, M. Hoyrup, and C. Rojas. Effective symbolic dynamics, random points, statistical behavior,
complexity and entropy. Information and Computation. To appear. 40

Hoy08. M. Hoyrup. Computability, Randomness and ergodic theory on metric spaces. PhD thesis, Université
Denis-Diderot – Paris VII, 2008. 40

HR09. Mathieu Hoyrup et Cristóbal Rojas. Applications of Effective Probability Theory to Martin-Löf Ran-
domness. ICALP 2009. LNCS, 5555:549-561, 2009.
39, 40

Ko91. K.-I Ko. Complexity Theory of Real Functions. Birkhauser Boston Inc., Cambridge, MA, USA, 1991.
41

ML66. P. Martin-Löf. The definition of random sequences. Information and Control, 9(6):602–619, 1966. 39
Nan08. Satyadev Nandakumar. An effective ergodic theorem and some applications. In STOC ’08: Proceedings

of the 40th annual ACM symposium on Theory of computing, pages 39–44, New York, NY, USA, 2008.
ACM. 39

V’y97. V. V. V’yugin. Effective convergence in probability and an ergodic theorem for individual random
sequences. SIAM Theory of Probability and Its Applications, 42(1):39–50, 1997. 39

Wei00. K. Weihrauch. Computable Analysis. Springer, Berlin, 2000. 41

An Axiomatic Approach to Barriers in Complexity

Russell Impagliazzo1, Valentine Kabanets2, Antonina Kolokolova3

1 UC San Diego
2 Simon Fraser University

3 Memorial University of Newfoundland

Abstract. In late 1980s Russell Impagliazzo, Sanjeev Arora and Umesh Vazirani came up with a
logic framework for formalization of a major complexity barrier, relativization of [BGS75]. That is,
Arora, Impagliazzo and Vazirani defined a theory of arithmetic such that, informally, a complexity
result relativizes iff it can be proved within this theory. For various reasons, this paper which we
reference as [AIV92], was never published (there are drafts available on Impagliazzo’s and Vazirani’s
webpages).
Relativizing techniques cannot resolve many major complexity questions such as P vs. NP. So do
we know a type of technique that can be used to resolve such questions? In [AIV92], they argue
that we do have such techniques already, and these are the techniques that make use of the local
checkability of computation, Cook-Levin theorem being the prime example.
Recently another complexity barrier became the focus of attention: Aaronson and Wigderson
[AW08] defined the barrier they called “algebrization”, refining the notion of relativization to
incorporate the use of arithmetization techniques. They show that majority of non-relativizing re-
sults can be shown to be algebrizing, and yet no algebrizing technique can resolve main complexity
questions. In [IKK09] we show how to adapt the framework of [AIV92] to axiomatize the notion
of algebrization barrier, and show that the theory formalizing algebrization is stronger than the
relativization theory, but weaker than the local checkability theory.
In this talk, I will describe the [AIV92] logic framework for axiomatizing barriers in complexity
theory, and show how it can be adapted to formalize other barriers of this type.

1 Introduction

In the mid-1970’s, Baker, Gill and Solovay [BGS75] used relativization as a tool to argue that techniques
like simulation and diagonalization cannot, by themselves, resolve the “P vs. NP” question. Intuitively, a
technique relativizes if it is insensitive to the presence of oracles (thus, a result about complexity classes
holds for all oracle versions of these classes). If there are oracles giving a contradictory resolution of a
complexity question (e.g., PA = NPA, but PB 6= NPB), then no relativizing technique can resolve this
question. This method of relativization has been brought to bear upon many other open questions in
Complexity Theory, for example, P vs. PSPACE [BGS75], NP vs. EXP [Dek69,GH83,Lis86], BPP vs.
NEXP [Hel86], IP vs. PSPACE [FS88], and a long list of other classes.

In an informal sense, contrary relativizations of a complexity theory statement have been viewed as a
mini-independence result, akin to the independence results shown in mathematical logic. But what inde-
pendence is implied by contradictory relativizations, and what are the proof techniques from which this
independence is implied? This was made precise in [AIV92]. There the authors introduced a theory RCT
(which stands for Relativized Complexity Theory) based on Cobham’s axiomatization of polynomial-time
computation [Cob64]. Roughly speaking, RCT has standard axioms of arithmetic (Peano axioms), and
an axiomatic definition of the class of functions that is supposed to correspond to the class P. This class
is defined as the closure of a class of some basic functions under composition and limited recursion (as in
Cobham’s paper [Cob64]), plus there is an extra axiom postulating the existence of a universal function
for that class. RCT ’s view of the complexity class P is “black-box”: the axioms are satisfied not only by
the class P, but also by every relativized class PO, for every oracle O. In fact, [AIV92] shows that the
(standard) models of RCT are exactly the classes PO, over all oracles O.4 It follows that, for any com-
plexity statement S about P, this statement S is true relative to every oracle A (i.e., S relativizes) iff S is
provable in RCT . On the other hand, a non-relativizing statement is precisely a statement independent
of RCT . Thus, e.g., the “P vs. NP” question is independent of RCT .

4 Cobham [Cob64] gets the exact characterization of P by considering the minimal model for his theory.

42 Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova

[AIV92] also shows that extending RCT with another axiom, which captures the “local checkability”
of a Turing machine computation in the style of the Cook-Levin theorem (the computation tableau can
be checked by checking that all 2 × 3 “windows” are correct), almost exactly characterizes the class P
in the following sense: the models for the resulting theory, denoted by LCT (for Local Checkability)
in [AIV92], are necessarily of the form PO with O ∈ NP ∩ co-NP. Thus, LCT is so strong that resolving
most complexity questions in LCT is essentially equivalent to resolving them in the non-relativized
setting.

In 1990s, a sequence of important non-relativizing results was proved using arithmetization tech-
niques, most notably IP = PSPACE by [LFKN92,Sha92]. Was this class of techniques sufficient to resolve
questions like P vs. NP, or was there still another barrier? Fortnow [For94] have presented a way to
construct a class of oracles with respect to which IP = PSPACE and similar results hold, however he did
not give an indication whether there are two such oracles giving contrary answers to questions like P
vs. NP. Later, Aaronson and Wigderson [AW08] defined the “algebrization barrier”: algebrizing separa-
tions and collapses of complexity classes, by comparing classes relative to one oracle to classes relative
to an algebraic extension of that oracle. Using these definitions, they show that the standard collapses
“algebrize” and that many of the open questions in complexity fail to “algebrize”, suggesting that the
arithmetization technique is close to its limits. However, in their framework it is unclear how to for-
malize algebrization of more complicated complexity statements than collapses or separations, and it
is unclear whether the algebrizing statements are, e.g., closed under modus ponens. So, in particular,
it is conceivable that several algebrizing premises could imply (in a relativizing way) a non-algebrizing
conclusion.

In [IKK09] we provide an axiomatic framework for algebraic techniques in the style of [AIV92].
We extend their theory RCT with an axiom capturing the notion of arithmetization: the Arithmetic
Checkability axiom. Intuitively, Arithmetic Checkability postulates that all NP languages have verifiers
that are polynomial-time computable families of low-degree polynomials; a verifier for an NP language
is a polynomial f (say, over the integers) such that the verifier accepts a given witness y on an input
x iff f(x, y) 6= 0. Standard techniques (the characterization of “real world” non-deterministic Turing
Machines in terms of consistent tableaux, and algebraic interpolations of Boolean functions) show that
this axiom holds for unrelativized computation.

The models for the resulting theory, which we call ACT (for Arithmetic Checkability Theory), are,
essentially, all relativized classes PO with oracles O such that Arithmetic Checkability holds relative
to this O, i.e., all NPO languages have PO-computable families of low-degree polynomials as verifiers.
Arithmetic Checkability is implied by, yet is strictly weaker than Local Checkability, since ACT has
models PO for arbitrarily powerful oracles O (in particular, any oracle from Fortnow’s [For94] recursive
construction). Thus, ACT is a theory that lies between the [AIV92] theories RCT and LCT . Moreover,
both inclusions are proper: RCT (ACT (LCT . That is, there are statements provable in ACT that
can’t be proved in RCT , and there are statements provable in LCT that can’t be proved in ACT .

2 The axiomatic framework of [AIV92]

Consider an unrestricted theory of arithmetic (e.g., Peano arithmetic). Now, extend the language by
introducing a class of function symbols (so the language is two-typed). These function symbols are
allowed to appear in the induction axiom. Now, the question to ask is what can be proved about this
class of function symbols if all we state about them is that they satisfy certain axioms.

The theory RCT is the base theory of [AIV92]. It consists of axioms of Peano Arithmetic over the
language with additional function symbols, together with the statement that these function symbols
satisfy Cobham’s axioms without the minimality restriction, and some extra axioms. Call this class of
functions FP′ (quasi-FP in the original [AIV92]). That is, FP’ includes basic functions (including the #
function, defined as 2|x|

2
), and is closed under composition and limited recursion on notation (defining

recursively g′(x, k) as a repetition of g(x) for |k| steps, g′(x, k) = g(g′(x, k/2)) for k > 1, g′(x, 1) = x).
Two additional axioms are:

Length axiom: ∀f ∈ FP′,∃c > 0 |f(x)| < |x|c

Universal function: ∃U(i, t, x) ∈ FP′ such that ∀f ∈ FP′∃i, c f(x) = U(i, 2|x|
c

)

An Axiomatic Approach to Barriers in Complexity 43

It is shown in [AIV92] that standard models of RCT correspond to relativized classes of polynomial
time functions. Indeed, for an oracle O, FPO can be represented as a class of polynomial time functions
with an undefined symbol O, satisfying the axioms. For the other direction, construct an oracle O
returning the bits of the universal function output. For this oracle O, FP′ ⊆ FPO.

To encode complexity-theoretic questions we need to talk about classes other than the polynomial-
time computable functions. The approach chosen by [AIV92] is to define these classes in terms of
polynomial-time computable functions rather than introducing additional function classes. Thus, the
statement P = NP (relativizing) can be phrased as ∀c,∀f ∈ FP′∃g ∈ FP′ g(x) = 1 ⇔ ∃y, |y| ≤
|x|c ∧ f(x, y) = 1.

Now, to show that a complexity statement is not relativizing the standard approach is to present two
different oracles for which the outcome of this statement is different (e,g, PA = NPA, but PB 6= NPB .)
In this framework, this is a model-theoretic proof of an independence of such a statement from RCT :
the two oracles correspond to two standard models of RCT . Alternatively, if a statement is provable in
RCT then it definitely does relativize, since then it is true in all models of RCT and thus for all oracle
worlds.

Note that this approach to characterizing polynomial time is different from the bounded arithmetic
approach: here, the induction is unlimited, and all power of Peano Arithmetic can be used in the proof.
However, all that is known about the functions in FP′ is that they satisfy Cobham’s axioms (without
minimality), have a universal function in the class and have polynomially-bounded values. This is a
“black-box” view of polynomial-time computation, and by [AIV92] it does not give us enough information
about polynomial time to resolve main complexity-theoretic questions such as P vs NP.

3 Strengthening RCT with the Local Checkability Axiom

So what other information about FP′ can be used? In [AIV92], Arora, Impagliazzo and Vazirani show that
knowing that computation is locally checkable suffices to resolve the questions like P vs. NP. Thus, Cook-
Levin theorem does not relativize in a very strong sense, and techniques using locality of computation
in this manner avoid known oracle-based barriers.

Definition 1. 5 Let PF-CHK[poly, log] be the class of languages L so that there is a polynomial p(n)
and a polynomial-time computable verifier V x,π(1n, r) with random access to the input x and a proof
π ∈ {0, 1}p(n) so that V makes at most O(log n) queries to the input and proof, and so that x ∈ L iff
∃π ∈ {0, 1}p(|x|)∀r ∈ [1, . . . , p(n)] V x,π(1n, r) = 1.

The Local Checkability axiom is the statement NP = PF-CHK[poly, log], which we also denote by
LCT (for Local Checkability Theorem). The theory LCT is RCT +LCT . An oracle O is consistent with
LCT if NPO = PF-CHK[poly, log]O.

[AIV92] show that the oracles consistent with LCT are very weak (in NP ∩ co-NP) and resolving
questions like P vs. NP with respect to such oracles will resolve them in the non-relativized setting.

4 RCT with Arithmetic Checkability

Relativizing techniques are “black-box”, and locally checkable techniques are non-black-box in a strong
sense. A class of technique that lies between them is arithmetization techniques: here, we do state that
every easily computable function can be interpolated into an easily computable low-degree polynomial,
but we do not assume much else.

Definition 2. The class ALG-PF (algebraically checkable proof systems) is the class of languages L
such that there is a polynomial-time computable polynomial family {fn} and a polynomially bounded
polynomial-time computable function m = m(n) so that x = x1 . . . xn ∈ L iff ∃y1 . . . ym ∈ {0, 1}m such
that
fn+m(x1, . . . , xn, y1, . . . , ym) 6= 0.

5 There are several other ways (equivalent and not) to define local checkability, for example, requiring varying
degree of uniformity. The strongest of them precisely captures polynomial-time.

44 Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova

In [IKK09], two versions of this axiom (strong and weak) are defined. Here, we will just define the
strong version, and mean it when talking about ACT . The class ALG-PF∗ is the class of languages L such
that there are a polynomially bounded polynomial-time computable function m = m(n), a polynomial-
time computable function family {gn : {0, 1}n → {0, 1}m}, and a polynomial-time computable polynomial
family {fn} so that (i) if x = x1 . . . xn ∈ L then fn+m(x, gn(x)) = 1, (ii) if x = x1 . . . xn 6∈ L then
fn+m(x, gn(x)) = 0, and (iii) for all y ∈ {0, 1}m, y 6= gn(x) =⇒ f(x, y) = 0. The strong ACT, denoted
by ACT∗, is the statement P = ALG-PF∗; the corresponding strong version of ACT is denoted ACT ∗.
An oracle A is consistent with ACT∗ if PA = ALG-PF∗A.

Clearly, all relativizing results are provable in ACT ; also, all results provable in ACT are provable
in LCT . It can be shown [IKK09] that most known non-relativizing results such as ones shown to be
algebrizing in [AW08] are provable in (at least the strong) ACT , and many open complexity questions
such as P vs. NP, P vs. BPP, etc are independent of (even strong) ACT . There is a known result though,
NEXP = MIP, for the proof of which arithmetic checkability is insufficient (unless NEXPO is restricted
to have poly-length queries).

5 Conclusions

The Arora, Impagliazzo, Vazirani framework allows us to formalize a class of barriers in computational
complexity, ones that show that techniques using only specific restricted information about computation
cannot resolve many major open problems in complexity. In particular, the notion of relativization is
formalized as provability in the theory RCT (all we know about polynomial-time functions is that they
satisfy Cobham’s axioms). Provability in ACT is meant to capture algebrizing statements, and LCT has
as much information as there is about polynomial-time computable functions. This makes formal the
intuitive notion that a complexity barrier “looks like” an independence of some logical theory.

Although the algebrization barrier has been defined fairly recently, there are already results such that
MIP = NEXP that avoid it. Thus, while a statement failing to algebrize shows a broad range of techniques
that will fail to resolve it, it certainly does not mean that it is beyond the scope of all current techniques
in complexity. We should use algebrization as a tool for homing in on the correct proof techniques to
solve open problems, not as an alibi for failing to solve them.

References

[AIV92] S. Arora, R. Impagliazzo, and U. Vazirani. Relativizing versus nonrelativizing techniques: The role of
local checkability. Manuscript, 1992.

[AW08] S. Aaronson and A. Wigderson. Algebrization: A new barrier in complexity theory. In Proceedings of
the Fortieth Annual ACM Symposium on Theory of Computing, pages 731–740, 2008.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question. SIAM Journal on Computing,
4(4):431–442, 1975.

[Cob64] A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel, editor, Proceedings
of the 1964 International Congress for Logic, Methodology, and Philosophy of Science, pages 24–30.
North-Holland, Amsterdam, 1964.

[Dek69] M. Dekhtiar. On the impossibility of eliminating exhaustive search in computing a function relative
to its graph. DAN SSSR = Soviet Math. Dokl., 14:1146–1148, 1969.

[For94] L. Fortnow. The role of relativization in complexity theory. Bulletin of the European Association for
Theoretical Computer Science, 52:229–244, February 1994. Columns: Structural Complexity.

[FS88] L. Fortnow and M. Sipser. Are there interactive protocols for co-NP Languages? Information Processing
Letters, 28:249 –251, 1988.

[GH83] I. Gasarch and S. Homer. Relativizations comparing NP and EXP. Information and Control, 58:88–
100, 1983.

[Hel86] H. Heller. On relativized exponential and probabilistic complexity classes. Information and Compu-
tation, 71(3):231 –243, 1986.

[IKK09] R. Impagliazzo, V. Kabanets, and A. Kolokolova. An Axiomatic Approach to Algebrization. In
Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pages 695–704,
2009.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems.
Journal of the Association for Computing Machinery, 39(4):859–868, 1992.

An Axiomatic Approach to Barriers in Complexity 45

[Lis86] G. Lischke. Relationships between relativizations of P, NP, EL, NEL, EP and NEP. Zeitschrift fur
Mathematische Logik und Grundlagen der Mathematik, 2:257 –270, 1986.

[Sha92] A. Shamir. IP=PSPACE. Journal of the Association for Computing Machinery, 39(4):869–877, 1992.

Lower bounds for width-restricted clause learning

Jan Johannsen

Institut für Informatik, LMU München, Munich, Germany

Introduction

In the past decades, a considerable amount of research has been devoted to the satisfiability problem for
classical propositional logic (SAT). Besides its central role in computational complexity theory, programs
for this problem, so-called SAT solvers, are of increasing importance for practical applications in various
domains.

Most SAT solvers are based on extensions of the basic backtracking procedure known as the DLL
algorithm [4]. The recursive procedure is called for a formula F in conjunctive normal form and a partial
assignment α (which is empty in the outermost call). If α satisfies F , then it is returned, and if α causes
a conflict, i.e., falsifies a clause in F , then the call fails. Otherwise a variable x not set by α is chosen
according to some heuristic, and the procedure is called recursively twice, with α extended by x := 1
and by x := 0. If one recursive call returns a satisfying assignment, then it is returned, otherwise — if
both recursive calls fail — the call fails.

Contemporary SAT solvers employ several refinements and extensions of the basic DLL algorithm.
One of the most successful of these extensions is clause learning [8], which works roughly as follows:
When the procedure encounters a conflict, then a sub-assignment of the current partial assignment is
computed, that suffices to cause the conflict. This sub-assignment can then be stored in form of a new
clause C added to the formula, viz. the unique largest clause falsified by it. This clause then serves to
prune the search by causing conflicts in later branches containing the same partial assignment.

When clause learning is implemented, a heuristic is needed to decide which learnable clauses to keep
in memory, because learning a large number of clauses leads to excessive consumption of memory, which
slows the solver down rather than helping it. Many early heuristics for clause learning were such that
the width, i.e., the number of literals, of learnable clauses was restricted, so that the solver learned only
clauses whose width does not exceed a certain threshold.

Experience has shown that such heuristics are not very helpful, i.e., learning only short clauses
does not significantly improve the performance of a DLL algorithm for hard formulas. We support this
experience with rigorous mathematical analyses in the form of lower bound theorems.

The lower bounds are shown by proving the same lower bounds on the length of refutations in a
certain resolution based propositional proof system. The relationship of this proof system to the DLL
algorithm with clause learning has been established in earlier work [2].

Preliminaries

We consider resolution-based refutation systems for formulas in CNF, which are strongly related to DLL
algorithms. These proof systems have two inference rules: the weakening rule , which allows to conclude
a clause D from any clause C with C ⊆ D, and the resolution rule. which allows to infer the clause C ∨D
from the two clauses C ∨ x and D ∨ x̄, provided that the variable x does not occur in either C or D,
pictorially:

C ∨ x D ∨ x̄

C ∨D

We say that the variable x is eliminated in this inference.
It is well-known that resolution is related to the DLL algorithm by the following correspondence:

the search tree produced by the run of a DLL algorithm on an unsatisfiable formula F forms a tree-like
resolution refutation of F , and vice versa. In order to define proof systems that correspond to the DLL
algorithm with clause learning in the same way, we define resolution trees with lemmas (RTL).

The post-ordering ≺ of an ordered binary tree is the order in which the nodes of the tree are visited
by a post-order traversal, i.e., u ≺ v holds for nodes u, v if u is a descendant of v, or if there is a common

Lower bounds for width-restricted clause learning 47

ancestor w of u and v such that u is a descendant of the left child of w and v is a descendant of the right
child of w.

An RTL-derivation of a clause C from a CNF-formula F is an ordered binary tree, in which every
node v is labeled with a clause Cv such that:

– The root is labeled with C.
– If a node v has one child u, then Cv follows from Cu by weakening.
– If a node v has two children u1, u2, then Cv follows from Cu1 and Cu2 by resolution.
– A leaf v is labeled by a clause D in F , or by a clause C labelling some node u ≺ v. In the latter case

we call C a lemma.

An RTL-derivation is an RTL(k)-derivation if every lemma C is of width w(C) ≤ k. An RTL-
refutation of F is an RTL-derivation of the empty clause from F .

A subsystem WRTI of RTL was defined by Buss et al. [2], which corresponds to a general formulation
of the DLL algorithm with clause learning in the following sense: the size of a refutation of an unsatisfiable
formula F in WRTI has been shown [2] to be polynomially related to the runtime of a schematic algorithm
DLL-L-UP on F . This schema DLL-L-UP subsumes all clause learning strategies commonly used in
practice.

It follows that if an unsatisfiable formula F can be solved by a DLL algorithm with clause learning
in time t, then it has an RTL-refutation of size polynomial in t. Moreover, if the algorithm learns only
clauses of width at most k, then the refutation is in RTL(k). In this work we prove lower bounds on
the size of RTL(k)-refutations, which thus yield lower bounds on the runtime of DLL algorithms with
width-restricted clause-learning.

The lower bounds The pigeonhole principle states that there can be no 1-to-1 mapping from a set
of size n + 1 into a set of size n. In propositional logic, the negation of this principle gives rise to an
unsatisfiable set of clauses PHPn in the variables xi,j for 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ n. The set PHPn
consists of the following clauses:

–
∨

1≤j≤n xi,j for every 1 ≤ i ≤ n+ 1.
– x̄i,k ∨ x̄j,k for every 1 ≤ i < j ≤ n+ 1 and k ≤ n.

It is well-known that the pigeonhole principle PHPn requires exponential size resolution proofs:
Haken [5] shows that every dag-like resolution refutation of PHPn is of size 2Ω(n). We will show that for
k ≤ n/2, RTL(k)-refutations of PHPn need to be asymptotically larger :

Theorem 1. For every k ≤ n/2, every RTLW(k)-refutation of PHPn is of size 2Ω(n logn).

In fact, this lower bound is of the same size as the lower bound shown by Iwama and Miyazaki [6]
for tree-like refutations. On the other hand, it is known [3] that there exist dag-like regular refutations
of PHPn of size 2n · n2. A general simulation [2] yields WRTI-refutations of PHPn of the same size,
and hence PHPn can be solved in time 2O(n) by a DLL algorithm with learning arbitrary long clauses,
whereas our lower bound shows that any DLL algorithm that learns only clauses of size at most n/2
needs time 2Ω(n logn).

The ordering principle expresses the fact that every finite linear ordering has a maximal element. Its
negation is expressed in propositional logic by the following set of clauses Ordn over the variables xi,j
for 1 ≤ i, j ≤ n with i 6= j:

x̄i,j ∨ x̄j,i for 1 ≤ i < j ≤ n
xi,j ∨ xj,i for 1 ≤ i < j ≤ n
x̄i,j ∨ x̄j,k ∨ x̄k,i for 1 ≤ i, j, k ≤ n pairwise distinct∨
j∈[n]\{i}

xi,j for 1 ≤ i ≤ n

The formulas Ordn were introduced by Krishnamurthy [7] as potential hard example formulas for reso-
lution, but short regular resolution refutations of size O(n3) for them were constructed by St̊almarck [9].
These refutations thus can be simulated by WRTI, thus Ordn has WRTI-refutations of polynomial size.
On the other hand, we show a lower bound for RTL(k)-refutations of Ordn:

48 Jan Johannsen

Theorem 2. For k < n/4, every RTL(k)-refutation of Ordn is of size 2Ω(n).

Thus this lower bound shows the necessity to use wide lemmas to refute them efficiently.
In both these lower bounds, the hard example formulas themselves contain clauses of large width.

Since it is conceivable that the necessity to learn wide clauses is merely due to the presence of these
wide initial clauses, the question arose whether similar lower bounds can be shown for formulas of small
width. We now answer this question by showing that lower bounds on width-restricted clause learning
for small width formulas are implied by resolution width lower bounds:

Theorem 3. If F is a d-CNF that requires resolution width w to refute, then for any k, every RTL(k)-
refutation of F is of size at least

2w−(k+max{d,k}) ≥ 2w−(2k+d).

We instantiate this general lower bound to prove a lower bound for RTL(k)-refutations of certain
concrete formulas. The most straightforward way to obtain a formula of small width from any formula
is to expand it into a 3-CNF, as described below:

For a CNF-formula F , the 3-CNF-expansion E3(F) of F is obtained as follows: for every clause
C = a1 ∨ . . . ∨ ak in F of width w(C) = k ≥ 4, introduce k + 1 new extension variables yC,0, . . . , yC,k,
and replace C by the clauses:

yC,0 ȳC,i ∨ ai ∨ yC,i for 1 ≤ i ≤ k ȳC,k

The formula E3(F) is obviously in 3-CNF and is satisfiable if and only if F is satisfiable.
Bonet and Galesi [1] show a lower bound of n/6 on the resolution width of the 3-CNF expansion

E3(Ordn) of the ordering principle, which can be slighltly improved to n/2. Thus a lower bound for
RTL(k)-refutations of E3(Ordn) follows by use of the lower bound theorem, by choosing k = n/6 and
observing that for n ≥ 18 we get k ≥ 3, we obtain from Theorem 3 a lower bound of 2n/2−2n/6 = 2n/6.

Corollary 4. For n ≥ 18, every RTL(n/6)-refutation of E3(Ordn) is of size 2n/6.

It follows that a DLL algorithm with clause learning requires exponential time to solve the formulas
E3(Ordn) when only clauses of width n/6 are learned. On the other hand, from the short regular resolution
refutations of Ordn, one can construct a run of a DLL algorithm with arbitrary clause learning on
E3(Ordn) in polynomial time.

This talk is partially based on joint work with Eli Ben-Sasson, Samuel R.Buss and Jan Hoffmann.

References

1. M. L. Bonet and N. Galesi. Optimality of size-width tradeoffs for resolution. Computational Complexity,
10(4):261–276, 2001.

2. S. R. Buss, J. Hoffmann, and J. Johannsen. Resolution trees with lemmas: Resolution refinements that
characterize DLL algorithms with clause learning. Logical Methods in Computer Science, 4(4), 2008.

3. S. R. Buss and T. Pitassi. Resolution and the weak pigeonhole principle. In M. Nielsen and W. Thomas,
editors, Computer Science Logic, 11th International Workshop CSL ’97, pages 149–156. Springer LNCS 1414,
1998.

4. M. Davis, G. Logemann, and D. W. Loveland. A machine program for theorem-proving. Communications of
the ACM, 5(7):394–397, 1962.

5. A. Haken. The intractability of resolution. Theor. Comput. Sci., 39:297–308, 1985.
6. K. Iwama and S. Miyazaki. Tree-like resolution is superpolynomially slower than dag-like resolution for the

pigeonhole principle. In Proceedings of the 10th International Symposium on Algorithms and Computation
(ISAAC), pages 133–142, 1999.

7. B. Krishnamurthy. Short proofs for tricky formulas. Acta Informatica, 22:253–274, 1985.
8. J. P. M. Silva and K. A. Sakallah. GRASP - a new search algorithm for satisfiability. In Proc. IEEE/ACM

International Conference on Computer Aided Design (ICCAD), pages 220–227, 1996.
9. G. St̊almarck. Short resolution proofs for a sequence of tricky formulas. Acta Informatica, 33:277–280, 1996.

A Characterization of ∆1
2 Pointclasses Via Ordinal Machines

Peter Koepke and Benjamin Seyfferth

University of Bonn, Mathematical Institute
Endenicher Allee 60, D-53115 Bonn, Germany

koepke@math.uni-bonn.de, seyfferth@math.uni-bonn.de

1 Introduction

Ordinal computability studies generalized computability theory by means of classical machine models
that operate on ordinals instead of natural numbers. Starting with Joel Hamkins’ and Andy Lewis’
Infinite Time Turing Machines (ITTM) [1], recent years have seen several of those models which provided
alternate approaches and new aspects for various ideas from logic, set theory and classical areas of
generalized computability theory. With ITTMs, the machine may carry out a transfinite ordinal number
of steps while writing 0s and 1s on tapes of length ω. This is achieved by the addition of a limit rule that
governs the behavior of the machine at limit times. The 0s and 1s on the ω-long tape are interpreted as
subsets of ω (reals). It turns out that the sets of reals semi-decidable by these machines form a subset of
∆1

2. Similar studies have been carried out for infinite time register machines (ITRMs) whose computable
reals are exactly the reals in LωCK

ω
[4].

Another direction of ordinal computability lifts classical computability to study not the subsets of ω,
but of an arbitrary ordinal α, or even the class Ord of all ordinals. In this case, both space and time are
set to that ordinal α, i.e. in the Turing context, we deal with machines that utilize a tape of length α
and either stop in less than α many steps or diverge. The computation is steered by a standard Turing
program and a finite number of ordinal parameters less than α. This approach unveils strong connections
to Gödels universe of constructible sets and the classical work on α-recursion theory [5].

In the present paper, we aim between these two approaches by analyzing the computable sets of reals
of Turing machines with Ord space and time but without allowing arbitrary ordinal parameters.

2 The machine model

We work with ordinal Turing machines (OTMs), the machine model introduced by the first author in
[3]. We briefly review the basic features, for more detail and background the reader is referred to the
original paper.

An OTM uses the binary alphabet on a one-sided infinite tape whose cells are indexed by ordinal
numbers. At any ordinal point in time, the machine head is located on one of these cells and the
machine is in one of finitely many machine states indexed by natural numbers. Since we utilize both
Ord space and time, there is no need to use multiple tapes in our definition; any fixed finite number
of tapes can be simulated by interleaving the tapes into one. A typical program instruction has the
form (a, s, a′, s′, d) ∈ {0, 1}×ω×{0, 1}×ω×{−1, 1} and is interpreted as the instruction “If the symbol
currently read by the machines read-write head is a and the machine is currently in state s, then overwrite
a with the symbol a′, change the machine state to s′, and move the head according to d either to the
left or to the right”. At successor times in the course of the computation, the machine behaves like a
standard Turing machine, with the following exception: If the machine head rests on a cell indexed by
a limit ordinal or 0 and a “move left”-instruction is carried out, then the head is set to position 0. The
machine accesses the transfinite by the following lim inf-rule:

At a limit time λ set the machine state to the lim inf of the states of previous time, i.e., the least
state that was assumed cofinally often in the previous steps. Similarly we set the tape content for each
cell individually to the lim inf of the previous cell contents; in other words, a cell contains a 0 at time λ
if it contained a 0 cofinally often before λ, and it contains a 1 at time λ otherwise. It is natural to set
the head position to the cell indexed by the lim inf over the indices of the cells visited at previous steps
in which the machine’s state was the same as in the limit.

For the present purpose, we allow a real coded as an ω-long sequence of 0s and 1s written on the first
ω many cells of the tape as input to an OTM.

50 Peter Koepke and Benjamin Seyfferth

A set of reals A ⊂ 2ω is called OTM-enumerable iff there is a program that halts exactly for the inputs
a ∈ A. The OTM-computable sets of reals are those whose characteristic functions are computable by an
OTM.

3 Definable subsets of real numbers

We classify subsets of the real numbers with respect to the structure of quantifiers ranging over reals
required for their definition.

A set A ⊂ 2ω is called Σ1
1 iff there is a (in the classical sense) recursive relation R such that:

x ∈ A↔ ∃y ∈ 2ω∀n ∈ ωR(x � n, y � n)

The Π1
n sets are the complements of Σ1

n sets. I.e., a Π1
1 set A′ has a definition of the following form

(where R′ is some recursive relation):

x ∈ A′ ↔ ∀y ∈ 2ω∃n ∈ ωR′(x � n, y � n)

We call A a Σ1
2 set iff there is a B ⊆ 2ω × 2ω that is Π1

n (via an analogous definition) and we have:

x ∈ A↔ ∃y ∈ 2ω(x, y) ∈ B

Again we define the Π1
2 sets as complements of Σ1

2 sets. This construction of alternating projection
and complementation can be carried on further to define the pointclasses Σ1

n and Π1
n for n ∈ ω.

We set ∆1
n = Σ1

n ∩∆1
n.

4 Computing ∆1
2

Theorem 1. A set A of reals is OTM-enumerable iff it is Σ1
2 .

Theorem 2. A set A of reals is OTM-computable iff it is ∆1
2.

We sketch the proof of Theorem 1. Let A be OTM-enumerable, i.e., there is a Turing program P
such that a ∈ A iff P halts on input a. Now the latter condition is Σ1

2 : There is a real coding a halting
computation on input a; to express coding a computation of an ordinal machine requires to check the
wellfoundedness of the “time-axis”; this can be done by another for all quantifier.

Conversely, if A is Σ1
2 by the formula φ, then by the Schoenfield absoluteness theorem about the

absoluteness of Σ1
2 properties we get: a ∈ A iff L[a] |= φ(a) [2, Theorem 25.20]. In models of set theory,

φ is uniformly equivalent to a Σ1 formula ψ of set theory (standard result from descriptive set theory).
So a ∈ A iff L[a] |= ψ(a). But the latter can be (semi-)computed by an OTM: successively build up the
L[a]-levels on the ordinal tape and check whether ψ(a) is true in the level; if yes, then stop, otherwise
continue. So A is OTM-enumerable.

Theorem 2 follows immediately from Theorem 1.
It remains to be seen whether the computability characterization of Σ1

2 and ∆1
2 has some applications

in descriptive set theory.

References

1. Joel D. Hamkins and Andy Lewis. Infinite time Turing machines. The Journal of Symbolic Logic, 65(2):567–
604, 2000.

2. Thomas Jech. Set Theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, Heidelberg, the
third millennium edition, revised and expanded edition, 1997, 2003.

3. Peter Koepke. Turing computations on ordinals. The Bulletin of Symbolic Logic, 11:377–397, 2005.
4. Peter Koepke. Ordinal computability. In Klaus Ambos-Spies, Benedikt Löwe, and Wolfgang Merkle, editors,

Mathematical Theory and Computational Practice, volume 5635 of Lecture Notes in Computer Science, pages
280–289. Springer-Verlag, Berlin, Heidelberg, 2009.

5. Peter Koepke and Benjamin Seyfferth. Ordinal machines and admissible recursion theory. Annals of Pure and
Applied Logic, 160(3):310–318, 2009. Computation and Logic in the Real World: CiE 2007.

Ordinal Register Machines and Combinatorial Principles
in the Constructible Universe

Peter Koepke and Gregor Weckbecker

Mathematisches Institut, Universität Bonn, Germany,
koepke@math.uni-bonn.de, gregorw@uni-bonn.de

Abstract. Ordinal Register Machines (ORMs) are register machines which act on ordinal numbers
and are allowed to run for arbitrarily many ordinal steps. In [4] Peter Koepke showed that the
class of ordinal register computable sets corresponds to the class of constructible sets of ordinals.
This motivates to give alternative proofs of certain facts on the constructible universe like GCH and
combinatorial principles ♦κ for a regular cardinal κ. A Silver Machine like structure M, based on
ORMs, is introduced to prove the principle (global) �. Such a structure is called Ordinal Register
Silver Machine. In our talk we will focus on the construction of such a structure.

1 Introduction

Ordinal Register Machines (ORMs) were introduced by Peter Koepke and Ryan Siders in [5]. They
generalize finite Register Machines, so that they act on ordinals and can run for arbitrarily many ordinal
steps.

A register program P is a finite list P = P0, . . . Pk−1 of instructions acting on registers R0, R1,
The instructions of the machine are:

(i) The zero instruction Z(n) changes the contents of Rn to 0.
(ii) The successor instruction S(n) increases the ordinal contained in Rn by one.
(iii) The transfer instruction T(m,n) sets the content of Rn to the content of Rm.
(iv) The jump instruction Pi = J(m,n,l) is carried out as follows: If Rn = Rm then the next instruction

is Pl, if not the next is Pi+1.

A computation

I : θ → ω, R : θ → Ord<ω

of P = P0 . . . Pk−1 with input β0, . . . , βl−1 is recursively defined by initially setting I(0) = 0 andR(0)(i) =
βi for i < l. At successor times α = β+ 1 the machine carries out the steps as in the finite case. At limit
times λ the machine configuration is determined by taking inferior limits

(∀i < ω)R(λ)(i) = lim inf
α→λ

R(α)(i)

I(λ) = lim inf
α→λ

I(α).

A partial function F : Ordm ⇀ Ord is ordinal register computable, if there is a register program P
and ordinals δ0, . . . , δn−1 such that for every tuple (α0, . . . , αm−1) ∈ dom(F) holds

P : (α0, . . . , αm−1, δ0, . . . , δn−1, 0, . . .) 7→ F (α0, . . . , αm−1)

A subset x ⊆ Ord is ordinal register computable, if its characteristic function χx is ordinal register
computable.

It it possible to formalize the language of set theory by ordinals and define a recursive truth predicate
F : Ord→ 2 by

F (pLγ |= ϕ(x, y1, . . . , yn−1)q) iff Lγ |= ϕ(x, y1, . . . , yn−1).

This predicate is ordinal register computable. Furthermore, it codes a model of set theory. This implies

Theorem 1. A set x ⊆ Ord is ordinal register computable if and only if x ∈ L.

52 Peter Koepke and Gregor Weckbecker

2 Applications to the Structure of L

As an application of theorem 1 we can give alternative proofs for certain facts on the structure of the
constructible universe.

The following lemma follows from theorem 1 by a Löwenheim-Skolem type argument.

Lemma 1. Assume that every set of ordinals is ordinal register computable. Let κ ≥ ω be an ordinal and
x ⊆ κ. Then there are ordinals β0, . . . , βn−1 < κ+ and a register program P such that for all ordinals α
P (α, β0, . . . , βn−1) = χx(α) holds. Furthermore, κ+ is an upper bound for the length of the computation.

This proves the following result by Kurt Gödel (cf. [2]):

Theorem 2. Assume that all sets of ordinals are ordinal register computable, then GCH holds.

The principle ♦κ is a generalization of the generalized continuum hypothesis. It is applied in numerous
infinite constructions like that of an ω1-Suslin tree. The principle was introduced by Ronald B. Jensen
in [3].

Definition 1. Let κ be a regular uncountable cardinal. Then ♦k is the principle: there is a sequence
(Sα | α < κ) such that

(∀S ⊆ κ) {α < κ | S ∩ α = Sα}

is stationary in κ.

Under the assumption that all sets of ordinals are ordinal register computable, it is possible to prove the
following theorem.

Theorem 3. Assume that all sets of ordinals are ordinal register computable. Let κ be a regular un-
countable cardinal. Then ♦κ holds.

3 Silver Machines and Ordinal Register Machines

In [3] Ronald B. Jensen introduced the finestructural analysis of the constructible universe L. This
sophisticated theory allowed him to prove strong results on L, for example the combinatorial principle
(global) �. In the 1970s Jack H. Silver developed Silver Machines (cf. [7]) to avoid the use of Jensen’s
fine structure theory for example in the proof of (global) �.

A complete reference for the theory of Silver Machines is the PhD. thesis of Thomas Lloyd
Richardson [6]. For an introduction into Jensen’s fine structure theory and Silver Machines see the
monograph of Keith J. Devlin [1]. The following definitions follow Devlin’s book.

Definition 2. An ordinal α is ∗-definable from X ⊆ Ord iff there exists γ, β0, . . . , βn−1 ∈ X and an
∈-Formula ϕ such that α is the unique ordinal that satisfies

Lγ |= ϕ(α, β0, . . . , βn−1).

Definition 3. A structure N = (X,<, (hi)i∈ω) is eligible iff

(i) X ⊆ Ord.
(ii) < is the usual ordering of the ordinals restricted to X.

(iii) For all i ∈ ω, k(i) ∈ ω, hi is a partial function from Xk(i) into X.

If N is an eligible structure and λ ∈ Ord, then we set

Nλ = (X ∩ λ,<� λ× λ, (hi ∩ (λk(i) × λ))i∈ω)

Further if A ⊆ X ∩λ, then Nλ[A] denotes the closure of A under functions of Nλ. We call Nλ[A] the hull
of A in Nλ.

If N = (X,<, (hi)i∈ω) and N ′ = (X ′, <, (h′i)i∈ω) are eligible structures, then we write N / N ′ iff
X ⊆ X ′ and for all i ∈ ω and x ∈ Xk(i)), then hi(x) ' h′i(x) holds.

Ordinal Register Machines and Combinatorial Principles in the Constructible Universe 53

Definition 4. A (standard) Silver Machine is an eligible structure

M = (Ord, <, (hi)i∈ω)

such that

(i) (Condensation Principle) If N /Mλ, then there is an α such that N ∼= Mα.
(ii) (Finiteness Principle) For each λ there is a finite set H ⊆ λ such that for every set A ⊆ λ+ 1

Mλ+1[A] ⊆Mλ[(A ∩ λ) ∪H] ∪ {λ}.

(iii) (Skolem Property) If α is ∗-definable from the set X ⊆ Ord, then α ∈M [X]. Moreover there is an
ordinal λ < (sup(X) ∪ α)+, uniformly Σ1 definable from X ∪ {α}, such that α ∈Mλ[X].

Definition 5. An Ordinal Register Silver Machine is an eligible structure

M = (Ord, <, (hi)i∈ω)

such that the properties (i) and (ii) hold. (iii) is replaced with the following property

(iii’) (Computable Closure Property) Let X ⊆ Ord. If P is register program and β0, . . . , βn−1 ∈ X and
α = P (β0, . . . , βn−1), then α ∈M [X].

Using the constructible truth predicate and the upper bounds in lemma 1, it is possible to connect
the two notions of Silver Machine.

Theorem 4. Let M = (Ord, <, (hi)i∈ω) be a Ordinal Register Silver Machine. Then M is a Silver
Machine.

For the construction of an Ordinal Register Silver Machine we fix a well-order <∗ of Ord<ω such that
for s, t ∈ Ord<ω max(s) < max(t) implies s <∗ t. Furthermore, we fix the corresponding rank function
G : Ord<ω → Ord defined by G(t) = otp({s <∗ t | s ∈ Ord<ω}, <∗).

Using the function G, we have to formalize register programs. For i, j, k ∈ ω we set pZ(i)q = G(0, i),
pS(i)q = G(1, i), pT(i,j) q = G(2, i, j) and pJ(i, j, k)q = G(3, i, j, k). If P is a register program and
S is a single instruction then the concatenation PS is formalized by pPSq = G(4, pPq, pSq).

The machine that is constructed needs to be able to carry out the syntactical operations on programs.
For this and the handling of finite sequences of parameters, it is necessary to add the functions Gi :
Ordi → Ord with Gi(β0, . . . , βi) = G((β0, . . . , βi)) for i ∈ ω, the (partial) inverse functions Si,j : Ord→
Ord with Gi(Si,0(α), . . . , Si,k−1(α)) = α and the constant functions cv for all v ∈ ω.

With this structure it is definable that P computes α from input β0, . . . βn−1 in less than δ steps. So
define the function

E(γ) =

{
α if γ = G(pPq, δ, β0, . . . , βn−1) and P δ(β0, . . . , βn−1) = α

0 else.

Where P δ(β0, . . . , βn−1) = α iff P (β0, . . . , βn−1) = α and the length of the computation is less then δ.

Theorem 5. The structure

M = (Ord, <,E, (Gi)i∈ω, (Si,j)i∈ω,j∈ω, (ci)i∈ω)

is an Ordinal Register Silver Machine and hence a Silver Machine.

The function E ensures that M has the Computable Closure Property holds. The proof of the Finite-
ness Principle and the Condensation Principle uses a careful analysis of the functions of the machine.

Using an Ordinal Register Silver Machine, it is possible to prove the principle (global) �.

Theorem 6. Assume that all sets of ordinals are ordinal register computable. Let S be the class of
singular limit ordinals and let A be a class of limit ordinals. Then there is a class E ⊆ A such that

- If κ > ω is regular and A ∩ κ is stationary in κ, then E ∩ κ is stationary in κ.
- �(E) holds, where �(E) is defined as

(i) For every α ∈ S, Cα is closed unbounded in α.
(ii) For every α ∈ S, otp(Cα) < α.

(iii) (coherency) If ᾱ is a limit point of Cα, then ᾱ is singular and Cᾱ = Cα ∩ ᾱ.

54 Peter Koepke and Gregor Weckbecker

References

1. Keith J. Devlin, Constructibility, Springer-Verlag Berlin Heidelberg New York Tokyo, 1984.
2. Kurt Gödel, The consistency of the continuum hypothesis, vol. 3, Princeton University Press, Princeton, 1940.
3. Ronald B. Jensen, The fine structure of the constructible hierarchy, Annals of Mathematical Logic 4 (1972),

229–308.
4. Peter Koepke, Computing a model of set theory, S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005,

LNCS 3526 (2005), 223–232.
5. Peter Koepke and Ryan Siders, Computing the recursive truth predicate on ordinal register machines, Beck-

mann, A., et al. (eds.) Logical approaches to computational barriers. Computer Science Report Series 7 (2006),
160–169.

6. Thomas Lloyd Richardson, Silver machine approach to the constructible universe, Ph.D. thesis, University of
California, Berkeley, 1979.

7. Jack H. Silver, How to eliminate the fine structure from the work of jensen, handwritten manuscript, 197?

Shallow Circuits with High-Powered Inputs

Pascal Koiran

LIP?, École Normale Supérieure de Lyon, Université de Lyon
Department of Computer Science, University of Toronto??

Pascal.Koiran@ens-lyon.fr

1 Introduction

A polynomial identity testing algorithm must determine whether an input polynomial (given for instance
by an arithmetic circuit) is identically equal to 0. Following [5], it has become increasingly clear in recent
years that efficient deterministic algorithms for polynomial identity testing would imply strong lower
bounds (the connection between arithmetic circuit lower bounds and derandomization of polynomial
identity testing was foreshadowed in a 30 years old paper by Heintz and Schnorr [4]). This approach to
lower bounds was advocated in particular by Agrawal [1]. In my talk I will present some further results
along those lines. The present abstract will not describe these results in their maximal generality. Instead,
I would like to highlight three open problems that arose along the way. These problems can be viewed
as refinements of the τ -conjecture of Shub and Smale on integer roots of univariate polynomials [9, 10].
A positive answer to any of these three problems would imply a superpolynomial lower bound on the
arithmetic complexity of the permanent polynomial.

According to the τ -conjecture, the number of integer roots of a univariate polynomial f ∈ Z[X]
should be bounded by a polynomial function of its arithmetic circuit size (the inputs to the circuit are
the constant 1, or the variable X). It was already shown in [3] that the τ -conjecture implies a lower
bound for the permanent. We show that to obtain such a lower bound one does not have to bound the
number of integer roots of polynomials computed by arbitrary arithmetic circuits as in the τ -conjecture:
it suffices to consider a restricted class of circuits, namely, sums of products of sparse polynomials. As
explained below, these circuits can be viewed as depth-4 circuits whose inputs are (possibly very high)
powers of a variable X or of the constant 2. We also raise the intriguing possibility that tools from real
analysis might become applicable (indeed, a bound on the number of real roots of a polynomial is a
fortiori a bound on its number of integer roots). It is known that this approach cannot work for the
original τ -conjecture because the number of real roots of a univariate polynomial can grow exponentially
as a function of its arithmetic circuit size (Chebyshev polynomials provide such an example [10]).

Compared to [3], the main new technical ingredient is the recent depth reduction theorem due to
Agrawal and Vinay [2]: any multilinear polynomial in n variables which has an arithmetic circuit of size
2o(n) also has a depth-4 arithmetic circuit of size 2o(n).

2 Sums of Products of Sparse Polynomials

A sums of products of sparse polynomials is an expression of the form
∑
i

∏
j fij where each fij is a

sparse univariate polynomial in Z[X]. Here “sparse” means as usual that we only represent the nonzero
monomials of each fij . As a result one can represent concisely polynomials of very high degree. We
define the size of such an expression as the sum of the number of monomials in all the fij . Note that this
measure of size does not take into account the size of the coefficients of the fij , or their degrees. These
relevant parameters are taken into account in the following definition.

Definition 1. We denote by SPSs,e the set of all polynomials in Z[X] which can be represented by an
expression of the form

∑
i

∏
j fij so that:

– The size of the expression as defined above is at most s.
– Each coeffficient of each fij has at most s nonzero digits in its binary representation (as a result, fij

can be thought of as a sparse polynomial with sparse coefficients).
? UMR 5668 ENS Lyon, CNRS, UCBL, INRIA.

?? A part of this work was done during a visit to the Fields Institute.

56 Pascal Koiran

– These coefficients are of absolute value at most 2e, and the fij are of degree at most e.

As explained in Section 3, a polynomial upper bound on the number of integer roots of SPS polynomials
would imply a lower bound on the permanent. By “polynomial upper bound”, we mean an upper bound
which is polynomial in s + log e. It is quite natural to insist on an upper bound polynomial in s and
log e: s is an arithmetic circuit size bound, and log e can also be interpreted as an arithmetic cost since
each power Xα in an fij can be computed from X in O(log e) operations by repeated squaring. Likewise,
each of the ≤ s powers of 2 occuring in a coefficient can be computed from the constant 2 in O(log e)
operations. As a result, a polynomial in SPSs,e can be evaluated from the constant 1 and the variable X
in a number of arithmetic operations which is polynomial in s+ log e.

Remark 1. The size of a SPS polynomial as we have defined it is essentially the size of a depth three
arithmetic circuit (or more precisely of a depth three arithmetic formula) computing the polynomial. In
this depth three circuit each input gate carries a monomial; each addition gate at level 1 computes a fij ;
each multiplication gate at level 2 computes a product of the form

∏
j fij ; and the output gate at level

3 computes the final sum.
We can further refine this representation of SPS polynomials by arithmetic circuits. Namely, instead

of viewing the monomial aXβ as an atomic object which is fed to an input gate, we can decompose
it as a sum of terms of the form ±2αXβ ; and each term can be further decomposed as a product of
factors of the form ±22i

and X2j

. The resulting object is a depth four circuit where each input gate
carries an expression of the form ±22i

or X2j

(note the symmetry between variables and constants in
this representation). This connection between depth four circuits and SPS polynomials plays a crucial
role in our results.

3 Variations on the τ -conjecture

We state three increasingly stronger conjectures which would all imply that the permanent polynomial
does not belong to the complexity class VP0. This constant-free version of Valiant’s class VP was studied
by Malod [8] (see also [7]). Very briefly, a family (fn) of polynomials belongs to VP0 if can be computed
by a family of constant-free arithmetic circuits of polynomial size and polynomially bounded formal
degree. Constant-free means that 1 is the only constant allowed as an input to the ciruit. In Valiant’s
original setting [11, 12] arbitrary constants from the underlying field are allowed.

Conjecture 1 (τ -conjecture for SPS polynomials). There is a polynomial p such that any nonzero poly-
nomial in SPSs,e has at most p(s+ log e) integer roots.

We show in the full paper that this conjecture implies that the permanent polynomial does not belong
to VP0. Conjecture 1 follows from the τ -conjecture of Shub and Smale on integer roots of univariate
polynomials [9, 10] since polynomials in SPSs,e can be evaluated by constant-free arithmetic circuits of
size polynomial in s and log e. It was already shown in [3] that the τ -conjecture implies a lower bound for
the permanent. The point of Conjecture 1 is that to obtain such a lower bound we no longer have to bound
the number of integer roots of arbitrary arithmetic circuits: we need only do this for sums of products
of sparse polynomials. This looks like a much more manageable class of circuits, but the question is of
course still wide open. As announced in the introduction, another related benefit of SPS polynomials in
this context is that techniques from real analysis might become applicable. Before explaining this in more
detail we formulate a somewhat stronger conjecture. The idea is that the parameter e in Conjecture 1
as well as the sparsity hypothesis on the integer coefficients might be irrelevant. This leads to:

Conjecture 2 (τ -conjecture for SPS polynomials, strong form). Consider a polynomial of the form

f(X) =
k∑
i=1

m∏
j=1

fij(X),

where each fij ∈ Z[X] has at most t monomials. The number of integer roots of f is bounded by a
polynomial function of kmt.

Note that the size of f as defined at the beginning of Section 2 is upper bounded by kmt. Finally, we
formulate an even stronger conjecture.

Shallow Circuits with High-Powered Inputs 57

Conjecture 3 (real τ -conjecture). Consider a polynomial of the form

f(X) =
k∑
i=1

m∏
j=1

fij(X),

where each fij ∈ R[X] has at most tmonomials. The number of real roots of f is bounded by a polynomial
function of kmt.

One could also formulate a weak version of the real τ -conjecture where the parameters s and e would
play the same role as in Conjecture 1.

At present there isn’t a lot of evidence for or against Conjecture 3. We do know that the conjecture
holds true when k = 1: by Descarte’s rule each polynomial f1j has at most 2t − 2 nonzero real roots,
so f has at most 2m(t − 1) + 1 real roots. The case k = 2 already looks nontrivial. In the general
case we can expand f as a sum of at most ktm monomials, so we have at most 2ktm − 1 real roots. A
refutation of the conjecture would be interesting from the point of view of real algebra and geometry
as it would yield examples of “sparse like” polynomials with many real roots. Of course, a proof of the
conjecture would be even more interesting as it would yield a lower bound for the permanent. The theory
of fewnomials [6] provides finiteness results and sometimes quantitative estimates on the number of real
roots in very general “sparse like” situations. Unfortunately the existing estimates, at least when applied
in a straightforward manner, do not seem to yield any useful bound in this case.

Finally we point out that if true, Conjecture 3 would be a property that is really specific to SPS
polynomials: as explained in the introduction, it is known that for general arithmetic circuits the number
of real roots cannot be bounded by a polynomial function of the arithmetic circuit size.

References

1. M. Agrawal. Proving lower bounds via pseudo-random generators. In Proc. 25th Conference on Foundations
of Software Technology and Theoretical Computer Science, volume 3821 of Lecture Notes in Computer Science,
pages 92–105, 2005. Invited survey.

2. M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proc. 49th IEEE Symposium on
Foundations of Computer Science, pages 67–75, 2008.

3. P. Bürgisser. On defining integers in the counting hierarchy and proving lower bounds in algebraic complexity.
Computational Complexity, 18:81–103, 2009. Conference paper in Proc. STACS 2007.

4. J. Heintz and C.-P. Schnorr. Testing polynomials which are easy to compute. In Logic and Algorith-
mic (an International Symposium held in honour of Ernst Specker), pages 237–254. Monographie no 30 de
L’Enseignement Mathématique, 1982. Preliminary version in Proc. 12th ACM Symposium on Theory of
Computing, pages 262-272, 1980.

5. V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity test means proving circuit lower bounds.
Computational Complexity, 13(1-2):1–46, 2004.

6. A. G. Khovanskii. Fewnomials, volume 88 of Translations of Mathematical Monographs. American Mathe-
matical Society, 1991.

7. P. Koiran. Valiant’s model and the cost of computing integers. Computational Complexity, 13:131–146, 2004.
8. G. Malod. Polynômes et coefficients. PhD thesis, Université Claude Bernard - Lyon 1, 2003.
9. M. Shub and S. Smale. On the intractability of Hilbert’s Nullstellensatz and an algebraic version of “P=NP".

Duke Mathematical Journal, 81(1):47–54, 1995.
10. S. Smale. Mathematical problems for the next century. Mathematical Intelligencer, 20(2):7–15, 1998.
11. L. G. Valiant. Completeness classes in algebra. In Proc. 11th ACM Symposium on Theory of Computing,

pages 249–261, 1979.
12. L. G. Valiant. Reducibility by algebraic projections. In Logic and Algorithmic (an International Symposium

held in honour of Ernst Specker), pages 365–380. Monographie no 30 de L’Enseignement Mathématique,
1982.

The Scheme of Induction for Sharply Bounded Arithmetic
Formulas

Leszek Aleksander Ko lodziejczyk ?

Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
email: lak@mimuw.edu.pl

1 Introdction and notation

Bounded arithmetic (BA) is a theory axiomatized by the induction scheme for bounded formulas in
the language LBA = {+, ·, 0, 1,≤, |x|,#, bx

2 c}. Here |x| is interpreted as dlog2(x + 1)e, and elements of
the range of |x| are thought as “logarithmically small”; x#y is interpreted as 2|x|·|y|, and elements in
the range of # are thought of as powers of 2. Sometimes the language is additionally extended by the
function MSP (x, y) = b x

2y c. BA was introduced in [Bus86] and is studied largely because of its close
connections to computational complexity theory. For example, BA is finitely axiomatizable if and only
if BA proves that the polynomial hierarchy collapses ([Bus95], [Zam96]).

Bounded formulas of LBA form a natural quantifier alternation hierarchy. The bottom levels of the
hierarchy are: the class Σb

0 of sharply bounded formulas, in which all quantifier bounds are of the form |t|,
and the class Σb

1 of sharply bounded formulas preceded by bounded ∃ quantifiers (in the standard model
N, Σb

1 formulas define exactly the NP properties). There is a corresponding hierarchy of fragments of
BA. The best known of these is the theory S1

2 , given by a restricted induction scheme for Σb
1 formulas.

The provably total Σb
1 definable functions of S1

2 are exactly the polytime computable functions. For more
on the hierarchies of formulas and theories and their relation to complexity theory, see e.g. [Kra95] or
[Bus98].

Separating S1
2 from BA is one of the fundamental problems in the area, but it seems to be beyond

the reach of current methods. On the other hand, the theory T 0
2 , or induction for sharply bounded

formulas, has traditionally been suspected of being pathologically weak. Actually settling the status of
T 0

2 , however, remained an open problem for quite long. The last few years have finally seen progress on
this problem, leading to the conclusion that the strength of T 0

2 depends crucially on the presence of the
MSP function in the language. We review this progress (Sections 2 and 3) and prove some new results
(Sections 4 and 5).

Some notational conventions: we write ||x|| for absolute value to distinguish it from the |x| symbol of
LBA. If N ,N ′ are models of arithmetic, N �J N ′ means that N ′ is an elementary extension of N and
in both models J is an initial segment. Depending on the context, models of arithmetic are viewed as
non-negative parts of ordered rings or as the rings themselves, and we do not take care to distunguish
between the two cases. rcl denotes real closure (of a given field or the fraction field of a given ring); for
basic information on real closed fields and real closure, see e.g. [BCR98].

2 The strength of sharply bounded induction with MSP

In 2006, Jeřábek proved the following theorem:

Theorem 1. [Jeř06] T 0
2 (MSP) proves all ∀Σb

1 consequences of S1
2 .

In particular, T 0
2 (MSP) proves the totality of all polytime computable functions, and hence is a

relatively strong theory, strong enough that separating T 0
2 (MSP) from BA now seems a distant goal.

The main ingredient of Jeřábek’s argument is the observation that T 0
2 defines the relation “the i-th

bit of x is 1”, or i ∈ x, and that the amount of induction available in T 0
2 (MSP) suffices to prove the

comprehension scheme
∀x∃!y(|y| ≤ |x| ∧ ∀i < |x|(i ∈ y ⇔ ϕ(i, y)))

? Partially supported by grant N N201 382234 of the Polish Ministry of Science and Higher Education.

The Scheme of Induction for Sharply Bounded Arithmetic Formulas 59

for a large class of Σb
0 formulas (called safe for bit-recursion).

This makes it possible to show that the class of Σb
1 definable functions provably total in T 0

2 (MSP)
contains some basic functions and is closed under composition and a type of recursion known as bounded
recursion on notation. By a result of [Cob65], this implies that all polynomial-time functions are provably
Σb

1 definable in T 0
2 (MSP), which leads to Theorem 1.

It is worth pointing out that the class of properties definable by Σb
0(MSP) formulas is a proper

subclass of uniform TC0 (by [Man91], it does not contain PARITY). Hence, even induction for a rather
weak class of formulas can yield a reasonably strong theory.

3 Sharply bounded induction and open induction

The proof presented in [Jeř06] relies heavily on the presence of the MSP function in the language, and
it turns out that Theorem 1 itself requires MSP . Inspired by work of Boughattas and Ressayre [BR] on
models of weak subtheories of BA built from “nonstandard reals” instead of just “nonstandard integers”,
the paper [BK] showed that T 0

2 in the original language LBA is a very weak theory. In particular:

Theorem 2. [BK] T 0
2 does not prove that a power of 2 has no non-trivial odd divisors.

Since T 0
2 proves the termination of Euclid’s algorithm and hence excludes odd divisors of powers of

2, we get T 0
2 (T 0

2 (MSP).
The argument of [BK] suggests that T 0

2 is in some ways similar to the theory IOpen, axiomatized
by the induction scheme for open (i.e. quantifier-free) formulas in the basic arithmetical language of
+, ·, 0, 1,≤. This similarity is worth exploring further, especially since IOpen and some of its extensions
are among the few subtheories of Peano Arithmetic for which it is known how to construct nonstandard
models violating rather basic statements of number theory.

Below, we modify methods used in the study of IOpen to show that a well-known nonstandard model
of IOpen can be embedded in a model of T 0

2 , and to prove an independence result for a slight extension
of T 0

2 .

4 The Shepherdson model

The following criterion, due to Shepherdson, is used in one way or another in almost all constructions of
models of IOpen:

Theorem 3. [She64] Let M be a discrete ordered ring. Then M |= IOpen iff for every α ∈ rcl(M) there
exists x ∈M such that ||x− α|| < 1.

Definition 1. The Shepherdson model MShep for IOpen consists of sums of the form
∑k

l=0 αlX
l/n,

where n > 0 is a natural number, αl ∈ rcl(Q) and α0 ∈ Z. The ordering is defined by setting X > Z.

MShep was originally defined in [She64]. We prove:

Theorem 4. MShep can be extended to a model of T 0
2 .

Corollary 1. T 0
2 does not prove:

(i) a power of 2 has no non-trivial odd divisors,
(ii)
√

2 is irrational,
(iii) (x > 0 ∧ y > 0)⇒ x3 + y3 6= z3.

Parts (ii) and (iii) of the corollary follow directly from the properties of MShep. Part (i), which was
the main result of [BK], is an obvious consequence of the proof of Theorem 4, sketched below.

Theorem 4 is proved by adapting a classical method originally used by Wilkie in the proof of:

Theorem 5. [Wil78] Every Z-ring can be extended to a model of IOpen.

60 Leszek Aleksander Ko lodziejczyk

(A Z-ring is a discretely ordered ring in which division with remainder by elements of Z is possible).
Wilkie’s argument involves embedding a given Z-ring M in a sufficiently saturated real closed field R
and building a chain of Z-rings M = M0 ⊆M1 ⊆M2 ⊆ . . . contained in R sch that

⋃
n∈N Mn |= IOpen.

Mn+1 is obtained from Mn by adding an element x ∈ R which is a witness for some instance of open
induction and has the property that all non-constant polynomials in Mn[x] have infinite values. The
existence of x follows from the fact that Mn is a Z-ring and the saturation of R.

We adapt Wilkie’s proof to a setting in which the role of Z is played by a nonstandard initial segment
of a model of Peano Arithmetic. The initial segment is intended to be the logarithm (i.e. the range of
| · |) of a model of T 0

2 we will eventually build. So, as a starting point, we fix a countable nonstandard
model N0 |= PA and an initial segment J ⊆e N0 closed under multiplication.

Definition 2. Let N �J N0 be such that J is an initial segment of N and let M be a discretely ordered
subring of rcl(N). M is J-euclidean if J ⊆M and division with remainder by elements of J is possible
in M , i.e. for each x ∈M , 0 6= i ∈ J , there exists y ∈M such that x

i − 1 < y ≤ x
i .

Let M0 ⊆ rcl(N0) consist of all sums of the form
∑k

l=1 αl2il , where for each l, il ∈ J , αl ∈ rcl(J),
and additionally ±αl ∈ J if 2il ∈ J . Clearly, M0 contains an isomorphic copy of MShep. We also have:

Lemma 1. M0 is a J-euclidean subring of rcl(N0).

A J-euclidean ring which contains {2i : i ∈ J} as a cofinal subset may be regarded as a structure
for LBA. Moreover, using Shepherdson’s criterion (Theorem 3) and the analysis of sets definable by Σb

0

formulas from [BK] (carried out earlier, outside the context of nonstandard models, in [Man91]), it is
possible to show:

Lemma 2. Assume that N �J N0 and M ⊆ rcl(N) is J-euclidean. If M |= IOpen and M contains
{2i : i ∈ J} as a cofinal subset, then M |= T 0

2 .

To be able to use Lemma 2, we have to know that J-euclidean rings can be extended by adding
witnesses for instances of IOpen. Unfortunately, we have no obvious analogue of the saturated real
closed field from Wilkie’s construction. We deal with this issue by extending the ambient model of PA:

Lemma 3. Assume N �J N0 is countable and M is a J-euclidean subring of rcl(N). Let α ∈ rcl(M) ⊆
rcl(N). Then there exists a countable model N ′ �J N and a J-euclidean subring M ′ ⊇ M of rcl(N ′)
which contains an element x with ||x− α|| < 1.

Lemma 3 is proved by a variant of a standard method from the theory of models of PA, typically used
to construct models with a fixed common initial segment (cf. Chapter 2 of [KS06]). Once we have Lemma
3, we can build a chain N0 �J N1 �J . . . of models of PA and a corresponding chain M0 ⊆M1 ⊆ . . . of
J-euclidean rings.

⋃
n∈N Mn is a model of IOpen, and by Lemma 2, its restriction to elements bounded

by 2i for some i ∈ J is a model of T 0
2 . Since this model contains M0 ⊇MShep, Theorem 4 follows.

5 An extension of T 0
2

The results of [BK] and of Section 4 reveal a fundamental weakness of T 0
2 : it is not able to deal with

numbers viewed as binary strings. As noted, T 0
2 can define the relation “the y-th bit of x is 1”, but it

cannot prove even such basic facts as “every number has a least significant 1 bit”, or, equivalently, “for
every x, there is a least power of 2 not dividing x”. Actually, it is not hard to observe that:

Proposition 1. T 0
2 + “every number has a least significant 1 bit” proves:

(i) a power of 2 has no non-trivial odd divisors,
(ii)
√

2 is irrational.

In light of Proposition 1, it is natural to ask whether any interesting independence results can be
proved for extensions of T 0

2 which are better at handling bits. In the simple case of T 0
2 + “every number

has a least significant 1 bit”, we provide a positive answer.

The Scheme of Induction for Sharply Bounded Arithmetic Formulas 61

Theorem 6. T 0
2 + “every number has a least significant 1 bit” does not prove the existence of infinitely

many primes.

The proof is based on a method used by Smith in [Smi93] to show a number of independence results
for the theory IOpen + “every two numbers have a GCD”. Smith applies the basic machinery of Wilkie
(with some refinements due to [MM89]), but he additionally makes sure that all elements of the Z-rings
built during his chain construction are divisible only by finitely many integers. This guarantees good
control over common divisors.

An analogue in our context would be to construct chains of J-euclidean rings none of whose elements
are divisible by all powers of 2 from J . This is clearly impossible (a power of 2 above J is always divisible
by all powers of 2 from J), but a well-chosen weakening of this requirement works.

The existence of infinitely many primes may well be independent even of T 0
2 (MSP) and S1

2 , as the
only known proof in BA uses a variant of the pigeonhole principle which is likely to be unprovable in S1

2 .
However, even extending Theorem 6 to e.g. the (possibly somehow restricted) open induction scheme in
the language with MSP or x ∈ y is an open problem. Another related challenging open problem concerns
the strength of IOpen(bx

y c). This theory was shown to be strictly stronger than IOpen in [Kay93], but
no non-trivial independence results for IOpen(bx

y c) are known.

References

[BCR98] J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, Springer, 1998.
[BK] S. Boughattas and L. A. Ko lodziejczyk, The strength of sharply bounded induction requires MSP , Annals

of Pure and Applied Logic, in press.
[BR] S. Boughattas and J. P. Ressayre, Bootstrapping, part I, Annals of Pure and Applied Logic, in press.
[Bus86] S. R. Buss, Bounded Arithmetic, Bibliopolis, 1986.
[Bus95] , Relating the bounded arithmetic and polynomial time hierarchies, Annals of Pure and Applied

Logic 75 (1995), 67–77.
[Bus98] , First-order proof theory of arithmetic, Handbook of Proof Theory (S. R. Buss, ed.), Elsevier,

1998, pp. 79–147.
[Cob65] A. Cobham, The intrinsic computational difficulty of functions, Proc. 2nd International Congress of

Logic, Methodology, and Philosophy of Science (Y. Bar-Hillel, ed.), North-Holland, 1965, pp. 24–30.
[Jeř06] E. Jeřábek, The strength of sharply bounded induction, Mathematical Logic Quarterly 52 (2006), 613–

624.
[Kay93] R. Kaye, Open induction, Tennenbaum phenomena, and complexity theory, Arithmetic, proof theory, and

computational complexity (P. Clote and J. Krajiček, eds.), Oxford University Press, 1993, pp. 222–237.
[Kra95] J. Krajiček, Bounded Arithmetic, Propositional Logic, and Complexity Theory, Cambridge University

Press, 1995.
[KS06] R. Kossak and J. Schmerl, The Structure of Models of Peano Arithmetic, Oxford University Press, 2006.
[Man91] S. G. Mantzivis, Circuits in bounded arithmetic part I, Annals of Mathematics and Artificial Intelligence

6 (1991), 127–156.
[MM89] A. Macintyre and D. Marker, Primes and their residue rings in models of open induction, Annals of

Pure and Applied Logic 43 (1989), 57–77.
[She64] J. C. Shepherdson, A non-standard model for a free variable fragment of number theory, Bulletin de

l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 12
(1964), 79–86.

[Smi93] S. T. Smith, Building discretely ordered Bezout domains and GCD domains, Journal of Algebra 159
(1993), 191–239.

[Wil78] A. J. Wilkie, Some results and problems on weak systems of arithmetic, Logic Colloquium ’77 (A. Mac-
intyre et al., ed.), North-Holland, 1978, pp. 285–296.

[Zam96] D. Zambella, Notes on polynomially bounded arithmetic, Journal of Symbolic Logic 61 (1996), 942–966.

Complexity of Problems of Commutative Grammars

Eryk Kopczyński

Institute of Informatics, Warsaw University
erykk@mimuw.edu.pl

Abstract. We consider Parikh images of languages accepted by non-deterministic finite automata
and context-free grammars; in other words, we treat the languages in a commutative way — we do
not care about the order of letters in the accepted word, but rather how many times each one of
them appears. In most cases we assume that the alphabet is of fixed size. We show tight complexity
bounds for problems like membership, equality, and disjointness. In particular, we show polynomial
algorithms for membership and disjointness in case of finite automata, and that inclusion and
equality are ΠP

2 complete in case of context-free grammars over a two letter alphabet.

1 Introduction

We consider languages accepted by regular and context-free grammars, except that we treat the language
in a commutative way — we do not care about the order of letters in the accepted word, but rather how
many times each one of them appears. In this setting, usual problems, like membership and equality,
have different complexities than in the non-commutative case. We show tight complexity bounds for
those problems.

It turns out that, contrary to the non-commutative case, the size of alphabet is very important. In
the non-commutative case, we can use strings a, ab, and abb to encode a three letter alphabet {a, b, c}
using two letters. Trying to do this in the commutative case fails, since two different words ac and bb are
mapped to aabb and abab, which are commutatively the same word. There is no way to map a three letter
alphabet to a two letter one which does not collapse anything. Each new letter adds a new dimension
to the problem in the commutative case — literally: commutative words (multisets) over an alphabet of
size d are better viewed as points in a d-dimensional space, rather than strings.

A well known classic result in this area is the result of Parikh [Par66] that, for a context-free grammar
G over alphabet Σ, the Parikh image of G, i.e., the set out(G) ⊆ NΣ of such multisets M that, in some
word w ∈ L(G), each letter x appears M(x) times, is a semilinear set. Some complexity results regarding
semilinear sets and commutative grammars have been obtained by D. Huynh [Hu80,Hu83], who has
shown that equality for semilinear sets and commutative grammars is ΠP

2 -hard (where ΠP
2 is the dual of

the second level of the polynomial-time hierarchy, [Sto77]).
Some research has also been done in the field of communication-free Petri nets, or Basic Parallel

Processes (BPP). A Petri net is communication-free if each transition has only one input. This restriction
means that such a Petri net is essentially equivalent to a commutative context-free grammar. [Yen96]
shows that the equivalence problem (or, in terms of grammars, equality) for BPP-nets can be solved in

DTIME
(

22ds3
)

.
Contrary to most previous papers on commutative grammars, in most cases we assume that our

alphabet is of fixed size. Sometimes we even assume alphabet of size 2, since some algorithms are very
simple in this case. We show a polynomial algorithm deciding membership for regular languages (i.e.,
whether a multiset (given in binary) is in the Parikh image of a regular language).

We also improve upon Parikh’s result in two ways, assuming that the alphabet is of size 2. First,
out(G) is produced as a union of linear sets with only two periods (whose magnitude is single exponential
in size of G); second, these linear sets can be grouped in a polynomial number of bundles such that each
bundle shares the pairs of periods used (we call such a bundle an A,B-frame). Unfortunately, such simple
presentation is impossible for alphabets of size greater than 2.

The following table summarizes our results. Alphabet size F means that alphabet is of fixed size, and
U means unfixed size. We use c as an abbreviation for complete. Our main results — our most important
algorithms — are marked with bold (polynomial algorithms for checking membership and disjointness for
regular grammars over alphabets of fixed size, ΠP

2 completeness of the inclusion problems for context-free

Complexity of Problems of Commutative Grammars 63

grammars over alphabets of fixed size). Problems which have been shown to be hard are marked with
stars (NP-completeness of membership checking for regular grammars over alphabets of unfixed size and
context-free grammars over alphabets of size 1, coNP-completeness of universality checking for regular
grammars over alphabets of size 1, ΠP

2 -completeness of inclusion checking for context-free grammars);
the reductions are omitted for space reasons. Other results are mostly simple applications of these.

problem regular context-free
alphabet size 1 2 F U 1 2 F U
membership P P P NPc* NPc* NPc NPc NPc
universality coNPc* coNPc coNPc ? coNPc coNPc coNPc ?

inclusion coNPc coNPc coNPc ? ΠP
2 c* ΠP

2 c ΠP
2 c ?

equality coNPc coNPc coNPc ? ΠP
2 c ΠP

2 c ΠP
2 c ?

disjointness P P P coNPc coNPc coNPc coNPc ?

2 Overview

In this section, we present our techniques and results in an informal way. The formal version can be
found in the following sections.

Our main observation is that we can treat our runs (or derivations in CF grammars) completely
commutatively: we just count how many times each transition (rule) has been used. In both cases,
the validity of such a ,,commutative run” can be checked by checking two very simple conditions: Euler
condition (each state is entered as many times as it is used) and connectedness (there are no unconnected
loops). From this, we immediately get that checking membership of a given multiset in a Parikh image
of a context-free language is in NP.

The second observation is that we can decompose a run into smaller parts, ultimately obtaining its
skeleton, to which we add some (simple) cycles. Since the skeleton uses all states that the original run
used (which we call its support), we can add these cycles in arbitrary numbers to our skeleton, always
getting valid runs. Moreover, in case of finite automata (regular grammars), both the skeleton and the
cycles are bounded polynomially (in the size of the automaton, |G|).

Now, linear algebraic considerations come into play. Whenever we have d linearly independent vectors
v1, . . . , vd with integer coordinates in a d-dimensional space, for each other vector v, there is a constant
C such that Cv can be written as a linear combination of v1, . . . , vd with integer coefficients. This C is
bounded polynomially by coordinates of v1, . . . , vd (d appears in the exponent). In our case, our vectors
will be the Parikh images of our cycles, with d letters in our alphabet.

Thus, whenever we have a non-negative integer combination of more than d cycles, where the mul-
tiplicities of cycles are big enough, we can reconstruct our Parikh image using different multiplicities of
these cycles, and do such ,,shifting” until the multiplicities of some cycles drop. Thus, there are at most
d cycles which we are using in large quantities. From this, we get an algorithm for membership: we can
guess the small run and the d cycles (making sure that the run crosses these cycles), and then just check
whether we obtain our result by adding the cycles in non-negative integer amounts to our run — which
boils down to solving a system of equations. This algorithm is polynomial, since everything is bounded
polynomially.

The situation is the simplest in the case of d = 2, where instead of guessing the two cycles, we
can always use the two extreme ones va, vb — i.e., the ones which proportionally contain the greatest
quantities of the two letters a and b in our alphabet. Each other cycle can be written as a non-negative
combination of these two. Still, we have to take the extreme cycles which cross our small run — which
means that we have to guess the two states where they cross, and then take extreme cycles crossing these
states. For unfixed d, or for context free grammars, the problem is NP complete.

Now, what about context free grammars? Generally, we can use the same techniques, but now,
skeletons and cycles are bounded exponentially. In case of d = 2, we get the following Theorem: a Parikh
image of G is a union of a polynomial number of A,B-frames; where an A,B-frame is a set of vectors
defined by some W (a subset of Nd bounded by A) and two vectors va, vb (bounded by B), consisting of
all vectors of form w + nava + nbvb (where w ∈W). The number of A,B-frames is polynomial, because
our two vectors will always correspond to extreme cycles from some state. A and B are exponential.

64 Eryk Kopczyński

The following picture shows geometrically what an A,B-frame is: a set W sitting inside of a box of
size A (drawn as the letter W) is copied by shifting it in two directions. The vectors by which we are
shifting are bounded by B.

WW
WW

WW

A

B

It turns out that two such unions of A,B-frames are equal iff they are equal in the exponen-
tially bounded region close to 0. Together with the fact that membership checking is in NP, we get
a ΠP

2 algorithm for checking equality (inclusion) of Parikh images of context-free grammars (for d = 2).
For d > 2, it may be impossible to get a polynomial number of A,B-frames (for which we have a

nice counterexample), which means that the approach outlined above fails (the region would be bounded
double exponentially). However, we can circumvent this by splitting Nd into regions — when restricted
to a single region, the number of A,B-frames will be polynomial, thus allowing us to use our methods
successfully in each region separately, again getting a ΠP

2 algorithm for deciding equality. The proof is
too long and technical, and we had to omit it from this paper.

The exact complexity of deciding inclusion for alphabets of unbounded size remains open.

References

[Hu80] Thiet-Dung Huynh. The Complexity of Semilinear Sets. ICALP 1980, LNCS 85, pages 324–337.
[Hu83] Thiet-Dung Huynh. Complexity of equivalence problems for commutative grammars. Inform. and Comput.

66 (1985), pages 103–121.
[Par66] Rohit J. Parikh. On context-free languages. Journal of the Association for Computing Machinery,

13(4):570-581, 1966.
[Sto77] L. Stockmeyer, The polynomial-time hierarchy. Theoret. Comput. Sci. 3 (1977), pages 1-22.
[Yen96] Hsu-Chun Yen, On reachability equivalence for BPP-nets. Theoret. Comput. Sci. 179 (1996), pages 301–

317.

Definability of Combinatorial Functions and Their Linear
Recurrence Relations

T. Kotek and J.A. Makowsky

Department of Computer Science
Technion — Israel Institute of Technology

Haifa, Israel
{tkotek,janos}@cs.technion.ac.il

Abstract. We consider functions of natural numbers which allow a combinatorial interpretation
as density functions (speed) of classes of relational structures, such as Fibonacci numbers, Bell
numbers, Catalan numbers and the like. Many of these functions satisfy a linear recurrence relation
over Z or Zm and allow an interpretation as counting the number of relations satisfying a property
expressible in Monadic Second Order Logic (MSOL).
C. Blatter and E. Specker (1981) showed that if such a function f counts the binary relations
satisfying a property expressible in MSOL then f satisfies for every m ∈ N a linear recurrence
relation over Zm.
In this abstract we give a complete characterization in terms of definability in MSOL of the combi-
natorial functions which satisfy a linear recurrence relation over Z, and discuss various extensions
and limitations of the Specker-Blatter theorem.

1 The Speed of a Class of Finite Relational Structures

Let P be a graph property, and Pn be the set of graphs with vertex set [n]. We denote by spP(n) = |Pn| the
number of labeled graphs in Pn. By labeled graphs we mean the vertices are considered distinct, as oppose to the
case of counting unlabeled graphs where we would only be interested in counting isomorphism types of graphs
of size n. The function spP(n) is called the speed of P, or in earlier literature the density of P. Instead of graph
properties we also study classes of finite relational structures K with relations Ri : i = 1, . . . , s of arity ρi. For
the case of s = 1 and ρ1 = 1 such classes can be identified with binary words over the positions 1, . . . , n. This
ties our results with the study of formal power series. We will not discuss this in depth in this abstract.

The study of the function spK(n) has a rich literature concentrating on two types of behaviours of the sequence
spK(n): recurrence relations and growth rate. Clearly, the existence of recurrence relations limits the growth rate.

In C. Blatter and E. Specker [5] the case of K was studied, where ρi ≤ 2 for all i ≤ s and K definable in
MSOL. They showed that in this case for every m ∈ N, the sequence spK(n) is ultimately periodic modulo m,
or equivalently, that the sequence spK(n) satisfies a linear recurrence relation over Zm.

In E.R. Scheinerman and J. Zito [15] the function spP(n) was studied for hereditary graph properties P,
i.e., graph properties closed under induced subgraphs. They were interested in the growth properties of spP(n).
The topic was further developed by J. Balogh, B. Bollobas and D. Weinreich in a sequence of papers, [7, 1, 2],
which showed that only six classes of growth of spP(n) are possible, roughly speaking, constant, polynomial, or
exponential growth, or growth in one of three factorial ranges. They also obtained similar results for monotone
graph properties, i.e., graph properties closed under subgraphs, [3].

In this abstract we concentrate on the relationship between definability of a class K of relational structures
and the various linear recurrence relations spK(n) satisfy.

2 Combinatorial Functions and Specker Functions

We would like to say that a function f : N→ N is a combinatorial function if it has a combinatorial interpretation.
One way of making this more precise is the following. We say that K is definable in L if there is a L-sentence φ
such that for every R̄-structure A, A ∈ K iff A |= φ. Then a function f : N → N is a combinatorial function if
f(n) = spK(n) for some class of finite structures K definable in a suitable logical formalism L. Here L could be
FOL, MSOL or any interesting fragment of Second Order Logic, SOL. We assume the reader is familiar with
these logics, cf. [10].

Definition 1 (Specker1 function).

1 E. Specker studied such functions in the 1970ties in his lectures on topology at ETH-Zurich.

66 T. Kotek and J.A. Makowsky

A function f : N→ N is called a Lk-Specker function if there is a finite set of relation symbols R̄ of arity at
most k and a class of R̄-structures K definable in L such that f(n) = spK(n).

A typical non-trivial example is given by A. Cayley’s Theorem from 1889, which says that T (n) = nn−2 can
be interpreted as the number of labeled trees on n vertices. Another example are the Bell numbers Bn which
count the number of equivalence relations on n elements.

In this paper we study under what conditions the Specker function given by the sequence spK(n) satisfies a
linear recurrence relation.

We say a function f : N→ N is ultimately periodic (u.p.) over R = Z or over R = Zm if there exist i, n0 ∈ N
such that for every n ≥ n0, f(n + i) = f(n) over R. It is well-known that f is u.p. over Zm iff it satisfies a
linear recurrence relation with constant coefficients over Zm. We note that if f satisfies a linear recurrence over
Z then it also satisfies a linear recurrence over Zm for every m. C. Blatter and E. Specker proved the following
remarkable but little known theorem in [5],[6],[16].

Theorem 1 (Specker-Blatter Theorem). If f(n) = spK(n) is definable in MSOL2, MSOL with unary and
binary relation symbols only, then for every m ∈ N, f(n) satisfies a linear recurrence relation with constant
coefficients

spK(n) ≡
dmX
j=1

a
(m)
j spK(n− j) (modm)

and hence is ultimately periodic over Zm.

In [12] it was shown that in Theorem 1 the logic MSOL can be augmented by modular counting quantifiers.
Furthermore, E. Fischer showed in [11] that this cannot be extended to quaternary relations.

3 Extending MSOL and Order Invariance

In this paper we investigate the existence of linear and modular linear recurrence relations of Specker functions
for the case where K is definable in logics L which are sublogics of SOL and extend MSOL. We now look at the
case where [n] is equipped with a linear order.

Definition 2 (Order invariance). A class D of ordered R̄-structures is a class of R̄∪{<1}-structures, where
for every A ∈ D the interpretation of the relation symbol <1 is always a linear order of the universe of A. An
L formula φ(R̄, <1) for ordered R̄-structures is truth-value order invariant (t.v.o.i.) if for any two structures
Ai = 〈[n], <i, R̄〉 (i = 1, 2) we have that A1 |= φ iff A2 |= φ. Note A1 and A2 differ only in the linear orders <1

and <2 of [n]. We denote by TVL the set of L-formulas for ordered R̄-structures which are t.v.o.i. We consider
TVL formulas as formulas for R̄-structures.

For a class of ordered structures D, let ospD(n,<1) =

|{(R1, . . . , Rs) ⊆ [n]ρ(1) × . . .× [n]ρ(s) : 〈[n], <1, R1, . . . , Rs〉 ∈ D}|

A function f : N → N is called an Lk-ordered Specker function if there is a class of ordered R̄-structures D of
arity at most k definable in L such that f(n) = ospD. A function f : N→ N is called a counting order invariant
(c.o.i.) Lk-Specker function if there is a finite set of relation symbols R̄ of arity at most k and a class of ordered
R̄-structures D definable in L such that for all linear orders <1 and <2 of [n] we have f(n) = ospD(n,<1) =
ospD(n,<2).

Every formula φ(R̄, <1) ∈ TVSOLk is equivalent to the SOLk formula ψ(R̄) = ∃ <1 φ(R̄, <1)∧ φlinOrd(<1),
where φlinOrd(<1) says <1 is a linear ordering of the universe. Moreover, every TVMSOLk-Specker function is
also a counting order invariant MSOLk-Specker function. However, there are counting order invariant MSOL2-
definable Specker functions which are not TVMSOL2-definable.

It is folklore that every formula in Ca,bMSOLk, the logic MSOL extended with modular counting quantifiers,
is equivalent to a formula in TVMSOLk.

4 Main Results

Our first result is a characterization of functions over the natural numbers which satisfy a linear recurrence
relation over Z.

Theorem 2. Let f be a function over N. Then f satisfies a linear recurrence relation over Z iff f = f1 − f2 is
the difference of two c.o.i MSOL1-Specker functions.

Definability of Combinatorial Functions and Their Linear Recurrence Relations 67

Viewing unary structures as words, we obtain one direction of the proof of Theorem 2 via the logical char-
acterization of regular languages by R. Büchi (and later but independently of C. Elgot and B. Trakhtenbrot),
cf. [13, 9], and using [8]. For the other direction we introduce Specker polynomials, which can be thought of as a
special case of graph polynomials where graphs are replaced by linear orders.

We may derive a corollary in the terminology of rational functions, cf. [14, 4]:

Corollary 1. Let f be a function N→ N. Then f is Z-rational iff f is the difference of two N-rational functions.

We show that the Specker-Blatter Theorem cannot be extended to c.o.i Specker functions which are definable
in MSOL2 by considering the Catalan numbers. However, if we require that the defining formula φ of a Specker
function is itself order invariant, i.e. φ ∈ TVMSOL2, then the Specker-Blatter Theorem still holds.

Theorem 3. Let f be a TVMSOL2-Specker function. Then, for all m ∈ N the function f satisfies a modular
linear recurrence relation modulo m.

References

1. J. Balogh, B. Bollobás, and D. Weinreich. The speed of hereditary properties of graphs. J. Comb. Theory,
Ser. B, 79(2):131–156, 2000.

2. J. Balogh, B. Bollobas, and D. Weinreich. The penultimate rate of growth for graph properties. EUROCOMB:
European Journal of Combinatorics, 22, 2001.

3. J. Balogh, B. Bollobás, and David Weinreich. Measures on monotone properties of graphs. Discrete Applied
Mathematics, 116(1-2):17–36, 2002.

4. J. Berstel and C. Reutenauer. Rational Series and Their Languages, volume 12 of EATCS Monographs on
Theoretical Computer Science. Springer, 1988.

5. C. Blatter and E. Specker. Le nombre de structures finies d’une th’eorie à charactère fin. Sciences
Mathématiques, Fonds Nationale de la rechercheScientifique, Bruxelles, pages 41–44, 1981.

6. C. Blatter and E. Specker. Recurrence relations for the number of labeled structures on a finite set. In
E. Börger, G. Hasenjaeger, and D. Rödding, editors, In Logic and Machines: Decision Problems and Com-
plexity, volume 171 of Lecture Notes in Computer Science, pages 43–61. Springer, 1984.

7. B. Bollobas and A. Thomason. Projections of bodies and hereditary properties of hypergraphs. J. London
Math. Soc, 27, 1995.

8. N. Chomsky and M.P. Schützenberger. The algebraic theory of context free languages. In P. Brafford and
D. Hirschberg, editors, Computer Programming and Formal Systems, pages 118–161. North Holland, 1963.

9. H.D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Mathematical Logic. Springer, 1995.
10. H.D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic, 2nd edition. Undergraduate Texts in

Mathematics. Springer-Verlag, 1994.
11. E. Fischer. The Specker-Blatter theorem does not hold for quaternary relations. Journal of Combinatorial

Theory, Series A, 103:121–136, 2003.
12. E. Fischer and J.A. Makowsky. The Specker-Blatter theorem revisited. In COCOON’03, volume 2697 of

Lecture Notes in Computer Science, pages 90–101. Springer, 2003.
13. L. Libkin. Elements of Finite Model Theory. Springer, 2004.
14. A. Salomaa and M. Soittola. Automata theoretic aspects of formal power series. Springer, 1978.
15. E.R. Scheinerman and J.S. Zito. On the size of hereditary classes of graphs. J. Comb. Theory, Ser. B,

61(1):16–39, 1994.
16. E. Specker. Application of logic and combinatorics to enumeration problems. In E. Börger, editor, Trends in

Theoretical Computer Science, pages 141–169. Computer Science Press, 1988. Reprinted in: Ernst Specker,
Selecta, Birkhäuser 1990, pp. 324-350.

A Logic to Capture P-Time Computability on Cantor Space

Oleg V. Kudinov1? and Victor L. Selivanov2??

1 S.L. Sobolev Institute of Mathematics, 4 Acad. Koptyug avenue, 630090 Novosibirsk, Russia,
kud@math.nsc.ru

2 A.P. Ershov Institute of Informatics Systems, 6 Acad. Lavrentjev pr., 630090 Novosibirsk, Russia,
vseliv@iis.nsk.su

Abstract. We propose some class of formulas similar to Σ-formulas in admissible set theory which
captures the complexity class of polynomial-time computable closed subsets of Cantor space. As
a corollary, similar characterizations can be deduced for polynomial-time computable functions on
Cantor space.
Key words. Descriptive complexity, P-time computability, bounded quantification, definability.

1 Introduction

After essential progress in finite model theory resulted in beautiful semantic characterizations of the most
important complexity classes (see e.g.[3, 5]), the search for suitable logics to capture natural complexity
classes for popular topological spaces becomes actual and natural. The general aim here is to bridge the
gap between numerical analysis and computability/complexity theory for continuous structures. However,
in this search one has to make a choice between existing non-equivalent approaches to computability on
continuous structures. We choose the approach of computable analysis [4, 6] because this approach seems
to be the adequate foundation for numerical analysis.

As also in discrete complexity theory, computability in polynomial time (P-time for short) on com-
putable metric spaces is especially important because it is a good candidate for formalizing the notion
of feasible computation in analysis [4, 6]. In this abstract we discuss a possibility to find a logical char-
acterization of P-time computability for continuous structures in the spirit of finite model theory.

We concentrate here on the Cantor space. Among reasons in favor of the Cantor space is its com-
pactness and the fact that the P-time computable closed subsets form a lattice, in contrast with the
space of reals where the corresponding class of subsets is not closed under intersection [2, 1]. As a result,
the logical characterization of the closed sets in Cantor space looks more easy and natural than in some
other spaces.

We hope to consider logical characterizations of P-time computability (and of other natural complexity
classes) in some other important spaces in a subsequent publication.

2 Preliminaries

Keeping in mind the Cantor space C = 2ω, we extend our consideration to the structure A = C ∪W ,
joining the set W = 2<ω of finite binary strings. We recall some standard relations and operations on A.

For x ∈ W and y ∈ A, let x @ y denote that x is a proper initial segment of y. For x, y ∈ A, let
x < y denote that x is lexicographically less than y, in particular the situation x v y ∧ (x < y ∨ y < x)
is impossible. If x 6v y and y 6v x, let x ∧ y denote the greatest z with z v x, y, so z ∈ W . For f, g ∈ C
let f ⊕ g denote the function h such that h(2n) = f(n) and h(2n+ 1) = g(n) for each n < ω. For f ∈ C
and n < ω, let f |n denote the word f(0) . . . f(n − 1). For x, y ∈ W , x ∗ y denotes the result of their
concatenation, and lh(x) denotes the length of x; so x may be written as the word x(0) . . . x(lh(x)− 1).

We equip the set A with the topology, which base consists of the sets {y ∈ W | x v y} and the sets
{y ∈ C | x v y}, where x ∈ W . This topology is not standard one, but it induces the Cantor topology
on C, since the considered space A is topological sum of standard spaces W and C.

Next we list the predicates in our language (signature):

? Supported by DFG-RFBR (Grant 436 RUS 113/1002/01, 09-01-91334) and by RFBR Grant 07-01-00543a.
?? Supported by DFG-RFBR (Grant 436 RUS 113/1002/01, 09-01-91334) and by RFBR Grant 07-01-00543a.

A Logic to Capture P-Time Computability on Cantor Space 69

1. The predicate < on A.
2. The unary predicates C for 2ω and W for 2<ω.
3. The predicate P0(f, g) which is true iff the word f ∧ g is defined and has 0 at the end; the predicate
P1 is defined similarly with 1 instead of 0.

4. The predicate R<(f, g, h) which is true iff the word f ∧ g exists and is < h.
5. The predicate Rv(f, g, h) which is true iff the word f ∧ g exists and is v h.
6. The predicate defined via the condition f1 ∧ f2 < g1 ∧ g2
7. The predicate defined via the condition f1 ∧ f2 v g1 ∧ g2.
8. The predicate defined via the condition (f1 ∧ f2) ∗ (g1 ∧ g2) < h.
9. The predicate defined via the condition (f1 ∧ f2) ∗ (g1 ∧ g2) v h.

10. The predicate defined via the condition lh(f1 ∧ f2) = lh(g1 ∧ g2).
11. The predicate defined via the condition lh(f1 ∧ f2) · lh(g1 ∧ g2) = lh(h1 ∧ h2).
12. The predicate defined via the condition f ⊕ g < h. The predicate defined via condition f ⊕ g > h.
13. The predicate defined via the condition (f ∧ g) ∗ 0 v f .
14. The predicate defined via the condition (f ∧ g) ∗ 1 v f .
15. The constant symbol ⊥ for the empty word.

We are ready to explain the important notion of ∆0-formula of our language. These formulas are
constructed starting from the atomic formulas using the connectives ∨,∧ and the bounded quantifiers
defined as follows: if ψ(x, f, g) is a ∆0-formula then so are the expressions ∃bx|(f, g)ψ and ∀bx|(f, g)ψ.
Semantically, the existential bounded quantification means that for some x it holds

W (x) ∧ (x ∧ f) @ (f ∧ g) ∧ (x = (x ∧ f) ∗ 0 ∨ x = (x ∧ f) ∗ 1) ∧ ψ(x, f, g).

The universal bounded quantification is defined similarly in such a way that ∀bx|(f, g)ψ is semantically
equivalent to ¬∃bx|(f, g)¬ψ. Note that any signature predicate symbol should occur only positively in
∆0-formulas, the negation is not permitted! This is the main reason why the following assertion holds.

Lemma 1. 1. Any ∆0-definable relation on A is monotone (with respect to v) and open.
2. The restriction of any ∆0-definable relation to W is P-time computable in the sense of discrete

complexity theory.

Proof is straightforward.
Another useful property of ∆0-definable relation is the following

Lemma 2. If Φ(x1, . . . , xs) is a ∆0-formula then the set (of tuples of finite words)

{(h1, . . . , hs) ∈W s|∀f1, . . . , fs((h1 v f1 ∧ . . . hs v fs)→ Φ(f1, . . . , fs))}

is ∆0-definable and P-time computable in the sense of discrete complexity theory.

Proof (sketch). To construct the intermediate formula Φ′(x1, . . . , xs), one need to replace any
occurrences of subformulas C(xi) by formulas (C(xi) ∨W (xi)) for i = 1, . . . , s. The final formula is

Φ′(x1, . . . , xs) ∧W (x1) . . . ∧W (xs),

the required property is verified by standard induction on ∆0-formulas.

3 Main result

The main result of this paper is the following

Theorem 1. Let R ⊆ 2ω be a closed subset. Then R is P-time computable iff for some ∆0-formula
Φ(x1, . . . , xs, y) it holds

f ∈ R↔ ∃x1, . . . , xs(C(x1) ∧ . . . ∧ C(xs) ∧ ¬Φ(x1, . . . , xs, f)

.

70 Oleg V. Kudinov and Victor L. Selivanov

Proof (sketch). One part is not hard since it is based on mentioned above lemmas related to
properties of ∆0-formulas. Dealing with P-time computable closed R ⊆ C, we consider the language
R∗, consisting of all finite initial segments of elements of R. This language is computable in polynomial
time and we make use of famous characterization of P-time computable query languages (see e.g.[3, 5])
in modern terms of appropriate LFP -operator, considering words as structures. Class of ∆0-formulas is
rather powerful to encode usual quantification on these structures, and appropriate elements of C can
be chosen to encode calculations of corresponding LFP -operator.

Of course, the result may be trivially reformulated for the important particular case of P-time com-
putable elements of Cantor space.

References

1. V. Brattka and K. Weihrauch. Computability on subsets of euclidean space I: Closed and compact sets.
Theoretical Computer Science, 219:65–93, 1999.

2. P. Hertling. Is the Mandelbrot set computable? Mathematical Logic Quarterly, 51, No. 1, 5–18 (2005).
3. N. Immerman. Descriptive Complexity. Springer Verlag, New-York, 1999.
4. Ker-I Ko. Complexity Theory of Real Functions. Birkhäuser, Boston, 1991.
5. M. Vardi. The complexity of relational query languages. In Proc. of the 14th ACM Symposium on the Theory

of Computing, pages 37–146, 1982.
6. K. Weihrauch. Computable Analysis. Springer Verlag, Berlin, 2000.

Complete Problems and Bounded Arithmetc for LOGCFL

Satoru Kuroda

Gunma Prefectural Women’s University, 1395-1, Kaminote, Tamamura, Gunma, Japan, 370-1193,
satoru@gpwu.ac.jp

1 Introduction

In this paper we give a general framework for building bounded arithmetic theories using complete
problems for certain complexity classes. As an application we define a bounded arithmetic theory for
LOGCFL based on the acyclic conjunctive query problem.

Formulations and techniques used here based mainly on previous works by Kolokolova [3] and Nguyen
[5]. Nevertheless, we will treat complexity classes which are seemingly unable to handled directly by their
formulations.

This can be illustrated by comparing two complexity classes, namely NL and LOGCFL. These two
classes both contain the concept of nondeterminism. However, they have rather different nature.

Consider the st-connectivity problem which is complete for NL. The witness for an instance of it is
a path from the start node to the goal node.

On the other hand, it can also be witnessed by the set of nodes which are reachable from the node s
and this can be computed in deterministic polynomial time. This means that the nondeterminism of NL
has a deterministic alternative with high feasibility.

On the contrary, it seems unlikely that most complete problems of LOGCFL also has this property.
For instance, to find a solution of an acyclic query on a database can be done nondeterministically. But
finding all solutions in brute force manner requires exponential time and thus not feasible in general.

Since Nguyen’s system VNL for NL [5] heavily depends on the property, the above argument suggests
that it is hard to construct a similar system for LOGCFL. So instead we consider another property of
when a complexity class of predicates has a nice counterpart in function classes.

Our approach is based on the Lindström quantifier expressing a complete problem for a given com-
plexity class. In the previous work, the author defined a system V-QSAC which captures LOGCFL. In
this paper we generalize the method used there and give a framework for proving the witnessing theorem
of a system defined via Lindström quantifier.

2 Witnessing theorem via complete problems

We assume basic knowledge about two-sort bounded arithmetic, see [3] for details.
A signature is a finite collection of relation symbols and constant symbols. For a signature σ, we

define Struct(σ) to be the set of finite structures over σ. Let σ = 〈P1, · · · , Ps〉 be a signature where
P1, . . . , Ps are relation symbols and K ⊆ Struct(σ) be a set which is complete for a given complexity
class C. We define QK[P1, . . . , Ps] to be a formula in the signature σ, where QK is called the Lindström
quantifier.

Let τ = 〈R1, . . . , Rk, c1, . . . , cl〉 be a signature where R1, . . . , Rk are relation symbols and c1, . . . , cl
are constant symbols. For τ formulae φ1, . . . , φs we define

A |= QK[φ1, . . . , φs]⇔ (univ(A), φA1 , . . . , φ
A
s) ∈ K.

for any A ∈ Struct(τ), where univ(A) is the universe of A.
When we consider the subclass C of P , the membership relation (univ(A), φA1 , . . . , φ

A
s) ∈ K can be

described by some ΣB
1 relation. More precisely, we define

Definition 1. The set K ⊆ Struct(σ) has a ΣB
1 description ϕ(n, P1, . . . , Ps) ∈ ΣB

1 if for all n, P1, . . . , Ps,

ϕ(n, P1, . . . , Ps)⇔ ({0, . . . , n− 1}, P1, . . . , Ps) ∈ K

holds in the standard model.

72 Satoru Kuroda

Now we shall give a presentation of Lindström quantifier in two sort systems. The language L2 of two
sort systems consists of number variables x, y, . . . and string variables X,Y, . . . together with symbols
Z(x) = 0, x+ y, x · y, x ≤ y, x ∈ Y . The idea is to give a description of the relation A |= QK[φ1, . . . , φs]
in the language L2. Note that a τ -structure is coded by a tuple 〈n, c1, . . . , cl, R1, . . . , Rk〉 where n is the
size of the universe. The description of the above satisfaction relation is obtained by replacing P1, . . . , Ps

by φA1 , . . . , φ
A
s respectively.

Definition 2. Let ϕK(n, P1, . . . , Ps) be a ΣB
1 description of K for some relational signature σ. Let

φ1, . . . , φs be L2 formulae. Then we define ϕK(n, c1, . . . , cl, R1, . . . , Rk, φ1, . . . , φs) as the L2 formula
which is obtained from ϕK by replacing all occurrences of Pi(x1, . . . , xti

) by φi(x1, . . . , xti
, c1, . . . , cl, R1, . . . , Rk)

for 1 ≤ i ≤ s. We call this scheme the ΣB
1 description of QK over the signature τ . For a class Φ of

L2 formulae, let ϕ(Φ) be the class of formulae of the form ϕK(n, c1, . . . , cl, R1, . . . , Rk, φ1, . . . , φs) where
φ1, . . . , φs ∈ Φ.

Based on this argument we define a L2-system as follows:

Definition 3. Let K ⊆ Struct(σ) for some relational signature σ and ϕK be the ΣB
1 description of QK

over the signature τ = 〈i, c1, . . . , cl, R1, . . . , Rk〉. The L2 theory V-QK consists of the axioms BASIC
together with ϕK(ΣB

0)-COMP.

We say that an L2-theory T captures a complexity class C if the ΣB
1 definable functions of T coincides

with those computable in C.
Our formulation of V-QK resembles to the theory defined by Kolokolova [3]. So we claim that

Kolokolova’s criteria for V-Φ to capture a complexity class applies to our system as well with a slight
modification and by way of another theory.

Definition 4. The L2-theory V-K is the system V 0 extended by the axiom stating the existence of
witnesses for K ∪ Kc:

(∀n)(∀P1) · · · (∀Ps) (ϕK(n, P1, . . . , Ps) ∨ ψK(n, P1, . . . , Ps))

We say that V-K is properly defined if there exist ΣB
1 descriptions for both K and Kc.

We define the following criteria for a system to capture a complexity class.

– Strong closure : ϕK(ΣB
0) is strongly closed if for any ψ ∈ ΣB

0 (ϕK(ΣB
0)) there exists η ∈ ϕK(ΣB

0)
such that

V-QK ` ψ ↔ η.

– Self-witnessing : ϕK(ΣB
0) is self-witnessing if for (∃Z < t)ϕ0

K(x̄, X̄, Z) ∈ ϕK(ΣB
0) where ϕ0

K ∈ ΣB
0

if V-QK ` (∀x̄)(∀X̄)(∃Z)ϕ0
K(x̄, X̄, Z) then there exists a polynomial growth function F (x̄, X̄) which

is bitwise ΣB
1 definable in V-QK such that

V-QK ` (∀x̄)(∀X̄)ϕ0
K(x̄, X̄, F (x̄, X̄)).

The reason for adopting the self-witnessing condition rather than the constructiveness condition of
Kolokolova is mainly due to technical reasons. However we point out that the self-witnessing condi-
tion is closely related to the concept of computing a certificate of a predicate in a given nondeterministic
class. In fact, Gottlob et.al. [2] proved that the certificate for LOGCFL predicates can be computed
within the class and it is used to prove that the system defined in the next section captures LOGCFL.

Now we have the following witnessing theorem.

Theorem 1. Let QK(FO) capture the complexity class C over a given signature τ and has a ΣB
1 de-

scription ϕK(ΣB
0). Suppose that ϕK(ΣB

0) is strongly closed and self-witnessing. If V-QK contains V 0

then V-QK is equivalent to V-K. Furthermore, both V-QK and V-K captures the class C.

(Proof Sketch).
First we sketch the proof of the first part of the theorem. To prove that V-QK contains V-K, we

show that V-QK proves

(∀n)(∀P1) . . . (∀Ps)(ϕK(n, P1, . . . , Ps) ∨ ψK(n, P1, . . . , Ps)).

Complete Problems and Bounded Arithmetc for LOGCFL 73

Since V-QK is strongly closed, it proves

(∀n)(∀P1) . . . (∀Ps)(ϕK(n, P1, . . . , Ps)↔ ψK(n, P1, . . . , Ps)).

Therefore we have ¬ψK → ϕK which is equivalent to ψK ∨ ϕK.
For the converse inclusion we need the conservative universal extension V-K of V-K which is defined

in an analogous manner as in [5]. Since V-K is conservative over V-K, it suffices to show that V-K proves
ϕK(ΣB

0)-COMP. Let φ1, . . . , φs ∈ ΣB
0 . First we use ΣB

0 -COMP to convert each occurrence of φi in ϕK
into a string Pi such that

(∀x < ti)(x ∈ Pi ↔ φi(x)).

Thus it suffices to show the COMP axiom for ϕK(n, P1, . . . , Ps). By the Skolemized version of the axiom

(∀n)(∀P1) . . . (∀Ps)(ϕK(n, P1, . . . , Ps) ∨ ψK(n, P1, . . . , Ps))

we have

(∀n)(∀P1) . . . (∀Ps)(ϕ0
K(n, P1, . . . , Ps, FK(n, P1, . . . , Ps)) ∨ ψK(n, P1, . . . , Ps, FK(n, P1, . . . , Ps)))

for a term of V-K, where ϕ0
K, ψ

0
K ∈ ΣB

0 . Using the COMP axiom we obtain a string Y < a such that

(∀n < a)(n ∈ Y ↔ ϕ0
K(n, P1, . . . , Ps, FK(n, P1, . . . , Ps)).

Therefore
(∃Y < a)(∀n < a)(n ∈ Y ↔ ϕK(n, P1, . . . , Ps,)).

is provable in V-K and thus in V-K.
Now the second part of the theorem follows from the witnessing theorem of V-K, namely,

Theorem 2. Let QK(FO) capture the complexity class C over a given signature τ and has a ΣB
1 de-

scription ϕK(ΣB
0). If ϕK(ΣB

0) is strongly closed and self-witnessing then V-K captures C.

3 A theory based on acyclic conjunctive queries

As an application of the witnessing argument in the previous section, we will construct a theory based
on the acyclic boolean conjunctive query problem (ABCQ) for which the following is proved:

Theorem 3 (Gottlob et.al. [1]). ABCQ is complete for LOGCFL via AC0 reductions. Furthermore,
it remains complete even if all relations are restricted to binary, where LOGCFL is the class of predicates
LOGSPACE reducible to context-free languages.

We will use the binary version of ABCQ to formulate our theory. First we shall formulate the prob-
lem over finite structures of some signature. Let σdb = {D,Q} where D and Q are binary predicates.
Intuitively, D and Q represent a database and a query respectively such that

D(x, y)⇔ 〈x, y〉 is a record for the relation in D

and
Q(i, j)⇔ 〈i, j〉 is a conjunct in Q.

Thus we will define a complete set

KABCQ = {〈[n], Q,D〉 : the query Q has a solution in the database D}.

Let QABCQ be the Lindström quantifier for the set KABCQ. Observing that ABCQ is complete for
LOGCFL, it is not difficult to see that

Proposition 1. The logic QABCQ(FO) captures LOGCFL over ordered structure.

We can define the ΣB
1 description of KABCQ in the language L2 as follows:

ϕABCQ(n, c̄, R̄, ϕD, ϕQ)⇔ (∃C)(∀i)(ϕQ(C[i], C[i+ 1], n, c̄, R̄) ∧ (∃i)(∃j)(C[i] = C[j]))∨
(∃S)(∀i)(∀j)(∀x)(∀y)((ϕQ(i, j, n, c̄, R̄)→ ϕD(S[i], S[j], n, c̄, R̄)).

74 Satoru Kuroda

Definition 5. The L2-theory V-QABCQ consists of axioms BASIC together with ϕABCQ(ΣB
0)-COMP.

Using the technique presented in the previous section we have the following:

Theorem 4. V-QABCQ contains V 0 and has self-witnessing and strong closure properties. Thus V-QABCQ

LOGCFL.

The proof of the first part of Theorem 4 is obtained by formalizing some complexity theoretical results
in V-QK. For instance, the closure of QABCQ(ΣB

0) under complementation is obtained by defining SAC1

circuits in V-QABCQ. From this we have

Proposition 2. V-QABCQ contains V-QSAC .

where V-QSAC is the theory for LOGCFL defined in [4] in which the closure of SAC1 under comple-
mentation is proved.

For the self-witnessing property, we formalize the following theorem of Gottlob et.al.

Theorem 5 (Gottlob et.al. [2]). Let M be a bounded treesize logspace ATM recognizing A. It is
possible to construct a LLOGCFL transducer T which outputs an accepting tree for M on input w ∈ A.

This theorem implies that the witness for acyclic conjunctive query instances can be computed by
functional LOGCFL.

In V-QABCQ, we can define the computation of a bounded treesize logspace ATM, and the argument
in [2] can be formalized inside V-QABCQ.

4 Future Research

It was proved by Pollett [6] that the theory TLS for LOGSPACE cannot prove a statement which roughly
means NLIN=co-NLIN. and conjectured that the result can be extended to a system for LOGCFL. So
our system V-QABCQ shall be a nice candidate for Pollett’s conjecture.

However, Pollett’s proof depends on Nepomnjaščǐı’s Theorem which implies that LOGSPACE ⊆
LinH. Thus we may need LOGSPACE to be replaced by LOGCFL in order to apply Pollett’s proof
for V-QABCQ. But we do not know whether this is possible. So we may need a different technique to
prove Pollett’s conjecture.

References

1. G. Gottlob, N. Leone and F. Scarcello, The complexity of acyclic conjunctive queries. Journal of the ACM,
48(3). pp.431–498 (2001)

2. G. Gottlob, N. Leone, and F. Scarcello. Computing LOGCFL Certificates. Theoretical Computer Science,
270(1-2), pp.761-777, (2002)

3. A. Kolokolova, Systems of bounded arithmetic from descriptive complexity. PhD Thesis, Toronto University
(2005).

4. S. Kuroda, Generalized quantifier and a bounded arithmetic theory for LOGCFL. Archive for Mathematical
Logic. 46(5-6) pp.489–516 (2007)

5. P. Nguyen, Bounded Reverse Mathematics, PhD Thesis, Toronto University (2008).
6. C. Pollett, A Theory for Logspace and NLIN versus co-NLIN. Journal of Symbolic Logic. 68(4), pp.1082–1090

(2003).

The Isomorphism Problem On Classes of Automatic Structures

Dietrich Kuske1, Jiamou Liu2, and Markus Lohrey2, ?

1 LaBRI, CNRS and Université Bordeaux I, France
2 Universität Leipzig, Institut für Informatik, Germany

kuske@labri.fr, liujiamou@gmail.com, lohrey@informatik.uni-leipzig.de

1 Introduction

The idea of an automatic structure goes back to Büchi and Elgot who used finite automata to decide,
e.g., Presburger arithmetic [3]. A systematic study was initiated by Khoussainov and Nerode [7] who
also coined the name “automatic structure”. In essence, a structure is automatic if the elements of the
universe can be represented as strings from a regular language and every relation of the structure can
be recognized by a finite state automaton with several heads that proceed synchronously. Automatic
structures received increasing interest over the last years, see e.g. the recent survey [16]. One of the main
motivations for investigating automatic structures is that every automatic structure has a decidable first-
order theory, this holds even for the extension of first-order logic by the certain generalized quantifiers
(infinity [1], modulo [10], Ramsey [16]) and a severely restricted form of second-order quantification [11].

Automatic structures form a subclass of recursive (or computable) structures. A structure is recursive,
if its domain as well as all relations are recursive sets of finite words (or naturals). A well-studied
problem for recursive structures is the isomorphism problem, where it is asked whether two given recursive
structures over the same signature (written down by Turing-machines for the domain and all relations)
are isomorphic. It is well known that the isomorphism problem for recursive structures is complete for the
first level of the analytical hierarchy Σ1

1 . In fact, Σ1
1 -completeness holds for many subclasses of recursive

structures, e.g., for linear orders, trees, undirected graphs, Boolean algebras, Abelian p-groups, see e.g.
[2, 4].

In [8], it was shown that also for automatic structures the isomorphism problem is Σ1
1 -complete.

By a direct interpretation, it follows that for the following classes the isomorphism problem is still Σ1
1 -

complete [13]: automatic successor trees, automatic undirected graphs, automatic commutative monoids,
automatic partial orders, automatic lattices of height 4, and automatic 1-ary functions. On the other
hand, the isomorphism problem is decidable for automatic ordinals [9] and automatic Boolean algebras
[8]. An intermediate class is the class of all locally-finite automatic graphs, for which the isomorphism
problem is Π0

3 -complete [15].3

For many interesting classes of automatic structures, the exact status of the isomorphism problem
is still open. In the recent survey [16] it was asked for instance, whether the isomorphism problem is
decidable for automatic equivalence relations and automatic linear orders. The same question was already
asked in [9] for linear orders. In this abstract, we answer these questions negatively. Our main results
are:

– The isomorphism problem for automatic equivalence relations is Π0
1 -complete.

– The isomorphism problem for automatic successor trees of finite height k ≥ 2 is Π0
2k−3-complete.

– The isomorphism problem for automatic linear orders is hard for level ω of the hyperarithmetical
hierarchy (and therefore for every level of the arithmetical hierarchy).

Most hardness proofs from the literature for automatic structures, in particular the Σ1
1 -hardness proof

for the isomorphism problem of automatic structures from [8], use transition graphs of Turing-machines,
which are automatic. This technique seems to fail for inherent reasons, when trying to prove our news
results. The reason is most obvious for equivalence relations and linear orders. These structures are
transitive but the transitive closure of the transition graph of a Turing-machine cannot be automatic
in general (it’s first-order theory is undecidable in general). Hence, we have to use a new strategy. Our
proofs are based on the undecidability of Hilbert’s 10th problem. Recall that Matiyasevich showed that

? The second and third author are supported by the DFG research project GELO.
3 For background on the arithmetical hierarchy see [14].

76 Dietrich Kuske, Jiamou Liu, and Markus Lohrey

every recursively enumerable set of natural numbers is Diophantine [12]. This fact was used by Honkala to
show that it is undecidable whether the range of a rational power series is N [5]. Using a similar encoding,
we show that the isomorphism problem for automatic equivalence relations is Π0

1 -complete. Next, we
extend our technique in order to show that the isomorphism problem for automatic successor trees of
height k ≥ 2 is Π0

2k−3-complete. Finally, using a similar but technically more involved reduction, we can
show that the isomorphism problem for automatic linear orders is hard for every level of the arithmetical
hierarchy. In fact, since our proof is uniform in the level for the arithmetical hierarchy, we immediately
get hardness for level Σ0

ω of the hyperarithmetical hierarchy. In other words: the isomorphism problem
for automatic linear orders is at least as hard as the the first-order theory of (N; +,×). At the moment
it remains open whether the isomorphism problem for automatic linear orders is Σ1

1 -complete.

2 Preliminaries

We use synchronous n-tape automata to recognize n-ary relations. Such automata have n input tapes,
each of which contains one of the input words. The n tapes are read in parallel until all input words are
processed. Formally, let Σ� = Σ ∪ {�} where � /∈ Σ. For words w1, w2, . . . , wn ∈ Σ?, their convolution is
a word w1 ⊗ · · · ⊗ wn ∈ (Σn

�)? with length max{|w1|, . . . , |wn|}, and the kth symbol of w1 ⊗ · · · ⊗ wn is
(σ1, . . . , σn) where σi is the kth symbol of wi if k ≤ |wi|, and σi = � otherwise. An n-ary relation R is
FA recognizable if the set of convolutions of all tuples (w1, . . . , wn) ∈ R is regular.

A relational structure S consists of a domain D and atomic relations on the set D. A structure is
automatic if its domain is a regular language and each of its atomic relations is FA recognizable. If an
automatic structure A is isomorphic to a structure B, then A is called an automatic presentation of B
and B is automatically presentable. In this paper we sometimes abuse the terminology and refer to B
as simply automatic. The structures (N;≤,+) and (Q;≤) are both automatic. On the other hand, e.g.,
(N;×) and any free monoid of rank at least 2 have no automatic presentation, see e.g. [16].

Let K be a class of (finitely presented) structures. The isomorphism problem for K asks whether
A ∼= B for two given structures A,B ∈ K.

3 Main results

A structure (D;E) with E an equivalence relation on D is an equivalence structure.

Theorem 1. The isomorphism problem for automatic equivalence structures is Π0
1 -complete.

Proof. For the upper bound, let E be an automatic equivalence structure. Define the function hE :
N∪{∞} → N∪{∞} such that for all n ∈ N∪{∞}, hE(n) equals the number of equivalence classes (possibly
infinite) in E of size n. Note that for given n ∈ N∪{∞}, the value hE(n) can be computed effectively: one
can define in first-order logic with the infinity quantifier the set of all ≤llex-least elements4 that belong
to an equivalence class of size n. Hence this set is effectively regular and its size can be computed. Now,
given two automatic equivalence structures E1 = (D1;E1) and E2 = (D2;E2), deciding if E1 ∼= E2 amounts
to checking if hE1 = hE2 . Therefore, the isomorphism problem for automatic equivalence structures is in
Π0

1 .
We proveΠ0

1 -hardness using Hilbert’s 10th problem. Let N+ = N\{0}. For a polynomial p(x1, . . . , xk) ∈
N[x1, . . . , xk] let Img+(p) = {p(n1, . . . , nk) | n1, . . . , nk ∈ N+}. Matiyasevich constructed from a given
(index of a) recursively enumerable set X ⊆ N+ a polynomial p(x1, . . . , xk) ∈ Z[x1, . . . , xk] such
that X = {n ∈ N+ | ∃y2, . . . , yk ∈ N+ : p(n, y2, . . . , yk) = 0}, see e.g. [12]. Hence, the follow-
ing problem is Π0

1 -complete: Given two polynomials p1(x1, . . . , xk), p2(x1, . . . , xk) ∈ N[x1, . . . , xk], is
p1(x1, . . . , xk) 6= p2(x1, . . . , xk) for all x1, . . . , xk ∈ N+?

Before we can reduce this problem to the isomorphism problem of automatic equivalence relations,
we first construct, from a polynomial p ∈ N[x1, . . . , xk] an automatic equivalence relation E(p) such that

∀n ∈ N+ : hE(p)(n) > 0 ⇐⇒ n ∈ Img+(p). (1)

By induction on the structure of the polynomial p(x) one can show:

4 ≤llex denotes the length-lexicographical order on words.

The Isomorphism Problem On Classes of Automatic Structures 77

Lemma 1. There exists an algorithm that, given a polynomial p(x) ∈ N[x], constructs a nondeterministic
automaton A[p(x)] on alphabet {a1, . . . , ak} such that A[p(x)] has exactly p(x1, . . . , xk) many accepting
runs on input ax1

1 ax2
2 · · · a

xk

k .

Let A = (S, I,∆, F) be a nondeterministic finite automaton with alphabet Σ (∆ ⊆ S × Σ × S is the
set of transitions, I ⊆ S is the set of initial states, and F ⊆ S is the set of final states). We define an
automaton RunA = (S, I,∆′, F) with alphabet ∆ such that the transition relation ∆′ ⊆ S × ∆ × S is
defined as:

∆′ = {(p, (p, a, q), q) | (p, a, q) ∈ ∆}.

Let π : ∆∗ → Σ∗ be the projection morphism with π(p, a, q) = a. The following lemma is immediate
from the definition.

Lemma 2. For u ∈ ∆+ we have: u ∈ L(RunA) if and only if π(u) ∈ L(A) and u forms an accepting
run of A on π(u).

This lemma implies that for all words w ∈ Σ+, |π−1(w) ∩ L(RunA)| equals to the number of accepting
runs of A on w. Note that this does not hold for w = ε.

Consider now a non-zero polynomial p(x1, . . . , xk) ∈ N[x1, . . . , xk]. Let the automaton A = A[p(x)]
be as defined in Lemma 1 and RunA be as defined above. Define an automatic equivalence structure E(p)
whose domain is π−1(a+

1 a
+
2 · · · a

+
k)∩L(RunA). Moreover, two words u, v ∈ π−1(a+

1 a
+
2 · · · a

+
k)∩L(RunA)

are equivalent if and only if π(u) = π(v). By definition and Lemma 1, a natural number y belongs to
Img+(p) if and only if E(p) contains an equivalence class of size y, i.e., E(p) satisfies Condition (1).

After these preparations, we can prove Π0
1 -hardness. The function C : N × N → N with C(x, y) =

(x+ y)2 + 3x+ y is injective (C(x, y)/2 is a well-known pairing function). For p1(x), p2(x) ∈ N[x], define
the following three polynomials over N:

– S1(x) = C(p1(x), p2(x))
– S2(x1, x2) = C(x1 + x2, x1)
– S3(x1, x2) = C(x1, x1 + x2)

Let E(S1), E(S2), E(S3) be automatic equivalence structures as defined above. Let E1 be the disjoint
union of these three equivalence structures and let E2 be the disjoint union of E(S2) and E(S3) only. For
i ∈ {1, 2}, the ω-sum of Ei is the automatic equivalence structure Eωi consisting of ℵ0 many copies of Ei.

If p1(x1, . . . , xk) = p2(x1, . . . , xk) for some x1, . . . , xk ∈ N+, then there is y ∈ N+ such that C(y, y)
belongs to Img+(S1). Therefore in E1 there is an equivalence class of size C(y, y). On the other hand,
for any z ∈ N+, C(z, z) does not belong to Img+(S2) ∪ Img+(S3) and therefore E2 does not contain an
equivalence class of size C(y, y). Hence Eω1 � Eω2 .

Conversely, suppose that p1(x1, . . . , xk) 6= p2(x1, . . . , xk) for all x1, . . . , xk ∈ N+. Then C(y, z) belongs
to Img+(S1) ∪ Img+(S2) ∪ Img+(S3) if and only if y 6= z, if and only if C(y, z) belongs to Img+(S2) ∪
Img+(S3). Therefore for any s ∈ N+, E1 contains an equivalence class of size s if and only if E2 contains
an equivalence class of size s. Hence Eω1 ∼= Eω2 . In summary, we have shown that ∀x1, . . . , xk ∈ Nk+ :
p1(x1, . . . , xk) 6= p2(x1, . . . , xk) if and only if Eω1 ∼= Eω2 . Hence Theorem 1 is proved. ut

A tree is a structure T = (V ;≤T), where ≤T is a partial order with a least element, called the root, and
such that for every x ∈ V , ≤T restricted to {y | y ≤T x} is a finite linear order. One may also view a tree
as a directed graph (V,E) with an edge (u, v) ∈ E if and only if u is the largest element in {x | x <T v}.
The edge relation E is FO-definable in (V ;≤T). The level of a node u ∈ V is the number of E-edges
along the path from the root to u. The height of T is the supremum of all levels of nodes in V ; it may be
infinite. Here we only deal with trees of finite height. We use Tn to denote the class of automatic trees
with height at most n. Note that when n is fixed, the tree order ≤T when restricted to the class Tn is
FO-definable in (V,E).

Using the uniform decidability of first-order logic with the infinity-quantifier over automatic struc-
tures, it is easy to show decidability of the isomorphism problem for the class T1. The case n = 2 of the
following theorem can be deduced from Theorem 1 using an automaticity-preserving interpretation, the
remaining proof works by induction on n.

Theorem 2. For all n ≥ 2, the isomorphism problem for the class Tn of automatic trees is Π0
2n−3-

complete.

78 Dietrich Kuske, Jiamou Liu, and Markus Lohrey

Our construction in the proof of Theorem 2 is uniform in the sense that given i ∈ N and a Π0
i set R,

for any x ∈ N, we can effectively construct two automatic trees T1(R, x) and T2(R, x) of finite height,
such that x ∈ R if and only if T1(R, x) ∼= T2(R, x). This uniformity gives us the following corollary. (For
a precise definition of the hyperarithmetical hierarchy see for instance [14]. A typical problem on level
Σ0
ω of the hyperarithmetical hierarchy is the first-order theory of (N; +,×).)

Corollary 1. The isomorphism problem for automatic trees of finite height is Σ0
ω-complete.

Given a recursive tree T without infinite paths, one can assign a recursive ordinal ξ(v) to every node v
as follows: Every leaf of T is labeled with the ordinal 0. A node with children {vi | i ∈ I} is labeled with
the ordinal sup{ξ(vi) + 1 | i ∈ I}. Let Tξ the class of all automatic trees, for which the root is labeled
with an ordinal α < ξ. We conjecture that for every recursive ordinal ξ, the isomorphism problem for Tξ
is complete for a suitable level of the hyperarithmetical hierarchy.

The following theorem can be shown using similar but technically more involved arguments than
those used for the proof of Theorem 2.

Theorem 3. The isomorphism problem for automatic linear orders is Σ0
ω-hard.

Proofs for Theorem 2 and 3 will appear in a long version of this abstract.

References

1. A. Blumensath and E. Grädel. Automatic Structures. In LICS’00, pages 51–62. IEEE Computer Society
Press, 2000.

2. W. Calvert and J. F. Knight. Classification from a computable viewpoint. Bull. Symbolic Logic, 12(2):191–
218, 2006.

3. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc.,
98:21–51, 1961.

4. S. S. Goncharov and J. F. Knight. Computable structure and antistructure theorems. Algebra Logika,
41(6):639–681, 2002.

5. J. Honkala. On the problem whether the image of an N -rational series equals N . Fund. Inform., 73(1-2):127–
132, 2006.

6. B. Khoussainov and M. Minnes. Model theoretic complexity of automatic structures. In Proc. TAMC 08,
LNCS 4978, 514–525, Springer, 2008.

7. B. Khoussainov and A. Nerode. Automatic presentations of structures. In LCC’95, LNCS 960, 367–392,
Springer, 1995.

8. B. Khoussainov, A. Nies, S. Rubin, and F. Stephan. Automatic structures: richness and limitations. Logical
Methods in Computer Science, 3(2):2:2, 18 pp. (electronic), 2007.

9. B. Khoussainov, S. Rubin, and F. Stephan. Automatic linear orders and trees. ACM Transactions on
Computational Logic, 6(4):675–700, 2005.

10. B. Khoussainov, S. Rubin, and F. Stephan. Definability and regularity in automatic structures. In STACS’04,
Lecture Notes in Comp. Science vol. 2996, pages 440–451. Springer, 2004.

11. D. Kuske and M. Lohrey. Some natural problems in automatic graphs. Journal of Symbolic Logic, 2009.
Accepted.

12. Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, Massachusetts, 1993.
13. A. Nies. Describing groups. Bull. Symbolic Logic, 13(3):305–339, 2007.
14. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1968.
15. S. Rubin. Automatic Structures. PhD thesis, University of Auckland, 2004.
16. S. Rubin. Automata presenting structures: A survey of the finite string case. Bull. Symbolic Logic, 14:169–209,

2008.

Classification of the classes of finite models in Tarski’ style

Marcin Mostowski

Department of Logic,
Institute of Philosophy, Warsaw University

m.mostowski@uw.edu.pl

This work is devoted to the truth definitions method of notions in finite models. The general method
— working in infinite models only — was invented by Alfred Tarski [Tar33]. The method of FM–truth
definitions 1 was introduced in [Mos01], and further investigated in [Mos03], [Koł04b], [Koł04a], [Koł05].

We discuss here some improvements of the method and we give a few important examples of FM–truth
definitions.

1 Background

1.1 Logics

We compare logics on ordered finite models by the relation ≤ as follows. L ≤ L′ if for each L–sentence
ϕ there is L′–sentence ψ such that ϕ and ψ are equivalent on finite ordered models. We say that L is
strictly contained in L′ (L < L′) if L ≤ L′ but not L′ ≤ L. We say that L and L′ are equivalent (L ≡ L′)
if L ≤ L′ and L′ ≤ L.

1.2 Finite arithmetics

We consider arithmetical models of finite initial segments of natural numbers. 2

We need the following two results.

Theorem 1. For each n, the arithmetical model on the universe {0, 1, . . . , nk} is first order definable in
the model on the universe {0, 1, . . . , n}, for any k ≥ 1.

Theorem 2. All the arithmetical relations are definable in finite models in terms of BIT relation
(BIT(x, y) means that y–th bit in binary representation of x is 1). Moreover BIT is arithmetically
definable in finite models.

Combining these theorems we can think of arithmetical models in higher order logics as larger arith-
metical models, but in first order logic. For instance a finite model of the size n considered from the
point of view of monadic second order logic can be considered as an arithmetical model of the size 2n

from the point of view of first order logic.

1.3 FM–representability

The key notion in applications of the method considered is the notion of FM–representability. A relation
R ⊆ Nk is FM–representable by an arithmetical formula ϕ(x1, . . . , xk) if for each k–tuple a, . . . , ak ∈ N
there is m such that the following two conditions are satisfied:

– if R(a, . . . , ak) then ϕ(a, . . . , ak) is true in all finite models greater than m;
– if ¬R(a, . . . , ak) then ϕ(a, . . . , ak) is false in all finite models greater than m.

Each function choosing m for a given k–tuple a, . . . , ak ∈ N is called a witnessing function.
R is FM–representable if it is FM–representable by some arithmetical formula.

1 FM is taken here from Finite Models.
2 All the relevant results can be found in [KMK07].

80 Marcin Mostowski

Theorem 3 (FM–representability theorem, [Mos01]). For each R ⊆ Nk, R is FM–representable
if and only if R is recursive with recursively enumerable oracle, or equivalently: R is ∆0

2 arithmetically
definable.

Moreover if R is functional then R is FM–representable by a formula ϕ(x1, . . . , xk) satisfying the
uniqueness condition:

∀x1, . . . ,∀xk∀x′
k(ϕ(x1, . . . , xk) ∧ ϕ(x1, . . . , x

′
k)⇒ xk = x′

k).

A relation R ⊆ Nk is arithmetically definable in finite models if there is a formula ϕ(x1, . . . , xk) if for
each m and a, . . . , ak < m:

R(a, . . . , ak) if and only if M |= ϕ(a, . . . , ak),
provided the size of M is at least m.
From theorem 1 the following follows.

Theorem 4. If R ⊆ Nk is FM–representable with a polynomial witnessing function then R is arith-
metically definable

As a corollary we obtain that all context free languges as well as a suitable substitution function
(treated as a ternary relation) are arithmetically definable in finite models.

2 FM truth definitions

All the finite models considered here are equipped with the standard arithmetical notions, such as
addition, multiplication, ordering, zero element, and the successor operation. The successor S loops at
the maximal element.3

We say that a formula ϕ(x) is FM truth definition for a set of sentences Z if for each ψ ∈ Z the
equivalence (ψ ≡ ϕ(pψq)) holds in almost all finite ordered models.4 The expression pψq denotes here
the Gödel number of ψ.

If there is FM truth definition in L′ for all L–sentences then we write L � L′. Of course concrete
truth definitions depend on vocabularies. If there is FM truth definition of vocabulary σ in L′ for all
L–sentences of vocabulary σ then we write L�σ L

′.
All the logics considered in this paper are closed on first order constructions. Additionally for all of

them the relation truth in a finite model is recursive.
The main applications of FM truth definitions are based on the following.

Theorem 5 ([Mos01]). Let L′ be any logic and L be a logic closed on first order constructions. If
L� L′ then L < L′.5

Some non–equivalence results can be obtained by means of a slightly weaker notion. We say that a
formula ϕ(x) is a weak FM truth definition for a set of sentences Z if for each ψ ∈ Z the equivalence
(ψ ≡ ϕ(pψq)) holds in infinitely many finite ordered models. The difference is that we do not require here
that the equivalence (ψ ≡ ϕ(pψq)) has only finitely many exceptions. Moreover, for different formulae ψ
it can hold in different finite models. For any logics L and L′, if there is a weak FM–truth definition in
L′ for L–sentences then we write L�w L

′.

Theorem 6. Let L′ be any logic and L be a logic closed on first order constructions. If L �w L′ then
L 6≡ L′.

Essentially the proof is the same as that of theorem 5. We use the following finite version of the
diagonalization lemma. We give it here in an improved form based on theorem 4.

Theorem 7. (The finite version of the diagonalization lemma, [Mos01]) For each logic L closed
on first order constructions, and each arithmetical L–formula ϕ(x) with one free variable x there is
L–sentence ψ such that the equivalence (ψ ≡ ϕ(pψq)) is true in all models of the size at least pψq.

Morover the formula ϕ(x) occurs only once in ψ, and this occurence is positive. More precisely, ψ
can be taken as a formula of the form ∃x(ξ(x) ∧ ϕ(x)), where ξ(x) is a first order arithmetical formula.
3 This is only for treating S as a real function. Addition and multiplication can be treated as ternary relations.
4 For broader discussion of this notion see [Mos01].
5 The ambiguity here is not essential because if L < L′ holds on ordered models then it holds on arbitrary

models. The opposite implication does not hold in general.

Classification of the classes of finite models in Tarski’ style 81

3 Existence of FM–truth definitions

As a general application of theorem 3 we obtain the observation by Leszek Kołodziejczyk that the relation
� is essentially syntax independent.6

Theorem 8 ([Koł04b], [Koł05]). Let L,L1, L2 be logics with recursive relation truth in a finite model.
If L ≤ L1 and L1 � L2 then L� L2.

It follows from theorem 3 and the fact that if L ≤ L1 then there is ∆0
2 arithmetically definable

function f from L–sentences to L1–sentences such that ϕ and f(ϕ) are equivalent on finite models.
In this section we consider a few interesting examples.

3.1 First order hierarchy

For the standard first order hierarchy we have the following.

Theorem 9. – Σ0
1 � Σ0

1 ,
– Π0

1 � Π0
1 ,

– Bool(Σ0
1)� Σ0

2 ,
– Bool(Σ0

1)� Π0
2 ,

– Bool(Σ0
1)� ∆0

2.

4 Transitive Closure logics

It is known that FO(PFP) captures PSPACE. However, in this work, instead of FO(PFP), we operate on
FO(TC2) — the first order logic enriched by second order transitive closure operators TCk2 bounding two
second order variables P1 and P2 of arity k and giving the transitive closure of the relation determined by
a formula between the relations denoted by P1 and P2. The second order transitive closure operator on
ordered models captures PSPACE by the same argument as that for FO(PFP), see [Imm99]. Therefore
we have the following.

Theorem 10. FO(TC2) captures PSPACE on ordered models, and therefore it is equivalent to
FO(PFP).

By a natural construction we obtain the following.

Theorem 11.
FO(TC)� FO(posTC1

2).

Considering suitable refinements of the above idea we consider sublogics of the finite order logic with
transitive closure operators of arbitrary finite types. These sublogics capture all natural space complexity
classes over NLOGSPACE. Then, by suitable refinements of theorem 11, we obtain the best known
version of the space hierarchy theorem.

4.1 FO � FO(TC)?

The problem ”FO � FO(TC)?’ seems to be very difficult. Nevertheless we will consider consequences
of positive and negative answers.

assuming FO 6� FO(TC) In this case NLOGSPACE < NP. This is so because the logic FO(TC2)
cannot define truth for SO. Assuming NLOGSPACE = NP, the logics FO(TC) and Σ1

1 should be
equivalent. However this is impossible because FO(TC) can be separated from FO(TC2).

6 Originally, the notion of FM–representability was motivated by the proof of the diagonalization lemma. The
improved version presented here uses simple definability instead. Nevertheless the theorem of Kołodziejczyk
uses the full power of FM–represantibility.

82 Marcin Mostowski

assuming FO � FO(TC) In this case we have min–max FO(TC) formula defining FM–truth for
all first order formulae in empty vocabulary. This formula uses TC operator bounding 2k variables. It
can be transformed into a min–max formula with the TC operator bounding 2 variables which define
FM–truth on models of k–th power. Then FO �w FO(TC1

1).

5 Some Philosophical Remarks

Our way of thinking about semantics in finite conforms with Mycielski’s approach to foundations of
mathematics as presented in [Myc81]. In this paper he considers foundations of mathematics without
actual infinity.

Potentially infinite domain of natural numbers consists with

{0}
{0, 1}
{0, 1, 2}
{0, 1, 2, 3} . . .

On the other hand actually infinite domain of natural numbers is

{0, 1, 2, 3, . . . }.

We consider semantics in Tarski’ style in potentially infinite domain. Originally Tarski [Tar33,Tar56]
considered his truth definitions in actually infinte domains. Nevertheless it was discussed in his times
how far the assuption of actual infinity was essential for defining truth. Our consideration prove that
actual infinity can be removed in a reasonable way.

References

[Imm99] N. Immerman. Descriptive Complexity. Springer Verlag, 1999.
[KMK07] M. Krynicki, M. Mostowski, and Zdanowski K. Finite arithmetics. Fundamenta Informaticae, 81(1–

3):183–202, 2007.
[Koł04a] L. Kołodziejczyk. A finite model-theoretical proof of a property of bounded query classes within ph.

The Journal of Symbolic Logic, 69:1105–1116, 2004.
[Koł04b] L. Kołodziejczyk. Truth definitions in finite models. The Journal of Symbolic Logic, 69:183–200, 2004.
[Koł05] L. Kołodziejczyk. Truth definitions and higher order logics in finite models. PhD thesis, Warsaw

University, 2005.
[Mos01] M. Mostowski. On representing concepts in finite models. Mathematical Logic Quarterly, 47:513–523,

2001.
[Mos03] M. Mostowski. On representing semantics in finite models. In A. Rojszczak†, J. Cachro, and G. Kur-

czewski, editors, Philosophical Dimensions of Logic and Science, pages 15–28. Kluwer Academic Pub-
lishers, 2003.

[Myc81] J. Mycielski. Analysis without actual infinity. Journal of Symbolic Logic, 46:625–633, 1981.
[Tar33] A. Tarski. Pojȩcie prawdy w jȩzykach nauk dedukcyjnych. Nakładem Towarzystwa Naukowego Warsza-

wskiego, 1933. English version in [Tar56].
[Tar56] A. Tarski. The concept of truth in formalized languages. In J. H. Woodger, editor, Logic, semantics,

metamathematics, pages 152 – 278. Oxford at The Clarendon Press, 1956. translated from German by
J. H. Woodger.

Some Results on Complexity of µ-calculus Evaluation in the
Black-box Model

Pawe l Parys?

University of Warsaw
ul. Banacha 2, 02-097 Warszawa, Poland

parys@mimuw.edu.pl

Abstract. We consider µ-calculus formulas in a normal form: after a prefix of fixed-point quan-
tifiers follows a quantifier-free expression. We are interested in the problem of evaluating (model
checking) of such formula in a powerset lattice. Assumptions about the quantifier-free part of the
expression are the weakest possible: it can be any monotone function given by a black-box—we
may only ask for its value for given arguments. As a first result we prove that when the lattice is
fixed, the problem becomes polynomial. As a second result we show that any algorithm solving the

problem has to ask at least about n2 (namely Ω
“

n2

log n

”
) queries to the function, even when the

expression consists of one µ and one ν.

1 Introduction

Fast evaluation of µ-calculus expressions is one of the key problems in theoretical computer science.
Although it is a very important problem and many people were working on it, no one could show any
polynomial time algorithm. On the other hand the problem is in NP∩co-NP, so it may be very difficult
to show any lower bound on the complexity. In such situation a natural direction of research is to slightly
modify the assumptions and see whether the problem becomes easier.

We restrict ourselves to expressions in a quantifier-prefix normal form, namely

θ1x1.θ2x2 . . . θdxd.F (x1, . . . , xd), (1)

where θi = µ for odd i and θi = ν for even i. We want to evaluate such expression in the powerset model
or, equivalently, in the lattice {0, 1}n with the order defined by a1 . . . an ≤ b1 . . . bn when ai ≤ bi for all
i. The function F : {0, 1}nd → {0, 1}n is an arbitrary monotone function and is given by a black-box
(oracle) which evaluates the value of the function for given arguments.

First concentrate on the problem of polynomial expression complexity, i.e. complexity for fixed size
of the model. We assume that the oracle representing the function answers in time tF (in other words it
is a computational procedure calculating the function in time tF). To simplify the complexity formulas
assume that tF ≥ O(nd), i.e. that the procedure at least reads its arguments. A typical complexity,
in which one can evaluate the expression (1) is O(nd · tF); this can be done by naive iterating [1]. We
show that, using a slightly modified version of the naive iterating algorithm, the complexity can be
O
((
n+d
d

)
· tF
)

. For big n it does not improve anything, however for fixed n the complexity is equal to
O(dn · tF), hence is polynomial in d. This is our first result, described in Section 2.

Theorem 1. There is an algorithm which for any fixed model size n calculates the value of expression
(1) in time polynomial in d and tF , namely O(dn · tF).

Our result slightly extends an unpublished result in [2]. The authors also get polynomial expression
complexity, however using completely different techniques. Our result is stronger, since they consider only
expressions in which F is given by a vectorial Boolean formula, not as an arbitrary function. Moreover
their complexity is slightly higher: O(d2n · |F |).

Our second result is an almost quadratic lower bound for d = 2. It was possible to achieve any
lower bound thanks to the assumption that the algorithm may access the function F in just one way,
by evaluating its value for given arguments. Moreover, we are not interested in the exact complexity,
? Work supported by Polish government grant no. N206 008 32/0810.

84 Pawe l Parys

only in the number of queries to the function F . In other words we consider decision trees: each internal
node of the tree is labeled by an argument, for which the function F should be checked, and each its
child corresponds to a possible value of F for that argument. The tree has to determine the value of the
expression (1): for each path from the root to a leaf there is at most one possible value of (1) for all
functions which are consistent with the answers on that path. We are interested in the height of such
trees, which justifies the following definition.

Definition 1. For any natural number d and finite lattice L we define num(d, L) as the minimal number
of queries, which has to be asked by any algorithm correctly calculating expression (1) basing only on
queries to the function F : Ld → L.

In this paper we consider only the case d = 2. We show that almost n2 queries are necessary in that
case. Precisely, we have the following result, described in Section 3.

Theorem 2. For any natural n it holds num(2, {0, 1}n) = Ω
(

n2

logn

)
.

This result is a first step towards solving the general question, for any d. It shows that in the black-box
model something may be proved. Earlier it was unknown even if for any d there are needed more than
nd queries. Note that num(1, {0, 1}n) is n and that in the case when all d fixed-point operators are µ
(instead of alternating µ and ν) it is enough to do n queries. So the result gives an example of a situation
where the alternation of fixed-point quantifiers µ and ν is provably more difficult than just one type of
quantifiers µ or ν. Although it is widely believed that the alternation should be a source of algorithmic
complexity, the author is not aware of any other result showing this phenomenon, except the result in
[3].

Let us comment the way how the function F is given. We make the weakest possible assumptions:
the function can be given by an arbitrary program. This is called a black-box model, and was introduced
in [4]. In particular our formulation covers vectorial Boolean formulas, as well as modal formulas in a
Kripke structure of size n. Moreover our framework is more general, since not every monotone function
can be described by a modal formula of small size, even when it can be computed quickly by a procedure.
Note that the algorithm in [4], working in time O(nbd/2c+1 · tF), can also be applied to our setting. On
the other hand the recent algorithms, from [5] working in time O(md/3) and from [6] working in time
mO(

√
m) (where m ≥ n depends on the size of F), use the parity games framework, hence require that

F is given by a Boolean or modal formula of small size. This can be compared to models of sorting
algorithms. One possible assumption is that the only way to access the data is to compare them. Then
an Ω(n log n) lower bound can be proved. Most of the sorting algorithms work in this framework. On the
other hand, when the data can be accessed directly, faster algorithms are possible (like O(n) for strings
and O(n log log n) for integers).

It is known that for a given structure an arbitrary µ-calculus formula can be converted to a formula of
form (1) in polynomial time, see Section 2.7.4 in [7]. Hence, a polynomial algorithm evaluating expressions
of form (1) immediately gives a polynomial algorithm for arbitrary expressions. However during this
conversion one also needs to change the underlying structure to one of size nd, where d is the nesting
level of fixed-point quantifiers. So, even when the original model has fixed size n, after the normalization
the model can become very big, and our algorithm from Theorem 1 gives exponential complexity.

2 The algorithm with polynomial expression complexity

Below we present a general version of the well known iterating algorithm. The algorithm can be de-
scribed by a series of recursive procedures, one for each fixed-point operator; the goal of a procedure
Calculatei(X1, . . . , Xi−1) is to calculate θixi.θi+1xi+1 . . . θdxd.F (X1, . . . , Xi−1, xi, . . . , xd).

Calculatei(X1, . . . , Xi−1):
Xi = Initializei(X1, . . . , Xi−1)
repeat
Xi = Calculatei+1(X1, . . . , Xi)

until Xi stops changing
return Xi

Some Results on Complexity of µ-calculus Evaluation in the Black-box Model 85

Moreover the most internal procedure Calculated+1(X1, . . . , Xd) simply returns F (X1, . . . , Xd). To eval-
uate the whole expression we simply call Calculate1().

Till now we have not specified the Initializei procedures. When they always return 00 . . . 0 for odd
i and 11 . . . 1 for even i, we simply get the naive iterating algorithm from [1]. However we would like
to make use of already done computations and start a iteration from values which are closer to the
fixed-point. Of course we can not start from an arbitrary value. The following standard lemma gives
conditions under which the computations are correct.

Lemma 1. Assume that Initializei(X1, . . . , Xi−1) for odd i returns either 00 . . . 0 or a result of a previous
call to Calculatei(X ′1, . . . , X

′
i−1) for some X ′1 ≤ X1, . . . , X

′
i−1 ≤ Xi−1 and for even i either 11 . . . 1 or

a result of a previous call to Calculatei(X ′1, . . . , X
′
i−1) for some X ′1 ≥ X1, . . . , X

′
i−1 ≥ Xi−1. Then the

function Calculatei(X1, . . . , Xi−1) returns the correct result.

So to speed up the algorithm we need to somehow remember already calculated values of expressions
and use them later as a starting value, when the same expression for greater/smaller arguments is going
to be calculated. Instead of remembering all the results calculated so far in some sophisticated data
structure, we do a very simple trick. We simply take

Initializei(X1, . . . , Xi−1) =

00 . . . 0 for i = 1,
11 . . . 1 for i = 2,
Xi−2 for i ≥ 3.

(2)

It turns out that Initializei defined this way satisfies assumptions of Lemma 1, so the algorithm
is correct. The complexity bound follows from a simple observation that arguments of each call to
Calculated+1 satisfy

X1 ≤ X3 ≤ · · · ≤ Xd−3 ≤ Xd−1 ≤ Xd ≤ Xd−2 ≤ · · · ≤ X4 ≤ X2.

The same chain of inequalities is true for the numbers bi of bits of Xi set to 1. Moreover the sequence
b1, . . . , bd during each call to Calculated+1 differs from stage to stage, it always increases in some appro-
priately defined order. There are

(
n+d
d

)
such sequences, hence the complexity is O

((
n+d
d

)
· tF
)

.

3 Quadratic lower bound

In order to prove Theorem 2 we first introduce a lattice which is more convenient than {0, 1}n. Take the
alphabet Γn consisting of letters γi for 1 ≤ i ≤ n2 and the alphabet Σn = {0, 1}∪Γn, with the following
partial order on it: the letters γi are incomparable; the letter 0 is smaller than all other letters; the letter
1 is bigger than all other letters. We will be considering sequences of n such letters, i.e. the lattice is
Σn
n . The order on the sequences is defined as previously: a1 . . . an ≤ b1 . . . bn when ai ≤ bi for all i. The

idea is that one letter of Σn
n may be encoded in O(log n) bits of {0, 1}m. Hence to show Theorem 2 it is

enough to prove num(d,Σn
n) ≥ Ω(n2).

To prove it we define a family of monotone functions, which will be difficult to distinguish by the
algorithm. A function Fz,σ : Σ2n

n → Σn
n is parametrized by a sequence z ∈ Γnn and by a permutation

σ : {1, . . . , n} → {1, . . . , n} (note that z is from Γnn , not from Σn
n , so it can not contain 0 or 1, just the

letters γi). The result of µy.νx.Fz,σ(y, x) will be z. In the following the i-th element of a sequence x ∈ Σn
n

is denoted by x[i]. A pair z, σ defines a sequence of values y0, . . . , yn:

yk[i] =
{
z[i] for σ−1(i) ≤ k
0 otherwise.

In other words yk is equal to z, but with some letters covered: they are 0 instead of the actual letter
of z. In yk there are k uncovered letters; the permutation σ defines the order, in which the letters are
uncovered. Using this sequence of values we define the function. In some sense the values of the function
are meaningful only for y = yk, we define them first (assuming yn+1 = yn):

Fz,σ(yk, x)[i] =

0 if ∀j>ix[j] ≤ yk+1[j] and x[i] 6≥ yk+1[i] (case 1)
yk+1[i] if ∀j>ix[j] ≤ yk+1[j] and x[i] ≥ yk+1[i] (case 2)
x[i] if ∃j>ix[j] 6≤ yk+1[j] (case 3).

86 Pawe l Parys

For any other value y we look for the lowest possible k such that y ≤ yk and we put Fz,σ(y, x) =
Fz,σ(yk, x). When such k does not exists (y 6≤ z), we put Fz,σ(y, x)[i] = 1.

The intuition behind the functions is as follows. At each moment the algorithm knows only some k
letters of z (at the beginning it do not know any letter). Then it may decide which letter of z it want
to uncover in the next step. When it tries to uncover a letter at position σ(k), it is successful; otherwise
it has to try again at another position. For the worst function it has to try all possible n − k positions
to uncover one letter of z. This gives a quadratic bound. The algorithm may also try to guess a value of
letter on some position; however there are n2 different γi, so in the worst case it has to guess n2 times
until it will discover a correct letter. A more detailed analysis shows that the algorithm is not able to do
anything else.

4 Concluding remarks

The detailed proofs of the results are contained in [8, 9], available on the author’s web page.
There are two natural future directions of research. First, it is very interesting to study whether the

polynomial expression complexity can be shown for arbitrary formulas (not being in the normalized form
(1)), or whether the problem is then equivalent to model checking in an arbitrary model. The second
goal is to get an exponential lower bound for an arbitrary number of fixed-point operator alternations in
the formula.

References

1. Emerson, E.A., Lei, C.L.: Efficient model checking in fragments of the propositional mu-calculus (extended
abstract). In: LICS. (1986) 267–278

2. Niwiński, D.: Computing flat vectorial Boolean fixed points. Unpublished manuscript
3. Dawar, A., Kreutzer, S.: Generalising automaticity to modal properties of finite structures. Theor. Comput.

Sci. 379(1-2) (2007) 266–285
4. Long, D.E., Browne, A., Clarke, E.M., Jha, S., Marrero, W.R.: An improved algorithm for the evaluation of

fixpoint expressions. In: CAV. (1994) 338–350
5. Schewe, S.: Solving parity games in big steps. In: FSTTCS. (2007) 449–460
6. Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games.

SIAM J. Comput. 38(4) (2008) 1519–1532
7. Arnold, A., Niwiński, D.: Rudiments of µ-calculus. Elsevier (2001)
8. Parys, P.: Evaluation of normalized µ-calculus formulas is polynomial for fixed structure size. Unpublished

manuscript
9. Parys, P.: Lower bound for evaluation of µν fixpoint. In: FICS. (2009) 86–92

Triangular perplexity and a stairway to heaven

Mihai Prunescu1;2

(1) Brain Products, Freiburg, Germany; and (2) Institute of Mathematics “Simion Stoilow” of the Romanian
Academy, Bucharest, Romania.

Abstract. Sections 1 and 2 contain a survey of author’s recent results in recurrent double se-
quences over finite sets. This class of objects is a Turing complete model of computation. Special
recurrent double sequences can be deterministically produced by expansive systems of context-
free substitutions. In Section 3 we present examples of such recurrent double sequences which are
non-Frobenius and which incidentally contain a lot of triangles. The fact that those examples are
non-Frobenius completes our very young sight over those structures. Section 4 deals with a re-
current double sequence called Stairway to Heaven. The sequence contains a repetitive pattern
growing in arithmetic progression. This property permits us to prove that the sequence cannot be
generated using expansive systems of context-free substitutions. This seems to be the first known
counterexemple of such recurrent double sequence.

Key Words: recurrent double sequence, context-free substitution, Turing complete models of compu-
tation, Frobenius’ automorphism, homomorphisms of finite abelian groups. A.M.S.-Classification:
05B45, 28A80, 03D03.

1 Introduction

This article belongs to a series dedicated to the study of recurrent double sequences over finite sets and
their power of expression.

Definition 1. Let (A, f, 1) be a finite structure with one ternary function f , and one constant 1. The
recurrent double sequence a : IN × IN → A starts with the values a(i, 0) = a(0, j) = 1 and satisfies the
recurrence a(i, j) = f(a(i− 1, j), a(i− 1, j − 1), a(i, j − 1)).

In [6] the author studied the problem to decide if recurrent double sequences are ultimately zero or
not, where 0 ∈ A is some other fixed constant. It is proved that this problem is undecidable even if
restricted to binary functions with the recurrence a(i, j) = f(a(i− 1, j), a(i, j − 1)) which are, moreover,
commutative. In the next statement we call an instance of the Halting Problem a pair (M,w) where M
is a Turing machine and w is a word in M ’s alphabet.

Theorem 1. To every instance (M,w) of the Halting Problem one can algorithmically associate a com-
mutative finite algebra A = (A, f, 0, 1) such that the recurrent double sequence defined by a(i, 0) =
a(0, j) = 1 and a(i, j) = f(a(i − 1, j), a(i, j − 1)) is ultimately zero if and only if for input w: (the
machine M stops with cleared tape without having done any step in the negative side of the tape) or (the
machine M makes at least one step in the negative side of its tape and the first time when M makes such
a step the tape of M is cleared). Consequently, by the Theorem of Rice, it is undecidable if such (or the
more general) recurrent double sequences are ultimately zero.

The starting point of this research was an open problem related to a very special form of linear
recurrent double sequences over prime finite fields, posed by Lakhtakia and Passoja in [5]. The author
proved in [7] that if A = IFq is the finite field with q elements and f(x, y, z) = x+my+ z, where m ∈ IFq

is an arbitrary fixed element, f(x, y, z) generates a self-similar pattern (a(i, j)). In the case when q is
prime and so IFq = ZZ/qZZ as ring of classes of remainders modulo q, the pattern can be also obtained
by substitutions of type x → xB, where B is the q × q matrix occurring as left upper minor in the
recurrent double sequence. This fact is not explicitly stated in [7], but is very easy to see it applying the
Kronecker product representation theorem from [7] in the case q prime, where the only one automorphism
of Frobenius is the identity.

The most classical example of such recurrent double sequence is Pascal’s Triangle modulo 2, called
also Sierpinski’s Gasket. As one remark, this recurrent double sequence given by f(x, y, z) = x+ z over

88 Mihai Prunescu

IF2 can be obtained by substitutions starting with 1 at stage 0 and applying the rules 1 → 1 1
1 0 and

0→ 0 0
0 0 , such that one substitutes all elements of stage n in order to achieve the stage n+1. The matrix

of stage k is a square and has dimension 2k.
The case analyzed above is ”regular” in the sense that the substitution rules have the special form

element → matrix. The author has been surprised to observe that a lot of other repetitive phaenomena
in recurrent double sequences come from a more general kind of context-free substitution, matrix →
matrix. This makes the subject of the next section. However, we must observe here that the analogy
between these recurrent double sequences and the context-free languages as defined by Noam Chomsky in
[1] is quite limited, because our generation procedure is deterministic.

For other results concerning self-similarity and automata see [4], [2], [9]. To visualize recurrent double
sequences we use images obtained by interpreting the values as different colours. The list of colour
correspondencies will be concretely given here only if is important for understanding some proof.

2 Expansive systems of context-free substitutions

The definitions and the results of this section appeared the first time in author’s recent paper [8].

Definition 2. Let (A, 1, f) be a finite structure with ternary function. Denote by R a recurrent double
sequence according to Definition 1. Suppose that two natural numbers x ≥ 1 and s ≥ 2 have been
fixed. For n ≥ 1 denote by R(n) the matrix (a(i, j)) with 0 ≤ i, j ≤ xsn−1 − 1. Call f -matrix every
u × v matrix (b(i, j)) with elements in A such that for all 1 ≤ i < u and 1 ≤ j < v one has b(i, j) =
f(b(i− 1, j), b(i− 1, j − 1), b(i, j − 1)), where the indexes start with 0. A xsn−1 × xsn−1 matrix (b(i, j))
is R(n) if and only if is a f -matrix and fulfills b(i, 0) = b(0, j) = 1.

Definition 3. The fixed natural numbers x ≥ 1 and s ≥ 2 used in this definition can be considered to
be the same as x and s used in the Definition 2. Let y = xs. Let X be a finite set of x × x matrices
over A and Y be a set of y × y matrices over A such that every Y ∈ Y has a s × s block matrix
representation (X(i, j))0≤i,j<s and all blocks X(i, j) ∈ X . We call system of (context-free) substitutions
of type x→ y the tuple (X ,Y, Σ,X1), where Σ : X → Y is a fixed function and X1 ∈ X is a fixed element
of X , called start-symbol. If a u × v matrix Z consists only of neighbouring blocks X(i, j) ∈ X , Z =
(X(i, j))0≤i<u, 0≤j<v, we define Σ(Z) to be the su × sv matrix with block representation (Σ(X(i, j))).
We define the sequence of matrices (S(n)) by S(1) = X1 and S(n) = Σn−1(X1). The number s is called
scaling factor of the system of substitutions.

Definition 4. We call the system of substitutions (X ,Y, Σ,X1) expansive if the block representation of
the matrix Σ(X1) = (X(i, j)) using matrices in X fulfills the condition X(0, 0) = X1. To be more clear:
X(0, 0) is the x× x left upper block of Σ(X1).

Lemma 1. Let (X ,Y, Σ,X1) be an expansive system of substitutions. Then for all n > 0 the matrix
S(n) is xsn−1 × xsn−1 left upper minor of the matrix S(n+ 1).

Definition 5. We say that a u× v matrix K = (k(α, β)) occurs in the w × z matrix T = (t(a, b)) if for
some 0 ≤ i < w and 0 ≤ j < z one has i + u ≤ w, j + v ≤ z and for all 0 ≤ α < u and 0 ≤ β < v one
has t(i+ α, j + β) = k(α, β). We say that K occurs in x-position in T if moreover x | i and x | j.

Definition 6. Let x be a fixed natural number and T be a wx × zx matrix over A. We denote Nx(T)
the set of all 2x× 2x matrices occurring in x-position in T .

Definition 7. Let x be a fixed natural number and T be a wx× zx matrix over A. We denote by Jx(T)
the set of all x× x matrices occurring in T in the positions {(0, kx) | k ∈ IN}. Analogously, we denote by
Ix(T) the set of all x× x matrices occurring in T in the positions {(kx, 0) | k ∈ IN}.

Theorem 2. Let (A, f, 1) be a finite structure with ternary function f and let (X ,Y, Σ,X1) be an
expansive system of substitutions of type x→ y over A. We define the matrices (R(n))n≥1 according to
x and s = y/x given by the system of substitutions. Suppose that for some m > 1 following conditions
hold:

Triangular perplexity and a stairway to heaven 89

– R(m) = S(m).

– Nx(S(m− 1)) = Nx(S(m)).

– Jx(S(m− 1)) = Jx(S(m)) and Ix(S(m− 1)) = Ix(S(m)).

Then for all n ≥ 1 one has R(n) = S(n).

This result says essentially that if a recurrent double sequence and a double sequence produced by an
expansive system of context-free substitutions are identical in a starting minor, then they are identical
everywhere.

(1) Open Peano Curve, 512× 512, (IF4, 2x2 + 2y + 2z2, 3).

Corollary 1. The Open Peano Curve given by (IF4, 2x2 + 2y + 2z2, 3) in Figure 1 can be generated
with an expansive system of substitutions of type 2 → 4 with 7 rules. This is an example of Frobenius
polynomial. Observe that we denoted by 2 and 3 elements ε and ε+ 1 in IF4 such that ε2 + ε+ 1 = 0.

The author found hundreds of situations in which Theorem 2 applies. Most of them are produced by
linear combinations of Frobenius polynomials. Recall that for a finite field IFq, with q = pk, the auto-
morphism of Frobenius x→ xp generates the cyclic Galois group of the algebraic extension IFq/IFp. The
other automorphisms are given by the polynomials xp, xp2

, . . . , xpk−1
, xpk

= x = id. We call Frobenius
polynomial every linear combinations of Frobeni with coefficients in IFq. All Frobenius polynomials are
additive homomorphisms of IFq in itself. I conjecture that all functions f(x, y, z) = e(x) + g(y) + h(z),
where e(x), g(y) and h(z) are Frobenius polynomials, produces recurrent double sequences which are
substitution patterns. A lot of such Frobenius examples can be found in [8]. The next section presents
some examples of recurrent double sequences that can be produced by expansive systems of substitution
but are not Frobenius.

Conjecture 1. Let G be a finite abelian group, f : G3 → G a homomorphism of groups, and a ∈ G \ {0}
an arbitrary element. Then the recurrent double sequence defined by (G, f, a) can be also constructed
using an expansive system of context-free substitutions.

90 Mihai Prunescu

(2) Pascal’s Table Runner, 625× 625. (IF5, x
2y4z2 + x2y4 + y4z2 + 4xz + 1, 1).

(3) Pascal’s Garden, 625× 625. (IF5, 4x3z3 + 4xy2 + 4y2z + x4yz4 + 1, 1).

3 Triangular perplexity

After the definitive acceptance of the paper [8] by the journal Fractals, the author accidentally found also
a lot of recurrent double series which can be generated by expansive systems of context-free substitutions
although they are not given by sums of Frobenius terms.

Corollary 2. Pascal’s Table Runner given by (IF5, x
2y4z2 + x2y4 + y4z2 + 4xz + 1, 1) in Figure 2 can

be generated with an expansive system of substitutions of type 64→ 128 with 38 rules.

Corollary 3. Pascal’s Garden given by (IF5, 4x3z3 + 4xy2 + 4y2z + x4yz4 + 1, 1) in Figure 3 can be
generated with an expansive system of substitutions of type 64→ 128 with 109 rules.

Definition 8. Let (A, f, 1) be a recurrence producing the recurrent double sequence a(i, j)). A minimal
representation of this sequence is a recurrence (IFq, g, 1) and an embedding η : A→ IFq such that q is the

Triangular perplexity and a stairway to heaven 91

least prime power ≥ |A | and for all i, j ∈ IN, η(a(i, j)) = b(i, j), where (b(i, j) is the recurrent double
sequence produced by (IFq, g, 1).

(4) Molten Radioactive Mark, 625× 625. (IF5, 4x2y4z2 + 4x2y3 + 4y3z2 + x2yz2 + 4, 1).

(5) Pascal’s Straightedge, 625× 625. (IF5, 2x2y4z2 + 2x2 + 2z2 + 2xy4z + 1, 1).

Remark 1. The recurrent double sequences defined and presented in the Figures 2, 3, 4 and 5 do not
accept any minimal representation with Frobenius polynomials.

Proof. All four recurrent double sequences contain five different values inside, so they cannot be repre-
sented over any field smaller than IF5. On the other hand, the only Frobenius automorphism of IF5 is
the identity, so the only Frobenius polynomials in question have the form ax+ by + cz + d. But none of
those polynomials generates any of the patterns (2), (3), (4) or (5), as one can see after a short computer
exploration.

However, it remains an open question if those recurrent double sequences and many other examples
of this kind accept some Frobenius representation in bigger fields, or representations using finite abelian
groups and homomorhism of groups, as in the conjecture above.

92 Mihai Prunescu

Corollary 4. Molten Radioactive Mark given by (IF5, 4x2y4z2 + 4x2y3 + 4y3z2 +x2yz2 + 4, 1) in Figure
4 can be generated with an expansive system of substitutions of type 10→ 30 with 40 rules.

Corollary 5. Pascal’s Straightedge given by (IF5, 2x2y4z2 + 2x2 + 2z2 + 2xy4z+ 1, 1) in Figure 5 can be
generated with an expansive system of substitutions of type 4→ 8 with 29 rules.

The title of the section is an homage of the celebrated article Pentaplexity by Sir Roger Penrose, see
[3]. In this paper the Penrose Tiling was described for the first time, together with its substitution rules.
The examples presented here contain a lot of triangles in their patterns. It is not said that all examples
are of this kind. All sequences that become periodic can be also produced by expansive systems of
substitutions.

4 Stairway to heaven

All these examples lead to the following natural question: Is it true that all recurrent double sequences
over finite sets are generated by context-free substitutions? In this section we study the recurrent double
sequence Stairway to Heaven SH given by the recurrent rule (IF5, 4x2y4z2 + 4x4y3 + 4y3z4 + 4y2 + 2, 1).
This recurrent double sequence contains only four elements of five and accepts minimal representations
over the field IF4. However, the recurrent sequence applies only 52 triples (x, y, z) → f(x, y, z) from
the 64 triples in IF3

4, and it is quite difficult to find a nice definition in the set of 412 possible minimal
representations. The shortest definition found by the author has 10 polynomial terms.

(6) Stairway to Heaven, 100× 100. (IF5, 4x2y4z2 + 4x4y3 + 4y3z4 + 4y2 + 2, 1).

Triangular perplexity and a stairway to heaven 93

(7) Stairway to Heaven, 200× 200. (IF5, 4x2y4z2 + 4x4y3 + 4y3z4 + 4y2 + 2, 1).

We shall prove here that this sequence cannot be generated by expansive systems of context free
substitutions of any type. According to Figure (6) we recall the elemets of IF5 occurring in SH: white
= 0, red = 1, green = 2, blue = 3.

Theorem 3. SH given by (IF5, 4x2y4z2 +4x4y3 +4y3z4 +4y2 +2, 1) cannot be generated using expansive
systems of context-free substitutions.

Lemma 2. Suppose that a double sequence can be generated by an expansive system of context-free
substitutions of some type x→ y. Then for all k ≥ 2 the double sequence can be generated by expansive
systems of context-free substitutions of type kx→ ky.

Proof. Let (X ,Y, Σ,X1) be an expansive system of substitutions of type x → y. We define the new
expansive system of substitutions (X ′,Y ′, Σ′, X ′1) in the following way: The set X ′ consists of all kx×kx
matrices consisting of k2 many x× x blocks, where every element of X may occur as a block. Σ′ is the
natural block-wise extension of Σ. Let Y ′ be Σ′(X ′). Let X ′1 be the kx × kx left upper minor of the
double sequence generated by (X ,Y, Σ,X1). Using Lemma 1 one gets that the new system of context-free
substitutions is also expansive.

In the next statements the word minor will be used for connected minor of SH.

Definition 9. For i ∈ IN: αi is the 5 × 5 minor starting with a(c(i), c(i)), where c(i) = i2 + 7i + 15,
α := α0; βi is the 2 × 2 minor a(c(i + 1) − 2, c(i + 1) − 2), β := β0; Di is the (8 + 2i) × (8 + 2i) minor
starting with a(c(i), c(i)).

Lemma 3. For i ≥ 1 all elements a(i, i) are blue. All minors αi are translated copies of α. All minors
βi are translated copies of β. The squares Di cover the first diagonal for i ≥ 15. Di has αi as a left upper
minor and βi as a right lower minor. Between αi and βi one finds i+ 1 white stripes and i green stripes.
SH interprets the set {n ∈ IN |n ≥ 2} in the folowing way: For all i ≥ 0, the square Di has exactly i+ 2
many red unit-squares on every edge.

Proof. By induction. The crucial configuration to look at is the configuration around a(c(i) − 1, c(i) −
2i− 10). This configuration adds 2 to the edge of Di−1 to get the edge of Di.

Lemma 4. Consider u ∈ IN even, u ≥ 8. Let N ∈ IN even, N ≥ 16, such that a u × u minor starting
with a(N,N) does not contain any αi and does not intersect any βj. Suppose that SH is decomposed in
u× u minors U(k, h), where U(k, h) starts with a(ku, hu). Let Mu be the set of u× u matrices occurring
in SH as minors U(n, n) with nu ≥ N . Then:

94 Mihai Prunescu

– Mu contains u/2 + 3 elements.
– Every element of Mu occurs infinitely often on the main diagonal of SH, as U(n, n) with nu ≥ N .

Proof. U(n, n) may contain at most one starting point for a βi. Counting the possible starting points,
we get u/2 cases. Further one has two cases where U(n, n) intersects an αi and the case where U(n, n)
does not intersect any αi and any βj .

Proof (Theorem 3). Suppose that SH can be produced by some expansive system of context-free sub-
stitutions of type x → mx. By Lemma 2 we can suppose that x is even and x ≥ 8. Choose N good for
u = mx in the sense of Lemma 4 and observe that this value N is also good for u = x in the same sense.
Every element of Mmx occurs in SH infinitely often as minor starting in some a(kmx, hmx), so all these
minors must be right hand side in a substitution rule with left hand side in Mx. So (x/2)+3 ≥ m(x/2)+3
which is possible only for m = 1. Contradiction.

References

1. Noam Chomsky: (1956). Three models for the description of language. IRE Transactions on Information
Theory, 2, 113 - 124, 1956.

2. Jarkko Kari: Theory of cellular automata: A survey. Theoretical Computer Science 334, 3 - 33, 205.
3. Roger Penrose: Pentaplexity. Mathematical Intelligencer 2 (1), 32 - 37, 1979.
4. Benoit B. Mandelbrot: The fractal geometry of nature. W. H. Freeman and Company, San Francisco, 1977,

1982.
5. Dann E. Passoja, Akhlesh Lakhtakia: Carpets and rugs: an exercise in numbers. Leonardo, 25, 1, 1992,

69 - 71.
6. Mihai Prunescu: Undecidable properties of recurrent double sequences. Notre Dame Journal of Formal Logic,

49, 2, 143 - 151, 2008.
7. Mihai Prunescu: Self-similar carpets over finite fields. European Journal of Combinatorics, 30, 4, 866 - 878,

2009.
8. Mihai Prunescu: Recurrent double sequences that can be produced by context-free substitutions. accepted for

publication in by Fractals, 2009.
9. Stephen J. Willson: Cellular automata can generate fractals. Discrete Applied Mathematics, 8, 1984, 91 -

99.

Herbrand Consistency of I∆0 and I∆0 + Ω1

Saeed Salehi

Department of Mathematics
University of Tabriz

29 Bahman Boulevard
51666-17766 Tabriz − Iran
root@saeedsalehi.ir

http://saeedsalehi.ir/

1 Notation and Basic Definitions

Robinson’s Arithmetic Q is a finitely axiomatized first-order theory that states some very basic facts
of arithmetic, like the injectivity of the successor function or the inductive definitions of addition and
multiplication. Peano’s arithmetic PA is the first-order theory that extends Q by the induction schema for
any arithmetical formula ϕ(x): ϕ(0) &∀x[ϕ(x)→ ϕ(x+ 1)]→ ∀xϕ(x). Fragments of PA are extensions
of Q with the induction schema restricted to a class of formulas. A formula is called bounded if its
every quantifier is bounded, i.e., is either of the form ∀x≤ t(. . .) or ∃x≤ t(. . .) where t is a term; they
are read as ∀x(x ≤ t → . . .) and ∃x(x ≤ t ∧ . . .) respectively. It is easy to see that bounded formulas
are decidable. The theory I∆0, also called bounded arithmetic, is axiomatized by Q plus the induction
schema for bounded formulas. The exponentiation function exp is defined by exp(x) = 2x; the formula
Exp expresses its totality: (∀x∃y[y= exp(x)]). The inverse of exp is log; and the cut log consists of the
logarithms of all elements: log = {x | ∃y[exp(x) = y]}. The superscripts above the function symbols
indicate the iteration of the functions: exp2(x) = exp(exp(x)), log2 x = log log x; similarly the cut logn is
{x | ∃y[expn(x) = y]}. Let us recall that Exp is not provable in I∆0; and sub-theories of I∆0 + Exp are
called weak arithmetics. Between I∆0 and I∆0 + Exp a hierarchy of theories is considered in the literature,
which has close connections with computational complexity. Let ω0(x) = x2 and ωn+1 = exp(ωn(log x))
be defined inductively, and let Ωm express the totality of ωm (i.e., Ωm ≡ ∀x∃y[y = ωm(x)]). We have
I∆0 + Ωn $ I∆0 + Ωn+1 for every n≥0.

Skolemized form of a (preferably prenex normal) formula is obtained by removing the existential
quantifiers and replacing their corresponding variables with new (Skolem) function symbols on the uni-
versal variables that precedes the quantifier. The resulted universal formula is equi-consistent with the
original formula, in the sense that the formula is consistent if and only if the set of instances of its
Skolemized form (its Skolem instances) is consistent. This can be generalized to theories (i.e., sets of
sentences) as well. Herbrand Consistency of a theory is defined to be the (propositional) consistency of
the set of its all Skolem instances. This is a weaker notion than the standard (Hilbert style) consistency,
resembling much to cut-free consistency. Thus, for a theory T , Herbrand Consistency, HCon(T), of T is
equivalent to Hilbert Consistency, Con(T), of T in sufficiently strong theories such as Peano’s Arithmetic
PA (or even I∆0 + SuperExp). But in weak arithmetics, like I∆0 or I∆0 + Ω1 these are quite different
consistency predicates; which makes it difficult to deal with HCon(−) in them.

2 Background History

Two interesting theorems were proved by Z. Adamowicz in [1] about Herbrand Consistency of the theories
I∆0 + Ωm for m ≥ 2:

Theorem 1. For a bounded formula θ(x) and m ≥ 2, if the theory

I∆0 + Ωm + ∃x∈ logm+1θ(x) + HConlogm−2(I∆0 + Ωm)

is consistent, then so is the theory

I∆0 + Ωm + ∃x∈ logm+2θ(x),

where HConlogm−2(−) is the relativization of HCon(−) to the cut logm−2.

96 Saeed Salehi

Theorem 2. For natural m,n ≥ 0 there exists a bounded formula η(x) such that

I∆0 + Ωm + ∃x∈ lognη(x)

is consistent, but the theory
I∆0 + Ωm + ∃x∈ logn+1η(x)

is not consistent.

These two theorems (by putting n = m+ 1 for m ≥ 2) imply together that

(∗) I∆0 + Ωm 6` HConlogm−2(I∆0 + Ωm) for m ≥ 2.

This gives a partial answer to the question of holding Gödel’s Second Incompleteness Theorem for cut-free
consistency and weak arithmetics, which was answered in full by D.E. Willard in [4].

The proof of Theorem 1 was adapted to the case of I∆0 + Ω1 in Chapter 5 of [3] by modifying the
definition of HCon(−). Thus, one gets another model-theoretic proof of the unprovability of Herbrand
Consistency of I∆0 + Ω1 in itself. Note that Theorem 2 holds for I∆0 + Ω1 and I∆0 as well. Later, L.A.
Ko lodziejczyk extended (∗) above to the following results in [2]:

Main Theorem (of [2]): There exists n such that the theory
⋃

m Sm (or, equivalently I∆0 +
∧

m Ωm)
does not prove the Herbrand Consistency of Sn

3 (where Sn
3 is defined like Sn

2 but with the language
expanded by a function symbol for #3).

Also the following weaker result is proved in [2]:

Theorem 4.1 (of [2]): For every m ≥ 3 there exists an n such that Sm 6` HCon(Sn
m).

These results are taken to show that the Herbrand notion of Consistency cannot serve for Π1−seperating
the theories {I∆0 + Ωk}k or {Sk}k.

3 New Results

In the paper version of this extended abstract, we would like to polish the results of [3] (Ch. 5) and make
them readable to a wider audience. The newest result is that Theorem 1 can be extended (almost) to
I∆0.

Let I be the cut {x | ∃y[y = exp(ω1
2(x))]} and put T = log I = {x | ∃y[y = exp(x) ∧ y ∈I]}.

Another way of defining T is {x | ∃y[y = exp2(x4)]}. Then we can modify the above theorems of
Z. Adamowicz to the following:

Theorem 3. For a bounded formula θ(x), if the theory

I∆0 + HCon(I40) + ∃x∈I θ(x)

is consistent, then so is the theory
I∆0 + ∃x∈T θ(x),

where I40 is the theory I∆0 augmented with the additional axiom ∀x∃y(y = x · x).

Theorem 4. There exists a bounded formula η(x) such that

I∆0 + ∃x∈I η(x)

is consistent, but the theory
I∆0 + ∃x∈T η(x)

is not consistent.

Herbrand Consistency of I∆0 and I∆0 + Ω1 97

These two theorems give rise to a model-theoretic proof of I∆0 6` HCon(I40).
We note that the proof of Theorem 1 in [1] goes (roughly) as follows: for a model

M |= I∆0 + Ωm + ∃x∈ logm+1θ(x) + HConlogm−2(I∆0 + Ωm)

we construct an inner model N |= I∆0 + Ωm (by M |= HConlogm−2(I∆0 + Ωm)) which is definable in
M, and then squeeze a witness for x∈ logm+1&θ(x) logarithmically to get a witness for x∈ logm+2&θ(x)
in N , hence we obtain the desired model

N |= I∆0 + Ωm + ∃x∈ logm+2θ(x).

In the squeezing process, we need to demonstrate a large (non-standard) number with a relatively small
code (Gödel) number – as small as the logarithm of the number. Thus we added the redundant (and
already Q−provable) sentence ∀x∃y(y = x · x) to the set of axioms of I∆0 to get a Skolem function
symbol like f with the interpretation f(x) = x2. Now we have fm(2) = 22m

and we can code this number
by O(2m). This is the reason we could formulate Theorem 3 for I40 instead of I∆0, and then get its
corollary as I∆0 6` HCon(I40), though it would have been more desirable to give this kind of proof for
the unprovability I∆0 6` HCon(I∆0).

Also, L.A. Ko lodziejczyk notes in [2] that his main theorem could be extended to the case of Sn
2

by either having a function symbol for ω1 in the language or adding the seemingly irrelevant axiom
∀x∃y(y = x#x). He then mentions that

⋃
m Sm 6` HCon∗(Sm

2 + [∀x∃y(y = x#x)]).
This goes to say that by having an additional formula in the list of axioms, though it may seem too

trivial to be an axiom, one can shorten the cut-free proofs exponentially (cf. Clarification on p. 474 in
[4] and Remark on p. 636 in [2]).

To see why the proof of Theorem 2 in [1] works for Theorem 4 as well, we note that the proof does
not explicitly construct a bounded formula η(x) which satisfies the conditions of the theorem. The proof
is by contradiction: assume for all bounded formulas θ(x), the consistency of I∆0 + Ωn + ∃x∈ logmθ(x)
implies the consistency of I∆0 + Ωn + ∃x∈ logm+1θ(x), and then we get a contradiction. The essential
relevance of the cuts logm and logm+1 in the proof is the equivalence 2x ∈ logm ⇐⇒ x ∈ logm+1.
Indeed, any two cuts I ,T which satisfy this equivalence (2x∈I ⇐⇒ x∈T) will work in the proof of
Theorem 2 in [1]. And our cuts I ,T = log I defined above, just have this relation with each other.

Finally, we believe that with the modified definition and formalization of Herbrand Consistency in [3],
the above mentioned results of [2] can be improved considerably – for the case of Sn

2 and a little beyond.
This is yet to be seen.

References

1. Adamowiz, Z.: Herbrand Consistency and Bounded Arithmetic. Fund. Math. 171, 279–292 (2002)
http://journals.impan.pl/fm/Inf/171-3-7.html

2. Ko lodziejczyk, L.A.: On the Herbrand Notion of Consistency for Finitely Axiomatizable FGragments of
Bounded Arithmetic Theories. J. Symb. Log. 71, 624–638 (2006)
http://projecteuclid.org/euclid.jsl/1146620163

3. Salehi, S.: Herbrand Consistency in Arithmetics with Bounded Induction. Ph.D. Dissertation in Institute of
Mathematics, Polish Academy of Sciences (2002)
http://saeedsalehi.ir/pphd.html

4. Willard, D. E.: How to Extend the Semantic Tableaux and Cut-Free Versions of the Second Incompleteness
Theorem Almost to Robinson’s Arithmetic Q. J. Symb. Log. 67, 465–496 (2002)
http://projecteuclid.org/euclid.jsl/1190150055

Unbounded arithmetic

Sam Sanders1 and Andreas Weiermann1

1University of Ghent, Department of Pure Mathematics and
Computer Algebra, Krijgslaan 281, B-9000 Gent (Belgium),

{sasander,weierman}@cage.ugent.be

1 Introduction

When comparing the different axiomatizations of bounded arithmetic and Peano arithmetic, it becomes
clear that there are similarities between the fragments of these theories. In particular, it is tempting
to draw an analogy between the hierarchies of bounded arithmetic and Peano arithmetic. However, one
cannot deny that there are essential and deeply rooted differences and the most one can claim is a weak
analogy between these hierarchies. The following quote by Kaye (see [2]) expresses this argument in an
elegant way.

Many authors have emphasized the analogies between the fragmentsΣb
n-IND of I∆0+(∀x)(xlog x exists)

and the fragments IΣn of Peano arithmetic. Sometimes this is helpful, but often one feels that
the bounded hierarchy of theories is of a rather different nature and new techniques must be
developed to answer the key questions concerning them.

In this paper, we propose a (conjectured) hierarchy for Peano arithmetic which is much closer to that of
bounded arithmetic than the existing one. In light of this close relation, techniques developed to establish
properties of the new hierarchy should carry over naturally to the (conjectured) hierarchy of bounded
arithmetic. As the famous P vs. NP problem is related to the collapse of the hierarchy of bounded
arithmetic, the new hierarchy may prove particularly useful in solving this famous problem.

2 Preliminaries

We assume that the reader is familiar with the fundamental notions concerning bounded arithmetic and
Peano arithmetic. For details, we refer to the first two chapters of [1]. For completeness, we mention the
Hardy hierarchy and some of its essential properties. Let α be an ordinal and let λ be a limit ordinal
and λn its n-th predecessor.

H0(x) := x,

Hα+1(x) := Hα(x+ 1),
Hλ(x) := Hλx

(x).

The well-known Ackermann function A(x) corresponds to Hωω (x). For a given function Hα(x), the
inverse H−1

α (x) is defined as (µm ≤ x)(Hα(m) ≥ x). In general, the function H−1
α (x) is of much lower

complexity than Hα(x). Indeed, it is well-known that A(x) is not primitive recursive and that A−1(x)
is. For brevity, we sometimes write |x|α instead of H−1

α (x).

3 Two fundamental differences

In this section, we point out two fundamental differences between bounded arithmetic and Peano arith-
metic. In section 4, we attempt to overcome these differences.

3.1 The logarithmic function

In bounded arithmetic, the log function is defined as |x| := dlog2(x+ 1)e. Because the inverse of log, i.e.
the exponential function, is not total in bounded arithmetic, the log does not have its ‘usual’ properties.
The following theorem illustrates this claim.

Unbounded arithmetic 99

Theorem 1 The theory of bounded arithmetic does not prove that the log function is unbounded, i.e.
S2 6` (∀x)(∃y)(|y| > x).

Proof. Assume S2 proves (∀x)(∃y)(|y| > x). By Parikh’s theorem, there is a term t such that S2 proves
(∀x)(∃y ≤ t(x))(|y| > x). As |x| is weakly increasing, there follows (∀x)(|t(x)| > x). However, this implies
that t(x) grows as fast as the exponential function, which is impossible.

By completeness, there is a model of S2 in which |x| is bounded. At the very least, this theorem shows
that one should be careful with ‘visual’ proofs. Indeed, even most mathematicians would claim that it is
clear from the graph of log x that this function is unbounded. However, by itself, the previous theorem
is not a big revelation. Indeed, the same theorem (and proof) holds for PRA and A−1(x) instead of S2

and |x|. It is easy to verify that the function H−1
ε0 (x) has the same property for Peano arithmetic.

So far, we showed that the log function has unusual properties in bounded arithmetic, but there seem
to be similarly ‘strange’ functions in Peano arithmetic. However, the axioms of Peano arithmetic do not
involve H−1

ε0 (x), whereas the log function is used explicitly in the axiomatization of bounded arithmetic.
Indeed, consider the following axiom schema.

Axiom schema 2 (Φ-LIND) For every ϕ ∈ Φ, we have[
ϕ(0) ∧ (∀n)(ϕ(n)→ ϕ(n+ 1))

]
→ (∀n)ϕ(|n|).

This axiom schema is called ‘length induction’. The theory Si2 of bounded arithmetic consists of the
basic theory BASIC plus the Σb

n-LIND schema. Furthermore, the theory T i2 consists of BASIC plus the
Σb
n-induction schema and the (conjectured) hierarchy of bounded arithmetic is as follows, for i ≥ 2,

S1
2 ⊆ T 1

2 ⊆ · · · ⊆ Si2 ⊆ T i2 ⊆ Si+1
2 ⊆ T i+1

2 ⊆ · · · ⊆ S2 = T2. (1)

Thus, the log function appears in a non-trivial way in the axiomatization of bounded arithmetic, although
it has unusual properties (see theorem 1). By contrast, the function H−1

ε0 (x) does not appear in the axioms
of Peano arithmetic.

Finally, it is worth mentioning that in the presence of the exponential function, which is available in
IΣ1, Σn-IND and Σn-LIND coincide. Thus, at first glance there is no analogue of the length induction
axioms for Peano arithmetic. In section 4, we shall fill this gap.

3.2 The ‘smash’ function

In bounded arithmetic, Nelson’s ‘smash’ function x#y := 2|x|.|y| plays an important role. The presence
of this function guarantees that Gödel numbering can be done elegantly, that sharply bounded quan-
tifiers can be pushed into bounded quantifiers and that there is a natural correspondence between the
polynomial time hierarchy and the hierarchy of bounded arithmetical formulas (see [1, p. 100] for details).

However, the smash function is not Σ1-definable in I∆0. Thus, it is added to I∆0, either by the
axiom Ω1 which defines the function ω1(x, y) = x|y|, or through the axioms BASIC which guarantee that
x#y = 2|x|.|y|. The natural counterparts for this function in PRA and Peano arithmetic are

x%y := A
[
A−1(x).A−1(y)

]
and x@y := Hε0

[
H−1
ε0 (x).H−1

ε0 (y)
]
.

It is easily verified that x%y is not primitive recursive and that x@y is not provably total in Peano
arithmetic. It should be noted that the latter function has recently been considered in [3] in the context
of ‘Ackermannian degrees’.

4 A new hierarchy for Peano arithmetic

In this section we introduce a new (conjectured) hierarchy of Peano arithmetic, inspired by the (conjec-
tured) hierarchy of bounded arithmetic. Thus, we refer to these theories as ‘unbounded arithmetic’. The
following axiom schema plays a central role.

100 Sam Sanders and Andreas Weiermann

Axiom schema 3 (Φ-LIND) For every ϕ ∈ Φ, we have[
ϕ(0) ∧ (∀n)(ϕ(n)→ ϕ(n+ 1))

]
→ (∀n)ϕ(|n|ε0).

Thus, we have introduced the function H−1
ε0 (x) explicitly and the Σn-LIND axioms are the natural

counterpart for the Σb
n-LIND axioms of bounded arithmetic.

However, the theoryQ+Σi-LIND is not a good counterpart for Si2. Indeed, recall that Si2 consists of the
axiom schema Σb

i -LIND plus the axiom set BASIC. The latter makes sure that x#y = 2|x|.|y| is available.
Thus, the natural counterpart of the smash function in Peano arithmetic, namely x@y = Hε0(|x|ε0 .|y|ε0),
is missing from Q+Σn-LIND. Thus, we define BASIC as Robinson’s theory Q plus the statement that
x@y = Hε0(|x|ε0 .|y|ε0) is total. Next, we define Si2 as the theory BASIC plus Σi-LIND and Ti2 as
the theory BASIC plus Σi-IND. Finally, we define T2 (respectively S2) as the union of all theories Ti2
(respectively Si2). It is immediate that T2 is very close to Peano Arithmetic. We have partial proofs for
the following theorem.

Theorem 4 For i ≥ 2, we have

S1
2 ⊆ T1

2 ⊆ · · · ⊆ Si2 ⊆ Ti2 ⊆ Si+1
2 ⊆ Ti+1

2 ⊆ · · · ⊆ S2 = T2 = PA + BASIC.

The ubiquity of fast growing functions in PA allows us to give an alternative hierarchy. The following
axiom schema is fundamental.

Axiom schema 5 (Φ-LIND) For every ϕ ∈ Φ, we have[
ϕ(0) ∧ (∀n)(ϕ(n)→ ϕ(n+ 1))

]
→ (∀n)ϕ

(
|n|(ε0)n

)
.

As in the previous, we define BASICn as Robinson’s theoryQ plus the statement thatH(ε0)n
(|x|(ε0)n

.|y|(ε0)n
)

is total. Next, we define Si2 as the theory BASICi plus Σi-LIND and T i2 as the theory BASICi plus
Σi-LIND. Finally, we define T2 (respectively S2) as the union of all theories T i2 (respectively Si2). It is
immediate that T2 is essentially Peano Arithmetic. We have partial proofs for the following theorem.

Theorem 6 For i ≥ 2, we have

S1
2 ⊆ T 1

2 ⊆ · · · ⊆ Si2 ⊆ T i2 ⊆ Si+1
2 ⊆ T i+1

2 ⊆ · · · ⊆ S2 = T2 = PA.

Incidentally, if we replace the ordinal ε0 in schema 3 with an ordinal parameter α, then α = ε0 corresponds
to LIND, α = (ε0)n to LIND and α = ω2 essentially to LIND. Thus, all the above length induction
schemas are ‘branches of the same tree’.

5 Some time functions

The attentive reader has noted that the length induction axioms of bounded arithmetic is not the only
place where the log-function is used explicitly. Indeed, the latter function is also used explicitly in the
definition of the polynomial time functions. In this section, we introduce two additional function classes
which play the role of the polynomial time functions in our two new hierarchies of Peano Arithmetic.

The class FP of the polynomial time functions is obtained by closing a certain set of initial functions
under projection, composition and a restricted version of primitive recursion, called ‘limited iteration’.
Essentially, primitive recursion is allowed as long as the resulting function f(z,x) ‘does not grow too
fast’. In particular, f has to satisfy the following growth condition:

|f(z,x)| ≤ p(|z|, |x|), for all z, x,

where p is some polynomial.

Analogously, the class FP is defined by closing the same initial functions under projection, composition
and a restricted version of double recursion. In particular, double recursion is allowed if the resulting
function f(z,x) satisfies

|f(z,x)|ε0 ≤ h
(
|z|ε0 , |x|ε0

)
,

Unbounded arithmetic 101

where h is some primitive recursive function.

Analogously, the class FP is defined by closing the same initial functions under projection, composi-
tion and a restricted version of double recursion. In particular, double recursion is allowed if the resulting
function f(z,x) satisfies

A−1
[
f(z,x)

]
≤ h

(
A−1(z), A−1(x)

)
,

where h is some primitive recursive function.

The functions in FP and FP may be called ‘primitive recursive time’ functions. The class FP is closely
related to the total functions of S1

2 and the class FP is closely related to the total functions of S1
2 .

Bibliography

[1] Samuel R. Buss, An introduction to proof theory, Handbook of proof theory, Stud. Logic Found. Math.,
vol. 137, North-Holland, Amsterdam, 1998, pp. 1–78.

[2] Richard Kaye, Using Herbrand-type theorems to separate strong fragments of arithmetic, Arithmetic, proof
theory, and computational complexity (Prague, 1991), Oxford Logic Guides, vol. 23, Oxford Univ. Press, New
York, 1993, pp. 238–246. MR1236465 (94f:03067)

[3] H. Simmons, The Ackermann functions are not optimal, but by how much?, to appear in Journal of Symbolic
Logic (2010).

Fine Hierarchies via Priestley Duality

Victor Selivanov ?

A.P. Ershov Institute of Informatics Systems
Siberian Division Russian Academy of Sciences

vseliv@iis.nsk.su

Abstract. In applications of the fine hierarchies their characterizations in terms of the so called
alternating trees is of principal importance. Also, in many cases a suitable version of many-one
reducibility exists that fits a given fine hierarchy. With a use of Priestley duality we obtain a
surprising result that suitable versions of alternating trees and of m-reducibilities may be found for
any given fine hierarchy, i.e. the methods of alternating trees and m-reducibilities are quite general,
which is of some methodological interest.
Along with hierarchies of sets, we consider also more general hierarchies of k-partitions and in
this context propose some new notions and establish new results, in particular extend the results
mentioned above for hierarchies of sets.
Key words. Hierarchy, m-reducibility, Boolean algebra, bounded distributive lattice, Priestley
space, alternating tree, k-partition.

1 Introduction

In several applications of fine hierarchies (see [Se08] for a recent survey), their characterisations in terms
of the so called alternating trees is of principal importance. Also, in many cases a suitable version of
m-reducibility exists that fits a given fine hierarchy (FH). Here we show a surprising result that suitable
versions of alternating trees and of m-reducibilities may be found for any given fine hierarchy, i.e. the
methods of alternating trees and m-reducibilities are quite general, which is of some methodological
interest for the hierarchy theory initiated in [Ad62]. The result is naturally described in terms of Priestley
duality [DP94]. For simplicity, we discuss our results in this introduction only for the difference hierarchy
(DH) which is the simplest and most important version of a FH; for the DH the alternating trees are
simplified to alternating chains.

Let B = (B;∪,∩,¯, 0, 1) be a Boolean algebra and L a sublattice of (B;∪,∩, 0, 1). Let L(k) be the set
of all elements

⋃
i(a2i \ a2i+1) where ai ∈ L satisfy a0 ⊇ a1 ⊇ · · · and ak = 0. The sequence {L(k)}k<ω

is called the difference hierarchy over L. It is well known that L(k) ∪ Ľ(k) ⊆ L(k + 1) and
⋃
k<ω L(k) is

the Boolean algebra generated by L, where Ľ(k) = {x | x ∈ L(k)}. Let us mention a couple of examples:

1. Let L be the class of open sets in an ω-algebraic domain X. Then L(n) is the class of approximable
sets A ⊆ X such that there is no sequence a0 ≤ · · · ≤ an of compact elements with a2i ∈ A,
a2i+1 6∈ A. Here ≤ is the specialization order. A suitable reducibility is the Wadge reducibility (i.e.,
the m-reducibility by continuous functions).

2. Let L be the level 1/2 of the Straubing-Thérien hierarchy of regular languages over a given alphabet.
Then L(n) is the class of languages A such that there is no sequence a0 ≤ · · · ≤ an of words with
a2i ∈ A, a2i+1 6∈ A. Here ≤ is the subword order. A suitable reducibility was not known, though for
the closely related Brzozowski hierarchy such a reducibility was found in [SW05].

3. Let L be the set of existential sentences of a signature σ. Then L(n) is the set of σ-sentences ϕ
such that there is no sequence A0 ⊆ · · · ⊆ An of σ-structures with A2i |= ϕ, A2i+1 6|= ϕ. A suitable
reducibility is not known, to my knowledge.

Are there similar characterizations for an arbitrary DH? It is not obvious because there are also many
examples of DH’s in the literature for which the chain-characterisation was not known. Nevertheless, we
show that the answer is positive. Is there a suitable reducibility that fits arbitrary given DH? Again, the
answer is positive, at least for a rather broad natural class of DH’s.

Along with the DH, we establish similar results for a rich class of the FH’s. We also establish similar
results for the hierarchies of k-partitions A : X → k = {0, . . . , k − 1} of a given set X to k ≥ 2 parts
? Supported by DFG-RFBR (Grant 436 RUS 113/1002/01, 09-01-91334) and by RFBR Grant 07-01-00543a.

Fine Hierarchies via Priestley Duality 103

(A0, . . . , Ak−1) which were recently considered by several researchers in different fields of hierarchy theory
and of computable analysis [Ko00,KW00,HW94,Hem04,Se08]. The extension to k-partitions is non-trivial
because even the “right” definitions of some corresponding notions were not known.

2 Difference Hierarchy

We assume the reader to be acquainted with basic notions and facts about Stone and Priestley dualities
[DP94]. Recall that a Priestley space (X;≤) is a compact topological space X equipped with a partial
order ≤ such that for any x, y ∈ X with x 6≤ y there is a clopen up-set U with x ∈ U 63 y (a subset U
of X is up if x ∈ U and x ≤ y imply y ∈ U). The Priestley duality states the dual equivalence between
the category of bounded distributive lattices and the category of Priestley spaces as objects and the
continuous monotone mappings as morphisms.

From Priestley duality it follows that for any bounded distributive lattice L the DH’s over L and
over the lattice L of clopen up-sets in the dual space (X;≤) are isomorphic (in a natural sense). By an
alternating chain of length k for A ⊆ X we mean a sequence (x0, . . . , xk) of elements of X such that
x0 ≤ · · · ≤ xk and xi ∈ A iff xi+1 6∈ A for each i < k. Such a chain is called a 1-chain if x0 ∈ K. The
next result shows that the method of alternating chains [Ad65] is completely general.

Theorem 1. Let (X;≤) be a Priestley space, A ⊆ X and k ≥ 0. Then A ∈ L(k) iff A is clopen and has
no 1-alternating chain of length k.

Let (X;≤) be a Priestley space and A,B ⊆ X. We say that A is M -reducible to B if A = f−1(B)
for some monotone continuous function f : X → X.

Theorem 2. Let (X;≤) be a Priestley space.
1. For any n ≥ 0, L(n) is closed under M -reducibility.
2. If C = L(n) \ Ľ(n) is non-empty then L(n) has an M -complete set and C forms an M -degree.
3. If Ľ has the separation property and C = (L(n + 1) ∩ Ľ(n + 1)) \ (L(n) ∪ Ľ(n)) is non-empty then
L(n+ 1) ∩ Ľ(n+ 1) has an M -complete set and C forms an M -degree.

Remark 1. For a given DH over L, the chain characterisation and the appropriate reducibility are not
unique. E.g., (A∗;⊆) is not isomorphic to the Priestley poset for the level 1/2 of the Straubing-Thérien
hierarchy (see Introduction, Example 1). Different chain characterisations of a given DH may provide
different useful information on the hierarchy. E.g., in [GS01,GSS08] two different chain characterisations
of the DH over the level 1/2 of the Brzozowski’s dot-depth hierarchy were found which yield, respectively,
polynomial-space and nondeterministic log-space algorithms deciding the levels of the hierarchy. qf -
Reducibility from [SW05] fits the DH over the level 1/2 of the Brzozowski’s dot-depth hierarchy but it is
distinct from the corresponding M -reducibility. In several cases (say in Example 1 from Introduction or
for the Wagner hierarchy [Wag79]) M -reducibility coincides with reducibilities already known from the
literature.

3 Fine Hierarchy

By an ω-base we mean a sequence L = {Ln}n<ω of bounded distributive lattices such that, for any n < ω,
Ln is a sublattice of both Ln+1 and Ľn+1. For an ω-base L, L∗ =

⋃
n<ω Ln is a Boolean algebra. Let

M = {Mn}n<ω be another ω-base. By a morphism f : L→M we mean a homomorphism f : L∗ →M∗

of Boolean algebras such that f(Ln) ⊆Mn for each n < ω. Let Bω be the category of ω-bases.
By an ω-space we mean a compact topological space X equipped with a sequence {≤n}n<ω of pre-

orders such that: for all n < ω and x, y ∈ X, x 6≤n y implies that x ∈ U 63 y for a clopen ≤n-up set
U ⊆ X (the class of such sets is denoted Ln); for any n < ω, x ≤n+1 y implies x ≡n y; if x ≡n y for
all n < ω then x = y. We denote such a space as (X;≤0, . . .) or, abusing notation, just by X. Let Sω
denote the category with the ω-spaces as objects and continuous functions between ω-spaces which are
monotone with respect to all the preorders ≤n, n < ω, as morphisms. We will need the following easily
verified extension of Priestley duality: the categories Bω and Sω are dually equivalent.

To any ω-base L = {Ln} one can associate (using suitable Boolean operations) in a natural way classes
Snα ⊆ B(n < ω, α < ε0) (we omit the rather technical definition from [Se08]). We call the sequence of sets

104 Victor Selivanov

{Sα}α<ε0 , where Sα = S0
α, the fine hierarchy over L. These sets satisfy Sα ∪ Šα ⊆ Sβ for α < β < ε0.

Let (X;≤0, . . .) be the dual ω-space for L and let L = {Ln}n be the induced ω-base in X. Then L and
L are canonically isomorphic, and in fact this isomorphism extends to an isomorphism of the FH’s over
L and L. The FH over L has a characterisation that extends Theorem 1.

The alternating chains are now extended to alternating trees as follows (cf. [Se08]). Let A ⊆ X and
τ ∈ ω∗. By a τ -aternating tree for A we mean a family {pσ | σ ∈ 2∗, |σ| ≤ |τ |} of elements of X such
that p∅ 6∈ A and pσ0 6∈ A, pσ1 ∈ A, pσ ≤τ(|σ|) pσk for |σ| < |τ | and k < 2. Define strings τnα (n < ω) by
induction on α < ε0 as follows: τn0 = ∅, τnα+1 = nτnα , τ

n
ωγ = τn+1

γ for γ > 0, and τnδ+ωγ = τnωγnτ
n
δ for

δ = ωγ · δ′ > 0, γ > 0. Let τα = τ0
α.

Theorem 3. Let (X;≤0, . . .) be an ω-space and α < ε0. Then the level Sα of the fine hierarchy over L
coincides with the class of clopen subsets of X that do not have τα-alternating trees.

Also Theorem 2 has a suitable extension to the FH’s; instead of M -reducibility above one has now
to take the many-one reducibility by morphisms of the category Sω.

4 Hierarchies of k-Partitions

In this section we briefly discuss extensions of the results about hierarchies of sets above to hierarchies
of k-partitions. Levels of our hierarchies of k-partitions will be well partial ordered by inclusion. A
well preorder (wqo) is a preorder P that has neither infinite descending chains nor infinite antichains.
Well preorder theory is widely known as the wqo-theory. Recall that two preorders are equivalent if the
corresponding quotient posets are isomorphic.

A k-poset is an object (P ;≤, c) consisting of a poset (P ;≤) and a labeling c : P → k. A morphism
f : (P ;≤, c) → (P ′;≤′, c′) of k-posets is a monotone function f : (P ;≤) → (P ′;≤′) respecting the
labelings, i.e. satisfying c = c′ ◦ f . Let Fk and Pk be the classes of all finite k-forests and finite k-
posets, respectively. Define [Ko00,KW00] the preorder ≤h on Pk as follows: (P, c) ≤h (P ′, c′), if there is
a morphism from (P, c) to (P ′, c′).

Let P = (P ;≤) be a finite k-poset, (X;≤) be a Priestley space and L the class of clopen up-sets in
X. Let L(P) be the class of partitions A : X → k such that for some P -family {Sp}p∈P of L-sets we have
Ai =

⋃
{S̃p | c(p) = i} for all i < k where S̃p = Sp \

⋃
q>p Sq. The family {L(P)}P∈Pk is called the DH

of k-partitions over L. It is easy to show that P ≤h P ′ implies L(P) ⊆ L(P ′) and that L(P) = L(F (P))
where F (P) is the unfolding of P to a k-forest defined in [Se04] (F (P) coincides with a greatest element
in ({F ∈ Fk | F ≤h P};≤h).

An advantage of our definition of the DH compared with the definition from the DH of k-partitions
over posets from [Ko00] (denoted in this paragraph by {L′(P)}P∈Pk) is that the results of Section 2 may
be naturally extended to the DH of k-partitions (we omit exact formulation). Our DH of k-partitions is
in fact a coarsification of the hierarchy from [Ko00]: L(P) ⊇

⋃
{L′(Q) | F (Q) ≤h P}. Another advantage

is the fact that the collection of levels of our DH of k-partitions is well partial ordered by inclusion, in
contrast to the hierarchy in [Ko00]. For the important particular case when L has the reduction property
both definitions are equivalent (this is proved using an argument from [Se04]).

Also the results of Section 3 have natural extensions to the case of k-partitions. Because of lack of
space we only give the definition of partial orders which describe the order (under inclusion) of levels of
the FH of k-partitions. For a preorder (Q;≤), let TQ denote the preorder formed by the finite Q-labeled
trees (T, c), c : T → Q, preordered by: (T, c) ≤h (T ′, c′) iff there is a monotone function c : T → T ′ such
that c(x) ≤ c′(f(x)) for each x ∈ T . As is well known from the wqo-theory, if Q is a wqo then so is also
TQ.

Define the sequence {Tk(n)}n<ω of preorders by induction on n as follows: Tk(0) is the antichain k
on the set k, and Tk(n+ 1) = TTk(n). Identifying k with the minimal elements of Tk(1), we may assume
that Tk(0) is an initial segment of Tk(1) and, moreover, Tk(n) is an initial segment of Tk(n+ 1) for each
n ≥ 0. Therefore, Tk(ω) =

⋃
n<ω Tk(n) is a wqo and TTk(ω) coincides with Tk(ω). For any n ≤ ω, let

T ∗k (n) be the class of finite subsets of Tk(n) preordered by: F ≤ G iff for any T ∈ F there is S ∈ G with
T ≤ G. It is easy to check that T ∗k (1) is equivalent to Fk with the h-preorder.

For an ω-space (X;≤0, . . .), the levels of the FH of k-partitions over the induced ω-base L in X are
ordered by inclusion as the quotient-poset of T ∗k (ω), and the results of Section 3 may be extended to this
case. There are several interesting examples of such FH’s. E.g., with a heavy use of one such FH we can

Fine Hierarchies via Priestley Duality 105

extend the main facts on the Wagner hierarchy of regular sets [Wag79] to the case of regular k-partitions
(completing thus the results in [Se07]). In particular, we have:

Theorem 4. The Wadge preorder on the set of ω-regular k-partitions is equivalent to T ∗k (2).

References

[Ad62] J.W. Addison. The theory of hierarchies. Logic, Methodology and Philosophy of Science, Proc. of 1960
Int. Congress, Stanford, Palo Alto, 1962, 26–37.

[Ad65] J.W. Addison. The method of alternating chains. In: The theory of models, Amsterdam, North Holland,
1965, p.1–16.

[DP94] B.A. Davey and H.A. Pristley. Introduction to Lattices and Order. Cambridge, 1994.
[GS01] C. Glaßer amd H. Schmitz. The Boolean Structure of Dot-Depth One. J. of Automata, Languages and

Combinatorics, 6 (2001), 437–452.
[GSS08] C. Glaßer, H. Schmitz and V. Selivanov. Efficient algorithms for membership in Boolean hierarchies of

regular languages. Proceedings of STACS-2008, p. 337-348. Dagstuhl Seminar Proceedings 08001 (full
version in ECCC Report TR07-094).

[Hem04] A. Hemmerling. Hierarchies of function classes defined by the first-value operator. Universität Greifswald
Preprint-Reihe Mathematik 12/2004.

[HW94] P. Hertling and K. Weihrauch. Levels of degeneracy and exact lower complexity bounds for geometric
algorithms. Proc. of the 6th Canadian Conf. on Computational Geometry, Saskatoon 1994, 237–242.

[Ko00] S. Kosub. Complexity and Partitions. PhD Thesis, Würzburg, 2000.
[KW00] S. Kosub and K. Wagner. The boolean hierarchy of NP-partitions. STACS-2000 proceedings, Lecture

Notes of Computer Science, 1770 (2000), 157–168, Berlin, Springer.
[Se04] V.L. Selivanov. Boolean hierarchies of partitions over reducible bases. Algebra and Logic, 43, N 1 (2004),

44–61.
[Se07] V.L. Selivanov. Classifying omega-regular partitions. Preproceedings of LATA-2007, Universitat Rovira

i Virgili Report Series, 35/07, 529–540.
[Se08] V. L. Selivanov. Fine hierarchies and m-reducibilities in theoretical computer science. Theoretical Com-

puter Science, 405 (2008), 116–163.
[SW05] V.L. Selivanov and K.W. Wagner. A reducibility for the dot-depth hierarchy. Theoretical Computer

Science, 345, N 2-3 (2005), 448–472.
[Wag79] K. Wagner. On ω-regular sets. Inform. and Control, 43 (1979), 123–177.

On Transitive Closure Operators in Finite Order Logic

Artur Wdowiarski

Department of Logic, Institute of Philosophy, Warsaw University, Krakowskie Przedmieście 3, 00-047 Warsaw,
Poland

arturwdowiarski@uw.edu.pl

The approach presented in this paper is a generalization of Immerman’s result from [Imm87], i.e. the
fact that first order logic with first order transitive closure operator captures NLOGSPACE. We discuss
logics of finite orders with transitive closure operators of various orders. These logics are intuitive and
productive tools for describing some interesting space complexity classes. The general inspiration follows
from Mostowski’s work presented in [Most01] and devoted to studying sublogics of finite order logic in
finite models. The ideas of that work were further developed in application to time complexity classes in
Ko lodziejczyk’s papers [Ko l04a] and [Ko l04b].

We consider arithmetical models on finite initial segments U = {0, . . . ,m − 1}. These models are
supplied with standard arithmetical operations such as addition and multiplication, treated as ternary
relations. Let us observe that addition and multiplication are definable by means of the successor relation
in the logic of first order transitive closure. In the models under consideration, the greatest element m−1
is denoted by max.

We define types as follows. ι is a type (the basic type) and, if τ1, . . . , τk are types, then τ = (τ1, . . . , τk)
is also a type. The corresponding universes are defined as follows. Uι = U , and Uτ = P (Uτ1 × . . .× Uτk).
Each type τ determines the corresponding function hτ : IN → IN. hι (m) = m, and hτ (m) = 2hτ1 ·...·hτk .
Then we show, using a technique suggested by Marcin Mostowski, that finite arithmetic over U =
{0, . . . ,m−1} in the logic with quantification restricted to a type τ and its subtypes is equivalent to first
order arithmetic over U ′ = {0, . . . , hτ (m) − 1}. That technique involves an alternative way of proving
one of Zdanowski’s results from [Zd05].

We define the order of a type τ , denoted by ord (τ), as follows. ord (ι) = 1, and if τ = (τ1, . . . , τk), then
ord (τ) = max {ord (τi) : 1 ≤ i ≤ k}. Finite order logic, Lω, is the logic that allows quantification over
variables of arbitrary types. The n-th order logic, Ln, is said to be the sublogic of Lω with quantification
restricted to viariables of types with orders of at most n.

For each type τ and each binary relation between objects of type τ (or k-tuples of such objects) we
define the transitive closure of that relation. We introduce transitive closure operators that applied to
a formula defining the relation R denote the transitive closure of R. We say that a transitive closure
operator is of order n and that it has arity k iff it is applicable to formulas describing relations R of
order n and with arity 2k, i.e. such that R ∈ Uτ , for some type τ of order n, where τ = (τ1, . . . , τ2k).

We consider logics Ln (TCn+1) or order n with added transitive closure operator of order n+ 1. The
syntax for such logics is similar to that of the first order logic of transitive closure, as presented in, for
example, [Imm87]. We also consider sublogics of Ln (TCn+1) consisting of only positive formulas. They
are of the form

[TCϕ (P1, P2)] (0,MAX) ,

where ϕ defines a relation of type (τ, τ), 0 is the empty relation of type τ and MAX is the full relation
of type τ (they can be defined by ,,x 6= x” and ,,x = x”, respectively). Such sublogic of Ln (TCn+1) is
denoted by Ln (posTCn+1).

We also introduce transitive closure operators restricted by some functions – TCf . Such operators
ignore bits beyond f (m) in models of cardinality m. We achieve this by defining inductively orders <τ
for each type τ . <ι is simply < and if x and y are variables of type τ = (τ1, . . . , τk), then

x <τ y ≡df ∃z [∀w <τ1,...,τk z (x (w) ≡ y (w)) ∧ ¬x (z) ∧ y (z)] ,

where v = (v1, . . . , vk) and w <τ1,...,τk z is a shortcut for

w1 <τ1 z1 ∨
∨ (w1 =τ1 z1 ∧ w2 <τ2 z2) ∨

∨ (w1 =τ1 z1 ∧ w2 =τ2 z2 ∧ w3 <τ3 z3) ∨ . . .
. . . ∨ (w1 =τ1 z1 ∧ w2 =τ2 z2 ∧ . . . ∧ wk <τk zk) ,

On Transitive Closure Operators in Finite Order Logic 107

where v =τi v
′ is a shortcut for ¬ (v <τi v

′)∧¬ (v′ <τi v). Having defined such orders for all types, we say
that a transitive closure operator is restricted by some function f such that f is everywhere-dominated
by the function hτ , for some type τ , and denote it by TCf , iff TCf can be applied only to formulas with
all the quantifiers restricted to the f(max)-th element of the order <τ . We denote the n-th order logic
with the n + 1-th order transitive closure operator of arity k and restricted to f by Ln

(
TCf,kn+1

)
and

its sublogic consisting only of positive formulas by Ln
(
posTCf,kn+1

)
. If we allow arbitrary arity k, we get

Ln

(
TCf,ωn+1

)
and Ln

(
posTCf,ωn+1

)
, respectively.

We consider space complexity classes as classes of finite arithmetical models recognized by Turing
machines with binary memory of the size ≤ f (m), for a proper function f . Thus NSPACE (f) is smaller
than NSPACE (O (f)). Essentially we consider nondeterministic space complexity classes.

The generalization of Immerman’s result mentioned in the first paragraph consists in following the
idea visualized in the figure below.

Input data:︸ ︷︷ ︸
n

Available working memory:︸ ︷︷ ︸
hτ (n)

Restricted working memory:︸ ︷︷ ︸
f (n)

The idea is that if we have an input model of size n (its universe being the initial segment of natural
numbers) and allow the transitive closure operator acting on relations R between objects of type τ , we
operate in logic FO(TC) over models of size hτ (n). Then, if we limit formulas defining relations R to
those with quantifiers restricted to f(max), we move to models of size f(n). Having established that, we
can prove the following theorems, using well known techniques from, for example [EF95].

Theorem 1. For every arithmetically definable and space constructible function f such that there is a
function hτ such that for all m ∈ IN g (m) ≤ hτ (m), where g (x) = f (x) + log f (x) + c + d log (x), for
some c and d, if τ = (τ1, . . . , τk) and ord (τ) = n, then:

NSPACE (f) ⊆ Ln
(
posTCg,1n+1

)
Theorem 2. For every arithmetically definable and space constructible function f such that there is a
function hτ such that for all m ∈ IN f (m) ≤ hτ (m), if ord (τ) = n, then:

Ln

(
posTCf,1n+1

)
⊆ SPACE (2f +O(logf))

Theorem 3. For f ,hτ and g like in Theorem 1,

Ln

(
TCf,1n+1

)
⊆ SPACE (O(f)) ⊆ Ln

(
TCg,ωn+1

)
,

References

[EF95] Ebbinghaus H.D. and Flum J.: Finite Model Theory. Springer Monographs in Mathematics. Springer,
Berlin, 1995.

[Imm87] Immerman N.: Languages That Capture Complexity Classes. SIAM J. of Computing 16:4 (1987), 760-
778.

[Ko l04a] Ko lodziejczyk L.A.: A finite model-theoretical proof of a property of bounded query classes within PH.
JSL 69 (2004), 1105-1116.

[Ko l04b] Ko lodziejczyk L.A.: Truth definitions in finite models. JSL 69 (2004), 183-200.
[Most01] Mostowski M.: On representing concepts in finite models. MLQ 47(2001), 513-523;
[Zd05] Zdanowski K.: Arithmetics in finite but potentially infinite worlds. Ph.D. Thesis, Warsaw University,

2005

Polynomial Hierarchy, Betti Numbers
and a Real Analogue of Toda’s Theorem ?

Saugata Basu1 and Thierry Zell2

1 Department of Mathematics, Purdue University, West Lafayette, IN 47906, U.S.A. sbasu@math.purdue.edu
2 School of Mathematics and Computing Sciences, Lenoir-Rhyne University, Hickory, NC 28603

thierry.zell@lr.edu

Abstract. Toda [10] proved in 1989 that the (discrete) polynomial time hierarchy, PH, is con-
tained in the class P#P, namely the class of languages that can be decided by a Turing machine
in polynomial time given access to an oracle with the power to compute a function in the counting
complexity class #P.

We prove an analogous result in the complexity theory over the reals. Unlike Toda’s proof in the
discrete case, which relied on sophisticated combinatorial arguments, our proof is topological in
nature.

Keywords: Polynomial hierarchy, Betti numbers, Semi-algebraic sets, Toda’s theorem.

1 Introduction

The primary motivation for our result comes from classical (i.e. discrete) computational complexity
theory. In that setting, a seminal result due to Toda [10] links the complexity of counting with that of
deciding sentences with a fixed number of quantifier alternations.

Theorem 1 (Toda [10]). PH ⊂ P#P.

Here, PH denotes the (discrete) polynomial hierarchy, and #P is the counting class associated with the
decision problems in NP: it can be defined as the set of functions f(x) which, for any input x, return
the number of accepting paths for the input x in some non-deterministic Turing machine. Thus, Toda’s
theorem asserts that any language in the polynomial hierarchy can be decided by a Turing machine in
polynomial time, given access to an oracle with the power to compute a function in #P. (Only one call
to the oracle is required in the proof.)

While it is obvious that the classes P,NP, coNP are contained in P#P, the proof for the higher
levels of the polynomial hierarchy is quite non-trivial, and requires previous results of Schöning [8], and
Valiant and Vazirani [11]. We prove the following real analogue of Theorem 1.

Theorem 2 (Real analogue of Toda’s theorem). PHc
R ⊂ P#P†

R
R .

Establishing such a result is not straightforward, for the following reasons.

– While the problem of defining the real polynomial hierarchy PHR is straightforward, there is no
consensus on the “right” generalization of the counting class #P to the reals. Our choice, which we
denoted #P†R (Definition 3), is crucial to the proof.

– Because of the presence of an intermediate complexity class in Toda’s original proof, there seems to
be no direct way of extending such a proof to real complexity classes in the sense of Blum-Shub-Smale
model of computation [2, 9].

Thus, the proof of Theorem 2 proceeds along completely different lines; it is mainly topological in
nature, and technical reasons require us to consider a compact restriction PHc

R of the real polynomial
hierarchy.

? A more complete extended abstract appears in the proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’09). The full paper will appear in Foundations of Computational
Mathematics.

Polynomial Hierarchy, Betti Numbers and a Real Analogue of Toda’s Theorem 109

2 Real Machines and Complexity Classes

We let R be the real field (or, more generally, any real-closed field).

2.1 Real Turing Machines

In the late eighties Blum, Shub and Smale [2, 9] introduced the notion of Turing machines over more
general fields, thereby generalizing the classical problems of computational complexity theory such as P
vs NP to corresponding problems over arbitrary fields (such as the real, complex, p-adic numbers etc.) In
particular, Blum, Shub, and Smale (henceforth B-S-S) proved the NPR-completeness of the problem of
deciding whether a real polynomial equation in many variables of degree at most four has a real solution
(this is the real analogue of Cook-Levin’s theorem that the satisfiability problem is NP-complete in
the discrete case), and subsequently through the work of several researchers (Koiran, Bürgisser, Cucker,
Meer to name a few) a well-established complexity theory over the reals has been built up, mirroring
closely the discrete case.

2.2 Real Analogue of P

The analogue of the polynomial class for the reals is well known.

Definition 1. Let k(n) be any polynomial in n. A sequence of semi-algebraic sets (Tn ⊂ Rk(n))n>0 is
said to belong to the class PR if there exists a Turing machine M over R (see [2, 1]), such that for all
x ∈ Rk(n), the machine M tests membership of x in Tn in time bounded by a polynomial in n.

2.3 The Compact Hierarchy PHc
R

For technical reasons linked to the topological methods used we need to restrict to compact semi-algebraic
sets, and for this purpose, we will now define a compact analogue of PHR that we will denote PHc

R.
Unlike in the non-compact case, we will assume all variables vary over certain compact semi-algebraic
sets (namely spheres of varying dimensions).

Notation 3. We denote by Sk(0, r) the sphere in Rk+1 of radius r centered at the origin, and by Sk the
unit sphere Sk(0, 1).

Definition 2 (Compact real polynomial hierarchy). Let

k(n), k1(n), . . . , kω(n)

be polynomials in n. A sequence of semi-algebraic sets (Sn ⊂ Sk(n))n>0 is in the complexity class Σc
R,ω,

if for each n > 0 the semi-algebraic set Sn is described by a first order formula

(Q1Y1 ∈ Sk1(n)) · · · (QωYω ∈ Skω(n))φn(X0, . . . , Xk(n),Y1, . . . ,Yω), (1)

with φn a quantifier-free first order formula defining a closed semi-algebraic subset of Sk1(n)×· · ·×Skω(n)×
Sk(n) and for each i, 1 ≤ i ≤ ω, Yi = (Y i

0 , . . . , Y
i
ki

) is a block of ki(n)+1 variables, Qi ∈ {∃,∀}, with Qj 6=
Qj+1, 1 ≤ j < ω, Q1 = ∃, and the sequence of semi-algebraic sets (Tn ⊂ Sk1(n)×· · ·×Skω(n)×Sk(n))n>0

defined by the formulas (φn)n>0 belongs to the class PR.
We define the class Πc

R,ω as above, with the exception that the alternating quantifiers in (1) start
with Q1 = ∀. Finally define the compact real polynomial time hierarchy to be the union

PHc
R

def=
⋃
ω≥0

(Σc
R,ω ∪Πc

R,ω) =
⋃
ω≥0

Σc
R,ω =

⋃
ω≥0

Πc
R,ω.

Notice that the semi-algebraic sets belonging to any language in PHc
R are all semi-algebraic compact

(in fact closed semi-algebraic subsets of spheres). Also, note the inclusion

PHc
R ⊂ PHR.

Remark 1. Even though the restriction to compact semi-algebraic sets might appear to be only a tech-
nicality at first glance, this is actually an important restriction. For instance, it is a long-standing open
question in real complexity theory whether there exists an NPR-complete problem which belongs to the
class Σc

R,1 (the compact version of the class NPR).

110 Saugata Basu and Thierry Zell

2.4 Example

The following is an example of a language in Σc
R,1 (i.e. the compact version of NPR). Let k(n) =

(
n+4

4

)
−1

and identify Rk(n)+1 with the space of homogeneous polynomials in R[X0, . . . , Xn] of degree 4. Let
Sn ⊂ Sk(n) ⊂ Rk(n)+1 be defined by

Sn = {P ∈ Sk(n) | ∃x = (x0 : · · · : xn) ∈ Pn
R with P (x) = 0};

in other words Sn is the set of (normalized) real forms of degree 4 which have a zero in the real projective
space Pn

R. Then
(Sn ⊂ Sk(n))n>0 ∈ Σc

R,1,

since it is easy to see that Sn also admits the description:

Sn = {P ∈ Sk(n) | ∃x ∈ Sn with P (x) = 0}.

Note that it is not known if (Sn ⊂ Sk(n))n>0 is NPR-complete while the non-compact version of this
language i.e. the language consisting of (possibly non-homogeneous) polynomials of degree at most four
having a zero in An

R (instead of Pn
R), has been shown to be NPR-complete [1].

2.5 Real Analogue of #P

In order to define real analogues of counting complexity classes of discrete complexity theory, it is
necessary to identify the proper notion of “counting” in the context of semi-algebraic geometry. Counting
complexity classes over the reals have been defined previously by Meer [7], and studied extensively by
other authors [4]. These authors used a straightforward generalization to semi-algebraic sets of counting
in the case of finite sets – namely the counting function took the value of the cardinality of a semi-
algebraic set if it happened to be finite, and ∞ otherwise. This is in our view not a fully satisfactory
generalization since the count gives no information when the semi-algebraic set is infinite, and most
interesting semi-algebraic sets have infinite cardinality. Moreover, no real analogue of Toda’s theorem
has been proved using this definition of counting.

Notation 4. For any semi-algebraic set S ⊂ Rk we denote by bi(S) the i-th Betti number (that is the
rank of the singular homology group Hi(S) = Hi(S,Z)) of S. We also let PS ∈ Z[T] denote the Poincaré

polynomial of S, namely PS(T) def=
∑
i≥0

bi(S) T i.

The polynomial PS(T) clearly generalizes counting. Indeed, PS(0) counts the number of connected com-
ponents of S, and thus the cardinality of S when S is a finite set of points.

Remark 2. The problems of “counting” varieties and computing their Betti numbers are connected at a
deeper, more direct level over fields of positive characteristic via the zeta function. Thus our choice of
definition for a real analogue of #P is not altogether ad hoc.

The above considerations motivate us to depart from the definition of #PR considered previously in
[7, 4]. We denote our class #P†R to avoid any possible confusion with these authors’ work.

Definition 3 (The class #P†R). We say a sequence of functions (fn : Rn → Z[T])n>0 is in the class
#P†R, if there exists a language (Sn ⊂ Rn)n>0 ∈ PR, as well as a polynomial m(n), such that

fn(x) = PSm+n,x(T)

for each x ∈ Rn, where Sm+n,x is the fiber Sm+n∩π−1(x) of the projection along the first m co-ordinates
π : Rm+n → Rn, and PSm+n,x(T) is the corresponding Poincaré polynomial.

Remark 3. Note that the class #P†R is quite robust. For instance, given two sequences (fn)n>0, (gn)n>0 ∈
#P†R it follows (by taking disjoint union of the corresponding semi-algebraic sets) that (fn + gn)n>0 ∈
#P†R, and also (fngn)n>0 ∈ #P†R (by taking Cartesian product of the corresponding semi-algebraic sets
and using the multiplicative property of the Poincaré polynomials, which itself is a consequence of the
Kunneth formula in homology theory.)

Polynomial Hierarchy, Betti Numbers and a Real Analogue of Toda’s Theorem 111

3 Main Ideas and Techniques

3.1 Topological Constructions

Our main tool is a topological construction which, given a semi-algebraic set S ⊂ Rm+n, p ≥ 0, and
πY : Rm+n ⊂ Rn the projection along (say) the Y co-ordinates, constructs efficiently a semi-algebraic
set, Dp

Y(S), such that
bi(πY(S)) = bi(D

p
Y(S)), 0 ≤ i < p (2)

A precursor to this construction appears in [6], based on the so called “descent” spectral sequence which,
under the right conditions, converges to the homology of a set given by a quantified formula.

In this paper we need to be able to recover exactly (not just bound) the Betti numbers of πY(S) from
those of Dp

Y(S). Moreover, it is very important in our context that membership in the semi-algebraic
set Dp

Y(S) should be checkable in polynomial time, given that the same is true for S. Notice that even
if there exists an efficient (i.e. polynomial time) algorithm for checking membership in S, the same need
not be true for the image πY(S).

3.2 Case of One Quantifier

First consider the class Σc
R,1. Consider a closed semi-algebraic set S ⊂ Sk×S` defined by a quantifier-free

formula φ(X,Y) and let πY : Sk × S` → Sk be the projection map along the Y variables.
Then the formula Φ(X) = ∃Y φ(X,Y) is satisfied by x ∈ Sk if and only if b0(Sx) 6= 0, where

Sx = S ∩ π−1
Y (x). Thus, the problem of deciding the truth of Φ(x) is reduced to computing a Betti

number (the 0-th) of the fiber of S over x.
Now consider the class Πc

R,1. Using the same notation as above we have that the formula Ψ(X) =
∀Y φ(X,Y) is satisfied by x ∈ Sk if and only if the formula ¬Ψ(X) = ∃Y ¬φ(X,Y) does not hold, which
means, according to the previous case, that we have b0(S` \ Sx) = 0, which is equivalent to b`(Sx) = 1.
Notice that, as before, the problem of deciding the truth of Ψ(x) is reduced to computing a Betti number
(the `-th) of the fiber of S over x.

3.3 Case of Two Quantifiers

Consider the class Πc
R,2 and let S ⊂ Sk ×S`×Sm be a closed semi-algebraic set defined by a quantifier-

free formula φ(X,Y,Z) and let πZ : Sk×S`×Sm → Sk×S` be the projection map along the Z variables,
and πY : Sk × S` → Sk be the projection map along the Y variables as before. Consider the formula

Φ(X) = ∀Y ∃Z φ(X,Y,Z).

This formula can be recast as:

Φ(X) = ∀Y (X,Y) ∈ πZ(S).

For any x ∈ Sk, Φ(x) holds if the πY fiber (πZ(S))x is equal to S`. This can be formulated in
terms of Betti numbers by the condition: b` ((πZ(S))x) = 1. The construction mentioned in (2) gives, for
p = `+ 1, the existence of a semi-algebraic set D`+1

Z (S) such that b`(D`+1
Z (S)) = b`(πZ(S)). Fortunately,

the construction of the set D`+1
Z (S) is compatible with taking fibers, so that we have, for all x ∈ Sk,

b` ((πZ(S))x) = b`
(
D`+1

Z (S)x
)
.

Thus for any x ∈ Sk, the truth or falsity of Φ(x) is determined by a certain Betti number of the fiber
D`+1

Z (S)x over x of a certain semi-algebraic set D`+1
Z (S) which can be constructed efficiently in terms of

the set S.

3.4 General Case

The idea behind the proof of the main theorem is a recursive application of the above argument in case
when the number of quantifier alternations is larger (but still bounded by some constant) while keeping
track of the growth in the sizes of the intermediate formulas and also the number of quantified variables.

112 Saugata Basu and Thierry Zell

References

1. L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and real computation, Springer-Verlag, New York,
1998, With a foreword by Richard M. Karp. MR 99a:68070

2. L. Blum, M. Shub, and S. Smale, On a theory of computation and complexity over the real numbers: NP-
completeness, recursive functions and universal machines, Bull. Amer. Math. Soc. (N.S.) 21 (1989), no. 1,
1–46. MR 90a:68022

3. Peter Bürgisser and Felipe Cucker, Variations by complexity theorists on three themes of Euler, Bézout, Betti,
and Poincaré, Complexity of computations and proofs (Jan Krajicek, ed.), Quad. Mat., vol. 13, Dept. Math.,
Seconda Univ. Napoli, Caserta, 2004, pp. 73–151. MR 2131406 (2006c:68053)

4. , Counting complexity classes for numeric computations. II. Algebraic and semialgebraic sets, J. Com-
plexity 22 (2006), no. 2, 147–191. MR 2200367 (2007b:68059)

5. Peter Bürgisser, Felipe Cucker, and Martin Lotz, Counting complexity classes for numeric computations. III.
Complex projective sets, Found. Comput. Math. 5 (2005), no. 4, 351–387. MR 2189543 (2006h:68039)

6. A. Gabrielov, N. Vorobjov, and T. Zell, Betti numbers of semialgebraic and sub-Pfaffian sets, J. London
Math. Soc. (2) 69 (2004), no. 1, 27–43. MR 2025325 (2004k:14105)

7. Klaus Meer, Counting problems over the reals, Theoret. Comput. Sci. 242 (2000), no. 1-2, 41–58. MR 1769145
(2002g:68041)

8. Uwe Schöning, Probabilistic complexity classes and lowness, J. Comput. System Sci. 39 (1989), no. 1, 84–100.
MR 1013721 (91b:68041a)

9. Michael Shub and Steve Smale, On the intractability of Hilbert’s Nullstellensatz and an algebraic version of
“NP 6= P?”, Duke Math. J. 81 (1995), no. 1, 47–54 (1996), A celebration of John F. Nash, Jr. MR 1381969
(97h:03067)

10. Seinosuke Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput. 20 (1991), no. 5, 865–877.
MR 1115655 (93a:68047)

11. L. G. Valiant and V. V. Vazirani, NP is as easy as detecting unique solutions, Theoret. Comput. Sci. 47
(1986), no. 1, 85–93. MR 871466 (88i:68021)

Noncomputable Functions in the Blum-Shub-Smale Model

Wesley Calvert1, Ken Kramer2 and Russell Miller2?

1 Murray State University
Murray, Kentucky 42071 USA

wesley.calvert@murraystate.edu

http://campus.murraystate.edu/academic/faculty/wesley.calvert
2 Queens College of CUNY

65-30 Kissena Blvd., Flushing, NY 11367 USA
and the CUNY Graduate Center

365 Fifth Avenue, New York, NY 10016 USA
kkramer@qc.cuny.edu & Russell.Miller@qc.cuny.edu

http://qcpages.qc.cuny.edu/~rmiller

Abstract. We answer several questions of Meer and Ziegler about the Blum-Shub-Smale model
of computation on R: the set Ad of algebraic numbers of degree ≤ d is not decidable in Ad−1, and
the BSS halting problem is not decidable in any countable oracle.

Key words: Blum-Shub-Smale model, computability, real computation.

1 Introduction

Blum, Shub, and Smale introduced in [2] a notion of computation with full-precision real arithmetic,
in which the ordered field operations are axiomatically computable, and the computable functions are
closed under the usual operations. A more complete account of this model is given in [1].

The key question for this paper was posed by Meer and Ziegler in [5]. Section 2 gives the basic
technical result, Lemma 1, applied in Section 3 to Question 1.

Question 1 (Meer-Ziegler). Let Ad be the set of algebraic numbers with degree (over Q) at most d. Then
is it true that

A0 �BSS A1 �BSS · · ·Ad �BSS · · ·?

Ad−1 ≤BSS Ad is clear: if x ∈ Ad, find its minimal polynomial in Q[X]; while if x /∈ Ad then x /∈ Ad−1.
The question asks if Ad ≤BSS Ad−1.

2 BSS-Computable Functions At Transcendentals

Here we introduce our basic method for showing that various functions on the real numbers fail to be BSS-
computable. In many respects, it is equivalent to the method, used by many others (see for example [1]),
of considering BSS computations as paths through a finite-branching tree of countable height, branching
whenever there is a forking instruction in the program. However, we believe our method can be more
readily understood by a mathematician unfamiliar with computability theory.

Lemma 1. Let M be a BSS-machine, and z the finite tuple of real parameters mentioned in the program
for M . Suppose that y ∈ Rm+1 is a tuple of real numbers algebraically independent over the field Q =
Q(z), such that M converges on input y. Then there exists ε > 0 and rational functions f0, . . . , fn ∈
Q(Y), (that is, rational functions of the variables Y with coefficients from Q) such that for all x ∈ Rm+1

in the ε-ball Bε(y), M converges on input x with output 〈f0(x), . . . , fn(x)〉 ∈ Rn+1.

? The corresponding author was supported by Grants # 90927-08 08 from the Queens College Research En-
hancement Program, # 61467-00 39 and # 62632-00 40 from the PSC-CUNY Research Award Program, and
(along with the first author) # 13397 from the Templeton Foundation.

114 Wesley Calvert, Ken Kramer and Russell Miller

Proof. The intuition is that by choosing x sufficiently close to y, we can ensure that the computation on x
branches in exactly the same way as the computation on y, at each of the (finitely many) branch points in
the computation on y. Say that the run of M on input y halts at stage t, and that at each stage s ≤ t, the
non-blank cells contain the reals 〈f0,s(y), . . . , fns,s(y)〉. Each fi,s is a rational function in Q(Y), uniquely
determined, since y is algebraically independent over Q. Let F = {fi,s(Y) : s ≤ t & i ≤ ns & fi,s /∈ Q}
be the finite set of nonconstant rational functions used in the computation. For each fi,s ∈ F , the
preimage f−1

i,s (0) is closed in Rm+1, and therefore so is the finite union U of all these f−1
i,s (0). By algebraic

independence, y /∈ U , so there exists an ε > 0 with Bε(y) ∩ U = ∅. Indeed, for all fi,s ∈ F and all
x ∈ Bε(y), fi,s(x) and fi,s(y) must have the same sign. Therefore, for any x ∈ Bε(y), it is clear that in
the run of M on input x, at each stage s ≤ t, the cells will contain precisely 〈f0,s(x), . . . , fns,s(x)〉 and
the machine will be in the same state in which it was at stage s on input y. Therefore, at stage t, the
run of M on input x must also have halted, with 〈f0,t(x), . . . , fnt,t(x)〉 in its cells as the output. ut

Lemma 1 provides quick proofs of several known results, including the undecidability of every proper
subfield F ⊂ R.

Corollary 1 No BSS-decidable set S ⊆ Rn is both dense and co-dense in Rn.

Proof. If the characteristic function χS were computed by some BSS machine M with parameters z,
then by Lemma 1, it would be constant in some neighborhood of every y ∈ Rn algebraically independent
over z. ut

Corollary 2 Define the boundary of a subset S ⊆ Rn to be the intersection of the closure of S with the
closure of its complement. If S is BSS-decidable, then there is a finite tuple z such that every point on
the boundary of S has coordinates algebraically dependent over z. ut

Of course, Corollaries 1 and 2 follow from other results that have been established long since, in
particular from the Path Decomposition Theorem described in [1]. We include them here because of the
simplicity of these proofs, and because they introduce the method to be used in the following section.

3 Application to Algebraic Numbers

Here we modify the method of Lemma 1 to answer Question 1.

Theorem 1 For all d > 0, Ad 6≤BSS Ad−1.

Proof. Suppose that M is an oracle BSS machine with real parameters z, such that MAd−1 computes the
characteristic function of Ad. Fix any y ∈ R which is transcendental over the field Q = Q(z), and run
MAd−1 on input y. As in the proof of Lemma 1, we set F to be the finite set of all nonconstant rational
functions f ∈ Q(Y) such that f(y) appears in some cell during this computation. Again, there is an
ε > 0 such that all x within ε of y satisfy f(x) · f(y) > 0 for all f ∈ F . However, when MAd−1 runs on an
arbitrary input x ∈ Bε(y) ∩ Ad, it may have a different computation path, because such an x might lie
in Ad−1, or might have f(x) ∈ Ad−1 for some f ∈ F , and in this case the computation on input x might
ask its oracle whether f(x) ∈ Ad−1 and would then branch differently from the computation on input y.
(Of course, for all f ∈ F , f(y) /∈ Ad−1, since f(y) must be transcendental over Q for nonconstant f .) So
we must establish the existence of some x ∈ Bε(y) ∩ Ad with f(x) /∈ Ad−1 for all f ∈ F . Of course, we
do not need to give any effective procedure which produces this x; its existence is sufficient.

We will need the following lemma from calculus. The lemma uses complex numbers, but only for
mathematical results about R; no complex number is ever an input to M .

Lemma 2. If ζ is a primitive k-th root of unity and f ∈ R(Y) and there are positive real values of v
arbitrarily close to 0 for which at least one of f(b+ ζv), f(b+ ζ2v), . . . , f(b+ ζk−1v) has the same value
as f(b+ v), then f ′(b) = 0. ut

Fix ζ to be a primitive d-th root of unity. We choose b ∈ Q such that |y − b| < ε
2 and such that

b lies in the domain of every f ∈ F , with all f ′(b) 6= 0. Such a b must exist, since all f ∈ F are
differentiable and nonconstant. Now Lemma 2 yields a δ > 0, such that every v ∈ R with 0 < v < δ
satisfies f(b + v) 6= f(b + ζmv) for every f ∈ F and every m with 0 < m < d. So fix x = b + d

√
u for

BSS-Noncomputable Functions 115

some u ∈ Q with 0 < d
√
u < min(δ, ε2), for which (Xd − u) is irreducible in Q[X]. (This ensures d

√
u /∈ Q,

of course. If there were no such u, then Q could not be finitely generated over Q; this follows from the
criterion for irreducibility of (Xd − u) in [4, Thm. 9.1, p. 331], along with [6, Thm. 3.1.4, p. 82].) Thus
|x− y| < ε and all f ∈ F satisfy f(b+ d

√
u) 6= f(b+ ζm d

√
u) for all 0 < m < d.

Suppose that f(x) = a ∈ Ad−1. Then Q ⊆ Q(a) ⊆ Q(x), and a has degree < d over Q (since Q ⊆ Q),
while [Q(x) : Q] = d, so Q(a) is a proper subfield of Q(x). Indeed [Q(x) : Q(a)] · [Q(a) : Q] = [Q(x) :
Q] = d, so the degree of a over Q is some proper divisor of d. Now let p(X) be the minimal polynomial
of x over the field Q(a). Of course p(X) may fail to lie in Q[X], but p(X) must divide the minimal
polynomial of x in Q[X], and so the roots of p(X) are x and some of the Q-conjugates (b+ ζm d

√
u) of x.

At least one (b+ ζm d
√
u) with 0 < m < d must be a root of p(X), since deg(p(X)) = [Q(x) : Q(a)] > 1.

We fix this m and let x = b+ ζm d
√
u, and also fix k = deg(p(X)).

Now we apply the division algorithm to write

f(X) =
g(X)
h(X)

=
qg(X) · p(X) + rg(X)
qh(X) · p(X) + rh(X)

with rg(X) and rh(X) both in Q(a)[X] of degree < k. We write rg(X) = gk−1X
k−1 + · · ·+ g1X+ g0 and

rh(X) = hk−1X
k−1 + · · ·+h1X +h0, with all coefficients in Q(a). Then rg(x) = g(x) = ah(x) = arh(x),

since p(x) = p(x) = 0. The equation 0 = rg(x)− arh(x) can then be expanded in powers of d
√
u:

0 =
∑
j<k

(
gj · (b+ d

√
u)j − ahj · (b+ d

√
u)j
)

=
[
(gk−1b

k−1 + gk−2b
k−2 + · · ·+ g1b+ g0)

− a(hk−1b
k−1 + hk−2b

k−1 + · · ·+ h1b+ h0)
]

+ d
√
u ·
[((

k − 1
1

)
gk−1b

k−2 +
(
k − 2

1

)
gk−2b

k−3 + · · ·+
(

1
1

)
g1b

0

)
−a
((

k − 1
1

)
hk−1b

k−2 +
(
k − 2

1

)
hk−2b

k−3 + · · ·+
(

1
1

)
h1b

0

)]
...

+ (d
√
u)k−2

[((
k − 1
k − 2

)
gk−1b+ gk−2

)
− a

((
k − 1
k − 2

)
hk−1b+ hk−2

)]
+ (d
√
u)k−1

[
gk−1 − ahk−1

]
Here all bracketed expressions lie in Q(a). However, x = b+ d

√
u has degree k over Q(a), and therefore

so does d
√
u. It follows that {1, d

√
u, (d
√
u)2, . . . , (d

√
u)k−1} forms a basis for Q(x) as a vector space over

Q(a), and hence, in the equation above, all bracketed expressions must equal 0. One then proceeds
inductively: the final bracket shows that gk−1 = ahk−1, and plugging this into the second-to-last bracket
shows that gk−2 = ahk−2, and so on up. Thus rg(X) = arh(X), and so

f(x) =
rg(x)
rh(x)

= a =
rg(x)
rh(x)

= f(x),

contradicting the choice of δ above. This contradiction shows that f(x) /∈ Ad−1, for every f ∈ F , and
as in Lemma 1, it follows immediately that the computations by the machine M with oracle Ad−1 on
inputs x and y proceed along the same path and result in the same output. Since x ∈ Ad and y /∈ Ad,
this proves the theorem. ut

4 Further Results

We state here a few further results we have recently proven. For these we extend the notation: given any
subset S ⊆ N, write AS = ∪d∈SA=d.

116 Wesley Calvert, Ken Kramer and Russell Miller

Theorem 2 For sets S, T ⊆ N, if AS ≤BSS AT , then there exists M ∈ N such that all p ∈ S satisfy
{p, 2p, 3p, . . . ,Mp} ∩ T 6= ∅. As a near-converse, if (S − T) is finite and (∀p ∈ S − T)(∃q > 0)[pq ∈ T],
then AS ≤BSS AT .

Corollary 3 There exists a subset L of the BSS-semidecidable degrees such that (L,≤BSS) ∼= (P(N),⊆).

Proof. We may replace the power set P(N) by the power set P({primes}). The latter maps into the
BSS-semidecidable degrees via S 7→ AS , and Theorem 2 shows this to be an embedding of partial orders.
(The same map on all of P(N) is not an embedding.) In particular, if S and T are sets of primes and
n ∈ S − T , then no multiple of n can lie in T ; thus, by the theorem, S 6⊆ T implies AS 6≤BSS AT .
The converse is immediate (for subsets of N in general, not just for prime numbers): if S ⊆ T , then ask
whether an input x lies in the oracle set AT . If not, then x /∈ AS ; if so, find the minimal polynomial of
x over Q and check whether its degree lies in S. (This program requires one parameter, to code the set
S.) ut

Theorem 3 If C ⊆ R∞ is a set to which the Halting Problem for BSS machines is BSS-reducible, then
|C| = 2ω. Indeed, R has finite transcendence degree over the field K generated by (the coordinates of the
tuples in) C.

For the definition of the Halting Problem, see [1, pp. 79-81]. Since a program is allowed finitely many
real parameters, it must be coded by a tuple of real numbers, not merely by a natural number. Theorem
3 is a specific case of a larger result on cardinalities, which is a rigorous version of the vague intuition
that a set of small cardinality cannot contain enough information to compute a set of larger cardinality.

Definition 4 A set S ⊆ R is locally of bicardinality ≤ κ if there exist two open subsets U and V of R
with |R− (U ∪ V)| ≤ κ and and |U ∩ S| ≤ κ and |V ∩ S| ≤ κ. (Here S = R− S.)

This definition roughly says that up to sets of size κ, each of S and S is equal to an open subset of R.
For example, the BSS-computable set S = {x ∈ R : (∃m ∈ N) 2−(2m+1) ≤ x ≤ 2−(2m)}, containing those
x which have a binary expansion beginning with an even number of zeroes, is locally of bicardinality ω.
The property of local bicardinality ≤ κ does not appear to us to be equivalent to any more easily stated
property, but it is exactly the condition needed in our general theorem on cardinalities.

Theorem 5 If C ⊆ R∞ is an oracle set of infinite cardinality κ < 2ω, and S ⊆ R is a set with S ≤BSS C,
then S must be locally of bicardinality ≤ κ. The same holds for oracles C of infinite co-cardinality κ < 2ω.

References

1. L. Blum, F. Cucker, M. Shub, and S. Smale; Complexity and real computation (Berlin: Springer-Verlag, 1997).
2. L. Blum, M. Shub, and S. Smale; On a theory of computation and complexity over the real numbers, Bulletin

of the A.M.S. (New Series) 21 (1989), 1–46.
3. C. Gassner; A hierarchy below the halting problem for additive machines, Theory of Computing Systems 43

(2008) 3–4, 464–470.
4. S. Lang; Algebra (second edition) (Menlo Park, CA: Addison-wesley Publishing Co., Inc., 1984).
5. K. Meer & M. Ziegler; An explicit solution to Post’s Problem over the reals, Journal of Complexity 24 (2008)

3–15.
6. M. Nagata; Theory of Commutative Fields, English trans. (American Mathematical Society, 1993).
7. Y. Yonezawa; The Turing degrees for some computation model with the real parameter, J. Math. Soc. Japan

60 2 (2008), 311-324.

Representation Theorems for Analytic Machines⋆

Tobias Gärtner

Universität des Saarlandes, Saarbrücken

Abstract. The well-known representation theorem, or path decomposition theorem, for Blum-
Shub-Smale machines (BSS machines) characterizes the functions computable by those machines.
The domain of a BSS computable function decomposes into countably many semi-algebraic sets,
and on each of those sets the function is a polynomial, or a rational function if division is allowed.
The model of analytic machines is an extension of the BSS model, admitting infinite converging
computations. In this work, we ask the natural question: To which extent does the representa-
tion theorem generalize to analytic machines, and are functions computable by analytic machines
representable by power series, the generalization of polynomials? We show that over the real num-
bers, there is no such representation theorem. On the other hand, we show that over the complex
numbers, functions computable by machines with ‘not to many branching operations’ are indeed
representable by power series on parts of their domain.

1 Introduction

There are several different approaches for defining computable functions on the real and complex num-
bers. The two most prominent of those can roughly be divided into the analytic and the algebraic
approach. The analytic approach, recursive analysis, extends the classic Turing machine by infinite con-
verging computations. The machine model used here is the Type 2 Turing machine, see e.g. [5]. In the
algebraic approach, register machine models are used that deal with real numbers as atoms and are able
to perform exact arithmetic and comparisons. The main machine model in this approach is the BSS ma-
chine [1]. A computation of a BSS machine is a finite sequence of arithmetic operations and conditional
branches.
The model of analytic machines, see e.g. [2], which is the model this work is based on, is an extension of
the BSS model and can be regarded as a kind of synthesis of the analytic and the algebraic approach,
since it extends BSS machines by infinite converging computations. For a comparison and classification
of many different approaches see [6].
The functions computable by BSS machines are characterized by the representation theorem for BSS
computable functions (often called path decomposition theorem, [1]): The domain of a BSS computable
function decomposes into countably many semi-algebraic sets, and on each of these sets the function is
a polynomial or rational function. Considering that a computation of a BSS machine is a sequence of
arithmetic operations and branches, this theorem can be appreciated quite intuitively. This theorem is
of central importance for the computability and complexity theory of BSS machines.
Since BSS computable functions are representable by polynomials (or rational functions) on parts of
their domain and since analytic machines generalize the finite computations of BSS machines to infinite
computations, the question arises to which extent functions computable by analytic machines are repre-
sentable by the generalization of polynomials, namely power series on parts of their domains. This is the
topic of this work.
It turns out that it is important to distinguish between functions defined over the real numbers on the
one hand and the complex numbers on the other. Over the real numbers, we show that the representation
theorem does not generalize to analytic machines. On the other hand, over the complex numbers, we
show that a function that is computable by an analytic machine and which does not branch infinitely
often is always representable by a power series on a part of its domain.

⋆ This work has been included in a paper that has been submitted for publication in the TOCS CiE 09 special
issue (together with Günter Hotz).

118 Tobias Gärtner

2 Analytic Machines

The machine model underlying this work is a register machine model, which is an extension of the model
of BSS machines. For finite computations, the models are equivalent. Analytic machines extend BSS
machines by infinite converging computations.
We briefly present the model of analytic machines but assume familiarity with the BSS model. For more
precise and formal definitions and also for properties of analytic machines, cf. [2] and [3].

The model is a register machine model defined over the base
field of the real or complex numbers R or C, respectively.
A machine consists of a control unit and a finite program
with instructions from an instruction set consisting of as-
signments, arithmetics, and conditional branches. Registers,
memory, input and output contain real or complex numbers,
which are regarded as atoms. It is important to note that a
machine can perform exact arithmetic and comparisons on
real or complex numbers.
A computation of a machine is a sequence of configurations of such a machine. We distinguish finite
and infinite converging computations. Infinite computations are only regarded as valid if an output is
written infinitely often. If the sequence of outputs of an infinite computation is convergent, we call such
a computation analytic. We call the n-th output of a machine M with input x the n-th approximation
of the computation of M and write M(n)(x). Therefore, a computation is analytic iff limn→∞ M(n)(x)
exists.
We call a function f (finitely) R-computable (C-computable) if there is a R-machine (C-machine) that
computes f with finite computations for each input. The R-computable functions are exactly the BSS
computable functions. We call a function f analytically R-computable (C-computable) if there is an
R-machine (C-machine) that computes f with finite or analytic computations.
An important notion we use throughout the text is the notion of a computation path σ: The computa-
tions of a machine can be represented in a computation tree in a natural manner (see e.g. [1]), where a
node is labeled by the instruction that is performed at the corresponding step of the computation. For
finite machines, a computation tree has only paths of finite length (but possibly countably many). For a
computation path σ, we denote by Dσ its domain, i.e., the set of all inputs that result in the computation
path σ.

3 Representation Theorems

We now address the main question of this work: Are there generalizations of Blum, Shub and Smale’s
representation theorem for analytic machines? We begin with the following observation: An analytic
machine can have infinitely many branching operations on each computation path, and therefore it is
possible that each input has its own computation path. A decomposition in the original sense is hence
impossible, and since the notion of power series only makes sense on sets with nonempty open interior,
in this case there cannot be a representation by power series. Therefore, we restrict our consideration to
computation paths σ whose domain Dσ has nonempty open interior, or in the simplest case, functions
which are computable with a single computation path.

3.1 Representation over R

In this paragraph we will show that over the real numbers, the representation theorem for finite R-
machines does not generalize to analytic machines. More precisely, we will show that there are functions
over R which are nowhere representable by power series and which are yet computable by an analytic
machine with a single computation path.

Proposition 1. Suppose f : [0, 1] → R is a continuous function with the property f(Q ∩ [0, 1]) ⊆ Q,
i.e. f maps rationals on rationals. Then f is analytically R-computable with the use of general constants
such that all inputs x ∈ [0, 1] have the same computation path.

Proof. If f is a function with the required property, then by the Weierstrass approximation theorem, f can
be uniformly approximated on [0, 1] by the Bernstein polynomials Bn,f (x) :=

∑n

m=0 f
(

m
n

) (

n
m

)

xm(1 −

Representation Theorems for Analytic Machines 119

x)n−m. Given the values f (m

n
) of f on the rationals, arbitrary approximations of f can be computed

without branching operations that depend on the input, since the sequence (f (m

n
))m≤n can be coded in a

single real constant cf . The extraction of f (m

n
) from the coded constant can be done without branching

operations depending on the input x.

Example 1. We now give an example for a function with the properties of Prop. 3.1 which is nowhere
representable by a power series. Moreover, we can show that this function can be computed with a single
computation path even without the use of irrational constants.

Let g be the periodic continuation of the func-

tion x 7→

{

x : 0 ≤ x ≤ 1
2

1 − x : 1
2 ≤ x ≤ 1

and define G by

G(x) :=
∑∞

k=1
1
k!g(k!x). In the figure, the first

three steps of the formation of G are shown, sum-
mands above and sums below. G is a continuous
but nowhere differentiable function. Hence G is
nowhere representable by a power series. The sum
in the definition of G is finite for all rational in-
puts p

q
. Therefore, the function G is (finitely) R-

computable on the rationals, and the encoding of the rational values in a real constant cG is not necessary.
Combined with Prop. 3.1, we obtain that G is an example of a function that is computable by an analytic
machine with a single computation path, and which is nowhere representable by a power series.

3.2 Representation over C

Over the complex numbers, regularity of functions is often much easier obtained than over the real num-
bers. For example, it is well-known that over the reals, a function that is differentiable has a continuous
derivative. In contrast, a function that is complex differentiable is already differentiable infinitely often
and even analytic. Therefore, the question arises whether in the setting of analytic machines, there are
also stronger regularity properties of functions computed by machines over C. As before, we restrict our
consideration to computation paths σ that have domains Dσ with nonempty open interior.
The following theorem shows that over the complex numbers, machines with such open domains of
computation paths indeed admit a representation by power series on a subset of these domains.

Theorem 1. Suppose f : D → C is analytically computable by a C-analytic machine M. Suppose further
that there is a computation path σ of M, such that its domain Dσ has nonempty interior. Then there is
an open and dense subset D′ ⊂ Dσ such that f is an analytic function on D′.

Proof. Consider the sequence of n-th approximations fn(z) := M(n)(z) of the machine for inputs z ∈ Dσ

for a computation path as in the theorem. By the representation theorem for BSS machines, each fn is a
rational function, and, therefore, a holomorphic function on the open interior of Dσ. The sequence (fn)
converges pointwise on Dσ to the function f . Osgood’s theorem [4], a classical theorem from complex
analysis, can be directly applied in this context. It implies that there is an open and dense subset D′ ⊂ Dσ

such that the convergence of (fn) is uniform on compact subsets of D′. From this it follows immediately
that the limit f is an analytic function on D′.

The existence of a computation path that has a domain with nonempty open interior is, for example,
fulfilled if each computation path of a machine M has only finitely many branching operations. This
follows with Baire’s category theorem, since M has only countably many computation paths. Therefore
we have:

Corollary 1. Let f : D → C be computable by a C-analytic machine such that each computation path
of M has only finitely many branching operations. Then there is a nonempty open set on which f is
representable by a power series.

References

1. Leonore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Computation. Springer,
New York, 1998.

120 Tobias Gärtner

2. Thomas Chadzelek and Günter Hotz. Analytic machines. TCS, 219:151–167, 1999.
3. Tobias Gärtner and Günter Hotz. Computability of analytic functions with analytic machines. In Proc. CiE

2009, LNCS 5635, 250–259. Springer-Verlag, 2009.
4. William F. Osgood. Note on the functions defined by infinite series whose terms are analytic functions of a

complex variable. Ann. of Math., 2. Ser. 3:25–34, 1902.
5. Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.
6. Martin Ziegler. Real computability and hypercomputation. TR C-07013, KIAS, 2007.

Computability over Positive Predicate Structures ?

Margarita Korovina1 and Oleg Kudinov2

1 The University of Manchester and IIS SB RAS Novosibirsk,
Margarita.Korovina@manchester.ac.uk,

2 Sobolev Institute of Mathematics, Novosibirsk
kud@math.nsc.ru

The main goal of the research presented in this paper is to provide a logical framework for studying
computability over discrete and continuous data in an common language. Since discrete and continuous
structures are different by nature, formalisation of computability over such structures in a common
language is a challenging research problem. In order to archive this goal we represent data as a structure
which could not have effective equality and employ Σ–definability theory. Our approach is based on
representations of data (discrete or continuous) by a suitable structure A = 〈A, σP , 6=〉, where A contains
more than one element, and σP is a set of basic predicates. We assume that all predicates Qi ∈ σP and
6= occur only positively in Σ-formulas and do not assume that the language σP contains equality. We call
such structures as positive predicate structures. As examples we can consider

• (The natural numbers) IN = 〈IN, 0, s, <〉;
• (The real numbers) IR = 〈IR, 0, 1,+, ·, <〉;
• (The complex numbers) C = 〈C, 0, 1,+, ·, 6=〉.
• (The real-valued function defined on compact intervals)
C[0, 1] = 〈C[0, 1], P1, . . . , P10, 6=〉 where the predicates P1, . . . , P10 have the following meanings for
every f, g ∈ C[0, 1]:
The first group formalises relations between infimum and supremum of two functions.

C[0, 1] |= P1(f, g)↔ sup f < sup g;
C[0, 1] |= P2(f, g)↔ sup f < inf g;
C[0, 1] |= P3(f, g)↔ sup f > inf g;
C[0, 1] |= P4(f, g)↔ inf f > inf g.

The second group formalises properties of operations on C[0, 1].

C[0, 1] |= P5(f, g, h)↔ f(x) + g(x) < h(x); for every x ∈ [0, 1];
C[0, 1] |= P6(f, g, h)↔ f(x) · g(x) < h(x) for every x ∈ [0, 1];
C[0, 1] |= P7(f, g, h)↔ f(x) + g(x) > h(x) for every x ∈ [0, 1];
C[0, 1] |= P8(f, g, h)↔ f(x) · g(x) > h(x) for every x ∈ [0, 1].

The third group formalises relations between functions f and the identity function λx.x.

C[0, 1] |= P9(f) ↔ f > λx.x;
C[0, 1] |= P10(f)↔ f < λx.x.

In order to logically characterise computability over positive predicate structures we employΣ-definability
where elements of a structure and computational processes involving these elements can be defined using
finite formulas. Definability is a very successful framework for generalised computability theory, descrip-
tive complexity, set-theoretic specifications, and databases. One of the most interesting and practically
important types of definability is Σ-definability, which generalises recursive enumerability over the nat-
ural numbers [1, 4, 5]. However, the most developed part of definability and Σ-definability theories deal
with abstract structures with equality (i.e., the natural numbers, trees, automata, etc.) which are not
appropriate for representation of continuous data.

It turns out that Σ-definability without equality is rather different from Σ-definability with equality.
It has been shown in [12] that there is no effective procedure which given a Σ-formula with equality
defining an open set produces a Σ-formula without equality defining the same set. Therefor it is important
? This research was partially supported by EPSRC grant EP/E050441/1, DFG-RFBR (grant No 436 RUS

113/1002/01, grant No 09-01-91334), RFBR grant 08-01-00336.

122 Margarita Korovina, Oleg Kudinov

to figure out which properties of Σ-definability hold on structures with equality likewise on structures
without equality. We prove the following properties ofΣ–definability which are necessary to make effective
reasoning about computability in logical terms.

Theorem 1. For any positive predicate structure A = 〈A, σP , 6=〉the following properties holds

1. The least fixed point of an effective operator is Σ–definable.
2. There exists a universal Σ-predicate, i.e., for every n ∈ ω there exists a Σ-formula Univn+1(m,x0, . . . , xn)

such that for any Σ-formula Φ(x0, . . . , xn)

HF(A) |= Φ(r0, . . . , rn)↔ Univn+1(dΦe, r0, . . . , rn).

3. A set B ⊂ An is Σ-definable if and only if it is definable by a disjunction of a recursively enumerable
set of existential formulas.

We also show links between positive predicate structures and topological spaces. for an positive
predicate structure A, we introduce a topology, called τAΣ , with a base consisting of the subsets of
the carrier set defined by existential formulas. In this topology Σ-definability coincides with effective
openness. On several examples we illustrate how to pick an appropriate finite language in such way that
the τAΣ -topology coincides with the usual topology.

In order to introduce a reasonable notion of computability on positive predicate structures including
continuous ones we have to take into account the following necessary conditions. One of them is logical
which says that Th∃(A) should be computably enumerable. This condition provides tools for effective
reasoning about computable continuous data based on Σ-definability. Another one is topological which
says that computable functions should be continuous. This condition provides correct approximating
computation of continuous data.

In order to address these conditions we introduce and investigate effectively enumerable and strongly
effectively enumerable topological spaces and computability over them [7]. It is worth noting that the notion
of effectively enumerable topological spaces is a generalisation of the notion of computable topological
spaces introduced in [6]. We show the following proposition.

Theorem 2. For every positive predicate structure A the following properties hold.

1. The topological space
(
A, τAΣ

)
is effectively enumerable if and only if Th∃(A) is computable enumer-

able.
2. If Th∃(A) is decidable then

(
A, τAΣ

)
is strongly effectively enumerable.

This properties allow us to study computability over positive predicate structures.

Theorem 3. Let A and B be structures with computably enumerable existential theories and
(
B, τBΣ

)
be

T0-space. Then for every total function F : A→ B the following are equivalent.

1. F is computable;
2. There exists a computable function h : ω → ω such that for all j ∈ ω the F -preimage of the set

definable by a Σ-formula with the Gödel number j coincides with the set definable by a Σ-formula
with the Gödel number h(j).

As a corollary we get that for any positive predicate structure with computably enumerable exis-
tential theory computability coincide with effective continuity. Now we make comparative analysis of
computability and majorant-computability over positive predicate structures which are effectively enu-
merable topological spaces. AssumeA = 〈A, σP , 6=〉 is a structure with finite σP and IR = 〈IR, 0, 1,+, ·, <〉.
We use the criteria of majorant-computability of a function F : A→ IR (c.f. [9]) which we recall below.

We extend the structure R = IR ∪ A by the set of hereditarily finite sets HF(R) and consider
Σ-definability in HF(R).

Below we will write ϕ1(a, ·) < ϕ2(a, ·) if HF(R) |= ϕ1(a, y) ∧ ϕ2(a, z) → y < z for all real numbers
y, z. The following theorem connects a majorant-computable function with validity of finite formulas
in the set of hereditarily finite sets, HF(R).

Theorem 4. [9] For every function F : A→ IR the following assertions are equivalent:.

1. The functional F is majorant-computable.

Algorithmic Properties of Σ–definability over Positive Predicate Structures 123

2. There exists Σ–formulas ϕ1(a, y), ϕ2(a, y) such that ϕ1(a, ·) < ϕ2(a, ·) and

F (a) = y ↔ ∀z1∀z2 (ϕ1(a, z1) < y < ϕ2(a, z2)) ∧
{z | ϕ1(a, z)} ∪ {z | ϕ2(a, z)} = IR \ {y}.

Theorem 5. Let A be a structure such that
(
A, τAΣ

)
is effectively enumerable. A function F : A → IR

is majorant-computable if and only if there is a computable total function G : A→ IIR, where IIR is the
interval domain, such that

1. If x ∈ dom(F) then G(x) = {F (x)}.
2. If x 6∈dom(F) then G(x) 6= {y} for all y ∈ IR.

In [8] we proved the Uniformity principle for Σ-definability over the real numbers. We employed the
Uniformity principle to show that quantifiers bounded by computable compact sets, rational numbers,
polynomials, and computable functions as well can be used in Σ-formulas without enlarging the class of
Σ-definable sets. It will be interesting to find requirements on a positive predicate structure under which
the Uniformity principle holds.

References

1. J. Barwise. Admissible sets and Structures. Springer Verlag, Berlin, 1975.
2. Vasco Brattka, Gero Presser, Computability on subsets of metric spaces., Theor. Comput. Sci. 305(1-3): 43-76

(2003)
3. V. Brattka and K. Weihrauch, Computability on subsets of euclidean space I: Closed and compact sets. TCS,

219:65–93, 1999.
4. Yu. L. Ershov, Definability and computability. Plenum, New-York, 1996.
5. W. Hodges, The meaning of specifications : Set-theoretical specification, Semantics of Programming Languages

and Model Theory, Algebra, Logic and Applications Series, v. 5, pp 43–68, 1993.
6. Tanja Grübba, Mattias Schröder and Klaus Weihrauch, Computable metrization, Mathematical Logic

Quaterly, 53(4-5), 2007, 595-604.
7. Margarita Korovina, Oleg Kudinov, Comparative Analysis of Some Models of Computation over Effectively

Enumerable Topological Spaces, In Proceedings CCA’08, Computability and Complexity in Computable
Analysis, FernUniversitat Hagen, Bericht Nr. 346-8, pages 129-141, 2008.

8. Margarita Korovina and Oleg Kudinov. The Uniformity Principle for Σ-definability with Applications to
Computable Analysis. In S.B. Cooper, B. Löwe, and A. Sorbi, editors, CiE’07, Lecture Notes in Computer
Science vol. 4497, pages 416–425, Springer, 2007.

9. Margarita V. Korovina and Oleg V. Kudinov. Towards computability of higher type continuous data. In
S. Barry Cooper, Benedikt Löwe, and Leen Torenvliet, editors, CiE, volume 3526 of Lecture Notes in Computer
Science, pages 235–241. Springer, 2005.

10. Margarita V. Korovina. Computational aspects of sigma-definability over the real numbers without the
equality test. In Matthias Baaz and Johann A. Makowsky, editors, CSL, volume 2803 of Lecture Notes in
Computer Science, pages 330–344. Springer, 2003.

11. Margarita V. Korovina. Gandy’s theorem for abstract structures without the equality test. In Moshe Y.
Vardi and Andrei Voronkov, editors, LPAR, volume 2850 of Lecture Notes in Computer Science, pages 290–301.
Springer, 2003.

12. Andrei Morozov and Margarita Korovina, Remarks on Σ-definability without the equality test over the
Reals. Electronic Notes in Theoretical Computer Science, N 202, Elsevier, 2008.

13. Y. N. Moschovakis, Abstract first order computability I, II. Transactions of the American Mathematical
Society, 138:427–504, 1969.

Undecidability in Weihrauch Degrees

Oleg V. Kudinov1⋆, Victor L. Selivanov2⋆⋆ and Anton V. Zhukov3⋆ ⋆ ⋆

1 S.L. Sobolev Institute of Mathematics, 4 Acad. Koptyug avenue, 630090 Novosibirsk, Russia
2 A.P. Ershov Institute of Informatics Systems, 6 Acad. Lavrentjev pr., 630090 Novosibirsk, Russia

3 Novosibirsk State Pedagogical University, 28 Vilyuiskaya ul., 630126 Novosibirsk, Russia

Abstract. We prove that the 1-quasiorder and the 2-quasiorder of finite k-labeled forests and trees
have hereditarily undecidable first-order theories for k ≥ 3. Together with an earlier result of P.
Hertling, this implies some undecidability results for Weihrauch degrees.
Keywords. Weihrauch reducibility, labeled forest, 1-quasiorder, 2-quasiorder, undecidability, the-
ory.

1 Introduction and preliminaries

As is well-known, different notions of hierarchies and reducibilities serve as useful tools for understanding
the complexity (or non-computability) of decision problems on discrete structures. In computable anal-
ysis, many problems of interest turn out to be non-computable (even non-continuous), so there is a need
for tools to measure their non-computability. Accordingly, also in this context of decision problems on
continuous structures, people employed several hierarchies and reducibilities closely related to descriptive
set theory.

In [10, 11] K. Weihrauch introduced some notions of reducibility for functions on topological spaces
which turned out useful for understanding the non-computability and non-continuity of interesting deci-
sion problems in computable analysis [7, 6, 2] and constructive mathematics [1]. In particular, the follow-
ing three notions of reducibilities between functions f, g : X → Y on topological spaces were introduced:
f ≤0 g (resp. f ≤1 g, f ≤2 g) iff f = g ◦H for some continuous function H : X → X (resp. f = F ◦ g ◦H
for some continuous functions H : X → X and F : Y → Y , f(x) = F (x, gH(x)) for some continuous
functions H : X → X and F : X × Y → Y).

The notions are nontrivial even for the case of discrete spaces Y = k = {0, . . . , k − 1} with k < ω
points (we call functions f : X → k k-partitions of X). E.g., for k = 2 the relation ≤0 coincides with the
classical Wadge reducibility.

In [5, 6] (see also [8]) P. Hertling gave a useful “combinatorial” characterisation of important initial
segments of the degree structures under Weihrauch reducibilities on k-partitions of the Baire space (note
that the Baire space is important because it is commonly used in computable analysis for representing
many other spaces of interest). From this characterisation and results in [9] it follows that for any k ≥ 3
the first-order theory of this segment for ≤0 is undecidable (and it is even computably isomorphic to
the first-order arithmetic). The main result of this work states similar undecidability properties for the
other two reducibilities.

We use some standard notation and terminology on posets which may be found e.g. in [3]. Sometimes
we apply notions concerning posets also to quasiorders (known also as preorders); in such cases we mean
the corresponding quotient-poset of the preordered set. Throughout this paper, k denotes an arbitrary
integer, k ≥ 2, which is identified with the set {0, . . . , k− 1}. By a forest we mean a finite poset in which
every lower cone x̂ is a chain. A tree is a forest that has a least element (called the root of the tree).

A k-labeled poset (or just a k-poset) is an object (P ;≤, c) consisting of a poset (P ;≤) and a labeling
c : P → k. A k-poset P can be seen as a node-weighted directed graph where every x ∈ P carries the label
c(x). We call a k-poset (P ;≤, c) repetition-free iff c(x) 6= c(y) whenever x is an immediate predecessor of
y in P . We usually simplify the notation of a k-poset to (P, c) or even P . We are mainly interested in the
set Fk of finite k-labeled forests, but also in the set Tk of finite k-labeled trees. For any k-forest F ∈ Fk

and i < k, let pi(F) denote a k-tree obtained from F by adding a new smallest element with the label i.

⋆ Supported by DFG-RFBR (Grant 436 RUS 113/1002/01, 09-01-91334), and by RFBR Grant 07-01-00543a.
⋆⋆ Supported by DFG-RFBR (Grant 436 RUS 113/1002/01, 09-01-91334) and by RFBR Grant 07-01-00543a.

⋆ ⋆ ⋆ Supported by RFBR Grant 07-01-00543a.

Undecidability in Weihrauch Degrees 125

A homomorphism (or 0-morphism) f : (P ;≤P , cP) → (Q;≤Q, cQ) between k-posets is a monotone
function f : (P ;≤P) → (Q;≤Q) respecting the labelings, i.e. satisfying cP = cQ ◦ f .

A 1-morphism f : (P ;≤P , cP) → (Q;≤Q, cQ) between k-posets is a monotone function f : (P ;≤P

) → (Q;≤Q) for which there exists a mapping g : k → k such that cP = g ◦ cQ ◦ f .
A 2-morphism f : (P ;≤P , cP) → (Q;≤Q, cQ) between k-posets is a monotone function f : (P ;≤P

) → (Q;≤Q) which maps comparable elements (nodes) with different labels to elements with different
labels, i.e.

∀x, y ∈ P ((x ≤P y ∧ cP (x) 6= cP (y)) → cQ(f(x)) 6= cQ(f(y))).

We say that a k-poset P is 0-morphic (resp. 1-morphic, 2-morphic) to a k-poset Q, denoted P ≤0 Q
(respectively P ≤1 Q, P ≤2 Q), iff there exists a 0-morphism (resp. 1-morphism, 2-morphism) f : P → Q.
It is easy to prove that any 0-morphism is a 1-morphism and any 1-morphism is a 2-morphism in turn.
Therefore ≤0 implies ≤1 and ≤1 implies ≤2.

Let ≡0 (0-equivalence, h-equivalence or just equivalence), ≡1 (1-equivalence) and ≡2 (2-equivalence)
denote the equivalence relations induced by the quasiorders ≤0, ≤1 and ≤2, respectively. The quotient
set of Fk (Tk) under ≡i, i ≤ 2, is denoted by Fi

k (respectively Ti
k). We use the same symbols ≤0, ≤1 and

≤2 to denote the partial orders induced by the corresponding quasiorders on the corresponding quotient
sets.

2 Properties of the preorders

Here we will observe only properties used further in this paper.

Lemma 1. Let A ≤2 B for A,B ∈ Tk. Then there exists a 2-morphism from A to B which maps the
root of A to the root of B.

Proof: induction on the height of A.
It is a simple and well-known fact that (F0

k,≤0) is an upper semilattice. For a, b ∈ Fk, their supremum
a ⊔ b is the 0-equivalence class of the join (i.e. disjoint union) A ⊔ B of any k-forests A ∈ a and B ∈ b.

Proposition 1. The structures (F2

k,≤2) and (T2

k,≤2) are upper semilattices.

Proof. It is easy to verify that the supremums in (F2

k,≤2) are defined in the same way as for (F0

k,≤0),
so (F2

k,≤2) is an upper semilattice. Now let a, b ∈ T2

k. Consider arbitrary disjoint k-trees A ∈ a and
B ∈ b. We can assume w.l.o.g. that the roots of A and B are labeled with 0. Let C be the k-tree that is
obtained from the union of A and B by identifying their roots, C ≡0 p0(A⊔B). By the previous lemma,
it is straightforward to prove that [C]≡2

is the supremum of a and b in (T2

k,≤2).
As for (F1

k,≤1) and (T1

k,≤1), we show in the next proposition that these structures are not semilat-
tices. Let (P,≤) be an arbitrary poset or preordered set and a, b ∈ P . As usual, c ∈ P is called a minimal
upper bound of a and b iff

a ≤ c ∧ b ≤ c ∧ ∀x((a ≤ x ∧ b ≤ x ∧ x ≤ c) → c ≤ x),

we call c also a quasijoin of a and b in P .
For any permutation α ∈ Sk and any k-forest F = (F ;≤F , cF) ∈ Fk, let α(F) denote the k-forest

(F ;≤F , α ◦ cF) (i.e. all labels in F are replaced by their images via α).

Proposition 2. (i) For any k-forests F,G ∈ Fk, a k-forest H is a minimal upper bound of F and G in
(Fk,≤1) iff H ≡1 α(F) ⊔ β(G) for some α, β ∈ Sk.

(ii) For any k-trees U, V ∈ Tk, a k-tree W is a minimal upper bound of U and V in (Tk,≤1) iff
W ≡1 p0(α(U) ⊔ β(V)) for some α, β ∈ Sk.

Proof is a simple routine omitted due to the restrictions on the size of the paper.
We will use the same symbol “⊔” for the supremums in all upper semilattices under consideration. For

an arbitrary semilattice (S;⊔,≤) where a partial order ≤ corresponds to ⊔, x ∈ S is called join-irreducible
iff

∀y∀z(x ≤ y ⊔ z → (x ≤ y ∨ x ≤ z)).

126 Oleg V. Kudinov, Victor L. Selivanov and Anton V. Zhukov

For an arbitrary poset (P ;≤) and x, y ∈ P , let mubP (x, y) denote the set of all minimal upper bounds
of x and y in P . We call x ∈ P quasijoin-irreducible iff

∀y∀z∀t((t ∈ mubP (y, z) ∧ x ≤ t) → (x ≤ y ∨ x ≤ z)).

Since the relation t ∈ mubP (y, z) can be defined by a formula of signature {≤}, there exists a formula
ir(x) of signature {≤} which defines (in every poset) exactly the non-zero quasijoin-irreducible elements.
If P is an upper semilattice then mubP (x, y) = {x⊔ y} for all x, y ∈ P , so quasijoin-irreducible elements
are exactly the join-irreducible elements. Therefore ir(x) defines exactly the non-zero join-irreducible
elements in any upper semilattice. Let ir(P) denote the set of all non-zero quasijoin-irreducible elements
of P .

Proposition 3. (i) ir(F1

k) = T1

k and ir(F2

k) = T2

k.
(ii) t ∈ ir(T1

k) iff t includes a repetition-free k-tree whose root has exactly one (immediate) successor.
The same holds for t ∈ ir(T2

k)

Proof is a simple routine omitted due to the restrictions on the size of the paper.
We will need also the following technical lemma which shows that the structures (T1

k,≤1) and (T2

k,≤2)
have infinite width.

Lemma 2. For all k > 2 and n ∈ ω there exist pairwise 2-incomparable (i.e. incomparable in ≤2)
repetition-free k-chains C0, . . . , Cn.

Proof. For every repetition-free k-word α whose first symbol is not k − 1, let Dα denote the repetition-
free k-chain presented by the k-word 0 . . . (k − 1)α. It is straightforward to check that Dα and Dβ are
2-incomparable if |α| = |β| and α 6= β (consider non-equal labels on the same place in α and β). It
remains to note that |{Dα : |α| = n}| = (k − 1)n for any n ∈ ω.

3 Interpretation scheme

We use the same interpretation scheme as in [9]. As is well known [4], for establishing hereditary unde-
cidability of the first-order theory of a structure, say of a partial order (P ;≤), it suffices to show that
the class of finite models of the theory of two equivalence relations is relatively elementarily definable
in (P ;≤) with parameters [4]. It turns out that the following very particular case of the last notion is
sufficient for our proof.

It suffices to find first-order formulas φ0(x, p̄), φ1(x, y, p̄) and φ2(x, y, p̄) of signature {≤} (where x, y
are variables and p̄ is a string of variables called parameters) with the following property:

(*) for every n < ω and for all equivalence relations ξ, η on {0, . . . , n} there are values of parameters
p̄ ∈ P such that the structure ({0, . . . , n}; ξ, η) is isomorphic to the structure (φ0(P, p̄);φ1(P, p̄), φ2(P, p̄)).

Here
φ0(P, p̄) = {a ∈ P |(P ;≤) |= φ0(a, p̄)},

φ1(P, p̄) = {(a, b) ∈ P |(P ;≤) |= φ1(a, b, p̄)}

and similarly for φ2. In other words, for all n, ξ, η as above there are parameter values p̄ ∈ P such that
the set {0, . . . , n} and the relations ξ, η are first-order definable in (P ;≤) with parameters p̄.

So for each of the quotient structures (F1

k,≤1), (F2

k,≤2), (T1

k,≤1), (T2

k,≤2) it remains only to find
suitable formulas φ0, φ1, φ2 and to specify parameter values as described in (*).

4 Main Result

The result of P. Hertling [5, 6, 8] states that the quotient-structure of the preorder ≤0 (resp. ≤1, ≤2)
on the k-partitions of the Baire space on subsets whose components are boolean combinations of open
sets is isomorphic to (F0

k;≤0) (resp. to (F1

k;≤1), (F2

k;≤2)). Using this result, we may consider the last
structures instead of the corresponding structures of Weihrauch degrees.

The main result of this paper is formulated as follows.

Undecidability in Weihrauch Degrees 127

Theorem 1. For any k ≥ 3, the first-order theories of the structures (F1

k,≤1), (F2

k,≤2), (T1

k,≤1),
(T2

k,≤2) are hereditarily undecidable.

Scetch of the proof. Let τ(x, u) be the formula x ≤ u∧ir(x)∧¬∃y > x(y ≤ u∧ir(y)) which means that
x is a maximal non-zero quasijoin-irreducible element below u. Let p̄ = (u, v, w) and φ0(x, p̄) = τ(x, u).
Let φ1(x, y, p̄) be the formula τ(x, u)∧ τ(y, u)∧∃t(τ(t, v)∧x ≤ t∧y ≤ t) and φ2(x, y, p̄) is obtained from
φ1(x, y, p̄) by substituting w in place of v.

Assume that ξ, η ⊆ (n+1)2 are arbitrary equivalence relations on n+1 = {0, . . . , n} and {ξ0, . . . , ξm},
{η0, . . . , ηl} are the quotient sets n + 1/ξ and n + 1/η, respectively.

We use the same formulas φ0, φ1 and φ2 for all structures in Theorem 1 (with ≤1 or ≤2 instead of ≤)
with parameters u, v and w depending on ξ. For interpreting the elements 0, . . . , n from the set n + 1,
we use 2-incomparable k-chains C0, . . . , Cn from Lemma 2. We can assume w.l.o.g. that all k-chains
C0, . . . , Cn are disjoint, their roots are labeled with 0 and the successors of the roots are labeled with 1
(by the proof of Lemma 2).

We construct parameters u, v and w from C0, . . . , Cn in the following way. For the case of (F1

k,≤1) and
(F2

k,≤2), let U = C0⊔ . . .⊔Cn and V = V1⊔ . . .⊔Vm where Vi is obtained from {Cj |j ∈ ξi} by identifying
the roots, Vi ≡0 p0(

⊔
{Cj |j ∈ ξi}) (pic.1). Define W as V with η instead of ξ. Namely, W = W1⊔ . . .⊔Wl

where Wi is obtained from {Cj |j ∈ ηi} by identifying the roots, Wi ≡0 p0(
⊔
{Cj |j ∈ ηi}). Now take

u = [U]≡i
, v = [V]≡i

and w = [W]≡i
for Fi

k.

0

1

C0 V1

.
.
.

0

1

.
.
.

Cn

0

1 1

...

Vm

0

1 1

...
U = . . . V = . . .

0

1

C0 V1

..
.

1
..
.

Cn Vm

0
1

...

U =

. . .

V =
.
.

.
.
.

1

...

.
.
.

.
.
.

Pic.1. Parameters U and V for F1

k and F2

k. Pic.2. Parameters U and V for T1

k and T2

k.

For the case of (F1

k,≤1) and (F2

k,≤2), the parameters are a bit more complicated than in the previous
case, see pic. 2. Let U be obtained from C0, . . . , Cn by identifying the roots, U ≡0 p0(C0 ⊔ · · · ⊔Cn). For
each i from 1 to l, let Vi be obtained from {Cj |j ∈ ξi} by identifying the roots and their successors. Now
V is constructed by identifying the roots of all Vi, 1 ≤ i ≤ l. Define W as V with η instead of ξ. Take
u = [U]≡i

, v = [V]≡i
, w = [W]≡i

for Ti
k.

References

1. Brattka, V., Gherardi, G.: Weihrauch degrees, omniscience principles and weak computability.
http://arxive.org/abs 0905.4679 (2009)

2. Brattka, V., Gherardi, G.: Effective choice and boundedness principles in computable analysis.
http://arxive.org/abs 0905.4685 (2009)

3. Davey, B.A., Pristley, H.A.: Introduction to Lattices and Order. Second edition, Cambridge University
Press, 2002

4. Ershov, Yu.L., Lavrov, T.A., Taimanov, A.D., Taitslin, M.A.: Elementary theories. Uspechi Mat. Nauk
20 N 4 (1965) 37–108 (in Russian)

5. Hertling, P.: Topologische Komplexitätsgrade von Funktionen mit endlichem Bild. Informatik-Berichte
152, Fernuniversität Hagen, 1993

6. Hertling, P.: Unstetigkeitsgrade von Funktionen in der effektiven Analysis, Informatik Berichte 208-
11/1996, Fernuniversität Hagen, 1996

7. Hertling, P., Weihrauch, K.: Levels of degeneracy and exact lowercomplexity bounds for geometric algo-
rithms. Proc. of the 6th Canadian Conf. on Computational Geometry Saskatoon (1994) 237-24

8. Selivanov, V.L.: Hierarchies of ∆0

2-measurable k-partitions. Math. Logic Quarterly 53 (2007) 446–461
9. Kudinov, O.V., Selivanov, V.L.: Undecidability in the homomorphic quasiorder of finite labelled forests.

Journal of Logic and Computation 17 (2007) 1135–1151
10. Weihrauch, K.: The degrees of discontinuity of some translators between representations of the real

numbers. Technical Report TR-92-050, International Computer Science Institute, Berkeley, 1992.
11. Weihrauch, K.: Computable Analysis. Springer Verlag, Berlin (2000)

Diagonal sets for real number complexity classes

Klaus Meer

Computer Science Institute
BTU Cottbus

Konrad-Wachsmann-Allee 1
D-03046 Cottbus, Germany

meer@informatik.tu-cottbus.de

Abstract. Ladner has shown that there are non-complete problems in NP \P assuming NP 6= P.
We survey results of similar type in computational settings different from the classical Turing
machine. The latter include real and complex Turing machines and several of its variants as well
as Valiant’s complexity theory for families of polynomials over infinite fields.

Keywords: Complexity, real number model, diagonal problems

1 Introduction

Starting point of our investigations is the following classical result by Ladner [6]:

Theorem 1. Suppose NP 6= P. Then there are problems in NP \ P which are not NP-complete under
polynomial time many-one reductions.

Its proof relies intrinsically on the countability of both the family {P1, P2, . . .} of polynomial time
machines and the family {R1, R2, . . .} of polynomial time reduction machines. A diagonalization argument
is performed to fool one after the other each machine in the two sets. This is briefly done as follows.
Given an NP-complete problem L one constructs a problem L̃ ∈ NP such that all machines Ri fail to
reduce L to L̃ on some input and all Pi fail to decide L̃ correctly on some input. Towards this aim the
definition of L̃ proceeds dimensionwise while intending to fool step by step P1, R1, P2, R2, In order
to fool an Pi the language L̃ is taken to look like L for inputs of sufficiently large size. Conversely, in
order to fool reduction algorithms Ri for sufficiently many of the following input-sizes L̃ looks like an
easy problem. In addition, a typical padding argument guarantees L̃ ∈ NP.

Extensions of Ladner’s result can, f.e., be found in [11].

Considering computational models over uncountable structures like R and C the above diagonalization
argument - at least at a first sight - fails since the corresponding algorithm classes become uncountable.

In this presentation we survey what has been done in the last 10 years in order to obtain Ladner-type
results in different frameworks dealing with uncountable structures.

2 Some uncountable settings

We are interested in the following computational settings. For more severe introductions see [2, 4].
The Blum-Shub-Smale model (BSS for short) over R or C, respectively, treats reals or complex

numbers as basic entities. It performs basic operations among {+,−, ·} together with a test x ≥ 0? (for
R) or x = 0? (for C) at unit cost. If only {+,−}-operations are allowed we get the additive BSS model.We
denote the resulting complexity classes analogue to P and NP in these models by adding self-explaining
sub- and superscripts like PR,PC,Padd

R etc.
Of particular interest below will be the set of machine constants used by a BSS algorithm. Each

uniform algorithm M has access to finitely many constants c1, . . . , ck from the underlying structure.
These constants can be used within the algorithm. The way how the ci’s occur in M ’s computation leads
to two more definitions important later on.

If all intermediate results in any computation of M depend linearly on the ci only we get the BSS
model with restricted use of contants introduced in [8]. As we shall discuss later on in this model the

Diagonal sets for real number complexity classes 129

currently strongest uniform Ladner type result for real Turing machines is known. We denote complexity
classes in the restricted model by adding an superscript rc.

The notion of basic machines was introduced by Michaux [9]. It is important in order to perform
diagonalization arguments like Ladner’s one as well in the frameworks we are interested in.

Definition 1. A basic machine over R in the BSS-setting is a BSS-machine M with rational constants
and with two blocks of parameters. One block x stands for a concrete input instance and takes values in
R∞, the other one c represents real constants used by the machine and has values in some Rk (k ∈ N
fixed for M). Here R∞ :=

⋃
n≥1

Rn denotes the set of all finite sequences of real numbers.

Basic machines for the other models mentioned above are defined similarly.

The above definition of a basic machine intends to split the discrete skeleton of an original BSS
machine from its real machine constants. That is done by regarding those constants as a second block of
parameters. Fixing c we get back a usual BSS machine M(•, c) that uses the same c as its constants for
all input instances x. If below we speak about the machine’s constants we refer to the potentially real
ones only.

Basic machines give rise to define a non-uniform complexity class P/const for the different model
variants we consider. The non-uniformity is literally weaker than the well-known P/poly class since the
non-uniform advice has fixed dimension for all inputs.

Definition 2. (cf. [9]) A problem L is in class PR/const if and only if there exists a polynomial time
basic BSS machine M and for every n ∈ N a tuple c(n) ∈ Rk of real constants for M such that M(•, c(n))
decides L for inputs up to size n.

Similarly for PC/const,Padd
R /const, and Prc

R /const.

The final setting we consider below is Valiant’s complexity theory for families of polynomials with
coefficients in a field k together with the corresponding complexity classes V P and V NP, see [4] for a
detailed introduction.

3 Diagonal problems in uncountable structures: Survey of results

We next discuss which results of Ladner type have been established for these settings.

3.1 Complex Turing machines

The first result in the BSS framework was shown in [7] for the complex classes PC and NPC:

Theorem 2 ([7]). Suppose NPC 6= PC. Then there are problems in NPC\PC which are not NPC-complete
under polynomial time many-one reductions.

The proof relies on a theorem by Shub and Smale, see chapter 6 in [2]. It basically says that for a problem
in NPC that can be defined without complex constants the use of complex machine constants does not
speed up any decision algorithm significantly. Since there exist NPC-complete problems having the above
property it can be shown that the theorem allows to transfer Ladner’s problem over C to the analogue
problem over Q̄, the algebraic closure of Q in C. Here, the classical proof can be performed.

3.2 Unifying argument using P/const

The next step was done in [1] by using arguments on the class P/const in the corresponding models.
The class of basic machines clearly is countable as long as the particular choice of machine constants
is not fixed. Thus, in principle we can diagonalize over P/const decision and reduction machines in the
different models.

Theorem 3. [1] Suppose NPR 6⊆ PR/const. Then there exist problems in NPR \ PR/const not being
NPR-complete under PR/const reductions.

Similarly for the other model variants.

130 Klaus Meer

The proof again uses the usual padding argument along the classical line. The main new aspect,
however, is the necessity to establish that for each basic machine M which is supposed to decide the
intended diagonal problem L̃ an input-dimension where M ’s result disagrees with L̃’s definition can
be computed effectively. The condition that M disagrees with L̃ for all possible choices of machine
constants can be expressed via a quantified first-order formula. Deciding the latter then is possible due
to the existence of quantifier elimination algorithms in the respective structures.

Since the assumption of Theorem 3 deals with PR/const instead of PR it gives a non-uniform version
of Ladner’s result. Note that because of PR ⊆ PR/const the theorem’s implication also holds for uniform
reductions. In order to achieve stronger versions one next has to study the relation between the classes
P and P/const. If both are equal, then a uniform version of the theorem follows.

Theorem 4 ([9],[1]). In recursively saturated structures it is P = P/const. As a consequence, Ladner’s
results holds uniformly over structures like {0, 1} and C.

Thus, Ladner’s original result as well as Theorem 2 are reproved. Since R is not recursively saturated
the theorem’s consequence does not apply to R.

Remark 1. Similar results were independently obtained by B. Poizat in [10].

3.3 Additive and restricted BSS model

Due to its importance for the above questions Chapuis and Koiran in [5] have undertaken a deep model-
theoretic analysis of P/const and related classes. They argue that for the full real model already the
equality PR = PR/1 is highly unlikely unless some major complexity theoretic conjecture is violated.
Here, PR/1 is defined by means of basic machines which use a finite number of uniform and a single
non-uniform machine constant only. Nevertheless, for the reals with addition and order (additive model)
they were able to show once again Padd

R = Padd
R /const and thus

Theorem 5 ([5]). Suppose NPadd
R 6= Padd

R . Then there are problems in NPadd
R \ Padd

R which are not
NPadd

R -complete.

Their proof for showing the inclusion Padd
R /const ⊆ Padd

R makes use of the moderate growth of
intermediate results in an additive computation. This allows to bound the size of and compute efficiently
and uniformly for each input dimension n a set of rational machine constants c(n) such that the given
Padd

R /const-machine works correctly on R≤n if c(n) is taken as vector of constants.
This idea is one of the starting points in [8] to extend the result to the restricted model. We point out

that this model is closer to the original full real BSS model than the additive one is. As one indication
for this fact note that the NPR-complete feasibility problem FEAS which asks for solvability of a system
of polynomial equations over R is NPrc

R -complete as well in the restricted model. Since Theorem 3 holds
as well here the main task is to analyze the relation between Prc

R and Prc
R /const.

Theorem 6 ([8]). It is Prc
R = Prc

R /const. As a consequence, supposing FEAS 6∈ NPrc
R there exist non-

complete problems in NPrc
R \ Prc

R .

Crucial for showing Prc
R = Prc

R /const is a certain convex structure underlying the set of suitable
machine constants. Given a problem L ∈ Prc

R /const and a corresponding basic machine M using k
constants define En ⊂ Rk as set of constants that can be used by M in order to decide L∩R≤n correctly.
It can be shown that without loss of generality the {En}n build a nested sequence of convex sets with
empty intersection. The main point now is to establish by a limit argument in affine geometry the
following: There exist three vectors c∗, d∗, e∗ ∈ Rk such that for all n ∈ N and small enough µ1 > 0, µ2 >
0 (µ2 depending on µ1 and both depending on n) machine M correctly decides L ∩ R≤n when using
c∗ + µ1 · d∗ + µ2 · e∗ as its constants.

This is sufficient to change M into a polynomial time restricted machine that decides L and uses
c∗, d∗, e∗ as its uniform machine constants.

Let us summarize the methods described so far. The diagonalization technique used above allows some
degree of freedom as to how to define PR/const. This means that we can put some additional conditions
onto the set of constants that we allow for a fixed dimension to work. To make the diagonalization

Diagonal sets for real number complexity classes 131

work there are basically two aspects that have to be taken into account. First, the resulting class has
to contain PR. Secondly, the conditions we pose on the constants have to be semi-algebraically definable
without additional real constants. Playing around with suitable definitions might be a way to attack
Ladner’s problem as well in the full real number model. However, for a problem L in PR/const the
topological structure of the set of suitable constants is more complicated since now each branch results in
a (potentially infinite) intersection of semi-algebraic conditions. Then one has to study how the topology

of the sets
N⋂

i=1

Ei evolves for increasing N. For example, could one guarantee the existence of say a semi-

algebraic limit curve along which one could move from a point c∗ into an En? In that case, a point on
the curve might only be given by a semi-algebraic condition. As consequence, though one would likely
not be able to show PR/const ⊆ PR may be at least a weaker uniform version of Ladner’s result could
be settled.

3.4 Valiant’s model

The final Ladner type result to be briefly discussed here deals with Valiant’s classes V P and V NP and
was shown by Bürgisser in [3]. For the definition of these classes and p-projections as a reduction notion
see [4].

Theorem 7 ([3]). Suppose V NP 6= V P in Valiant’s model over a field k. Then there exists a family of
polynomials in V NP \ V P that is not V NP -complete under p-projections.

As in Theorem 3 non-uniformity again plays an important role in proving the theorem. Note that
Valiant’s model already by definition is non-uniform since the straight-line programs that define the
members of a polynomial family in class V NP are not necessarily related to each other. This fact again
allows a particular enumeration of all straight-line programs of polynomial size over an uncountable field
”in blocks”, similar in spirit to the enumeration of basic machines.

For finite coefficient fields [3] moreover gives concrete problems of such an intermediate complexity.
Since all the problems constructed above for the different BSS models are quite artificial it remains an
interesting open question to find more natural problems satisfying Ladner’s theorem as well in these
settings.

References

1. S. Ben-David, K. Meer, and C. Michaux. A note on non-complete problems in NPR. J. Complexity, 16(1):324–
332, 2000.

2. Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and real computation. Springer-
Verlag, New York, 1998.

3. Peter Bürgisser. On the structure of Valiant’s complexity classes. In STACS 98 (Paris, 1998), volume 1373
of Lecture Notes in Comput. Sci., pages 194–204. Springer, Berlin, 1998.

4. Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic complexity theory, volume 315
of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 1997. With the collaboration of Thomas Lickteig.

5. Olivier Chapuis and Pascal Koiran. Saturation and stability in the theory of computation over the reals.
Ann. Pure Appl. Logic, 99(1-3):1–49, 1999.

6. Richard E. Ladner. On the structure of polynomial time reducibility. J. Assoc. Comput. Mach., 22:155–171,
1975.

7. Gregorio Malajovich and Klaus Meer. On the structure of NPC. SIAM J. Comput., 28(1):27–35, 1999.
8. Klaus Meer. On Ladner’s result for a class of real machines with restricted use of constants. In Computability

in Europe, volume 5635 of Lecture Notes in Comput. Sci., pages 352–361. Springer, 2009.
9. Christian Michaux. P 6= NP over the nonstandard reals implies P 6= NP over R. Theoret. Comput. Sci.,

133(1):95–104, 1994.
10. Bruno Poizat. Gonflette dans les modèles ω-saturés. Exposé au groupe de travail LIP-IGD ”Complexité

Algébrique”, 1996.
11. Uwe Schöning. A uniform approach to obtain diagonal sets in complexity classes. Theoret. Comput. Sci.,

18(1):95–103, 1982.

Nash Equilibria and Fixed Points in the BSS-Model

Arno Pauly?

University of Cambridge
Computer Laboratory
Cambridge CB3 0FD

United Kingdom

1 Introduction

Some computational problems elude a natural formulation as decision problems, and are therefore not
adequately covered in the study of complexity classes such as P or NP. Motivated by game theoretic
problems in particular, and fixed point problems in general, complexity classes of total search problems
have been studied in the classical framework. A famous example is the class PPAD introduced in [10],
which has computing a Nash equilibrium in a two player game, an ε-Nash equilibrium in an n-player
game or a Brouwer fixed point of a suitably represented function as complete problems ([10], [7], [8]).

A unifying property of these problems is their continuous nature, which immediately suggests to
study them in a framework of real-number computation. In the computable analysis approach ([14]),
none of these problems is computable, as they are all discontinuous. The exact degree of incomputability
(i.e. the Weihrauch-degree [5], [4], [12]) of finding equilibria in two-player games was classified in [11].

A hybrid approach was chosen in [9], by assuming that the instances (such as games or functions)
are given as finite sequences of bits, while the solutions are vectors of real numbers. This solves e.g. the
obstacle that a three-player game with rational payoffs can have purely irrational equilibria. By including
a suitable notion of reducibility, equivalences shown in this approach directly transfer to the associated
discrete problems. As a result, the class FIXP is defined, which has finding Nash equilibria in n-player
games (or in 3-player games) and several generic fixed point problems as complete problems.

The goal of the present paper is to initiate the study of the corresponding problems in the BSS-
model ([3]). A number of interesting equivalences between problems can be obtained by inspection of the
reductions given in [9].

2 FIXPR

Our starting point to define the class FIXPR will be circuits defining continuous functions from either
the unit cube, the unit ball or the unit simplex into itself. By Brouwer’s Fixed Point Theorem, such a
function will have a fixed point, so finding a fixed point for each circuit is a total search problem. The
circuits shall be coded in a way that admits (potential) evaluation in polynomial time, e.g. by using a
real number for each individual gate. Then we obtain the following result:

Theorem 1. The following problems are equivalent under polynomial time BSS-reductions:

1. Finding a fixed point for a circuit using gates from {+, ∗, /, n
√

, max}.
2. Finding a fixed point for a circuit using gates from {+, ∗, max}.
3. Finding an exact Nash equilibrium for a 3-player game.
4. Finding an exact Nash equilibrium for an n-player game.

Proof. 4.⇒ 3. The construction given in [6] can be executed by a polynomial time BSS-machine.
3.⇒ 2. The function used in the proof of Nash’s Theorem by Brouwer’s Fixed Point Theorem is the

sought reduction.
2.⇒ 1. Trivial.
1.⇒ 4. The reduction defined in the proof of [9, Theorem 18] does not depend on the inputs being rational

numbers, and the number of algebraic operations executed during the reduction only depends on the
number of coefficients present in the input, not on their size.

? Arno.Pauly@cl.cam.ac.uk

Nash Equilibria and Fixed Points in the BSS-Model 133

Now we can define FIXPR as the class of problems reducible to any of the problems above. By the first
problem, it is obvious that a FIXPR-complete problem cannot be solved by a deterministic BSS-machine,
as finding square-roots is reducible to it. Examination of the second problem shows FIXPR ⊆ FNPR: As
we can evaluate all the gates in constant time, the circuit itself can be evaluated in polynomial time. If
we guess a fixed point, we can verify it.

3 PPADR

As we have seen, roots and division can be removed from the set of available circuit gates without altering
the difficulty of finding fixed points. In a similar way, we can reduce the number of players in the games
down to 3. Restricting the problems further will yield a new equivalence class, and the class PPADR:

Theorem 2. The following problems are equivalent under polynomial time BSS-reductions:

1. Finding a fixed point for a circuit using gates from {+, ∗c, max}1.
2. Finding an exact Nash equilibrium for a 2-player game.

Proof. The corresponding reductions given in [9] can be extended to polynomial time BSS-reductions.

Obviously, we have PPADR ⊆ FIXPR. In the discrete setting, nothing more is known (although a
strict inclusion is strongly expected). Here, however, we can prove the separation of the two classes, as
a consequence of the following theorem:

Theorem 3. All problems in PPADR can be solved by a deterministic BSS-machine.

Proof. It is sufficient to show that a deterministic BSS-machine can find Nash equilibria in two player
games. The reduction from Nash to rDiv given in [11] can be interpreted as an algorithm for the BSS-
model, establishing the claim.

Corollary 1. PPADR (FIXPR.

4 Outlook

The reductions presented here can be adapted quickly to link decision problems derived from the original
search problems. However, it might be more promising to extend the study of search problems to include
further interesting applications. Linear programming seems to be a straight-forward choice. Besides
being an open problem of considerable importance ([13], [2]), the search problem is more relevant than
the decision problem: If a solution exists, it should be returned. Game theory and linear programming
are sufficiently related to expect a link between the two problems.

Another line of reasoning leads back into the classical setting. If PPAD and FIXP should be identical,
the corresponding reduction must fail to transfer to the reals in some way. This constitutes a new type of
barrier, in addition to relativization, natural proofs and algebrization ([1]); although we have to admit,
one of lesser importance. Nevertheless, the identification of this barrier might be useful to study the
relationship between PPAD and FIXP.

This significantly restricts the available options, as purely algebraic reductions are ruled out. As an
alternative to non-algebraic operations, a different treatment of rational and irrational numbers might
be involved. It is even conceivable that this restriction might be useful to prove the separation in the bit
model.

Finally, the original definition of PPAD given in [10] is of a different nature than the one we transferred
here. If we wish to stay close to the first one, we arrive at the following problem: An instance is a directed
graph with in- and out-degree bounded by 1 for each vertex in the form of a BSS-machine that computes
the adjacent vertices for each vertex, where vertices are denoted by real vectors of a fixed dimension
(dependent on the machine), and the 0-vector has no incoming edges. The tasks is to find another vertex
v with in-degree(v) + out-degree(v) ≤ 1. How is this problem related to the problems studied in the
present paper?
1 ∗c denotes multiplication by constants only.

134 Arno Pauly

References

1. S. Aaronson and A. Wigderson. Algebrization: A New Barrier in Complexity Theory. ACM Trans. Comput.
Theory, 1(1):1–54, 2009.

2. G. Bär. On the Complexity of Linear Programming in the BSS-Model. Discrete Applied Mathematics,
95:35–40, 1999.

3. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer, 1998.
4. V. Brattka and G. Gherardi. Effective Choice and Boundedness Principles in Computable Analysis.

arXiv:0905.4685v1, May 2009.
5. V. Brattka and G. Gherardi. Weihrauch Degrees, Omniscience Principles and Weak Computability.

arXiv:0905.4679v1, May 2009.
6. V. Bubelis. On Equilibria in Finite Games. International Journal of Game Theory, 8(2):65–79, 1979.
7. Xi Chen and Xiaotie Deng. Settling the Complexity of 2-Player Nash-Equilibrium. Technical Report 134,

Electronic Colloquium on Computational Complexity, 2005.
8. Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Computing Nash Equilibria: Approximation and Smoothed

Complexity. Technical Report 23, Electronic Colloquium on Computational Complexity, 2006.
9. K. Etessami and M. Yannakakis. On the Complexity of Nash Equilibria and other Fixed Points. to appear.

10. C. Papadimitriou. On the Complexity of the Parity Argument and other Inefficient Proofs of existence.
Journal of Computer and Systems Science, 48(3):498–532, 1994.

11. A. Pauly. How Discontinuous is Computing Nash Equilibria? arXiv:0907.1482v1, July 2009.
12. A. Pauly. On the (semi)lattices induced by continuous reducibilities. arXiv:0903.2177v1, March 2009.
13. S. Smale. Mathematical Problems for the Next Century. Mathematical Intelligencer, 20:7–15, 1998.
14. K. Weihrauch. Computable Analysis. Springer-Verlag, 2000.

Une dualité entre fonctions booléennes

Bruno POIZAT
poizat@math.univ-lyon1.fr

(To be published in the Journal de Jussieu)

Summary of results

We consider a finitely generated ring A , which will be mainly a finite field
k , or the ring Z of the integers, or the ring Z/nZ of the integers modulo n .
What we call a function, in m variables, f(x1, ... xm) is an application from
{0, 1}m to A .

Any function can be written in a unique way as a polynomial of degree zero
or one in each of its variables, with coefficients in k ; the dual function f*
of f is the function, in the same number of variables, whose f expresses the
coefficients of the canonical polynomial ; in other terms, f*(x1, ... xm) =
Σ u boolean f(u1,... um).x1

u1.xm
um , where xy = y.x - y + 1 (xy = 1 if y = 0 ,

xy = x if y = 1).

Duality is a special case of a transformation T , that is the data, for each m ,
of an inversible linear map Tm between functions of arity m satisfying the
Fubini condition : Tm(f).Tm'(g) = Tm+m'(f.g) when the m-tuple of the
variables of f is disjoint from the m'-tuple of the variables of g .

A transformation is determined by its restriction T1 on the space of functions
in one variable, so that the group of transformations is isomorphic to the
group GL2(k) of two by two invertible matrices with coefficients in k .

In fact, to any transformation T is associated a function ν (y,x) in two

variables, that we call its kernel, such that T1(f)(x) = Σ t ∈ {0,1} f(t).ν (t,x) ,
and Tm(f)(x1, ... xm) = Σ t booléen f(t1,t2,...tm).ν (t1,x1).ν (tm,xm) for each
integer m , thanks to Fubini condition.

Our aim is to evaluate the effect of transformations on the complexity of
functions. By definition, the complexity of f is the number of arithmetic
operations (additions and multiplications) that are necessary to obtain f

1

starting from variables and constants choosen in a fixed generating system of
A . The class P(A) is the set of sequences of functions whose complexity
grows polynomially ; Pt(A) is the set of sequence of functions computed by
arithmetics terms of polynomial size, or, equivalently, by arithmetic circuits
of logarithmic depth. An intermediate an less robust class is Malod's Pmd(A)
associated to multiplicatively disjoint circuits. No separation results is known
between Pt(A) and Pmd(A) , whatever be the ring A .

The classes SP(A) , SPmd(A) and SPt(A) are obtained by summation
respectively before P(A) , Pmd(A) and Pt(A) ; in fact, SPt(A) =
SPmd(A) . Moreover, when the ring A is finite, the parcimonious reduction
of circuits to terms implies that SP(A) = SPt(A) .

The complexity classes that we consider are non uniform ; we could give
them a polynomial uniformity as well, without affecting our results.

From the existence of the kernel, it is clear that SP(A) and SPt(A) are
closed under transformations.

Theorem. (i) Whatever be the ring A , SPt(A) = Pt(A) if and only if
Pt(A) is closed under transformations, if and only if Pt(A) is closed by
duality, if and only if Pt(A) is closed by inverse duality.
(ii) Whatever be the ring A , SPmd(A) = Pmd(A) if and only if Pmd(A)
is closed under transformations, if and only if Pmd(A) is closed by
duality, if and only if Pmd(A) is closed by inverse duality.
(iii) If the ring A is finite , SP(A) = P(A) if and only if P(A) is closed
under transformations, if and only if P(A) is closed by duality, if and only
if P(A) is closed by inverse duality.

Sketch of the proof. A sequence of functions in SPt(A) is obtained by
projection from a sequence of functions which have a simple polynomial
expression, i.e. an inverse dual in Pt(A) .

Now we consider the case where the ring A is a finite field k . When two
finite fields k and k' have the same characteristic p , then SP(k) = P(k) is
equivalent to SP(k') = P(k') , and this is also equivalent to the well-known
hypothesis #pP = P (concerning boolean classes of complexity). Similarly,
SPt(k) = Pt(k) if and only if SPt(k') = Pt(k') , and SPmd(k) = Pmd(k) if
and only if SPmd(k') = Pmd(k') .

Among the transformations, we distinguish the begnin ones, which for
obvious reasons have a moderate effect on the complexity : P(A) , Pmd(A)
and Pt(A) are therefore closed under begnin transformations. They are the

2

diagonal transformations, which multiply the functions in one variable by
some a.x + b , where b and a+b are invertible, and the antidiagonal
transformations, obtained by composition of the diagonal transformations
with the transformation corresponding to the exchange of the two values 0
and 1 .

Theorem. (i) If k is a finite field , SPt(k) = Pt(k) if and only if Pt(k) is
closed under any non-begnin transformation.
 (ii) If k is a finite field , SPmd(k) = Pmd(k) if and only if Pmd(k) is
closed under any non-begnin transformation.

(iii) If k is a finite field , SP(k) = P(k) if and only if P(k) is closed under
any nonbegnin transformation.

Sketch of the proof. Except when the field has three or five elements, the
group of begnin transformations is maximal in GL2(k) ; in the two
exceptionnal cases, jump to the quadratic extension of k .

The paper concludes with considerations on characteristic zero. It is
observed that the hypothesis #P = P corresponds to the possibility of
making summation in figures.

The connexions between the two (unlikely) hypothesis SP(Z) = P(Z) and
SPmd(Z) = Pmd(Z) are very mysterious ; they both imply SPt(Z) ⊆ P(Z) ,
an hypothesis on computations with integers that turns out to be equivalent
to #P = P , which is an hypothesis concerning boolean ; it implies in turn
each of the #pP = P , as well as NP = P .

It can be shown that #nP = P is equivalent to the conjunction of the #pP =
P for each of the prime divisors p of n .

3

Une dualité entre fonctions booléennes

Bruno POIZAT

Résumé. Si k est un corps fini, toute fonction f(x1, ... xm) de {0, 1}m dans k s'écrit de
manière unique comme un polynôme, à coefficients dans k , de degré un ou zéro en
chacune de ses variables ; on peut donc lui associer une fonction f*(x1, ... xm) , sa duale,
qui exprime les coefficients de son polynôme canonique. Nous considérons l'improbable
hypothèse que la classe P(k) , formée des suites de fonctions calculables en un nombre
d'opérations (additions et multiplications) de croissance polynomialement bornée, soit
close par dualité ; nous montrons qu'elle équivaut à une hypothèse bien connue en Théorie
de la Complexité sous le nom de P = #pP , où p est la caractéristique de k .

Dans une première section, nous exposons ce résultat lorsque k = Z/2Z , c'est-à-dire dans
le cadre des calculs booléens classiques ; sa démonstration évite l'emploi d'un polynôme
universel comme le hamiltonien : ses ingrédients sont d'une part la réduction
parcimonieuse des circuits aux termes, et d'autre part la constatation que les expressions
arithmétiques ont une duale très facile à calculer.

Dans la deuxième section, nous traitons le cas général, en introduisant une classe SP(k)
obtenue par sommation à partir de la classe P(k) ; nous vérifierons dans la quatrième
section l'équivalence des hypothèses SP(k) = P(k) et #pP = P . Nous y définissons
également une notion de transformation, dont la dualité est un cas particulier. Les
transformations forment un groupe isomorphe à GL2(k) , avec un sous-groupe B(k) de
transformations que nous qualifions de bénignes, car elles n'ont que peu d'effet sur la
complexité des fonctions ; nous montrons que toutes les transformations non-bénignes ont
à peu près la même influence sur la complexité des fonctions, sauf si k = F3 ou k = F5 ;
dans ces deux cas exceptionnels, la transformation de Fourier joue un rôle particulier.

Dans la troisième section, nous considérons des fonctions de km dans k ; nous n'y
trouvons pas des classes de complexité vraiment nouvelles, mais seulement un groupe de
transformations plus riche.

La quatrième section introduit l'égalité #P = P dans le paysage ; quant à la cinquième et
dernière, elle examine le lien entre nos résultats et ceux de Guillaume Malod concernant la
clôture par fonction-coefficient de diverses classes de complexité pour le calcul des
polynômes à la manière de Valiant.

Nous nous sommes efforcés de rédiger cet article de manière à ce qu'il puisse être lu par
des personnes non spécialisées en Algorithmie.

Mots clefs. Complexité des calculs, circuits et termes arithmétiques, expressions
arithmétiques, parallélisation, réduction parcimonieuse, hamiltonien, Valiant, Malod.

4

1. Fonctions booléennes

Dans cette première section, nous nous plaçons dans le cadre usuel de
l'étude de la complexité algorithmique, qui est celui des fonctions
booléennes. Nous introduisons une transformation involutive entre fonctions
booléennes, que nous appelons dualité, et nous évaluons son influence sur la
complexité des calculs de parité.

1.1. Une fonction et sa duale

Nous qualifions de booléens deux éléments notés 0 et 1 , et nous appelons
fonction booléenne en m variables une application de {0, 1}m dans {0, 1} .
Nous munissons {0, 1} de la structure du corps Z/2Z = F2 à deux
éléments : 0 + 0 = 1 + 1 = 0 , 0 + 1 = 1 + 0 = 1 , 0.0 = 1.0 = 0.1 = 0 , 1.1
= 1 .

Toute fonction booléenne s'écrit comme un polynôme à coefficients dans
F2 ; on le voit par une induction aisée sur son nombre de variables, en
utilisant la formule f(x1, ... xm,x) = x.f(x1, ... xm,1) + (x+1).f(x1, ...xm,0) .
Comme 0 et 1 satisfont à l'égalité x2 = x , on peut supposer ce polynôme
de degré au plus un par rapport à chacune de ses variables ; l'écriture devient
alors unique, car il y autant de fonctions booléennes en m variables que de
polynômes en m variables de cette forme. Nous appellerons ce polynôme
univoquement attaché à f le polynôme canonique de f .

Nous appelons duale f* de f la fonction en le même nombre de variables
dont f décrit les coefficients des monômes du polynôme canonique ; plus
précisément, si nous notons xy = y.x + y + 1 la fonction qui vaut 1 si y =
0 , et qui vaut x si y = 1 , f*(x1, ... xm) = Σ u booléen f(u1,... um).x1

u1.xm
um .

On voit que, dans cette écriture, un monôme en (x1, ... xn) , de degré un ou
zéro en chacune de ses variables, est associé au uplet booléen (u1, ... un) tel
que ui = 1 si xi figure dans le monôme, et ui = 0 sinon.

Considérons par exemple la fonction ternaire µ (x,y,z) de majorité, qui vaut
1 s'il y a au moins deux 1 parmi les valeurs données aux variables x , y et
z , et qui vaut 0 sinon. Son expression polynomiale canonique est µ (x,y,z)
= x.y + y.z + z.x . Comme la fonction de trois variables x.y vaut 1 dans
exactement deux cas, lorsque x = y = 1 et z vaut soit 0 , soit 1 , sa duale
est Σ u,v,w u.v.xu.yv.zw = x.y + x.y.z ; de même les duales de y.z et de z.x
valent respectivement y.z + x.y.z et z.x + x.y.z . Comme la dualité est de
toute évidence linéaire, µ *(x,y,z) = x.y + y.z + z.x + x.y.z , qui vaut 1 si

5

exactement deux de ses variables prennent la valeur 1 ; en conséquence,
µ * est la fonction qui exprime les coefficients du polynôme canonique de
µ . Autrement dit (µ *)* = µ ; voici l'explication de ce miracle :

Théorème 1. La dualité est involutive : (f*)* = f , et f* décrit les
coefficients des monômes du polynôme canonique de f .

Démonstration. (f*)*(x1, ... xm) = Σ u f*(u1, ... um).x1

u1.xm
um =

Σ u [Σ v f(v1,... vm).u1
v1.um

vm].x1
u1. xm

um = Σ v f(v1,... vm).[Σ u

u1
v1.um

vm. x1
u1.xm

um] , la dernière égalité étant obtenue par l'échange des
sommations. La somme entre crochets se calcule grâce au Théorème de
Fubini, qui déclare que Σ u,u' ϕ (u).ψ (u') = [Σ u ϕ (u)].[Σ u' ψ (u')] si les
uplets de variables u et u' sont disjoints. Elle vaut donc Π i (Σ ui ui

vi.xi
ui) =

Π i (0vi.xi
0 + 1vi.xi

1) = Π i (1 + vi + xi) , soit encore 1 si vi = xi pour chaque
i , et 0 sinon. Fin

Remarque 1. La dualité est définie à nombre de variables m fixé ; si une
fonction dépend de m variables, sa duale n'est plus la même quand on la
considère comme une fonction en une variable muette de plus.

1.2. Questions de complexité

Notre problème est de comparer la complexité de f et celle de f* .

Par définition la complexité d'une fonction (booléenne) est le nombre
d'opérations nécessaires pour la calculer à partir de variables et des constantes
0 et 1 . Comme le choix d'une base (finie) d'opérations ne modifie la
complexité qu'à une constante multiplicative près, nous élirons la somme et le
produit modulo deux. La complexité d'une fonction booléenne est donc la
complexité minimale d'un circuit arithmétique modulo deux qui l'exprime.

Rappelons qu'un circuit arithmétique est la chose bien naturelle suivante : un
graphe fini orienté, sans cycles orientés, dont les points sont appelés portes ;
il n'a qu'une seule porte qui n'émet pas de flèche, sa sortie ; ses portes qui ne
reçoivent pas de flèches sont appelées entrées ; chaque entrée est étiquetée
par une variable ou par une constante ; les points qui ne sont pas des entrées
reçoivent exactement deux flèches, d'origines distinctes ou confondues, et
sont étiquetées par l'addition, ou bien par la multiplication ; la complexité du
circuit est le nombre de ces portes d'opération ; sa profondeur est la longueur
maximale d'un chemin joignant une de ses entrées à sa sortie. On voit
facilement qu'un circuit de complexité c n'a pas plus de c+1 entrées. Un

6

trait important des circuits, c'est qu'on ne limite pas le nombre de flèches que
peut émettre une porte, ce qui signifie qu'une fois qu'un calcul intermédiaire
est fait, on peut l'utiliser autant de fois qu'on veut. Si vous avez soif de plus
de détails, vous pouvez vous abreuver chez [Bürgisser 2000] ou/et chez
[Poizat 1995].

Pour éviter des problèmes idiots avec les variables muettes, nous convenons
que, dans un circuit qui calcule f(x1, ... xm) , chacune des variables xi figure
à au moins une entrée du circuit : si xi est absente d'un calcul de f , on peut
toujours l'introduire artificiellement en ajoutant 0.xi au résultat. Avec cette
convention, une fonction de complexité c n'a pas plus de c+1 variables.

On ne confondra pas la complexité de f et celle de son polynôme
canonique : un circuit de complexité minimale calculant f calcule aussi un
polynôme à coefficients dans F2 qui a même restriction à F2 que le
polynôme canonique de f ; il n'y a pas de raison pour que ces deux
polynômes soient égaux !

Nous noterons P la classe des suites fn de fonctions booléennes dont la
complexité cn est majorée par un polynôme en n (à coefficients réels) ; le
nombre mn de variables de fn est donc polynomialement borné, étant
majoré par cn + 1 . Comme nous n'introduisons pas d'uniformité, cette classe
est souvent notée P/poly ; on pourrait l'uniformiser en exigeant que les
fonctions de la suite soient calculées par une suite de circuits produits par une
machine de Turing travaillant en temps polynomial ; nous ne le faisons pas,
car il n'est pas coutume d'uniformiser les classes de Valiant auxquelles nous
allons comparer nos classes booléennes. De toutes façons, l'uniformité
n'aurait qu'un effet décoratif, étranger à la nature des problèmes que nous
posons.

Nous notons SP(F2) la classe des suites de fonctions de la forme fn(x) =
Σ u booléen gn(x,u) , où la suite gn est dans P . Cette classe, qui correspond aux
comptage de la parité, à x fixé, du nombre de solutions (booléennes) de
l'équation gn(x,u) = 1 , est usuellement notée #2P ; si nous changeons la
notation, c'est que nous la considérerons comme un cas particulier d'une
classe définie sur un corps fini arbitraire. En convenant que Σ Ø fn(x) = fn(x) ,
ou bien en observant que fn(x) = Σ u u.fn(x) , on voit que P est inclus dans
SP(F2) . Puisque la longueur du uplet u peut être un polynôme en n , les
sommations portent sur un nombre a priori exponentiel de termes, et on
s'attend à ce qu'elles fassent exploser la complexité ; on pense donc qu'il très
probable que l'inclusion de P dans SP(F2) soit stricte, mais, comme
d'habitude en l'état présent de la Théorie de la Complexité des calculs, on est
incapable de le démontrer.

7

Il est évident, d'après la définition de f* , que la classe SP(F2) est close par
dualité : la suite fn est dans SP(F2) si et seulement si la suite fn* est dans
SP(F2) . Plus précisément, on voit que si f s'obtient par sommation devant
une fonction de complexité c , f* s'obtient par sommation devant une
fonction de complexité inférieure à 5.c + 4 .

Un terme est un circuit d'architecture arborescente, dans lequel chaque porte
n'est autorisée à émettre qu'une seule flèche ; Pt est la classe des suites de
fonctions booléennes calculées par une suite de termes de complexité
polynomiale ; grâce au lemme de parallélisation de Spira (voir [Spira 1971],
[Poizat 1995]), Pt est aussi la classe des suites de fonctions booléennes
calculées par une suite de circuits de profondeur logarithmique, c'est-à-dire
bornée par A.log(n) pour une certaine constante réelle A . En effet, d'une
part un circuit de profondeur p est de complexité au plus 2p+1 ; d'autre part
le Lemme de Spira affirme qu'un terme de complexité c peut se remplacer
par un terme équivalent, c'est-à-dire calculant la même fonction, de
profondeur majorée par 4.log(2.c + 1) (le logarithme est en base deux).
Comme ce lemme n'utilise aucune propriété algébrique de la somme et du
produit, mais seulement le fait qu'on travaille dans un ensemble fini
({0, 1} dans le cas présent), la classe Pt ne dépend pas de la base
d'opérations choisie.

Rappelons qu'on ne sait pas séparer P de Pt (c'est-à-dire qu'on ne sait pas
montrer que l'inclusion de Pt dans P est stricte). On transforme un circuit
en un terme équivalent en répétant les calculs à chaque niveau ; cette
manipulation conserve la profondeur, mais a un effet exponentiel sur la
complexité ; cela laisse penser que l'inclusion de Pt dans P est stricte, mais
un sentiment n'est pas une démonstration !

La classe SPt(F2) est définie à partir de Pt comme SP(F2) l'est à partir de
P . Le lemme suivant est bien connu, sous cette forme ou sous une autre :

Lemme 2, de réduction parcimonieuse. Si f(x) est une fonction booléenne
calculée par un circuit arithmétique de complexité c , on peut trouver une
fonction g(x,u) en c variables de plus, calculée par un terme arithmétique
de complexité 4.c , ayant la propriété suivante : si f(x) = 0 , g(x,u) = 0
pour toute valeur de u ; si f(x) = 1 , g(x,u) = 0 pour toute les valeurs de u ,
à l'exception d'une seule où elle vaut 1 .

Démonstration. A chaque porte d'entrée du circuit est attachée une variable
ou une constante (valant 0 ou 1) ; à chacune de ses portes d'opération π
nous associons une nouvelle variable u . Si π est une porte d'addition nous

8

considérons le polynôme 1 + u + u' + u" , où u' et u" sont les variables ou
les constantes associées aux portes dont π reçoit ses flêches : ce polynôme
vaut 1 si u = u' + u" , et 0 sinon ; si π est une porte de multiplication,
nous considérons pareillement le polynôme 1 + u + u'.u" , qui vaut 1 si u =
u'.u" , et 0 sinon ; g(x,u) est le produit de tous ces polynômes par la
variable associée à la sortie du circuit. Fin

Corollaire 3. SP(F2) = SPt(F2) .

Démonstration. Si f(x,u) est de complexité c , le Lemme 2 donne un terme
g(x,u,v) de complexité 4.c tel que f(x,u) = Σ v g(x,u,v) , et alors Σ u f(x,u)
= Σ u,v g(x,u,v) . Fin

1.3. Sommations et projections

On dit qu'une fonction est projection d'une autre si la première s'obtient à
partir de la seconde en remplaçant les variables de cette dernière par des
variables ou des constantes ; comme nos fonctions ont pour domaine
{0, 1}m , cette notion n'a pour nous de sens que si les constantes de
projection sont 0 ou 1 . Une projection ne peut que diminuer la complexité.

On dit qu'un terme de complexité c est une expression si ses c+1 entrées
sont affectées de variables (pas de constantes) qui sont toutes distinctes ; on
voit que tout terme est projection d'une expression. Le résultat qui suit vient
de ce que la duale d'une expression est facile à calculer :

Théorème 4. Si f(x) = Σ u g(x,u) , où g est un terme de profondeur p , f(x)
est projection d'une fonction f1(y) = Σ u h(y,u) dont la duale se calcule par
un terme de profondeur inférieure à 3.p + 2 .

Démonstration. A partir du terme g(x,u) , nous en fabriquons un autre à
peine plus profond, h(y,u) , en modifiant les entrées de la manière suivante :
nous introduisons autant de variables yj qu'il y a d'entrées ; si la j-ième
entrée est indexée par une constante ε , nous la remplaçons par ε .yj ; si la
j-ième entrée est indexée par une variable u du uplet u , nous la remplaçons
par u.yj ; si la j-ième entrée est indexée par une variable x qui n'est pas une
variable de sommation, nous la remplaçons par yj . Il est clair que f(x) est
une projection de f1(y) = Σ u h(y,u) .

Si nous considérons h(y,u) comme un polynôme en y à coefficients dans
l'anneau F2[u] , il n'a pas de terme constant, et les coefficients de ses

9

monômes sont très faciles à calculer.

Plus précisément, comme ce polynôme est du premier degré en chacune de
ses variables yj , nous pouvons représenter chaque monôme en y par un
uplet booléen v de même longueur. L'application qui se calcule aisément,
c'est celle, à valeurs dans F2[u] , qui à v associe le coefficient du monôme
représenté par v . Cela se fait par une induction sur la complexité des
termes ; considérons une porte d'opération π calculant un sous-terme t(z,u)
de h(y,u) , où nous notons z le uplet de variables de y dont dépend t ; soit
w le uplet de variables de v correspondant à z ; π reçoit ses flêches de
portes π ' et π " , calculant respectivement t'(z',u) et t"(z",u) dont les
uplets de variables z' et z" sont disjoints ; si π est une porte d'addition, la
décomposition en monômes de t est une simple juxtaposition de celle de t'
et de celle de t" , tandis que si π est une porte de multiplication, les
monômes de t sont les produits de ceux de t' et de ceux de t" . On
remarque que le calcul du coefficient d'un monôme de h(y,u) ne demande
pas d'additions : ce coefficient, s'il n'est pas nul, est un monôme en u ; par
ailleurs, la sommation d'un monôme booléen est une chose très simple,
puisqu'elle vaut 1 si toutes les variables sont présentes, et 0 sinon !

Donnons plus de détails ; si t(z,u) est un sous-terme de h(y,u) , calculé à la
porte π , le coefficient de son monôme en z représenté par w est le
produit d'un monôme en u = (u1, ... un) par un coefficient valant 0 ou 1 ;
nous lui associons n+1 fonctions θ 0(w) , θ 1(w) , ... θ n(w) ; θ 0(w) est
le coefficient ; pour i > 0 , θ i(w) = 1 si ui figure dans le monôme, et 0
s'il n'y figure pas. On remarque que θ 0(0) = 0 puisque l'expression de t(z,u)
comme polynôme en z n'a pas de terme constant. Quand θ 0(w) = 0 , les
valeurs de θ 1(w) , ... θ n(w) importent peu, ce qui nous donnera la liberté
de choisir des fonctions θ i(w) faciles à calculer

Comme nous l'avons remarqué, la duale de f1(y) = Σ u h(y,u) est le produit
θ 0(v).θ 1(v).θ n(v) associé au terme final h(y,u) .

Toutes ces fonctions se calculent facilement, par récurrence sur la complexité
du terme g(x,u) . En effet :

- si π est la j-ième entrée et est associée à la constante ε , t(yj) = ε .yj ,
θ 0(vj) = ε .vj , θ 1(vj) = ... = θ n(vj) = 0

- si π est la j-ième entrée et est associée à la variable ui , t(yj) = ui.yj ,
θ 0(vj) = θ i(vj) = vj , et pour k ≠ 0 , i θ k(vj) = 0

10

- si π est la j-ième entrée et est associée à une variable qui n'est pas une
variable de sommation, t(yj) = yj , θ 0(vj) = vj , θ 1(vj) = ... = θ n(vj) = 0

- si π est une porte d'addition, recevant ses flèches de π ' et de π " , le
terme calculé est t(z,u) = t'(z',u) + t"(z",u) , où z est la concaténation de z'
et de z" , qui sont disjoints ; nous considérons le produit α (w") des 1+v"
où v" parcourt w" , ainsi que le produit β (w') des 1+v' où v' parcourt
w' ; si α (w") = β (w') = 0 , on calcule le coefficient d'un monôme qui a des
variables à la fois dans z' et dans z" : il est donc nul, et on peut prendre
θ 0(w) = θ 1(w) = ... = θ n(w) = 0 ; si α (w") = β (w') = 1 , on doit prendre
θ 0(w) = 0 puisqu'il n'y a pas de terme constant, tandis que les valeurs de
θ 1(w) , ... θ n(w) peuvent être choisies arbitrairement ; dans le dernier cas,
de α (w") et de β (w') , un seul des deux n'est pas nul, et le monôme vient
de son côté ; autrement dit, dans tous les cas, on peut prendre pour chaque i ,
θ i(w) = α (w").θ i'(w') + β (w').θ i"(w")

- si π est une porte de multiplication, recevant ses flèches de π ' et de π "
, le terme calculé est t(z,u) = t'(z',u).t"(z",u) , où z' et z" sont disjoints ; le
monôme de t représenté par w est le produit du monôme de t' représenté
par w' et de celui de t" représenté par w" ; autrement dit, θ 0(w) =
θ 0'(w').θ 0"(w") , et, pour i ≠ 0 , θ i(w) = θ i'(w') + θ i"(w") +
θ i'(w').θ i"(w") .

On montre facilement, par induction sur la profondeur p de la porte π , que
le calcul des θ se fait en profondeur 2.p + 1 ; en effet, si p = 0 , π est
une entrée, et le calcul se fait en profondeur un ou zéro ; si π est une porte
d'addition, comme les uplets w' et w" sont de longueur au plus 2p-1 , le
calcul de α et de β se fait en profondeur p - 1 + 1 = p ≤ 2.(p-1) + 1 , qui
majore la profondeur des θ ' et des θ " par hypothèse de récurrence, si
bien que celui des θ se fait en profondeur 2.(p-1) + 1 + 2 = 2.p + 1 ; il en
est de même si π est une porte de multiplication.

Quant à la multiplication finale, comme n ≤ 2p , elle se fait en profondeur
p+1 , si bien que la profondeur totale est majorée par 3.p + 2 . Fin

Remarque 2. Comme les constantes valent 0 ou 1 , on aurait pu traiter les
constantes ε comme les variables x ; si nous avons fait ainsi, c'est en
prévision du futur. Remarquons par ailleurs que l'application brutale de la
formule θ = θ ' + θ " + θ '.θ " , où θ ' et θ " apparaissent chacun deux
fois, fait exploser la taille des termes ; c'est pour cela qu'il faut paralléliser.

11

Théorème 5. P = SP(F2) (c'est-à-dire P = #2P) si et seulement si P est
close par dualité ; Pt = SP(F2) si et seulement si Pt est close par dualité.

Démonstration. Puisque SP(F2) = SPt(F2) est close par dualité, P et Pt le
sont aussi quand elles lui sont égales. Réciproquement, si P est clos par
dualité, d'après le théorème précédent toute suite de fonctions dans SP
s'obtient par projection à partir d'une suite de fonctions dans P , et est donc
elle-même dans P ; le même argument vaut pour Pt . Fin

2. Fonctions à valeurs dans un anneau

Dans cette deuxième section, nous étendons nos calculs aux fonctions
toujours d'arguments booléens, mais à valeur dans un anneau A . Nous
définissons une notion générale de transformation, satisfaisant une condition
de type Fubini, dont la dualité est un cas particulier. Nous considérons la
classe P(A) des suites de fonctions à valeurs dans A calculables en un
nombre fini d'opérations ; quand A est fini, nous montrons que la clôture de
P(A) par dualité équivaut à sa clôture par sommation. Nous étudions plus
précisément le groupe des transformations quand A est un corps fini k , de
caractéristique p ; nous vérifierons dans la section 4 que la clôture de P(k)
par sommations (ou transformations) correspond à une hypothèse ouverte
bien connue en théorie de la complexité classique, concernant le comptage
modulo p .

2.1. Dualité et transformations

Nous considérons maintenant des fonctions de m variables booléennes à
valeur dans un anneau A , c'est-à-dire des applications de {0, 1}m dans
A , qui sera le plus souvent l'anneau Z des entiers relatifs, ou bien le corps
Fp = Z/pZ des restes des entiers modulo un nombre premier p . Nous
persistons à qualifier 0 et 1 de booléens bien que, du point de vue
opérationnel, nous les considérons maintenant comme des éléments de A et
non pas de Z/2Z : 1 + 1 est égal à 2 et non pas à 0 .

Les fonctions en m variables booléennes forment un module libre Em , de
dimension 2m sur A . De ce module nous considérons principalement deux
bases, la base canonique et la base des monômes.

La base canonique de E1 est composée de la fonction caractéristique c0(x)
de {0} et de la fonction caractéristique c1(x) de {1} ; celle de Em est

composée des fonctions de la forme cε 1(x1).cε 2(x2).cε m(xm) , où les ε i

12

valent 0 ou 1 : ce sont les fonctions caractéristiques des singletons de
{0, 1}m . Les coordonnées d'une fonction dans la base canonique, ce sont
tout simplement ses valeurs en chaque point.

Les égalités c0 = 1 + x , c1 = x , 1 = c0 - c1 , x = c1 montrent que les
fonctions 1 et x forment aussi une base de E1 , et que les fonctions de la

forme x1
ε 1.x2

ε 2.xm
ε m forment une base de Em . Autrement dit, toute

fonction s'écrit de manière unique comme un polynôme, à coefficient dans
A , de degré un ou zéro par rapport à chacune de ses variables ; les
coordonnées d'une fonction dans la base des monômes sont les coefficients
de son polynôme canonique.

Nous appelons duale f* de la fonction f la fonction en le même nombre de
variables dont f décrit les coefficients du polynôme canonique : f*(x1, ...
xm) = Σ u booléen f(u1,... um).x1

u1.xm
um , où l'exponentielle xy = 1 -

y + xy est la fonction qui vaut x si y = 1 , et qui vaut 1 si y = 0 . La
dualité est un exemple de transformation, notion que nous allons définir.

Nous appelons prétransformation T la donnée pour chaque m d'une
application linéaire Tm de Em dans lui-même satisfaisant aux égalités
suivantes, que nous appelons Conditions de Fubini : Tm(f).Tm'(g) =
Tm+m'(f.g) , où le m-uplet des variables de f est disjoint du m'-uplet des
variables de g . Nous convenons que T0 vaut l'identité sur l'espace E0 des
fonctions constantes. Puisque la base canonique de Em+m' est formée des
produits des éléments de la base canonique de Em par ceux de la base
canonique de Em' (il en est de même pour les bases de monômes !), une
prétransformation T est entièrement déterminée par T1 , qui est une
application linéaire quelconque de E1 dans lui-même. La composée de deux
prétransformations en est une. Nous appelons transformation une
prétransformation bijective, c'est-à-dire inversible. Le groupe des
transformations est isomorphe à GL2(A) .

Nous munissons les fonctions de deux variables du produit suivant, que nous

qualifions de produit matriciel : (f × g)(x,y) = Σ t ∈ {0,1} f(x,t).g(t,y) ; il
correspond au produit des matrices à deux lignes et deux colonnes, qui ont
respectivement f(i,j) et g(i,j) à l'intersection de leur i-ième ligne et de leur
j-ième colonne.

De même, si h est une fonction d'une variable, soit encore un point de E1 ,

l'écriture Σ t ∈ {0,1} f(x,t).h(t) correspond à la multiplication de la colonne
des coordonnées de h par la matrice associée à f .

13

Comme toute application linéaire se représente par une matrice, à toute
prétransformation T est associée univoquement une fonction ν (y,x) , que

nous appelons son noyau, telle que T1(f)(x) = Σ t ∈ {0,1} f(t).ν (t,x) ; il en
résulte que Tm(f)(x1, ... xm) = Σ t booléen f(t1,t2,...tm).ν (t1,x1).ν (tm,xm)
pour chaque entier m , puisque cette égalité est vérifiée, grâce au Théorème
de Fubini, lorsque f est dans la base canonique de Em . La composition des
prétransformations correspond à la multiplication matricielle de leurs noyaux.

Par exemple, la transformation identité a pour noyau la fonction cy(x) =
1 - (x-y)2 = 1 - x - y + 2.xy , qui vaut 1 si x = y , et 0 sinon. Si on
multiplie ce noyau par une constante λ dans A , on obtient la

prétransformation centrale Tλ qui multiplie par λ m les fonctions de m
variables ; c'est une transformation si et seulement si λ est inversible. Plus
généralement, on peut multiplier ce noyau par une fonction λ (x) = a.x + b
= b.c0(x) + (a+b).c1(x) , et obtenir la prétransformation qui multiplie par
λ (x1).λ (xm) les fonctions de m variables ; dans la base canonique,
Tλ (x),1 est représentée par une matrice diagonale ; elle est inversible si b et
a+b le sont.

Ces dernières transformations n'ont qu'un effet bénin sur la complexité des
fonctions, qu'elles ne peuvent qu'au plus multiplier par une constante. Il en

est de même de Tσ , associée à la permutation σ des deux valeurs 0 et
1 , qui à f(x1, ... xm) associe f(σ (x1), ... σ (xm)) ; son noyau s'écrit (x - y)2

= x + y - 2.xy .

En conséquence, nous appellerons transformations bénignes celle qu'on

obtient par composition des Tλ (x) et de Tσ ; dans la base canonique de
E1 , elles sont représentées par les matrices diagonales ou antidiagonales
inversibles. On voit facilement que ce sont les transformations dont le noyau
a la propriété suivante : pour chaque x , il y a un seul y tel que ν (y,x) ≠
0 , si bien que la sommation qui les définit se réduit à un seul terme.

Il est par contre probable que la dualité T* , dont le noyau est l'exponentielle
xy , a un pouvoir explosif ; il devrait en être de même de son inverse T° , qui
à f associe la fonction f° qui calcule les coefficients de son polynôme
canonique. On inverse matriciellement l'exponentielle par la formule

Σ t ∈ {0,1} xt.(a + b.t + c.y + d.ty) = 1 - x - y + 2.xy , ce qui donne, après
identification, 1 - 2.x - y + 3.xy comme noyau de T° .

On remarque que, dans la base canonique, T*1 a pour matrice (1 0 ; 1 1)

14

(nous ne considérerons que des matrices à deux lignes et deux colonnes, dont
nous écrivons les deux lignes séparées par un point-virgule) ; quand A =
(Z/nZ) , la transformation T* est donc d'ordre n , et T° s'obtient en l'itérant
n-1 fois . Quel que soit l'anneau A , T* et T° sont conjuguées par
l'involution bénigne de matrice (1 0 ; 0 -1) , associée à la fonction λ (x) =
1 - 2.x .

La célèbre prétransformation de Fourier a pour noyau (-1)x.y , où le caractère

(-1)x vaut 1 - 2.x ; (-1)x.(-1)y = (-1)x⊕y , où x⊕y = x + y - 2.xy note la

somme modulo deux. Le carré matriciel de ce noyau vaut Σ t ∈ {0,1} (-1)x.t.
(-1)t.y = 1 + (1 - 2.x)(1 - 2.y) = 2.(1 - x - y + 2.xy) , qui est le noyau de T2 .
Autrement dit, le carré de la prétransformation de Fourrier multiplie par 2m

les fonctions de m variables ; c'est une transformation si et seulement si 2
est inversible dans A , et dans ce cas toute fonction s'écrit de manière

unique comme combinaison linéaire des caractères (-1)
ε 1.x1 .

(-1)
ε 2.x2 (-1)

ε m.xm , la transformée de Fourier inverse donnant
justement les coordonnées de la fonction dans cette base des caractères.

2.2. Classes de complexité

Parlons maintenant de complexité. Comme la fonction f s'écrit comme un
polynôme, nous pouvons définir sa complexité comme étant le nombre
minimal d'additions et de multiplications qu'il faut pour l'obtenir à partir de
variables et de constantes. Il y a deux façons d'envisager le rôle des
constantes, qui se confondent quand l'anneau A est fini.

La première façon est généralement adoptée dans l'étude des classes de
complexité à la Valiant, bien qu'elle ne se prête pas à leur uniformisation.
Elle consiste à se donner gratuitement toutes les constantes de A , chaque
fonction constante étant de complexité nulle.

Nous adoptons ici une autre convention, qui suppose que l'anneau est
finiment engendré. Nous fixons un système générateur G fini de A , et tous
nos calculs sont faits à partir de constantes dans G et de variables : quand
nous aurons besoin d'autres constantes, il faudra les calculer, et intégrer la
complexité de leur calcul dans la complexité de la fonction. Changer de
système générateur n'augmente les complexités que d'une constante, ce qui
nous permet de supposer que G contient toujours la constante -1 . Cette
façon plus stricte de tenir compte du rôle des constantes dans le calcul des
polynômes a été introduite par [Malod 2003].

15

Nous adoptons donc, pour les anneaux Z et Z/nZ , la convention suivante :
la complexité d'une fonction est la taille minimale d'un circuit arithmétique
qui l'exprime, et qui n'a à ses entrées que des variables ou la constante -1 .
Les seules portes d'opérations de nos circuits sont des additions et des
multiplications ; les soustractions se font grâce à des multiplication par -1 ,
et il n'y a pas de divisions. Comme nous l'avons déjà dit, la complexité d'une
fonction n'est pas celle de son polynôme canonique : le ou les meilleurs
circuits qui calculent f calculent aussi des polynômes à coefficients dans A
qui ne sont pas nécessairement égaux au polynôme canonique de f : ils ont
seulement même restriction que ce dernier à {0, 1}m .

La classe P(A) est formée des suites de fonctions de complexité
polynomiale, et la classe SP(A) est ce qu'on obtient en mettant des
sommations à la sortie des éléments de P(A) . On définit de manière
analogue les classes Pt(A) et SPt(A) . Grâce au Théorème de
parallélisation de Muller et Preparata [MP 1976], qui, lui, repose sur les
propriétés algébriques de la somme et du produit, les termes de complexité
polynomiale sont équivalents aux circuits de profondeur logarithmique.

Lemme 6. Quel que soit l'anneau fini A , SP(A) = SPt(A) .

Démonstration. Il nous faut un lemme de réduction parcimonieuse. Nous
considérons un circuit arithmétique de complexité c calculant une fonction
f(x) de {0, 1}m dans A = {a1, a2, ... aq} . Nous remplaçons ce calcul dans
A par un calcul booléen, en représentant l'élément ai par le q-uplet booléen
dont les coordonnées sont nulles, sauf la i-ème qui vaut 1 ; la complexité
du calcul se multiplie par une constante, puisque les portes de constantes et
d'opérations sont remplacées par q portes booléennes, et qu'il faut tenir
compte des tables d'addition et de multiplication de A .

On obtient ainsi q fonctions booléennes f1(x) , ... fq(x) , puis, par réduction
parcimonieuse, q termes booléens h1(x,u) , ... , hq(x,u) qui ont la propriété
suivante : à x fixé, tous les hj(x,u) sont nuls, à l'exception d'une seule
valeur de u pour laquelle hi(x,u) = 1 , où f(x) = ai . Nous parallélisons ces
termes en profondeur logarithmique, puis nous simulons l'addition et la
multiplication de F2 par celles de A restreintes à {0, 1} grâce aux
fonctions x + y - 2.xy et xy , ce qui ne fait que multiplier les profondeurs
par trois ; nous obtenons ainsi des termes g1(x,u) , ... gq(x,u) au sens de A ,
de complexité polynomiale en c . Le terme g(x,u) = a1.g1(x,u) + ... +
aq.gq(x,u) , à x booléen fixé, est toujours nul, sauf pour un u booléen où il
calcule f(x) . Fin

16

Remarque 3. Grâce à la simulation de l'addition modulo deux, toute suite
appartenant à P = P(F2) définit aussi un élément de P(A) , quel que soit
l'anneau A . Par ailleurs, si cet anneau a q éléments, nous avons vu qu'un
élément de P(A) se représente par un q-uplet d'éléments de P .

Il ne saurait être question de réduction parcimonieuse dans le cas de Z ,
puisqu'un circuit peut produire un nombre doublement exponentiel en sa
taille, tandis que celui calculé par un terme est simplement exponentiel.

Voici maintenant la version définitive du Théorème 4 :

Théorème 7. On considère un anneau A arbitraire, et une fonction de la
forme f(x) = Σ u g(x,u) , où g est un terme de profondeur p ; alors f(x)
est projection d'une fonction f1(y) = Σ u h(y,u) dont la duale inverse se
calcule par un terme de profondeur inférieure à 4.p + 4 .

Démonstration. Il faut modifier la démonstration du Théorème 4 en
remplaçant les expressions 1 + vi par 1 - vi = (-1).(vi + (-1)) , et les
expressions θ i'(w') + θ i"(w") + θ i'(w').θ i"(w") par θ i'(w') + θ i"(w") -
θ i'(w').θ i"(w") = θ i'(w') + θ i"(w") + (-1).θ i'(w').θ i"(w") ; quant au
produit final, comme la sommation d'un monôme booléen vaut 2n' , où n' est
le nombre de variables absentes, il devient θ 0(v).(2 - θ 1(v)).(2 - θ n(v))
= (-1)n.θ 0(v).(θ 1(v) + (-1) + (-1)).(θ n(v) + (-1) + (-1)) . On voit
facilement que le calcul se fait en la profondeur indiquée. Fin

Remarque 4. Dans le calcul de la duale inverse de f1(y) , nous n'avons
utilisé que la constante -1 en plus des constantes qui apparaisssent dans le
calcul de f(y) . On ne confondra pas le rôle des constantes figurant aux
entrées des circuits, qui sont des éléments de A , avec les constantes de
projection, qui sont nécessairement 0 ou 1 ; en effet, nous ne calculons pas
des polynômes, mais des fonctions d'arguments booléens, et nous considérons
comme équivalents deux circuits qui obtiennent le même résultat quand on
donne des valeurs booléennes aux variables attachées à leurs entrées.

2.3. Effet des transformations sur la complexité

Théorème 8. (i) Quel que soit l'anneau A , SPt(A) = Pt(A) si et seulement
si Pt(A) est close par transformation, si et seulement si Pt(A) est close par
dualité, si et seulement si Pt(A) est close par dualité inverse.

(ii) Si A est un anneau fini, SP(A) = P(A) si et seulement si P(A) est

17

close par transformation, si et seulement si P(A) est close par dualité, si et
seulement si P(A) est close par dualité inverse.

Démonstration. Le calcul d'une transformée à partir de la formule du noyau
montre que SPt(A) est close par transformation : il en sera de même de
Pt(A) si elle lui est égale. Réciproquement, si Pt(A) est close par dualité, le
Théorème 7 montre que SPt(A) = Pt(A) ; par ailleurs, Pt(A) est close par
dualité si et seulement si elle l'est par dualité inverse, puisque ces deux
transformations sont conjuguées par une transformation bénigne, qui ne fait
guère plus que doubler la profondeur des circuits. On démontre
semblablement la deuxième partie, sachant que, dans le cas où A est fini,
SP(A) = SPt(A) . Fin

Remarque 5. Comme le Théorème 7 concerne la classe SPt(A) , et non la
classe SP(A) , la réduction parcimonieuse, c'est-à-dire la finitude de A , est
essentielle pour la démonstration de la deuxième partie de ce Théorème 8.

Si A est un corps fini k , il y a une explication simple au rôle prépondérant
donné à la dualité par le Théorème 8 : elle engendre avec les transformations
bénignes le groupes des transformations tout entier. C'est une conséquence
du Théorème 9, et de la phrase qui suit le Théorème 10.

Théorème 9. Si k est un corps fini différent de F3 = Z/3Z et de F5 =
Z/5Z , le groupe des transformations bénignes est maximal dans GL2(k) :
toute transformation non-bénigne engendre avec les transformations
bénignes le groupe de toutes les transformation.

Démonstration. Nous travaillons dans la base canonique, où le groupe B
des transformation bénignes se représente par les matrices inversibles
diagonales ou antidiagonales : ce sont les matrices inversibles qui ont deux
coefficients nuls.

Il est utile de déterminer la décomposition de GL2(k) en classe doubles
BmB , puisque deux matrices m et m' dans la même classe double
engendrent avec B le même sous-groupe de GL2(k) . Les opérations qui
préservent une classe double sont l'échange des lignes, l'échange des
colonnes, la multiplication d'une ligne par un coefficient non nul, et la
multiplication d'une colonne par un coefficient non nul ; on en déduit que
chaque matrice inversible non-bénigne se trouve dans la classe double d'une
matrice (1 1 ; 1 a) , a ≠ 1 .

Si a = 0 , la classe double est formée des matrices qui ont un et un seul
coefficient nul, et contient la dualité (1 0 ; 1 1) . Comme toute matrice

18

inversible sans coefficients nuls est produit d'une matrice triangulaire
supérieure et d'une matrice triangulaire inférieure, chacun de ses points
engendre GL2(k) avec B .

Si a est différent de 1 , de 0 et de -1 , on peut trouver x et y non nuls
tel que (1 1 ; 1 a).(x 0 ; 0 y).(1 1 ; 1 a) ne contienne qu'un seul zéro, et
on est ramené au cas précédent.

Reste à traiter le cas où a = - 1 , qui ne peut se produire en caractéristique
deux ; les matrices de la classe double sont alors les matrices non-bénignes
de permanent nul, comme celle de la transformation de Fourier. Le produit
ci-dessus, lorsqu'on fait varier x et y , parcourt l'ensemble des matrices
symétriques. Les conditions pour qu'une telle matrice (u v ; v u) ne soit pas
dans cette classe double sont u ≠ 0 , v ≠ 0 , u2 ≠ v2 , u2 ≠ -v2 ; elles sont
réalisables si on peut trouver un élément non nul qui ne soit pas racine
quatrième de l'unité, ce qui est possible sauf dans les deux cas exceptionnels
signalés dans l'énoncé. Fin

Théorème 10. Si k est un corps fini différent de F3 et de F5 , SP(k) = P(k)
si et seulement si P(k) est close par une quelconque transformation non-
bénigne, et SP(k) = Pt(k) si et seulement si Pt(k) est close par une
quelconque transformation non-bénigne.

Démonstration. Si k est différent de F3 et de F5 , et si T est une
transformation non-bénigne, la dualité s'exprime comme un produit d'au plus
cinq copies de T et de transformations bénignes, si bien que la clôture de
P(k) par T implique la clôture de P(k) par dualité ; il en est de même pour
la classe Pt(k) . Fin

Dans les deux cas exceptionnels, on vérifie aisément que les matrices
(1 1 ; 1 -1).(0 x ; y 0).(1 1 ; 1 -1) restent aussi dans la classe double, si
bien qu'on obtient un, et un seul, groupe intermédiaire entre B et GL2(k) ,
celui qui est engendré par les transformations bénignes et la transformation
de Fourier. Cela conduit à la question suivante :

Problème. Si k = F3 ou k = F5 , est-ce-que la transformée de Fourier a un
effet sur la complexité des fonctions vraiment moins désastreux que celui de
la dualité ?

Par contraste, dans le cas où l'anneau A est celui des entiers relatifs, dont
les seuls inversibles sont 1 et -1 , il n'y a que huit transformations
bénignes, et, par exemple, on ne voit pas comment comparer le pouvoir de
nuisance de la dualité à celui de son carré, bien qu'elle-même et son carré

19

soient conjugués par une transformation bénigne dans l'anneau Z[1/2] .

2.4. Changement de corps de base

Théorème 11. Si k et k' sont deux corps finis de même caractéristique,
P(k) = SP(k) si et seulement si P(k') = SP(k') , et Pt(k) = SP(k) si et
seulement si Pt(k') = SP(k') .

Démonstration. Nous supposons que k , de caractéristique p , a q = pd

éléments, et nous considérons une suite fn(x) = Σ u booléen gn(x,u) de fonctions
dans SP(Z/pZ) , où la suite gn est calculée par une suite de circuits
arithmétiques de taille polynomiale à paramètres dans Fp = Z/pZ : comme ce
dernier est un sous-corps de k , cette suite est dans P(k) , et la suite fn est
dans SP(k) . Si SP(k) = P(k) , cette suite est aussi dans P(k) , et calculable
par des petits circuits arithmétiques à paramètres dans k . Comme k est un
espace vectoriel de dimension d sur Fp , on représente ses éléments par des
d-uplets à coordonnées dans Fp pour remplacer ce calcul d'une fonction à
valeur dans k par celui de d fonctions à valeur dans Fp , la première de ces
fonctions coordonnées étant fn . Autrement dit, SP(k) = P(k) implique que
SP(Fp) = P(Fp) .

Pour la réciproque, nous considérons une suite ϕ n(x) = Σ u booléen γ n(x,u)
dans SP(k) , et nous remplaçons comme ci-dessus le calcul de γ n par celui
d'un d-uplet de suites de fonctions dans P(Z/pZ) ; comme l'addition dans k
correspond à l'addition coordonnée par coordonnée des d-uplets représentant
ses éléments, le calcul de ϕ n est alors simulé par celui de d suites dans
SP(Z/pZ) ; si ces dernières sont dans P(Z/pZ) , ϕ n est dans P(k) .

La même démonstration vaut pour la classe Pt grâce à la parallélisation. Fin

Nous sommes donc amenés à considérer les différentes hypothèses P(Z/pZ)
= SP(Z/pZ) lorsque le nombre p varie. Il est clair que, par un simple
passage au quotient, l'égalité P(Z) = SP(Z) implique P(Z/pZ) = SP(Z/pZ) ,
puisqu'un circuit artithmétique modulo p peut être aussi considéré comme
un circuit arithmétique modulo 0 .

3. Intermède : variables parcourant un corps fini

20

Dans cette courte et schématique section, nous considérons un corps fini k ,
et des fonctions dont les variables comme les valeurs parcourent k ; les
sommations sont aussi étendues à k tout entier. Nous n'y trouverons pas de
classes de complexité vraiment nouvelles, mais seulement des familles plus
riches de transformations.

Si k est un corps fini de caractéristique p , à q = pd éléments, il est tentant
d'introduire des variables à valeurs dans k , et d'étendre les sommations à k
tout entier.

Comme toute fonction de km dans k s'écrit de manière unique comme un
polynôme de degré au plus q-1 en chacune de ses variables, on pourra
définir leur complexité, et introduire la classe P'(k) des suites de fonctions
de complexité polynomiale, et SP'(k) des suites de fonctions de la forme fn(x)

= Σ u ∈ k gn(x,u) , où gn est dans P'(k) ; on introduira aussi les classes
P't(k) et SP't(k) , cette dernière étant égale à SP'(k) par réduction
parcimonieuse.

On définira comme auparavant les transformations et leurs noyaux.

Il est facile de voir que les sommations sur {0, 1} simulent en douceur celles
sur k tout entier, et réciproquement ; par ailleurs, une représentation des
éléments de k par des uplets booléens permet de montrer que les
improbables égalités P(k) = SP(k) et P'(k) = SP'(k) sont équivalentes. Pour
l'équivalence de Pt(k) = SPt(k) et SP't(k) = P't(k) , on passera par la
parallélisation des termes.

Nous ne gagnons donc rien en matière de classes de complexité, mais nous
obtenons un groupe plus large de transformations, isomorphe à GLq(k) , ce
qui nous permet d'offrir à la sagacité des chercheurs une famille a priori plus
riche de degrés de nocivité.

Les transformations bénignes sont celles dont la matrice, dans la base
canonique, a exactement un coefficient non nul dans chaque ligne et dans
chaque colonne. Pour définir l'exponentielle, il faut choisir une énumération
a0 , ... aq-1 de k , noter ci(y) la fonction caractéristique de {ai} , et poser
xy = c0(y) + c1(y).x + ... + ci(y).xi + ... + cq-1(y).xq-1 . Le choix de cette
énumération introduit une part d'arbitraire dans la définition de la dualité
associée, mais deux de ces dualités sont conjuguées par une transformation

bénigne Tσ , où σ est une permutation de k .

Si k = Z/pZ , il est naturel de choisir pour ai le reste de i modulo p , et on

21

aura xi.xj = xi⊕j si i + j < p , et sinon xi.xj = xi⊕j⊕1 , où x⊕y désigne la
somme modulo p : puisque l'ordre du groupe additif de k est premier avec
celui de son groupe multiplicatif, il n'est pas question de caractère, ni de
transformée de Fourier.

On démontre de même que SP'(k) = P'(k) équivaut à la clôture de P'(k) par
dualité, et que SPt'(k) = Pt'(k) équivaut à la clôture de Pt'(k) par dualité.

4. Sommations en chiffres et sommations en entiers

Nous travaillons maintenant en caractéristique nulle, c'est-à-dire avec des
entiers ; nous comparons deux manières de faire, celle où les calculs se font
directement dans l'anneau Z , et celles où les calculs se font en chiffres.
Nous examinons aussi l'incidence des calculs en caractéristique nulle sur les
calculs modulo p .

La comparaison des différentes hypothèses P(Z/pZ) = SP(Z/pZ) , que l'on
espère, bien sûr, toutes fausses, est en fait un problème à la fois désespérant
et bien connu, que d'habitude on formule autrement. On introduit la classe
#pP , également connue sous le nom de Mod(p) P , formée des suites fn(x)
de fonctions booléennes obtenues à partir d'une suite gn(x,u) dans P de la
manière suivante : fn(x) = 0 si le nombre de solutions u de l'équation
gn(x,u) = 1 est divisible par p , fn(x) = 1 sinon ; on peut d'ailleurs définir
cette classe même si p n'est pas un nombre premier. Après avoir observé que
savoir si le cardinal d'un ensemble est divisible par p permet en fait de
trouver son reste modulo p , en lui ajoutant un point, puis deux, ... puis p-1 ,
il est facile de voir que l'égalité #pP = P , qui concerne des classes de
fonctions booléennes, équivaut à l'égalité SP(Z/pZ) = P(Z/pZ) , qui concerne
des classes de fonctions à valeur dans Fp : ce n'est qu'un exercice de codage
binaire, que nous abandonnons à notre lecteur.

Comme nous l'avons observé dans la Remarque 3, la simulation de la somme
et du produit de F2 = Z/2Z par x + y - 2.xy et xy donne une grande solidité
aux classes P(Z/pZ) : elles se réduisent à la classe P = P(F2) grâce à un
codage booléen évident. Par contre, il n'existe aucune méthode de simulation
des sommations modulo deux par des sommations dans une autre
caractéristique, ce qui fragilise les classes SP : il n'y a aucune raison
évidente, ni aucune raison connue, pour que les classes #pP soient égales.

Pour définir la classe #P , introduite dans [Valiant 1979], qui est plus
puissante que toutes les #pP , le mieux est d'introduire des multifonctions et

22

des multicircuits. Une multifonction booléenne est par définition une
application de {0, 1}m dans {0, 1}n , où m et n sont deux entiers, soit
encore la donnée d'un n-uplet de fonctions booléennes en m variables. Nous
étendons la définition de la classe P aux multifonctions : ce sont les suites de
multifonctions booléennes calculées par des multicircuits - définis comme les
circuits, mais pouvant posséder plusieurs sorties - arithmétiques modulo deux
de complexité polynomiale. En introduisant n nouvelles variables y1 , ... yn ,
on peut assimiler une multifonction à n sorties à la fonction de complexité
voisine ϕ (x,y) = y1.f1(x) + ... + yn.fn(x) , si bien que les multifonctions
n'apportent rien de vraiment nouveau du point de vue algorithmique

La classe #P est formée des suites fn(x) de multifonctions donnant les
chiffres en base deux du nombre de solutions booléennes de l'équation
gn(x,u) = 1 , où la suite de fonctions gn est dans P .

La valeur d'une multifonction g(x,u) représente si l'on veut un nombre entier
donné en chiffres, ce qui permet de considérer la multifonction Σ chu g(x,u)
de la somme de ces nombres donnée en chiffres. On voit que l'égalité #P = P
signifie que la classe P est close pour la sommation en chiffres : il suffit de
compter le nombre de fois où chacun des chiffres vaut 1 , puis de faire
l'addition.

Cette improbable égalité #P = P implique bien sûr chacune des #pP = P .

Supposons, en vue d'une tentative réciproque désespérée, que #2P = P ; soit
N(x) le nombre de solutions de l'équation gn(x,u) = 1 ; le premier chiffre de
N(x) s'obtient en additionnant modulo 2 les gn(x,u) ; pour avoir le
deuxième chiffre, on divise par deux la famille des u tels que gn(x,u) = 1 en
considérant la fonction (Σ v ϕ (u,v). gn(x,v)) . gn(x,u) , où ϕ (u,v) est la
fonction facilement calculable qui vaut 1 si le nombre entier représenté par
v est inférieur à celui représenté par u , et 0 sinon ; en sommant modulo
deux cette fonction, on obtient le deuxième chiffre de N(x) . Si donc #2P =
P , nous obtenons en temps polynomial les deux premiers chiffres de N(x) ;
et si nous itérons le procédé un nombre a de fois fixé, on obtient les a
premiers chiffres de N(x) au prix de 2.a + 1 sommations modulo deux, et
d'une petite augmentation du nombre d'opérations arithmétiques. Nous
voyons donc que #2P = P implique #2aP = P . On voit de même, en
développant les entiers en base n , que #nP = P implique #naP = P .

Si on ajoute à cela que, si n divise m et si on sait compter modulo m , alors
on sait compter modulo n , et aussi que si m et n sont premier entre eux,
savoir compter modulo m.n revient à savoir compter modulo m et modulo

23

n , on parvient au résultat suivant, que nous énonçons comme un fait et non
comme un théorème car nous n'osons croire qu'il soit original, bien que nous
n'en connaissions pas de référence :

Fait. #nP = P si et seulement si #piP = P pour chaque diviseur premier pi

de n ; autrement dit SP(Z/nZ) = P(Z/nZ) si et seulement si SP(Z/piZ) =
P(Z/piZ) pour chaque diviseur premier pi de n .

Une classe de complexité célèbre entre toutes est la classe NP , formée des
suites fn(x) de fonctions booléennes obtenues de la manière suivante à partir
d'une suite gn(x,u) dans P : fn(x) = 1 si l'équation gn(x,u) = 1 a des
solutions (booléennes !), fn(x) = 0 sinon. Si on sait compter le nombre de
solutions d'une équation, on sait encore mieux déterminer s'il en existe ou
pas, si bien que #P = P implique NP = P ; on ne connait pas de rapports
entre les hypothèses #pP = P et NP = P .

Le théorème suivant et dernier établit une équivalence entre une hypothèse
(#P = P) qui concerne des classes de complexité booléennes, et une
hypothèse portant sur des calculs dans l'anneau Z .

Théorème 12. #P = P équivaut à SPt(Z) ⊆ P(Z) .

Démonstration. Supposons que #P = P , et considérons une suite de termes
tn(x,u) dans Pt(Z) ; comme un terme ne produit que des entiers simplement
exponentiels, on peut représenter le calcul qu'il fait par un multicircuit
booléen de complexité polynomiale qui fait ce calcul en chiffres. Par
hypothèse, on peut faire une sommation en chiffres sans exploser, si bien que
les chiffres de Σ u booléen tn(x,u) sont donnés par un multicircuit booléen fn(x)
de complexité polynomiale, lequel se simule par un multicircuit gn(x) en
caractéristique nulle ; il ne reste plus qu'à multiplier ces chiffres par les
puissances de 2 qui leur sont affectées, et à les sommer, ce qui fait un calcul
dans P(Z) .

Supposons réciproquement que SPt(Z) ⊆ P(Z), et considérons une suite de
fonctions booléennes fn(x,u) dans P ; pour ce qui est de compter le nombre
de solutions de fn(x,u) = 1 , la réduction parcimonieuse nous ramène au cas
où elles sont calculées par des termes de profondeur logarithmique. Soit
tn(x,u) leur simulation dans Pt(Z) ; par hypothèse, Σ u booléen tn(x,u) se
calcule par une suite de circuits gn(x) dans P(Z) ; ces circuits peuvent
produire des nombres doublement exponentiels, mais comme le résultat est
simplement exponentiel, il suffit pour l'obtenir de reproduire leurs calculs
modulo 2cn , où cn est polynomialement borné, ce qui permet un calcul en
chiffres, c'est-à-dire booléen, de complexité polynomiale. Fin

24

La seule façon structurelle de borner polynomialement le degré des
polynômes et la taille de leur coefficients, c'est d'éviter les cascades
incontrolées de multiplications en contraignant les circuits arithmétiques à
être multiplicativement disjoints, comme l'a montré [Malod 2003] (voir aussi
[MP 2006] et [MP 2008]). Dans un circuit multiplicativement disjoint,
chaque porte de multiplication reçoit ses deux flèches de sous-circuits
disjoints, alors que dans un terme les portes d'addition ont aussi cette
propriété ; on ne sait pas séparer Pmd(Z) de Pt(Z) ; en présence de
sommations, ces circuits multiplicativement disjoints sont équivalents aux
termes, ce qui signifie que SPmd(Z) = SPt(Z) , si bien que l'hypothèse
SPmd(Z) = Pmd(Z) implique l'inclusion de SPt(Z) dans P(Z) . On montre,
de la même façon que le Théorème 8, que SPmd(Z) = Pmd(Z) équivaut à la
clôture de Pmd(Z) par dualité.

Les hypothèses SP(Z) = P(Z) et SPmd(Z) = Pmd(Z) paraissent aussi peu
vraisemblables l'une que l'autre, et pourtant leurs rapports sont enveloppés de
mystère ; en particulier il n'est pas clair que la première implique la seconde,
(voir [Malod 2003], [Poizat 2008]).

Remarque 6. Si une suite de fonctions booléennes est dans Pmd(Z) , un
simple passage au quotient modulo deux la met dans la classe Pmd des
suites de fonctions booléennes calculées par des circuits arithmétiques
modulo deux multiplicativement disjoints et de complexité polynomialement
bornée ; la réciproque n’a rien de certain, car la simulation de l’addition
modulo deux utilise une multiplication, et ne conserve pas la notion de circuit
multiplicativement disjoint. On n’a pas ce problème avec les termes, grâce à
la parallélisation.

Remarque 7. Malgré la fragilité de la classe Pmd , le Théorème 11 vaut
pour l'égalité SPmd(k) = Pmd(k) , puisque la simulation de la multiplication
des éléments de k' par des d-uplets d'éléments de k préserve la notion de
circuit multiplicativement disjoint. Comme SPmd(A) = SPt(A) quel que soit
l'anneau A , le Théorème 8 (i) est valable aussi pour la classe Pmd(A) ; le
Théorème 10 s'adapte pareillement, une fois qu'on a remarqué que les
transformations bénignes n'ajoutent aux circuits qu'un nombre modéré de
multiplications disjointes.

Nous contemplons finalement le paysage suivant : SP(Z) = P(Z) comme
SPmd(Z) = Pmd(Z) impliquent SPt(Z) ⊆ P(Z) , qui équivaut à #P = P ,
laquelle implique à son tour chacune des #pP = P , ainsi que NP = P .

25

5. Comparaison avec les résultats de Malod sur les classes de
Valiant

En conclusion, nous comparons nos résultats à leur source d'inspiration, les
travaux de Guillaume Malod sur les rapports entre la complexité d'un
polynôme et celle de la fonction qui exprime ses coefficients.

En fait, P(Z) , SP(Z) , Pt(Z) , Pmd(Z) , SPmd(Z) = SPt(Z) sont les parties
numériques respectives de VPdl , VNPdl , VPt , VPmd , VNPmd = VNPt ,
selon les notations de [Poizat 2008] ; ce sont des classes de complexité
formées de suites de polynômes à coefficients entiers relatifs. En
conséquence les égalités VNPdl = VPdl , VNPmd = VPmd et VNPt = VPt ,
qui sont au coeur de l'étude des classes de complexité selon Valiant,
impliquent leurs restrictions respectives aux fonctions numériques SP(Z) =
P(Z) , SPmd(Z) = Pmd(Z) et SPt(Z) = Pt(Z) .

La clôture des classes SP(Z/pZ) = SPt(Z/pZ) par dualité peut être vue
comme une conséquence de la clôture de la classe VNPmd par fonction-
coefficient, établie dans [Malod 2003] ; c'est une méthode compliquée pour
établir un fait évident, puiqu'il faut faire des regroupements de monômes pour
obtenir les coefficients du polynôme canonique, mais je la mentionne ici
parce que la considération de cette clôture a été le point de départ du présent
article.

Une autre de ses sources d'inspiration, c'est le résultat de Malod affirmant que
VNPmd = VPmd équivaut à l’hypothèse suivante : une suite de polynômes
est dans VPmd si et seulement si la suite de ses fonctions-coefficient est
dans VPmd , c’est-à-dire dans Pmd(Z) .

Pour le démontrer, Malod utilise un analogue du célèbre résultat de Leslie
Valiant sur la complétude du permanent. Rappelons qu'on appelle permanent
de taille n le polynôme à coefficients entiers, en n2 variables,

Pern(..., xi,j, ...) = Σ σ x1,σ 1.x2,σ 2. xn,σ n , la sommation étant étendue à
toutes les permutations σ de l'ensemble {1, 2, ... n} ; sa définition
ressemble à celle du déterminant, la différence étant qu'on n'affecte pas ses
monômes d'un signe dépendant de la parité des permutations. Il a la propriété
de complétude suivante : si g(x,u) est un polynôme à coefficient rationnels,
calculé par un terme arithmétique de complexité c ayant à ses entrées des
variables ou des constantes rationnelles, le polynôme Σ u g(x,u) s'obtient
comme projection d'un permanent de taille polynomiale en c . Dans ce
résultat, la constante 1/2 joue un rôle essentiel dans les projections, ce qui
n'est pas surprenant puisque le permanent, étant alors égal au déterminant, est

26

facile à calculer en caractéristique deux.

Pour avoir un résultat semblable avec des polynômes à coefficients entiers, et
des projections qui n'utilisent que 0 et 1 , ce qui permet de passer au
quotient modulo p , et en particulier modulo deux, on utilise un autre
polynôme, le hamiltonien, défini comme le permanent, à ceci près que la
sommation est restreinte aux permutations circulaires (voir [Bürgisser 2000],
[Malod 2003]). Le hamiltonien a une fonction-coefficient très simple, dans
VPmd ; si on fait l’hypothèse que cela implique que la suite des hamiltoniens
est dans VPmd , et alors tout élément de VNPmd est également dans
VPmd . Appelons hamiltonienne la fonction booléenne dont le polynôme
canonique est le hamiltonien ; nous aurions pu montrer notre Théorème 5 en
utilisant la complétude de cette fonction pour la classe SPt(F2) .

Nous avons préféré une démonstration passant par notre Théorème 4, qui
évite de se casser la tête à construire des polynômes universels, et qui fournit
directement des fonctions-coefficients calculées par des termes de complexité
polynomiale, ce qui permet de l'utiliser pour les classes de complexité
termiques. Comme la démonstration du Théorème 7 s'adapte mot-à-mot pour
montrer que toute suite dans VNPmd = VNPt est projection d’une suite de
polynômes dont la suite de fonctions-coefficients est dans VPt , c’est-à-dire
dans Pt(Z) , il est ainsi possible de montrer le résultat de Malod, ainsi que sa
version termique, sans utiliser le hamiltonien, ce qui, d'après nous, éclaire
d'avantage sa démonstration.

Rappelons qu'on ne sait pas si la classe VNPdl est close par fonction-
coefficient, mais que [Malod 2003] a démontré qu'il en était ainsi de la classe
VNPdl(Z/pZ) , sa consoeur en caractéristique p . Il en a déduit l'équivalence
des hypothèses VNPdl(Z/pZ) = VNPdl(Z/pZ) et VNPmd(Z/pZ) = VPmd(Z/
pZ) .

Remarque 8. Il devrait être possible de développer une théorie des
transformations pour les suites de polynômes, ou de fonctions-polynômes.

27

Références

[Bürgisser 2000] Peter Bürgisser, Completeness and reduction in
Algebraic Complexity Theory, Springer Verlag

[Malod 2003] Guillaume Malod, Polynômes et coefficients, thèse de
doctorat, Université Claude Bernard

[MP 2006] Guillaume Malod et Natacha Portier, Characterizing
Valiant’s algebraic complexity classes, Lecture Notes in Computer Sciences,
vol. 4162, 267279

[MP 2008] Guillaume Malod et Natacha Portier, Characterizing
Valiant’s algebraic complexity classes, Journal of Complexity, 24, 1638

[MP 1976] David E. Muller et Franco P. Preparata, Restructuring of
arithmetic expressions for parallel evaluation, Journal of the Association for
Computing Machinery, 23, 534543

[Poizat 1995] Bruno Poizat, Les Petits Cailloux, Aléas, Lyon

[Poizat 2008] Bruno Poizat, A la recherche de la définition de la
complexité d'espace pour le calcul des polynômes à la manière de Valiant,
the Journal of Symbolic Logic, 73, 11791201

[Spira 1971] P.M. Spira, On the time necessary to compute
Switching Functions, IEEE Transactions on Comp., 20, 104105

[Valiant 1979] Leslie G. Valiant, The complexity of computing the
permanent, Theoretical Computer Science, 8, 189-201

28

Efficient Synthesis of Exact Real Number Algorithms

Monika Seisenberger and Ulrich Berger

Swansea University, Wales, UK

1 Introduction

In this paper we present a method for developing correct programs for exact real numbers based on
proof theoretic methods. The basic idea in general is to extract from a formal constructive proof of a
specification a realisation of it, in the technical sense of a realisability interpretation. The reason why we
believe that this method is worth pursuing is the fact that it offers a path to provably correct programs
requiring – contrary to common belief – less effort than traditional methods based on verification. Our
case studies on exact real number computation seem to confirm this. In addition they provide an approach
to computability on real numbers which can easily be generalised to other abstract structures.

1.1 Algorithms for exact real numbers

We study real numbers in signed digit representation, see for instance [CDG06,EH02,GNSW07,MRE07].
Let for a real number r ∈ [−1, 1] and an infinite stream a = a0, a1, a2, . . . of digits ai ∈ {−1, 0, 1} the
predicate R(r, a) denote that the real number r has stream representation a:

R(r, a) ↔ r =
∞∑
i=0

ai ·
1

2i+1
. (1)

For instance, the number 1
2 has the stream representations: 100000 . . . , 0111111 . . . , 101−1−1−1−1 . . .,

etc.; hence representations are highly redundant. Our work is concerned with computation on real num-
bers, in particular with efficiently obtaining algorithms for them. A simple but instructive example is
the average of two real numbers which we will consider in section 3. (The reader is encouraged to find
such an algorithm on streams herself.)

In general, in order to provide a certified implementation of a, say binary, function f on exact real
numbers we need to perform the following two tasks:

1. Specify and implement a corresponding operation f ′ on streams.
2. Show correctness:

∀r, s, a, b. R(r, a)→ R(s, b)→ R(f(r, s), f ′(a, b)). (2)

Examples for implementations of such operations f ′ were given in [Plu98]. A formal verification of these
algorithms, that is, the completion of task 2 above, was done in [BH08] using coinductive reasoning,
where the relation R (see (1)) was characterised coinductively by the rule:

R(r, a)→ |r|≤1 ∧ R(2r − a0, tail a). (3)

As indicated by the two tasks, this approach as well as the work of other researchers working in ver-
ification of exact real number algorithms have in common that the algorithms are first specified and
implemented, and then verified. Moreover, the underlying system has to formalise both, the abstract real
numbers together with their representations, as well as the algorithms performing computations on these
representations.

1.2 Our approach

Here we deviate from the traditional specify-implement-verify method. We obtain the algorithms (to-
gether with correctness certificates) via an application of a well-known method in proof theory, realisabil-
ity, i.e. extraction from formal proofs. In the example of exact real number computation this is achieved

164 Monika Seisenberger and Ulrich Berger

by changing the binary predicate R (which relates real numbers and streams) to an unary predicate C0

on real numbers, coinductively defined by:

C0(r) → |r|≤1 ∧ ∃d∈{−1,0,1}. C0(2r − d). (4)

Intuitively, the formula C0(r) expresses that the real number r has a signed digit representation. Instead
of our two tasks above we now only need to perform one task, i.e. to give a (constructive) proof of the
simpler formula

C0(r) ∧ C0(s)→ C0(f(r, s)). (5)

On the program level the definition of C0 yields a stream. (Informal explanation: According to the
coinductive definition a realiser of C0(r) corresponds to one digit d in front of some realiser of C0(2r−d);
therefore this process leads to an infinite stream.) Overall, a proof of (5) corresponds to a program taking
two streams as input and performing the desired operation on streams. That is, in general, we only have to
reason about abstract real numbers such as in (5); their representation and the corresponding algorithms,
as well as a formal correctness proof, are obtained automatically via the extraction process.

2 Program extraction from inductive and coinductive proofs

The program extraction method for proofs in a standard system, such as Heyting arithmetic in finite
types, is based on Kreisel’s modified realisability [Kre59] and well understood, see e.g. [BBS+98] as a
reference. The main effort consists now in allowing also coinductive reasoning and extending the program
extraction process to coinduction. Program extraction for formal systems including coinduction has
been studied in [Tat98] and [MP05]. We present an alternative treatment of realisability for coinductive
definitions which has the advantage that it allows for nesting of inductive and coinductive definitions
and extracts realisers that directly correspond to programs in a lazy functional programming language.
In this extended abstract we only present a brief sketch of the method; for more details we refer to
[BS10,BL10].

2.1 Induction and Coinduction

We treat induction and coinduction as least and greatest fixed points (µΦ, νΦ respectively) of a strictly
positive, and hence monotone, operator Φ : P(U)→ P(U), where U is a set and P(U) is the powerset of
U . We have the axioms:

Closure Φ(µΦ) ⊆ µΦ Induction Φ(Q) ⊆ Q → µΦ ⊆ Q
Coclosure νΦ ⊆ Φ(νΦ) Coinduction Q ⊆ Φ(Q)→ Q ⊆ νΦ

The main task in the following will be to give appropriate realisers for these axioms.

2.2 The term language for the extracted programs

The output of the extraction process will be terms in a λ-calculus with constructors and pattern matching
and (ML-)polymorphic recursive types. We let α range over type variables.

Type 3 ρ, σ ::= α | 1 | ρ+ σ | ρ× σ | ρ→ σ | fixα . ρ

In the definition of terms we let x range over term variables and C over constructors. It is always assumed
that a constructor is applied to the correct number of arguments as determined by its arity. In fact, we
will only use the constructors Nil (nullary), Left,Right (unary), Pair (binary), and Infixα . ρ (unary) for
every fixed point type fixα . ρ.

Term 3M,N ::= x | C(M) | caseM of{C1(x1)→ N1 ; . . . ; Cn(xn)→ Nn} | λx.M | (M N) | recx .M

In a pattern Ci(xi) of a case-term all variables in xi must be different. The term recx .M models recursion
(e.g. in Haskell it would be let {x = M} in x). One can define a typing relation Γ ` M : ρ which is
ML-polymorphic: if ` M : ρ(α), then ` M : ρ(σ), for arbitrary types σ. The types of the constructors
are Nil : 1, Left : ρ→ ρ+σ, Right : σ → ρ+σ, Pair : ρ→ σ → ρ×σ, and Infixα . ρ : ρ(fixα . ρ)→ fixα . ρ.

Efficient Synthesis of Exact Real Number Algorithms 165

2.3 The extraction process

The first step in program extraction is to assign to every formula A a type τ(A), the type of potential
realisers of A. If the formula A contains neither predicate variables nor the logical connective ∨ (dis-
junction), then we call it “non-computational” and set τ(A) = 1 (:= {Nil}). For non-computational
A we set τ(A ∧ B) = τ(A → B) = τ(B). In all other cases we define τ(X(t)) = αX (a type vari-
able assigned to the predicate variable X), τ(A ∧ B) = τ(A) × τ(B), τ(A ∨ B) = τ(A) + τ(B),
τ(A → B) = τ(A) → τ(B), τ(∀xA) = τ(∃xA) = τ(A). For inductive and coinductive definitions
we set τ(µΦ(t)) = τ(νΦ(t)) = fixαX . τ(A) if Φ(X) = {x | A}.

The next step is to define for every formula A and every program term M of type τ(A) what it means
for M to realise A, formally M rA. The definition is straightforward (by recursion on the build-up
of A) and as expected. We only comment on non-computational and quantified formulas. For a non-
computational formula A we set M rA := (M = Nil) ∧ A, and for quantifiers we have M r ∀xA :=
∀x (M rA) and M r∃xA := ∃x (M rA). We see that quantifiers and the quantified variable, although
ignored by the program M and its type, of course do play a role in the definition of realisability, i.e. the
specification of the program.

Finally, we sketch how to extract from a proof of a formula A a program term M realising A. Assuming
the proof is given in a natural deduction system the extraction process is straightforward and follows
in most cases the usual pattern of the Curry-Howard correspondence. Only quantifier rules and axioms
deserve special attention. As to be expected, quantifier rules are largely ignored. For example, in the
rules for the universal quantifier the extracted programs of the conclusion are identical to those of the
respective premises. Any non-computational axiom has the trivial program Nil as extracted program.

This leads us to realisers for induction and coinduction. The extracted programs of closure, Φ(µΦ) ⊆
µΦ, and induction, (Φ(X) ⊆ X)⇒ Φ(µΦ) ⊆ X, are infixα . ρ := λx.Infixα . ρ(x) and

itfixα . ρ := λs.rec f . λx.casex of{Infixα . ρ(y)→ s(mapα,ρf y)} : ρ(fixα . ρ)→ fixα . ρ

where it is assumed that τ(Φ(X)) = ρ(α). The term mapα,ρ has type (α→ β)→ ρ(α)→ ρ(β) and can be
defined by induction on ρ(α). For coclosure, νΦ ⊆ Φ(νΦ), and coinduction, (X ⊆ Φ(X))⇒ X ⊆ Φ(νΦ),
the extracted programs are outfixα . ρ := λx.casex of{Infixα . ρ(y)→ y} and

coitfixα . ρ := λs.rec f . λx.Infixα . ρ(mapα,ρf (s x)) : (α→ ρ(α))→ α→ fixα . ρ

The Soundness Theorem, stating that the program extracted from a proof does indeed realise the proven
formula, is shown in [BS10].

3 Extracting the average function

We apply the theory described in the previous section to obtain a provably correct program that imple-
ments the average function on streams. Let SD := {−1, 0, 1} and I := [−1, 1] ⊆ R. Then C0 := νΦ is the
greatest fixed point of the operator Φ : P(I)→ P(I)

Φ(X) := {x+ d

2
| d ∈ SD, x ∈ X}.

(Obviously, the definition of C0 is equivalent to definition (4) given in section 1.) The coclosure axiom says
that C0 is coclosed: C0 ⊆ Φ(C0), and the coinduction principle says that C0 contains every Φ-coclosed
set: If X ⊆ Φ(X), then X ⊆ C0.

Lemma 1. If x, y ∈ C0, then x+y
2 ∈ C0.

Proof. Set X := {x+y
2 | x, y ∈ C0}. We have to show X ⊆ C0. A first attempt to directly use coinduction

and show X ⊆ Φ(X) turns out to be difficult (try it!). It is easier to define

Y := {x+ y + i

4
| x, y ∈ C0, i ∈ SD2}

where SD2 := {−2,−1, 0, 1, 2} and prove

166 Monika Seisenberger and Ulrich Berger

i) X ⊆ Y .
ii) Y ⊆ Φ(Y) (hence Y ⊆ C0, by coinduction).

Proof of i) Let x, y ∈ C0. We have to show z := x+y
2 ∈ Y . By the coclosure axiom, x = x′+d

2 , y = y′+e
2 ,

for some d, e ∈ SD and x′, y′ ∈ C0. Hence z = x′+y′+d+e
4 ∈ Y .

Proof of ii) Let x, y ∈ C0 and i ∈ SD2. We have to show z := x+y+i
4 ∈ Φ(Y). By coclosure, x = x′+d′

2 ,
y = y′+e′

2 , for some d′, e′ ∈ SD and x′, y′ ∈ C0. Hence z = x′+y′+d′+e′+2i
8 . We must find d ∈ SD and

z̃ ∈ Y such that z = z̃+d
2 . By the definition of Y this means that we must find x̃, ỹ ∈ C0 and j ∈ SD2

such that z̃ = x̃+ỹ+j
4 , i.e. z = x̃+ỹ+j+4d

8 . Choosing x̃ := x′ and ỹ := y′ this leaves us with the equation
d′ + e′ + 2i = j + 4d which is clearly solvable with suitable d ∈ SD and j ∈ SD2.

From this proof we extract the following program average (written in Haskell syntax). average takes
two infinite streams and first reads the first digits d and e on both of them; this corresponds to the proof
of claim i). The functional aux recursively calls itself; this corresponds to the use of the coinduction
principle with coiteration as realiser. The remainder of the program links to the computational content
of claim ii) in an obvious way.

type SD = Int -- -1, 0, 1 only
type SDS = [SD] -- infinite streams only
type SD2 = Int -- -2, -1, 0, 1, 2 only

average :: SDS -> SDS -> SDS
average (d:ds) (e:es) = aux (d+e) ds es where

aux :: SD2 -> SDS -> SDS-> SDS
aux i (d’:ds) (e’:es) = d : aux j ds es where

k = d’+e’+2*i

d | abs k <= 2 = 0
| k > 2 = 1
| otherwise = -1

j = k-4*d

As a test we run the extracted program with inputs [1,0,1]++[0,0..]= 5
8 and [1,1]++[0,0..] = 3

4 .
The Haskell function take 10 displays 10 digits from the result stream. We obtain as a result: 1

2 + 1
4−

1
16 =

11
16 .

Main> take 10 (average ([1,0,1]++[0,0..]) ([1,1]++[0,0..]))
[1,1,0,-1,0,0,0,0,0,0]

4 Conclusion and further work

Using the extraction of the average function as an example, we have demonstrated that program extrac-
tion from formal proofs provides an efficient way for obtaining algorithms for real valued data.

For the efficiency of the method it is crucial that the extraction process is fully automated. The stan-
dard program extraction process is implemented in the interactive proof assistant Minlog [BBS+98,Sch06].
Minlog (www.minlog-system.de) is based on first order natural deduction, extended by inductive data
types and inductive predicates, and allows for program extraction from both constructive and classi-
cal proofs. The extension of Minlog’s extraction mechanism with respect to coinductive definitions is
ongoing work together with Munich University.

With similar proofs one can show that C0 is closed under multiplication and, more generally, under any
uniformly continuous function. In recent work, C0 has been generalised to predicates Cn characterising
the uniformly continuous functions of n arguments by an interleaved inductive/coinductive definition
[Ber09]. Based on these definitions we are currently developing new algorithms for uniformly continuous
real functions, for example integration.

Efficient Synthesis of Exact Real Number Algorithms 167

References

[BBS+98] H. Benl, U. Berger, H. Schwichtenberg, M. Seisenberger, and W. Zuber. Proof theory at work: Program
development in the Minlog system. In W. Bibel and P.H. Schmitt, editors, Automated Deduction – A
Basis for Applications, volume II of Applied Logic Series, pages 41–71. Kluwer, Dordrecht, 1998.

[Ber09] U. Berger. From coinductive proofs to exact real arithmetic. In E. Grädel and R. Kahle, editors,
Computer Science Logic, volume 5771 of LNCS, pages 132–146. Springer, 2009.

[BH08] U. Berger and T. Hou. Coinduction for exact real number computation. Theory of Computing Systems,
43(3-4):394–409, 2008.

[BL10] U. Berger and S. Lloyd. A coinductive approach to verified exact real number computation. In
Proceedings of the Ninth International Workshop on Automated Verification of Critical Systems, 2010.
To appear.

[BS10] U. Berger and M. Seisenberger. Program extraction via typed realisability for induction and coinduc-
tion. In Ralf Schindler, editor, Ways of Proof Theory. Ontos Verlag, Frankfurt, 2010. To appear.

[CDG06] A. Ciaffaglione and P. Di Gianantonio. A certified, corecursive implementation of exact real numbers.
Theoretical Computer Science, 351:39–51, 2006.

[EH02] A. Edalat and R. Heckmann. Computing with real numbers: I. The LFT approach to real number
computation; II. A domain framework for computational geometry. In G. Barthe, P. Dybjer, L. Pinto,
and J. Saraiva, editors, Applied Semantics - Lecture Notes from the International Summer School,
Caminha, Portugal, pages 193–267. Springer, 2002.

[GNSW07] H. Geuvers, M. Niqui, B. Spitters, and F. Wiedijk. Constructive analysis, types and exact real
numbers. Mathematical Structures in Computer Science, 17(1):3–36, 2007.

[Kre59] G. Kreisel. Interpretation of analysis by means of constructive functionals of finite types. Construc-
tivity in Mathematics, pages 101–128, 1959.

[MP05] F. Miranda-Perea. Realizability for monotone clausular (co)inductive definitions. Electronic Notes in
Theoretical Computer Science, 123:179–193, 2005.

[MRE07] J. R. Marcial-Romero and M. H. Escardo. Semantics of a sequential language for exact real-number
computation. Theoretical Computer Science, 379(1-2):120–141, 2007.

[Plu98] D. Plume. A calculator for exact real number computation, 1998.
[Sch06] H. Schwichtenberg. Minlog. In F. Wiedijk, editor, The Seventeen Provers of the World, number 3600

in Lecture Notes in Artificial Intelligence, pages 151–157, 2006.
[Tat98] M. Tatsuta. Realizability of monotone coinductive definitions and its application to program synthesis.

In R. Parikh, editor, Mathematics of Program Construction, pages 338–364. Springer, 1998.

Comparison of Complexity over the Real vs. Complex Numbers

Peter Scheiblechner

Department of Mathematics
Purdue University

West Lafayette, IN 47907-2067, USA,
pscheibl@math.purdue.edu

Abstract. We compare complexity questions over the reals with their corresponding versions
over the complex numbers. We argue in particular that the problem of deciding membership to a
subspace arrangement is strictly harder over C than over R. There exist decision trees of polynomial
depth over R deciding this problem, whereas certain complex arrangements have no polynomial
depth decision trees. This follows from a new lower bound for the decision complexity of a complex
algebraic set X in terms of the sum of its (compactly supported) Betti numbers bc(X), which is
for the first time better than logarithmic in bc(X). On the other hand, the existential theory over
R is strictly harder than that over C. This follows from the observation that the former cannot be
solved by a complex BSS-machine.

1 Introduction

1.1 Membership to Subspace Arrangements

This paper consists of two settings, in which we compare the complexity of certain algorithmic problems
over the real numbers with that over the complex numbers. In the first setting we study the problem
of testing membership of a point to an arrangement of affine linear subspaces of kn, where k is either
R or C. A famous example of such a problem is the knapsack problem, which is an arrangement of 2n

hyperplanes in kn. Meyer auf der Heide [MadH84] proved that one can solve the knapsack problem over
R by linear decision trees of polynomial depth. This result is generalized in [Cla87,Mei93] to arbitrary
subspace arrangements. More precisely, it is proved that one can decide membership to an arrangement
of m subspaces of Rn by a linear decision tree of depth polynomial in n logm (see also [BCS97, §3.4]).

It is easy to see by a generic path argument that such a result over C is impossible [BCSS98,Koi94].
We provide a second proof for this fact by proving a general lower bound for the decision tree
complexity of a complex algebraic set X in terms of its (compactly supported) Betti numbers.
There is a tradition of lower bounds for the decision complexity in terms of topological invari-
ants [BO83,BLY92,Yao92,BO94,Yao94,LR96], see also the survey [Bür01]. All known lower bounds are
logarithmic. For instance, the result of [Yao94] bounds the complexity of X by Ω(log bc(X)), where bc(X)
denotes the sum of the (compactly supported) Betti numbers of X. Our bound is the first non-logarithmic
one. In particular, we prove that the decision tree complexity of an algebraic set X in Cn is bounded
below by (bc(X)/m)Ω(1

n), where m denotes the number of irreducible components of X. Although this
looks like a big improvement, it yields better lower bounds only for quite large Betti numbers. Note that
we need bc(X) to be at least of order 2n log1+ε n for some ε > 0 to have bc(X)

1
n larger than log bc(X). So

for instance, our result yields worse lower bounds than Yao’s for the element distinctness and k-equality
problems. Examples of varieties on which our lower bound performs better are generic hyperplane ar-
rangements or cartesian products of those. We are currently looking for more natural computational
problems, where this is the case.

1.2 Existential Theory

The second part of the paper is motivated by the following question. Consider a system

f1 = 0, . . . , fr = 0, fi ∈ R[X1, . . . , Xn], (1)

of real polynomial equations. We compare the following two problems:

Comparison of Complexity over the Real vs. Complex Numbers 169

FeasR: Given f1, . . . , fr, decide whether (1) has a real solution x ∈ Rn.

HNC: Given f1, . . . , fr, decide whether (1) has a complex solution x ∈ Cn.

It is proved in [BSS89] that FeasR is complete for the class NPR of languages decidable nondeter-
ministically in polynomial time in the BSS-model over R. The second problem HNC is the restriction
to the reals of the NPC-complete problem called Hilbert Nullstellensatz. The reductions used in these
completeness-statements are polynomial time reductions in the BSS-model over R resp. C.

A simple observation is that HNC reduces (over the reals) to FeasR by replacing the n complex
variables by 2n real ones and separating the real and complex parts of the equations. Conversely, one
might ask whether one can reduce FeasR to HNC. We will answer this question negatively. More precisely,
there is no (in fact not only polynomial time) reduction from FeasR to HNC in the BSS-model over R
without order. The question remains open whether there is one using the order.

2 A Lower Bound over C

An algebraic decision tree of degree d over C is a rooted binary tree, whose inner nodes (branching nodes)
are labeled with polynomials in C[X1, . . . , Xn] of degree at most d, and whose leaves are labeled with
either ”yes” or ”no”. The tree encodes a program that on input (x1, . . . , xn) ∈ Cn parses the tree from
the root to some leaf by testing at each branching node labeled with f , whether f(x) = 0, and continuing
to the left or right according to the outcome of the test. The program answers the label of the leaf it
reaches. Algebraic decision trees over R are defined analogously by testing f ≤ 0.

For lower complexity bounds one needs invariants which are subadditive. We use the compactly
supported Betti numbers (or equivalently, Borel-Moore Betti numbers). These are defined for a locally
closed semialgebraic set X via the cohomology with compact support [Bür01]. We denote by bc(X) the
sum of all compactly supported Betti numbers of X. Our result is based on the fundamental Oleinik-
Petrovski/Milnor/Thom-Bound. The following is a version for the compactly supported Betti-numbers
which is proved in [Bür01].

Theorem 1. Let X = {f1 = 0, . . . , fr = 0} ⊆ Rn be an algebraic set defined by the real polynomials fi
of degree at most d. Then bc(X) ≤ d(2d− 1)n.

We need it for locally closed sets over the complex numbers.

Corollary 1. Let X be the locally closed subset of Cn defined by f1 = 0, . . . , fr = 0, g1 6= 0, . . . , gs 6= 0,
where s ≥ 1 and fi, gj ∈ C[X1, . . . , Xn] have degree at most d. Then bc(X) ≤ (sd+ 1)(2sd+ 1)2n+2.

For a constructible set X ⊆ Cn the degree d decision complexity Cd(X) is the minimal depth of a
degree d algebraic decision tree deciding X. Denote by #ic(X) the number of irreducible components of
X.

Theorem 2. Let X ⊆ Cn be a closed algebraic set. Then

Cd(X) ≥ 1
4d2

(
bc(X)

#ic(X)

) 1
3n+1

.

In the following we sketch the proof of this theorem. Its beginning is analogous to the proof of Yao’s
lower bound. Let T be a degreee d decision tree of depth k deciding X. For a leave ν denote by Dν its leaf
set consisting of those x ∈ Cn following the path of T to the leaf ν. We clearly have the decomposition
X =

⊔
ν∈Υ Dν , where Υ = {yes-leaves of T}. Furthermore, each leaf set can be written as

Dν = {f1 = 0, . . . , fr = 0, g1 6= 0, . . . , gs 6= 0}, where deg fi, deg gi ≤ d. (2)

Note that s ≤ k − 1 if X 6= Cn. Using the subadditivity and Corollary 1 we conclude

bc(X) ≤
∑
ν∈Υ

bc(Dν) ≤ |Υ |kd(2kd)2n+2. (3)

Yao now bounds |Υ | by the number of all leaves, which is in our case at most 2k. The new idea is to
improve this to a polynomial bound in k.

170 Peter Scheiblechner

First note that each irreducible component Z of X must be contained in a unique Dν(Z). We set
I1 := {ν(Z) |Z component of X} and X1 :=

⋃
ν∈Υ\I1 Dν . Then X1 is a lowerdimensional subvariety of

X, and each component Z of X1 is contained in a unique Dν(Z). We set I2 := I1t{ν(Z) |Z component of
X1} and X2 :=

⋃
ν∈Υ\I2 Dν . Continuing this way we get sequences of subvarieties X = X0 ⊇ X1 ⊇ · · · ⊇

Xm ⊇ Xm+1 = ∅ and subsets ∅ = I0 ⊆ I1 ⊆ · · · ⊆ Im ⊆ Im+1 = Υ , where m = dimX. By construction
we have |Ii| ≤

∑
j<i #ic(Xj), hence we are left with the task to bound #ic(Xi) or degXi. Using (2) and

Bézout’s Theorem we prove degXi ≤ degX(kd)i and conclude |Υ | ≤
∑
i #ic(Xi) ≤ degX

∑
i(kd)i ≤

2 degX(kd)m. Bounding degX ≤ #ic(X)dn, plugging this into (3) and solving for k yields our Theorem.
In order to bound the Betti numbers of subspace arrangements, we collect some well-known facts.

We write b(X) for the sum of the singular Betti numbers of a space X. Let X =
⋃
iAi ⊆ Rn be a real

subspace arrangement. Its complexification is defined to be XC :=
⋃
iA

C
i , where AC

i ⊆ Cn is defined by
the same equations as Ai. Since the sum of the Betti numbers of the complement of an arrangement
depends only on its intersection semilattice, we have b(Rn \X) = b(Cn \XC) [Bjö92, §8.3]. Furthermore,
Alexander duality in Rn resp. its Alexandrov compactification Sn = Rn∪{∞} implies that for any closed
subset X ⊆ Rn we have bc(X) = b(Rn \X).

With these facts it follows from [BCS97, Lemma (11.10)] that bc(Distn) ≥ n!, where Distn =⋃
i<j{xi = xj} is the element-distinctness problem. Yao’s bound shows Cd(Distn) ≥ Ω(n log n), whereas

Theorem 2 only implies Cd(Distn) ≥ Ω(3
√
n). For the knapsack problem KNn =

⋃
I⊆[n]

{∑
i∈I = 1

}
, The-

orem 2 together with [BCS97, Lemma (11.14)] yields Cd(KNn) ≥ 2Ω(n), now better than Yao’s quadratic
bound. However, a simple generic-path argument implies Cd(X) ≥ m

d for a hyperplane arrangement X
with m hyperplanes, which also shows the single exponential lower bound for the knapsack problem.

The generic-path arguement does not apply to arrangements of higher codimension. To get such
a subspace arrangement with sufficiently large Betti numbers, one can take KN2

n ⊆ C2n, which
has codimension 2. Using the Künneth-Theorem one can show bc(X × Y) ≥ bc(X) + bc(Y), hence
Theorem 2 implies Cd(KN2

n) ≥ 2Ω(2n). However, this lower bound may also be derivable by re-
ducing to the knapsack problem. An interesting problem for our bound would be the following:
{(X, b) ∈ Cn×n × Cn | ∃e ∈ {0, 1}nXe = b}. Unfortunatley, at present we don’t know a bound for the
Betti numbers of this arrangement.

3 Real Parts

For a complexity class C of languages in C∞ define its real part as RP(C) := {A ∩ R∞ |A ∈ C}.

Proposition 1. We have RP(PC) = P=
R and RP(NPC) ⊆ NP=

R = NPR.

This proposition is proved as follows. One sees RP(PC) ⊆ P=
R by simulating a complex machine by a

real =-machine. For the reverse inclusion, view a real =-machine as a complex machine and ensure by
clocking a polynomial running time on all complex inputs. The second inclusion of Proposition 1 follows
from the first. Finally, NPR = NP=

R follows from the observation that FeasR is NPR-complete also for
polynomial =-reductions, and NP=

R is closed under those.
We call a subset S ⊆ Rn constructible, iff S can be defined by a quantifier-free first-order formula

whose atoms are of the form f = 0 or f 6= 0 with a polynomial f . We need the following result of [CR93].

Theorem 3. If A ⊆ R∞ is decidable by a =-machine, then A ∩ Rn is constructible for all n ∈ N.

Observe that FeasR is not decidable, since {(a, b, c) ∈ R3 | b2 − 4ac ≥ 0} is not constructible. Theo-
rem 3 implies

Theorem 4. We have RP(PC) ⊆ RP(NPC) (NP=
R .

Note that for this separation one can also use the language {x1 > 0}. It also follows from [MMD83].
To answer the question of the introduction, we remark that there can be no polynomial time =-reduction
of FeasR to HNC, since RP(NPC) is closed under those reductions.

It is interesting that NP=
R contains undecidable languages, and also that in the presence of an exis-

tential quantifier the destinction between full and =-machines disappears. These remarks extend to the
higher levels of the polynomial hierarchy. We pose the following questions:

Comparison of Complexity over the Real vs. Complex Numbers 171

1. We have the following transfer result: PC = NPC ⇒ P=
R = RP(NPC). Does the other direction hold?

2. We only have RP(NPC) 6= NP=
R for a silly reason. Is there a natural class of problems C such that

RP(NPC) = NP=
R ∩ C? Maybe the class of decidable languages?

3. Does the order help in deciding HNC? In other words, is RP(NPC) ⊆ PR? Note that the reverse
inclusion does not hold: {x1 > 0} ∈ PR \ RP(NPC).

Acknowledgements

Peter Scheiblechner is supported by DFG grant SCHE 1639/1-1. The author would like to thank the
anonymous referees for valuable comments.

References

[BCS97] P. Bürgisser, M. Clausen, and M.A. Shokrollahi. Algebraic complexity theory, volume 315 of
Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1997.

[BCSS98] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer, 1998.
[Bjö92] A. Björner. Subspace arrangements. In Proc. of 1st European Congress of Mathematics, pages 321–370,

Paris, 1992, 1992. Birkhäuser.
[BLY92] A. Björner, L. Lovász, and A. Yao. Linear decision trees: volume estimates and topological bounds. In

STOC ’92: Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, pages
170–177, New York, NY, USA, 1992. ACM.

[BO83] M. Ben-Or. Lower bounds for algebraic computation trees. In STOC ’83: Proceedings of the fifteenth
annual ACM symposium on Theory of computing, pages 80–86, New York, NY, USA, 1983. ACM.

[BO94] M. Ben-Or. Algebraic computation trees in characteristic p > 0. In FOCS ’94: Proceedings of the
35th Annual Symposium on Foundations of Computer Science, pages 534–539, Washington, DC, USA,
1994. IEEE Computer Society.

[BSS89] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers.
Bull. Amer. Math. Soc., 21:1–46, 1989.

[Bür01] Peter Bürgisser. Lower bounds and real algebraic geometry. In Algorithmic and Quantitative Aspects
of Real Algebraic Geometry in Mathematics and Computer Science, pages 35–54, 2001.

[Cla87] K. L. Clarkson. New applications of random sampling in computational geometry. Discrete Comput.
Geom., 2:195–222, 1987.

[CR93] Felipe Cucker and Francesc Rosselló. Recursiveness over the complex numbers is time-bounded. In
Proceedings of the 13th Conference on Foundations of Software Technology and Theoretical Computer
Science, pages 260–267, London, UK, 1993. Springer-Verlag.

[Koi94] P. Koiran. Computing over the reals with addition and order. In Selected papers of the workshop on
Continuous algorithms and complexity, pages 35–47, New York, NY, USA, 1994. Elsevier Science Inc.

[LR96] T. Lickteig and M.M. Roy. Semi-algebraic complexity of quotients and sign determination of remain-
ders. J. Compl., 12(4):545–571, 1996.

[MadH84] F. Meyer auf der Heide. A polynomial linear search algorithm for the n-dimensional knapsack problem.
J. ACM, 31(3):668–676, 1984.

[Mei93] S. Meiser. Point location in arrangements of hyperplanes. Inf. Comput., 106(2):286–303, 1993.
[MMD83] A. Macintyre, K. McKenna, and L. van den Dries. Elimination of quantifiers in algebraic structures.

Advances in Mathematics, 47:74–87, 1983.
[Yao92] A. Yao. Algebraic decision trees and Euler characteristics. In FOCS ’92: Proceedings of the 33rd Annual

Symposium on Foundations of Computer Science, pages 268–277, Washington, DC, USA, 1992. IEEE
Computer Society.

[Yao94] A. Yao. Decision tree complexity and Betti numbers. In STOC ’94: Proceedings of the twenty-sixth
annual ACM symposium on Theory of computing, pages 615–624, New York, NY, USA, 1994. ACM.

Computable functions of reals

Katrin Tent1 and Martin Ziegler2

1 Mathematisches Institut, Universität Münster, Einsteinstrasse 62, D-48149 Münster, Germany
tent@math.uni-muenster.de

2 Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Eckerstr. 1, D-79104 Freiburg, Germany
ziegler@uni-freiburg.de

We introduce for every suitable class F of computable functions Nn → N a new notion of F–
computable functions from open subsets U of Rm to R. We show that these functions are closed under
various operations, which implies that certain holomorphic functions like the exponentiation, the loga-
rithm, the Gamma function and the Zeta function are low elementary computable on bounded subsets
of their domain of definition. Our approach goes back to Grzegorczyk and the hierarchy of elementary
functions and real numbers developed by him and Mazur (see [2] footnote p. 201).

The main idea is to use the density of the rationals in the real numbers to approximate functions
on the reals by computable functions on the rational numbers. We show that apparently many of the
functions appearing naturally in mathematics are computably approximable in this sense. Our results
imply that the lower elementary reals and complex numbers form a real closed field or algebraically
closed field, respectively.

1 Good classes of functions

A class F of functions Nn → N is called good if it contains the constant functions, the projection
functions, the successor function, the modified difference function x−̇y = max{0, x − y}, and is closed
under composition and bounded summation

f(x̄, y) =
y∑
i=0

g(x̄, i).

The class of lower elementary functions is the smallest good class. The smallest good class which is also
closed under bounded product

f(x̄, y) =
y∏
i=0

g(x̄, i),

or – equivalently – the smallest good class which contains n 7→ 2n, is the class of elementary functions
The elementary functions are the third class ε3 of the Grzegorczyk hierarchy. The lower elementary
functions belong to ε2. It is not known whether all functions in ε2 are lower elementary.

A function f : Nn → Nm is an F–function if its components fi : Nn → N, i = 1, . . . ,m, are in F .
A relation R ⊂ Nn is called an F–relation if its characteristic function belongs to F . Note that a good
class is closed under the bounded µ–operator: if R belongs to F , then so does the function

f(x̄, y) = min{i | R(x̄, i) ∨ i = y}.

As a special case we see that bxy c is lower elementary. The F–relations are closed under Boolean combi-
nations and bounded quantification:

S(x, y) ⇔ ∃ i ≤ y R(x, i).

It follows for example that for any f in F the maximum function

max
j≤y

f(x̄, j) = min{ i | ∀j ≤ y f(x̄, j) ≤ i }

is in F since it is bounded by
∑y
i=0 f(x̄, i).

Computable functions of reals 173

We call a set X an F–retract (of Nn) if there are functions ι : X → Nn and π : Nn → X given with
π ◦ ι = id and ι◦π ∈ F . Note that the product X×X ′ of two F–retracts X and X ′ is again an F–retract
(of Nn+n′) in a natural way. We define a function f : X → X ′ to be in F if ι′ ◦ f ◦ π : Nn → Nn′ is in
F . By this definition the two maps ι : X → Nn and π : Nn → X belong to F . For an F–retract X, a
subset of X is in F if its characteristic function is. It now makes sense to say that a set Y (together with
ι : Y → X and π : X → Y) is a retract of the retract X. Clearly Y is again a retract in a natural way.

Easily, N>0 is a lower elementary retract of N and Z is a lower elementary retract of N2 via ι(z) =
(max(z, 0),−min(0, z)) and π(n,m) = n −m. We turn Q into a lower elementary retract of Z × N by
setting ι(r) = (z, n), where z

n is the unique representation of r with n > 0 and (z, n) = 1. Define π(z, n)
as z

n if n > 0 and as 0 otherwise.
For the remainder of this note we will consider Z and Q as fixed lower elementary retracts of N,

using the maps defined in the last paragraph.

One of the most important observations is the fact that even though sums of a series of rational
numbers cannot necessarily be computed accurately in a low way, they can be computed well enough:

Lemma 1. Let g : X × N → Q be in F for some F-retract X. Then there is an F–function f :
X × N× N>0 → Q such that∣∣∣f(x, y, k)−

y∑
i=0

g(x, i)
∣∣∣ < 1

k
for all x ∈ X, y ∈ N and k ∈ N>0.

Definition 1. A real number x is an F–real if for some F–function a : N→ Q

|x− a(k)| < 1
k

In [5] Skordev has shown among other things that π is lower elementary and that e is in ε2. Weiermann
[6] proved that e is lower elementary. He used the representation e =

∑
1
n! and a theorem of d’Aquino

[1], which states that the graph of the factorial is ∆0–definable and therefore lower elementary.
We show that volumes of bounded 0–definable semialgebraic sets are lower elementary, and so is π

as the volume of the unit circle. We also show that many special functions, among them the exponential
function, map lower elementary reals into lower elementary reals.

2 Computable functions on the reals

Let O be an open subset of RN where we allow N = 0. For e ∈ N>0 put

O � e =
{
x ∈ O

∣∣ |x| ≤ e}
and

Oe =
{
x ∈ O � e

∣∣∣ dist(x,RN \O) ≥ 1
e

}
.

(We use the maximum norm on RN .) Notice:

1. Oe is compact.
2. U ⊂ O ⇒ Ue ⊂ Oe.
3. e < e′ ⇒ Oe ⊂ Oe′ .
4. O =

⋃
e∈N Oe

5. Oe ⊂ (O2e)◦2e

Definition 2. Let F be a good class. A function F : O → R is in F if there are F–functions d : N→ N
and f : QN × N→ Q such that for all e ∈ N>0 and all a ∈ QN and x ∈ Oe

|x− a| < 1
d(e)

→ |F (x)− f(a, e)| < 1
e
. (1)

3

3 As pointed out by the referee even in the case when F is the class of lower elementary functions, the F–functions
on R are not necessarily computable in the sense of [7].

174 Katrin Tent and Martin Ziegler

This definition easily extends to f : O → RM (under the maximum norm): f is in F if and only if all
fi, i = 1, . . . ,M , are in F .

The following properties are easy to see but crucial for everything that follows:

Lemma 2. 1. F–functions map F–reals to F–reals. A constant function on RN is uniformly in F if
and only if its value is an F–real.

2. F–functions O → R are continuous.
3. If F : O → RM is in F , U ⊂ RM open and G : U → R uniformly in F , then G ◦ F : F−1U ∩O → R

is in F . If F is uniformly in F , then so is G ◦ F .

3 Semialgebraic functions

In this note, semialgebraic functions (relations) are functions (relations) definable without parameters in
R. The trace of a relation R ⊆ RN on Q is R ∩QN .

The following observation is due to Yoshinaga [8] and follows from quantifier elimination.

Lemma 3. The trace of semialgebraic relations on Q is lower elementary.

Note that any semialgebraic function g : R → R is polynomially bounded, i.e. there is some n ∈ N
with |g(x)| ≤ |x|n for sufficiently large x. This is used to show:

Theorem 31 Continuous semialgebraic functions F : O → R are lower elementary for every open
semialgebraic set O.

Corollary 32 The set of F-reals RF forms a real closed field.

Corollary 32 was first proved by Skordev (see [4]). For countable good classes F , like the class of
lower elementary functions, clearly RF is a countable subfield of R.

4 Integration

Theorem 41 Let O ⊂ RN be open and G,H : O → R in F such that G < H on O. Put

U =
{

(x, y) ∈ RN+1 | x ∈ O, G(x) < y < H(x)
}
.

Assume further that F : U → R is in F and that |F (x, y)| is bounded by an F–function K(x). Then

I(x) =
∫ H(x)

G(x)

F (x, y) dy (2)

is an F–function O → R.

This set-up can be used to give a different proof of Yoshinaga’s Theoremon periods:
Kontsevich and Zagier [3] define a period as a complex number whose real and imaginary parts are

values of absolutely convergent integrals of rational functions with rational coefficients over domains in
Rn given by polynomial inequalities with rational coefficients. The periods form a ring containing all
algebraic reals. It is an open problem whether e is a period.

Yoshinaga [8] proved that periods are elementary. An analysis of his proof shows that he actually
showed that periods are lower elementary. We here give a variant of his proof where part of his argument
is replaced by an application of Theorem 41.

Corollary 42 Periods are lower elementary.

Proof. By Lemma 24 of [8], periods are differences of sums of volumes of bounded open semialgebraic
cells.

Computable functions of reals 175

5 The Inverse Function Theorem

We call a sequence A1,A2, . . . of subsets of QN an F–sequence, if {(e, a) | a ∈ Ae} is an F–subset of
N>0 ×QN .

Definition 3. An open set O ⊂ RN is F–approximable if there is an F–sequence A1,A2, . . . of subsets
of QN and an F–function α : N→ N such that Oe ∩QN ⊂ Ae ⊂ Oα(e) for all e ∈ N>0.

It follows from Lemma 3 that semialgebraic sets O are lower elementary approximable. We can simply
set Ae = Oe ∩QN .

Theorem 51 Let F : O → V be a bijection in F where O is F–approximable and V open in RN .
Assume that the inverse G : V → O satisfies:

(i) There is an F–function d′ : N→ N such that |G(y)−G(y′)| < 1
e for all y, y′ ∈ Ve with |y−y′| < 1

d′(e) .
(ii) G is F–compact.

Then G is also in F .

6 Series of functions

In order to investigate holomorphic and analytic functions we need the notion of F-series of functions.

Definition 4. A sequence F1, F2, . . . of functions O → RM F–converges against F , if there is an F–
function m : N→ N such that |F (x)− Fi(x)| < 1

e for all x ∈ Oe and i ≥ m(e).

Lemma 4. The F–limit of an F–sequence of functions is an F–function.

We now give some examples:
1. Logarithm: As a semialgebraic function 1

x : R>0 → R is lower elementary. So by Theorem 41
ln(x) =

∫ x
1

1
y dy is lower elementary, at least on (0, 1) and (1,∞). But writing

ln(x) =
∫ 1

0

x− 1
1 + t(x− 1)

dt,

we see that ln(x) is lower elementary on (0,∞).
2. Exponentiation: As exp(x) is bounded on every interval (−∞, r), the Inverses Function Theorem
applied to ln : (0, 1) → (−∞, 0) allows us to conclude that exp(x) is lower elementary on (−∞, 0) and
– by translation – on every interval (−∞, r). exp(x) cannot be lower elementary on the whole real line
since it grows too fast. Nevertheless the following is true.

Lemma 5. G(x, y) = exp(x) is lower elementary on V = {(x, y) : exp(x) < y}.

It is easy to see that exp(z) is elementary on C. More is true:
The complex logarithm defines a homeomorphism

ln : C→ {z | Im(z) ∈ (−π, π) }

and for all r < s ∈ R a uniformly lower elementary homeomorphism between {z ∈ C \ R≤0 | exp(r) <
|z| < exp(s)} and {z | Im(z) ∈ (−π, π), r < Re(z) < s}. Again by a variant of the Inverse Function
Theorem we see that exp(z) is lower elementary on {z | Im(z) ∈ (−π, π), r < Re(z) < s}. Using the peri-
odicity of exp(z) it is now easy to see that exp(z) is lower elementary on each strip {z | r < Re(z) < s}.
This implies that sin(x) : R → R is lower elementary. Now also cos(x) is lower elementary and since
exp(x + y i) = exp(x)(cos(y) + sin(y) i) we see that exp(z) is lower elementary on every half-space
{z | Re(z) < s}.

3. Gamma function:

176 Katrin Tent and Martin Ziegler

We have for Re(x) > 1

Γ (x) =
∫ ∞

0

t−1+x exp(−t) dt

=
∫ 1

0

t−1+x exp(−t) dt+
∫ ∞

1

t−1+x exp(−t) dt

=
∫ 1

0

t−1+x exp(−t) dt+
∫ 1

0

1
t1+x

exp
(−1
t

)
dt.

Let us check that for every bound r > 1 the two integrands are lower elementary on Xr = {(x, t) |
Re(x) ∈ (1, r), t ∈ (0, 1)}: exp(−t) is lower elementary on (0, 1). And, since 1

t : (0, 1) → (1,∞) is lower
elementary compact, the function exp(−1

t) is lower elementary on (0, 1). t−1+x and 1
t1+x =

(
1
t

)x+1 are
lower elementary.

If r > 1, the absolute values of the integrands are bounded by 1 and (r+ 1)(r+1), respectively. So by
Theorem 41, Γ is lower elementary on every strip {z | 1 < Re(z) < r}.

4. Zeta–function: Since xy is lower elementary on (0, 1) × {z | Re(z) > 0}, the function (1
x)y is lower

elementary on (1,∞) × {z | Re(z) > 0}. This implies that the sequence 1
ns , (n = 1, 2, . . .) is a lower

elementary sequence of functions defined on {z | Re(z) > 0}. The series

ζ(z) =
∞∑
n=1

1
nz

converges whenever t = Re(z) > 1 and we have the estimate

∣∣∣ζ(z)−
N∑
n=1

1
nz

∣∣∣ ≤ ∫ ∞
N

1
xt

dx =
1

(t− 1)N t−1
.

So, if Re(z) ≥ 1 + 1
k and N ≥ (ke)k, we have

∣∣∣ζ(z)−
∑N
n=1

1
nz

∣∣∣ < 1
e . This then shows that ζ(z) is lower

elementary on every {z | Re(z) > s}, (s > 1).

7 Holomorphic functions

Lemma 6. Let F (z) =
∑∞
i=0 aiz

i be a complex power series with radius of convergence ρ. Let 0 < b < ρ
be an F–real such that (aibi)i∈N is an F–sequence of complex numbers. Then F restricted to the open
disc {z : |z| < b} belongs to F .

In order to develop a local-global principle for holomorphic functions, we use the following lemma.

Lemma 7 (Speed-Up Lemma). Suppose (an) ∈ C is a bounded sequence and that 0 < b < 1 is an
F–real. Then (anbn) is an F–sequence if (anb2n) is.

Theorem 71 Let F be a holomorphic function, defined on an open domain D ⊂ C. Let a be an F–
complex number in D and let b be a positive F–real smaller than the radius of convergence of F (a+ z) =∑∞
i=0 anz

n. Then F is locally in F if and only if (anbn) is an F–sequence. ut

Corollary 72 Let F be holomorphic on a punctured disk D• = {z | 0 < |z| < r}. Then the following
holds:

1. If 0 is a pole of F and F is F on some non–empty open subset of D•, then F is F on every proper
punctured subdisc D′• = {z | 0 < |z| < r′}.

2. If 0 is an essential singularity of F , F is not lower elementary on D•.
3. Let S = {−n | n ∈ N} denote the set of poles of the Gamma function Γ . Γ is lower elementary on

every set {z : |z| < r} \ S.
4. The Zeta function ζ(z) is lower elementary on every punctured disk {z | 0 < |z − 1| < r}.

Computable functions of reals 177

Γ cannot be lower elementary on C\S since n! grows too fast. Similarly, ζ cannot be lower elementary
on C \ {1} because ∞ is an essential singularity. However, we believe that Γ is elementary on C \S. and
that ζ is elementary on C \ {1}.

Corollary 73 The set CF = RF [i] of F–complex numbers is algebraically closed and closed under ln(z),
exp(z), Γ (z) and ζ(z).

Note that RF [i] is algebraically closed since RF is real closed by Corollary 32.
If a0, a1, . . . are Q–linearly independent algebraic numbers, the exponentials exp(a0), exp(a1). . . . are

lower elementary and algebraically independent by the Lindemann–Weierstra? Theorem. So the field of
lower elementary complex numbers has infinite transcendence degree.

References

1. Paola D’Aquino. Local behaviour of the Chebyshev theorem in models of I∆0. J. Symbolic Logic, 57(1):12–27,
1992.

2. A. Grzegorczyk. Computable functionals. Fund. Math., 42:168–202, 1955.
3. M. Kontsevich and D. Zagier. Periods. In Mathematics Unlimited - 2001 and Beyond, pages 771–808. Springer,

Berlin, 2001.
4. Dimiter Skordev. Computability of real numbers by using a given class of functions in the set of the natural

numbers. MLQ Math. Log. Q., 48(suppl. 1):91–106, 2002. Dagstuhl Seminar on Computability and Complexity
in Analysis, 2001.

5. Dimiter Skordev. On the subrecursive computability of several famous constants. J.UCS, 14(6):861–875, 2008.
6. Andreas Weiermann. Personal communication. 2008.
7. Klaus Weihrauch. Computable analysis. Texts in Theoretical Computer Science. An EATCS Series. Springer-

Verlag, Berlin, 2000. An introduction.
8. Masahiko Yoshinaga. Periods and elementary real numbers. (http://arxiv.org/math.AG/0805.0349v1),

2008.

Computational Complexity in Analysis

Klaus Weihrauch

University of Hagen, Germany
Klaus.Weihrauch@FernUni-Hagen.de

Computability of functions on natural numbers or words (and via numberings on countable sets) has
been defined in the 1930s. The basics of computational complexity have been developed around 1970.
Meanwhile Computational Complexity, essentially for Turing machines, is a rich and deep theory which
is still advancing.

For functions on the real numbers and other uncountable sets the development started at the same
time but was much slower. Several partly non-equivalent definitions of computability on the real num-
bers have been introduced some of which allow refinement to computational complexity. Complexity of
functions on the real numbers and, more generally, on other uncountable sets from Analysis has been
studied to some extent but compared to discrete complexity theory the results are sparse.

While computability of an operator like the solution operator of a differential equation can be defined
reasonably, seemingly still there is no satisfactory definition of its computational complexity. The question
can be reduced to the definition of computational complexity for type-2 functionals on numbers, that is,
for (computable) functions f : NN → N.

In the talk existing partial solutions of type-2 complexity are discussed and a more satisfactory
concept is suggested.

Ball arithmetic⋆

Joris van der Hoeven⋆⋆

LIX, CNRS
École polytechnique

91128 Palaiseau Cedex
France

Abstract. The Mathemagix project aims at the development of a “computer analysis” system, in
which numerical computations can be done in a mathematically sound manner. A major challenge
for such systems is to conceive algorithms which are both efficient, reliable and available at any
working precision. In this paper, we survey several older and newer such algorithms. We mainly
concentrate on the automatic and efficient computation of high quality error bounds, based on a
variant of interval arithmetic which we like to call “ball arithmetic”.
Keywords: Ball arithmetic, interval arithmetic, reliable computing, computable analysis
A.M.S. subject classification: 65G20, 03F60,65F99, 37-04

1 Introduction

Computer algebra systems are widely used today in order to perform mathematically correct computa-
tions with objects of algebraic or combinatorial nature. It is tempting to develop a similar system for
analysis. On input, the user would specify the problem in a high level language, such as computable anal-
ysis [Wei00,BB85,Abe80,Tur36] or interval analysis [Moo66,AH83,Neu90,JKDW01,Kul08]. The system
should then solve the problem in a certified manner. In particular, all necessary computations of error
bounds must be carried out automatically.

There are several specialized systems and libraries which contain work in this direction. For instance,
Taylor models have been used with success for the validated long term integration of dynamical systems
[Ber98,MB96,MB04]. A fairly complete Matlab interval arithmetic library for linear algebra and poly-
nomial computations is Intlab [Rum99b,Rum99a]. Another historical interval library, which continues
to be developed is [ea67]. There exist several libraries for multiple precision arithmetic with correct
or at least well specified rounding [HLRZ00,Hai95], as well as a library for multiple precision interval
arithmetic [Rev01], and libraries for computable real numbers [M0,Lam07,BCC+06]. There are also li-
braries for very specific problems, such as the MPSolve library [BF00], which allows for the certified
computation of the roots of multiple precision polynomials.

The Mathemagix system [vdH+02b] intends to develop a new “computer analysis” system, dis-
tributed under a free licence and not depending on proprietary software such as Matlab. Ultimately,
we hope to cover most of the functionality present in the software mentioned above and add several new
features, such as computable analytic functions [vdH07b] and transseries [vdH08b]. We also insist on
performance and the possibility to easily switch between machine doubles and multiple precision arith-
metic (without being penalized too much). In this paper, we will discuss several older and newer ideas
for combining efficiency, reliability and multiple precision arithmetic (when necessary). Many algorithms
are already present in the Mathemagix system, or will be incorporated soon.

Most of the algorithms in this paper will be based on “ball arithmetic”, which provides a systematic
tool for the automatic computation of error bounds. In section 3, we provide a short introduction to
this topic and describe its relation with computable analysis. Although ball arithmetic is really a variant
of interval arithmetic, we will give several arguments in section 4 why we actually prefer balls over
intervals for most applications. Roughly speaking, balls should be used for the reliable approximation

⋆ This work has been supported by the ANR-09-JCJC-0098-01 MaGiX project, as well as a Digiteo 2009-36HD
grant and Région Ile-de-France.

⋆⋆ vdhoeven@lix.polytechnique.fr Web: http://lix.polytechnique.fr/~vdhoeven

180 Joris van der Hoeven

of numbers, whereas intervals are mainly useful for certified algorithms which rely on the subdivision of
space. Although we will mostly focus on ball arithmetic in this paper, section 5 presents a rough overview
of the other kinds of algorithms that are needed in a complete computer analysis system.

After basic ball arithmetic for real and complex numbers, the next challenge is to develop efficient
algorithms for reliable linear algebra, polynomials, analytic functions, resolution of differential equations,
etc. In sections 6 and 7 we will survey several basic techniques which can be used to implement efficient
ball arithmetic for matrices and formal power series. Usually, there is a trade-off between efficiency and
the quality of the obtained error bounds. One may often start with a very efficient algorithm which
only computes rough bounds, or bounds which are only good in favourable well-conditioned cases. If
the obtained bounds are not good enough, then we may switch to a more expensive and higher quality
algorithm.

Of course, the main algorithmic challenge in the area of ball arithmetic is to reduce the overhead
of the bound computations as much as possible with respect to the principal numeric computation. In
favourable cases, this overhead indeed becomes negligible. For instance, for high working precisions p, the
centers of real and complex balls are stored with the full precision, but we only need a small precision for
the radii. Consequently, the cost of elementary operations (+, −, ·, exp, etc.) on balls is dominated by
the cost of the corresponding operations on their centers. Similarly, crude error bounds for large matrix
products can be obtained quickly with respect to the actual product computation, by using norm bounds
for the rows and columns of the multiplicands; see (21).

Another algorithmic challenge is to use fast algorithms for the actual numerical computations on
the centers of the balls. In particular, it is important to use existing high performance libraries, such
as Blas, Linpack, etc., whenever this is possible [Rum99a]. Similarly, we should systematically rely on
asymptotically efficient algorithms for basic arithmetic, such as fast integer and polynomial multiplica-
tion [KO63,CT65,SS71]. There are several techniques to achieve this goal:

1. The representations of objects should be chosen with care. For instance, should we rather work with
ball matrices or matricial balls (see sections 6.4 and 7.1)?

2. If the result of our computation satisfies an equation, then we may first solve the equation numerically
and only perform the error analysis at the end. In the case of matrix inversion, this method is known
as Hansen’s method; see section 6.2.

3. When considering a computation as a tree or dag, then the error tends to increase with the depth of
the tree. If possible, algorithms should be designed so as to keep this depth small. Examples will be
given in sections 6.4 and 7.5. Notice that this kind of algorithms are usually also more suitable for
parallelization.

When combining the above approaches to the series of problems considered in this paper, we are usually
able to achieve a constant overhead for sharp error bound computations. In favourable cases, the overhead
becomes negligible. For particularly ill conditioned problems, we need a logarithmic overhead. It remains
an open question whether we have been lucky or whether this is a general pattern.

In this paper, we will be easygoing on what is meant by “sharp error bound”. Regarding algorithms
as functions f : Rk → Rl;x 7→ y = f(x), an error δx ∈ Rk in the input automatically gives rise to an
error δy ≈ Jf (x)δx in the output. When performing our computations with bit precision p, we have to
consider that the input error δx is as least of the order of 2−p|x| ∈ (R>)k (where |x|i = |xi| for all i).
Now given an error bound |δx| 6 εx for the input, an error bound |δy| 6 εy is considered to be sharp
if εy ≈ max|δx|6εx

|Jf (x)δx|. More generally, condition numbers provide a similar device for measuring
the quality of error bounds. A detailed investigation of the quality of the algorithms presented in this
paper remains to be carried out. Notice also that the computation of optimal error bounds is usually
NP-hard [KLRK97].

Of course, the development of asymptotically efficient ball arithmetic presupposes the existence of the
corresponding numerical algorithms. This topic is another major challenge, which will not be addressed
in this paper. Indeed, asymptotically fast algorithms usually suffer from lower numerical stability. Be-
sides, switching from machine precision to multiple precision involves a huge overhead. Special techniques
are required to reduce this overhead when computing with large compound objects, such as matrices or
polynomials. It is also recommended to systematically implement single, double, quadruple and multiple
precision versions of all algorithms (see [BHL00,BHL01] for a double-double and quadruple-double pre-
cision library). The Mathemagix system has been designed so as to ease this task, since most current
packages are C++ template libraries.

Ball arithmetic 181

The aim of our paper is to provide a survey on how to implement an efficient library for ball arithmetic.
Even though many of the ideas are classical in the interval analysis community, we do think that the
paper sheds a new light on the topic. Indeed, we systematically investigate several issues which have
received limited attention until now:

1. Using ball arithmetic instead of interval arithmetic, for a wide variety of center and radius types.
2. The trade-off between algorithmic complexity and quality of the error bounds.
3. The complexity of multiple precision ball arithmetic.

Throughout the text, we have attempted to provide pointers to existing literature, wherever appropri-
ate. We apologize for possible omissions and would be grateful for any suggestions regarding existing
literature.

2 Notations and classical facts

2.1 Floating point numbers and the IEEE 754 norm

We will denote by
D = Z2Z = {m2e : m, e ∈ Z}

the set of dyadic numbers. Given fixed bit precisions p ∈ N and q ∈ N for the unsigned mantissa (without
the leading 1) and signed exponent, we also denote by

Dp,q = {m2e : m, e ∈ Z, |m| < 2p+1, 1 − 2q−1 < e + p < 2q−1}

the corresponding set of floating point numbers. Numbers in Dp,q can be stored in p + q + 1 bit space
and correspond to “ordinary numbers” in the IEEE 754 norm [ANS08]. For double precision numbers,
we have p = 51 and q = 12. For multiple precision numbers, we usually take q to be the size of a machine
word, say q = 64, and denote Dp = Dp,64.

The IEEE 754 norm also defines several special numbers. The most important ones are the infinities
±∞ and “not a number” NaN, which corresponds to the result of an invalid operation, such as

√
−2.

We will denote

D∗
p,q = Dp,q ∪ {−∞,+∞,NaN}.

Less important details concern the specification of signed zeros ±0 and several possible types of NaNs.
For more details, we refer to [ANS08].

The other main feature of the IEEE 754 is that it specifies how to round results of operations
which cannot be performed exactly. There are four basic rounding modes ↑ (upwards), ↓ (downwards),
l (nearest) and 0 (towards zero). Assume that we have an operation f : U → R with U ⊆ Rk. Given
x ∈ U ∩Dk

p,q and y = f(x), we define f↑(x) to be the smallest number ỹ in D∗
p,q, such that ỹ > y. More

generally, we will use the notation (f(x)+y)↑ = f↑(x)+↑y to indicate that all operations are performed by
rounding upwards. The other rounding modes are specified in a similar way. One major advantage of IEEE
754 arithmetic is that it completely specifies how basic operations are done, making numerical programs
behave exactly in the same way on different architectures. Most current microprocessors implement the
IEEE 754 norm for single and double precision numbers. A conforming multiple precision implementation
also exists [HLRZ00].

2.2 Classical complexity results

Using Schönhage-Strassen multiplication [SS71], it is classical that the product of two p-bit integers can be
computed in time I(n) = O(n log n log log n). A recent algorithm by Fürer [Für07] further improves this
bound to I(n) = O(n log n2O(log∗ n)), where log∗ denotes the iterator of the logarithm (we have log∗ n =
log∗ log n+1). Other algorithms, such as division two 6 n-bit integers, have a similar complexity O(I(n)).
Given k prime numbers p1 < · · · < pk and a number 0 6 q < p1 · · · pk, the computation of q mod pi for
i = 1, . . . , k can be done in time O(I(n) log n) using binary splitting [GG02, Theorem 10.25], where
n = log(p1 · · · pk). It is also possible to reconstruct q from the remainders q mod pi in time O(I(n) log n).

182 Joris van der Hoeven

Let K be an effective ring, in the sense that we have algorithms for performing the ring operations
in K. If K admits 2p-th roots of unity for 2p > n, then it is classical [CT65] that the product of
two polynomials P,Q ∈ K[z] with deg PQ < n can be computed using O(n log n) ring operations in
K, using the fast Fourier transform. For general rings, this product can be computed using M(n) =
O(n log n log log n) operations [CK91], using a variant of Schönhage-Strassen multiplication.

A formal power series f ∈ K[[z]] is said to be computable, if there exists an algorithm which takes
n ∈ N on input and which computes fn ∈ K. We denote by K[[z]]com the set of computable power
series. Many simple operations on formal power series, such as multiplication, division, exponentiation,
etc., as well as the resolution of algebraic differential equations can be done up till order n using a
similar time complexity O(M(n)) as polynomial multiplication [BK78,BCO+06,vdH06b]. Alternative
relaxed multiplication algorithms of time complexity R(n) = O(M(n)) are given in [vdH02a,vdH07a]. In
this case, the coefficients (fg)n are computed gradually and (fg)n is output as soon as f0, . . . , fn and
g0, . . . , gn are known. This strategy is often most efficient for the resolution of implicit equations.

LetKm×n denote the set of m×n matrices with entries inK. Given two n×n matrices M,N ∈ Kn×n,
the naive algorithm for computing MN requires O(nω) ring operations with ω = 3. The exponent ω
has been reduced by Strassen [Str69] to ω = log 7/ log 2. Using more sophisticated techniques, ω can be
further reduced to ω < 2.376 [Pan84,CW87]. However, this exponent has never been observed in practice.

2.3 Interval and ball notations

Given x < y in a totally ordered set R, we will denote by [x, y] the closed interval

[x, y] = {z ∈ R : x 6 z 6 y}. (1)

Assume now that R is a totally ordered field and consider a normed vector space V over R. Given c ∈ V
and r ∈ R> = {r ∈ R : r > 0}, we will denote by

B(c, r) = {x ∈ V : ‖x − c‖ 6 r} (2)

the closed ball with center c and radius r. Notice that we will never work with open balls in what follows.
We denote the set of all balls of the form (2) by B(V,R). Given x ∈ B(V,R), we will denote by xc and
xr the center resp. radius of x.

We will use the standard euclidean norm

‖x‖ =

√
|x1|2 + · · · + |xn|2

n

as the default norm on Rn and Cn. Occasionally, we will also consider the max-norm

‖x‖∞ = max{|x1|, . . . , |xn|}.

For matrices M ∈ Rm×n or M ∈ Cm×n, the default operator norm is defined by

‖M‖ = max
‖x‖=1

‖Mx‖. (3)

Occasionally, we will also consider the max-norm

‖M‖∞ = max
i,j

|Mi,j |,

which satisfies
‖M‖∞ 6 ‖M‖ 6 n‖M‖∞.

We also define the max-norm for polynomials P ∈ R[x] or P ∈ C[x] by

‖P‖∞ = max |Pi|.

For power series f ∈ R[[z]] or f ∈ C[[z]] which converge on the compact disk B(0, r), we define the norm

‖f‖r = max
|z|6r

|f(z)|. (4)

Ball arithmetic 183

After rescaling f(z) 7→ f(rz), we will usually work with the norm ‖ · ‖ = ‖ · ‖1.
In some cases, it may be useful to generalize the concept of a ball and allow for radii in partially

ordered rings. For instance, a ball X ∈ B(Rn,Rn) stands for the set

X = {x ∈ Rn|∀1 6 i 6 n, |xi − (Xc)i| 6 (Xr)i}.

The sets B(Rm×n,Rm×n), B(R[x],R[x]), B(R[[x]],R[[x]]), etc. are defined in a similar component wise
way. Given x ∈ Rn, it will also be convenient to denote by |x| the vector with |x|i = |xi|. For matrices
M ∈ Rm×n, polynomials P ∈ R[x] and power series f ∈ R[[x]], we define |M |, |P | and |f | similarly.

3 Balls and computable real numbers

3.1 Ball arithmetic

Let V be a normed vector space over R and recall that B(V,R) stands for the set of all balls with centers
in V and radii in R. Given an operation ϕ : Vk → V, the operation is said to lift to an operation

f◦ : B(V,R)k → B(V,R),

if we have

f◦(X1, . . . ,Xk) ⊇ {f(x1, . . . , xk) : x1 ∈ X1, . . . , xk ∈ Xk},

for all X1, . . . ,Xk ∈ B(V,R). For instance, both the addition + : V2 → V and subtraction − : V2 → V

admits lifts

B(x, r) +◦ B(y, s) = B(x + y, r + s) (5)

B(x, r) −◦ B(y, s) = B(x − y, r + s). (6)

Similarly, if V is a normed algebra, then the multiplication lifts to

B(x, r) ·◦ B(y, s) = B(xy, (|x| + r)s + r|y|) (7)

The lifts +◦, −◦, ·◦, etc. are also said to be the ball arithmetic counterparts of addition, subtractions,
multiplication, etc.

Ball arithmetic is a systematic way for the computation of error bounds when the input of a numerical
operation is known only approximately. These bounds are usually not sharp. For instance, consider the
mathematical function f : x ∈ R 7→ x − x which evaluates to zero everywhere, even if x is only
approximately known. However, taking x = B(2, 0.001), we have x −◦ x = B(0, 0.002) 6= B(0, 0). This
phenomenon is known as overestimation. In general, ball algorithms have to be designed carefully so as
to limit overestimation.

In the above definitions, R can be replaced by a subfield R ⊆ R, V by an R-vector space V ⊆ V, and
the domain of f by an open subset of Vk. If V and R are effective in the sense that we have algorithms
for the additions, subtractions and multiplications in V and R, then basic ball arithmetic in B(V,R)
is again effective. If we are working with finite precision floating point numbers in Dp,q rather than a
genuine effective subfield R, we will now show how to adapt the formulas (5), (6) and (7) in order to
take into account rounding errors; it may also be necessary to allow for an infinite radius in this case.

3.2 Finite precision ball arithmetic

Let us detail what needs to be changed when using IEEE conform finite precision arithmetic, say V =
R = Dp,q. We will denote

B = B(D,D)

Bp,q = B(Dp,q,Dp,q)

B[i]p,q = B(Dp,q[i],Dp,q).

184 Joris van der Hoeven

When working with multiple precision numbers, it usually suffices to use low precision numbers for the
radius type. Recalling that Dp = Dp,64, we will therefore denote

Bp = B(Dp,D64)

B[i]p = B(Dp[i],D64).

We will write ǫ = ǫp = 2−p for the machine accuracy and η = ηp,q = 22−2q−p for the smallest representable
positive number in Dp,q.

Given an operation f : Rk → R as in section 3.1, together with balls Xi = B(xi, ri), it is natural to
compute the center y of

B(y, s) = f◦(X1, . . . ,Xs)

by rounding to the nearest:

y = fl(x1, . . . , xk). (8)

One interesting point is that the committed error

δ = |y − f(x1, . . . , xk)|

does not really depend on the operation f itself: we have the universal upper bound

δ 6 ∆(y)

∆(y) := (|y| +↑ η) ·↑ ǫ. (9)

It would be useful if this adjustment function ∆ were present in the hardware.
For the computation of the radius s, it now suffices to use the sum of ∆(y) and the theoretical bound

formulas for the infinite precision case. For instance,

B(x, r) +◦ B(y, s) = B∆(x +l y, r +↑ s) (10)

B(x, r) −◦ B(y, s) = B∆(x −l y, r +↑ s) (11)

B(x, r) ·◦ B(y, s) = B∆(x ·l y, [(|x| + r)s + r|y|]↑), (12)

where B∆ stands for the “adjusted constructor”

B∆(y, s) = B(y, s +↑ ∆(y)).

The approach readily generalizes to other “normed vector spaces” V over Dp,q, as soon as one has a
suitable rounded arithmetic in V and a suitable adjustment function ∆ attached to it.

Notice that ∆(y) = ∞, if y = ∞ or y is the largest representable real number in Dp,q. Consequently,
the finite precision ball computations naturally take place in domains of the form B∗

p,q = B(D∗
p,q,D

∗
p,q)

rather than Bp,q. Of course, balls with infinite radius carry no useful information about the result. In
order to ease the reading, we will assume the absence of overflows in what follows, and concentrate
on computations with ordinary numbers in Bp,q. We will only consider infinities if they are used in an
essential way during the computation.

Similarly, if we want ball arithmetic to be a natural extension of the IEEE 754 norm, then we need
an equivalent of NaN. One approach consists of introducing a NaB (not a ball) object, which could be
represented by B(NaN,NaN) or B(0,−∞). A ball function f◦ returns NaB if f returns NaN for one
selection of members of the input balls. For instance, sqrt◦(B(1, 3)) = NaB. An alternative approach
consists of the attachment of an additional flag to each ball object, which signals a possible invalid
outcome. Following this convention, sqrt◦(B(1, 3)) yields B(1, 1)NaN.

3.3 Implementation details

Using the formulas from the previous section, it is relatively straightforward to implement ball arithmetic
as a C++ template library, as we have done in the Mathemagix system. However, in the case of multiple
precision arithmetic this is far from optimal. Let us discuss several possible optimizations:

Ball arithmetic 185

1. Multiple precision libraries such as Mpfr [HLRZ00] suffer from a huge overhead when it comes to
moderate (e.g. quadruple) precision computations. Since the radii are always stored in low precision,
it is recommended to inline all computations on the radii. In the case of multiplication, this divides
the number of function calls by four.

2. When computing with complex numbers z ∈ Dp[i], one may again save several function calls. More-
over, it is possible to regard z as an element of Z[i]2Z rather than (Z2Z)[i], i.e. use a single exponent
for both the real and imaginary parts of z. This optimization reduces the time spent on exponent
computations and mantissa normalizations.

3. Consider a ball B(c, r) ∈ Bp and recall that c ∈ Dp, r ∈ D64. If |c| < 2p−64r, then the ⌊log2 r + p −
log2 |c| − 64⌋ least significant binary digits of c are of little interest. Hence, we may replace c by its
closest approximation in Dp′ , with p′ = ⌈log2 |c| + 64 − log2 r⌉, and reduce the working precision to
p′. Modulo slightly more work, it is also possible to share the exponents of the center and the radius.

4. If we don’t need large exponents for our multiple precision numbers, then it is possible to use machine
doubles D51,12 as our radius type and further reduce the overhead of bound computations.

When combining the above optimizations, it can be hoped that multiple precision ball arithmetic can
be implemented almost as efficiently as standard multiple precision arithmetic. However, this requires a
significantly higher implementation effort.

3.4 Computable numbers

Given x ∈ R, x̃ ∈ D and ε ∈ D> = {ε ∈ D : ε > 0}, we say that x̃ is an ε-approximation of x
if |x̃ − x| 6 ε. A real number x ∈ R is said to be computable [Tur36,Grz57,Wei00] if there exists an
approximation algorithm which takes an absolute tolerance ε ∈ D> on input and which returns an ε-
approximation of x. We denote by Rcom the set of computable real numbers. We may regard Rcom as
a data type, whose instances are represented by approximation algorithms (this is also known as the
Markov representation [Wei00, Section 9.6]).

In practice, it is more convenient to work with so called ball approximation algorithms: a real number
is computable if and only if it admits a ball approximation algorithm, which takes a working precision
p ∈ N on input and returns a ball approximation B(cp, rp) ∈ B with x ∈ B(cp, rp) and limp→∞ rp = 0.
Indeed, assume that we have a ball approximation algorithm. In order to obtain an ε-approximation,
it suffices to compute ball approximations at precisions p = 32, 64, 128, . . . which double at every step,
until rp 6 ε. Conversely, given an approximation algorithm x̌ : D> → D of x ∈ Rcom, we obtain a ball
approximation algorithm p 7→ B(cp, rp) by taking rp = 2−p and cp = x̌(rp).

Given x, y ∈ Rcom with ball approximation algorithms x̌, y̌ : N 7→ B, we may compute ball approxi-
mation algorithms for x + y, x − y, xy simply by taking

(ˇx + y)(p) = x̌(p) +◦ y̌(p)

(ˇx − y)(p) = x̌(p) −◦ y̌(p)

(x̌y)(p) = x̌(p) ·◦ y̌(p).

More generally, assuming a good library for ball arithmetic, it is usually easy to write a wrapper library
with the corresponding operations on computable numbers.

From the efficiency point of view, it is also convenient to work with ball approximations. Usually, the
radius rp satisfies

log2 rp = −p + o(1),

or at least

log2 rp = −cp + o(1),

for some c ∈ Q>. In that case, doubling the working precision p until a sufficiently good approximation
is found is quite efficient. An even better strategy is to double the “expected running time” at every
step [vdH06a,KR06]. Yet another approach will be described in section 3.6 below.

The concept of computable real numbers readily generalizes to more general normed vector spaces.
Let V be a normed vector space and let Vdig be an effective subset of digital points in V, i.e. the elements

186 Joris van der Hoeven

of Vdig admit a computer representation. For instance, if V = R, then we take Vdig = D. Similarly, if
V = Rm×n is the set of real m × n matrices, with one of the matrix norms from section 2.3, then it is
natural to take Vdig = (Rdig)m×n = Dm×n. A point x ∈ V is said to be computable, if it admits an
approximation algorithm which takes ε ∈ D> on input, and returns an ε-approximation x̃ ∈ Vdig of x
(satisfying ‖x̃ − x‖ 6 ε, as above).

3.5 Asymmetric computability

A real number x is said to be left computable if there exists an algorithm for computing an increasing
sequence x̌ : N 7→ D;n 7→ x̌n with limn→∞ x̌n = x (and x̌ is called a left approximation algorithm).
Similarly, x is said to be right computable if −x is left computable. A real number is computable if
and only if it is both left and right computable. Left computable but non computable numbers occur
frequently in practice and correspond to “computable lower bounds” (see also [Wei00,vdH07b]).

We will denote by Rlcom and Rrcom the data types of left and right computable real numbers. It is
convenient to specify and implement algorithms in computable analysis in terms of these data types,
whenever appropriate [vdH07b]. For instance, we have computable functions

+ : Rlcom ×Rlcom → Rlcom

− : Rlcom ×Rrcom → Rlcom

...

More generally, given a subset S ⊆ R, we say that x ∈ S is left computable in S if there exists a left
approximation algorithm x̌ : N→ S for x. We will denote by Slcom and Srcom the data types of left and
computable numbers in S, and define Scom = Slcom ∩ Srcom.

Identifying the type of boolean numbers T with {0, 1}, we have Tlcom = Trcom = T as sets, but
not as data types. For instance, it is well known that equality is non computable for computable real
numbers [Tur36]. Nevertheless, equality is “ultimately computable” in the sense that there exists a
computable function

=: Rcom ×Rcom → Trcom.

Indeed, given x, y ∈ Rcom with ball approximation algorithms x̌ and y̌, we may take

(ˇx = y)n =

{
1 if (x̌0 ∩ y̌0 ∩ · · · ∩ x̌n ∩ y̌n) 6= ∅

0 otherwise

Similarly, the ordering relation 6 is ultimately computable.
This asymmetric point of view on equality testing also suggest a semantics for the relations =, 6,

etc. on balls. For instance, given balls x, y ∈ B, it is natural to take

x = y ! x ∩ y 6= ∅

x 6= y ! x ∩ y = ∅

x 6 y ! ∃a ∈ x, b ∈ y, a 6 b

...

These definitions are interesting if balls are really used as successive approximations of a real number.
An alternative application of ball arithmetic is for modeling non-deterministic computations: the ball
models a set of possible values and we are interested in the set of possible outcomes of an algorithm. In
that case, the natural return type of a relation on balls becomes a “boolean ball”. In the area of interval
analysis, this second interpretation is more common [ANS09].

Remark 1. We notice that the notions of computability and asymmetric computability do not say any-
thing about the speed of convergence. In particular, it is usually impossible to give useful complexity
bounds for algorithms which are based on these mere concepts. In the case of asymmetric computability,
there even do not exist any recursive complexity bounds, in general.

Ball arithmetic 187

3.6 Lipschitz ball arithmetic

Given a computable function f : Rcom → Rcom, x ∈ Rcom and ε ∈ D>, let us return to the problem of
efficiently computing an approximation ỹ ∈ D of y = f(x) with |ỹ − y| < ε. In section 3.4, we suggested
to compute ball approximations of y at precisions which double at every step, until a sufficiently precise
approximation is found. This computation involves an implementation f◦ : B → B of f on the level of
balls, which satisfies

f◦(X) ⊇ {f(X) : x ∈ X}, (13)

for every ball X ∈ B. In practice, f is often differentiable, with f ′(x) 6= 0. In that case, given a ball
approximation X of x, the computed ball approximation Y = f◦(X) of y typically has a radius

Yr ∼ |f ′(x)|Xr, (14)

for Xr → 0. This should make it possible to directly predict a sufficient precision at which Yr 6 ε. The
problem is that (14) needs to be replaced by a more reliable relation. This can be done on the level of
ball arithmetic itself, by replacing the usual condition (13) by

f◦(X) ⊇ B(f(Xc),MXr) (15)

M = sup
x∈X

|f ′(x)|.

Similarly, the multiplication of balls is carried out using

B(x, r) ·◦ B(y, s) = B(xy, (|x| + r)s + (|y| + s)r). (16)

instead of (7). A variant of this kind of “Lipschitz ball arithmetic” has been implemented in [M0].
Although a constant factor is gained for high precision computations at regular points x, the efficiency
deteriorates near singularities (i.e. the computation of

√
0).

4 Balls versus intervals

In the area of reliable computation, interval arithmetic has for long been privileged with respect to ball
arithmetic. Indeed, balls are often regarded as a more or less exotic variant of intervals, based on an
alternative midpoint-radius representation. Historically, interval arithmetic is also preferred in computer
science because it is easy to implement if floating point operations are performed with correct rounding.
Since most modern microprocessors implement the IEEE 754 norm, this point of view is well supported
by hardware.

Not less historically, the situation in mathematics is inverse: whereas intervals are the standard in
computer science, balls are the standard in mathematics, since they correspond to the traditional ε-δ-
calculus. Even in the area of interval analysis, one usually resorts (at least implicitly) to balls for more
complex computations, such as the inversion of a matrix [HS67,Moo66]. Indeed, balls are more convenient
when computing error bounds using perturbation techniques. Also, we have a great deal of flexibility
concerning the choice of a norm. For instance, a vectorial ball is not necessarily a Cartesian product of
one dimensional balls.

In this section, we will give a more detailed account on the respective advantages and disadvantages
of interval and ball arithmetic.

4.1 Standardization

One advantage of interval arithmetic is that the IEEE 754 norm suggests a natural and standard im-
plementation. Indeed, let f be a real function which is increasing on some interval I. Then the natural
interval lift f of f is given by

f ([l, h]) = [f↓(l), f↑(h)].

188 Joris van der Hoeven

This implementation has the property that f ([l, h]) is the smallest interval with end-points in Dp,q ∪
{±∞}, which satisfies

f ([l, h]) ⊇ {f(x) : x ∈ [l, h]}.

For not necessarily increasing functions f this property can still be used as a requirement for the “stan-
dard” implementation of f . For instance, this leads to the following implementation of the cosine function
on intervals:

cos([l, h]) =

[cos↓ l, cos↑ h] if ⌊l/2π⌋ = ⌊h/2π⌋ ∈ 2Z− 1
[cos↓ h, cos↑ l] if ⌊l/2π⌋ = ⌊h/2π⌋ ∈ 2Z
[min(cos↓ l, cos↓ h), 1] if ⌊l/2π⌋ = ⌊h/2π⌋ − 1 ∈ 2Z− 1
[−1,max(cos↑ l, cos↑ h)] if ⌊l/2π⌋ = ⌊h/2π⌋ − 1 ∈ 2Z
[−1, 1] if ⌊l/2π⌋ < ⌊h/2π⌋ − 1

Such a standard implementation of interval arithmetic has the convenient property that programs will
execute in the same way on any platform which conforms to the IEEE 754 standard.

By analogy with the above approach for standardized interval arithmetic, we may standardize the
ball implementation f◦ of f by taking

f◦(B(c, r)) = B(fl(c), s),

where the radius s is smallest in Dp,q ∪ {+∞} with

B(fl(c), s) ⊇ {f(x) : x ∈ B(c, r)}.

Unfortunately, the computation of such an optimal s is not always straightforward. In particular, the
formulas (10), (11) and (12) do not necessarily realize this tightest bound. In practice, it might therefore
be better to achieve standardization by fixing once and for all the formulas by which ball operations are
performed. Of course, more experience with ball arithmetic is required before this can happen.

4.2 Practical efficiency

The respective efficiencies of interval and ball arithmetic depend on the precision at which we are comput-
ing. For high precisions and most applications, ball arithmetic has the advantage that we can still perform
computations on the radius at single precision. By contrast, interval arithmetic requires full precision for
operations on both end-points. This makes ball arithmetic twice as efficient at high precisions.

When working at machine precision, the efficiencies of both approaches essentially depend on the
hardware. A priori , interval arithmetic is better supported by current computers, since most of them
respect the IEEE 754 norm, whereas the function ∆ from (9) usually has to be implemented by hand.
However, changing the rounding mode is often highly expensive (over hundred cycles). Therefore, addi-
tional gymnastics may be required in order to always work with respect to a fixed rounding mode. For
instance, if ↑ is our current rounding mode, then we may take

x +↓ y = −((−x) +↑ (−y)),

since the operation x 7→ −x is always exact (i.e. does not depend on the rounding mode). As a conse-
quence, interval arithmetic becomes slightly more expensive. By contrast, when releasing the condition
that centers of balls are computed using rounding to the nearest, we may replace (8) by

y = f↑(x1, . . . , xk) (17)

and (9) by

∆(y) := (|y| +↑ η) ·↑ (2ǫ).

Hence, ball arithmetic already allows us to work with respect to a fixed rounding mode. Of course,
using (17) instead of (8) does require to rethink the way ball arithmetic should be standardized.

Ball arithmetic 189

An alternative technique for avoiding changes in rounding mode exists when performing operations
on compound types, such as vectors or matrices. For instance, when adding two vectors, we may first add
all lower bounds while rounding downwards and next add the upper bounds while rounding upwards.
Unfortunately, this strategy becomes more problematic in the case of multiplication, because different
rounding modes may be needed depending on the signs of the multiplicands. As a consequence, matrix
operations tend to require many conditional parts of code when using interval arithmetic, with increased
probability of breaking the processor pipeline. On the contrary, ball arithmetic highly benefits from
parallel architecture and it is easy to implement ball arithmetic for matrices on top of existing libraries:
see [Rum99a] and section 6 below.

4.3 Quality

Besides the efficiency of ball and interval arithmetic for basic operations, it is also important to investigate
the quality of the resulting bounds. Indeed, there are usually differences between the sets which are
representable by balls and by intervals. For instance, when using the extended IEEE 754 arithmetic with
infinities, then it is possible to represent [1,∞] as an interval, but not as a ball.

These differences get more important when dealing with complex numbers or compound types, such as
matrices. For instance, when using interval arithmetic for reliable computations with complex numbers,
it is natural to enclose complex numbers by rectangles X+Y i, where X and Y are intervals. For instance,
the complex number z = 1 + i may be enclosed by

z ∈ [1 − ε, 1 + ε] + [1 − ε, 1 + ε]i,

for some small number ε. When using ball arithmetic, we would rather enclose z by

z ∈ B(1 + i, ε).

Now consider the computation of u = z2. The computed rectangular and ball enclosures are given by

u ∈ [−2ε, 2ε] + [2 − 2ε, 2 + 2ε]i + o(ε)

u ∈ B(2,
√

2ε) + o(ε).

Consequently, ball arithmetic yields a much better bound, which is due to the fact that multiplication
by 1+ i turns the rectangular enclosure by 45 degrees, leading to an overestimation by a factor

√
2 when

re-enclosing the result by a horizontal rectangle (see figure 1).
This is one of the simplest instances of the wrapping effect [Moo66]. For similar reasons, one may

prefer to compute the square of the matrix

M =

(
0 1
1 0

)
(18)

in B(D2×2,D) rather than B(D,D)2×2, while using the operator norm (3) for matrices. This technique
highlights another advantage of ball arithmetic: we have a certain amount of flexibility regarding the
choice of the radius type. By choosing a simple radius type, we do not only reduce the wrapping effect,
but also improve the efficiency: when computing with complex balls in B[i], we only need to bound one
radius instead of two for every basic operation. More precisely, we replace (8) and (9) by

y = fl(x1, . . . , xk)

= (Re f)l(x1, . . . , xk) + (Im f)l(x1, . . . , xk)i

∆(y) := (abs↑(y) +↑ η) ·↑ (
√

2ǫ).

On the negative side, generalized norms may be harder to compute, even though a rough bound often
suffices (e.g. replacing abs↑(y) by |Re y| +↑ | Im y| in the above formula). In the case of matricial balls,
a more serious problem concerns overestimation when the matrix contains entries of different orders of
magnitude. In such badly conditioned situations, it is better to work in B(Dn×n,Dn×n) rather than
B(Dn×n,D). Another more algorithmic technique for reducing the wrapping effect will be discussed in
sections 6.4 and 7.5 below.

190 Joris van der Hoeven

z

z2

z

z2

Fig. 1. Illustration of the computation of z
2 using interval and ball arithmetic, for z = 1 + i.

4.4 Mathematical elegance

Even though personal taste in the choice between balls and intervals cannot be discussed, the elegance of
the chosen approach for a particular application can partially be measured in terms of the human time
which is needed to establish the necessary error bounds.

We have already seen that interval enclosures are particularly easy to obtain for monotonic real
functions. Another typical algorithm where interval arithmetic is more convenient is the resolution of a
system of equations using dichotomy. Indeed, it is easier to cut an n-dimensional block [a1, b1] × · · · ×
[an, bn] into 2n smaller blocks than to perform a similar operation on balls.

For most other applications, ball representations are more convenient. Indeed, error bounds are usu-
ally obtained by perturbation methods. For any mathematical proof where error bounds are explicitly
computed in this way, it is generally easy to derive a certified algorithm based on ball arithmetic. We
will see several illustrations of this principle in the sections below.

Implementations of interval arithmetic often rely on floating point arithmetic with correct rounding.
One may question how good correct rounding actually is in order to achieve reliability. One major benefit
is that it provides a simple and elegant way to specify what a mathematical function precisely does at
limited precision. In particular, it allows numerical programs to execute exactly in the same way on many
different hardware architectures.

On the other hand, correct rounding does have a certain cost. Although the cost is limited for field
operations and elementary functions [Mul06], the cost increases for more complex special functions,
especially if one seeks for numerical methods with a constant operation count. For arbitrary computable
functions on Rcom, correct rounding even becomes impossible. Another disadvantage is that correct
rounding is lost as soon we perform more than one operation: in general, g↑ ◦ f↑ and (g ◦ f)↑ do not
coincide.

In the case of ball arithmetic, we only require an upper bound for the error, not necessarily the best
possible representable one. In principle, this is just as reliable and usually more economic. Now in an
ideal world, the development of numerical codes goes hand in hand with the systematic development
of routines which compute the corresponding error bounds. In such a world, correct rounding becomes
superfluous, since correctness is no longer ensured at the micro-level of hardware available functions, but
rather at the top-level, via mathematical proof.

5 The numerical hierarchy

Computable analysis provides a good high-level framework for the automatic and certified resolution of
analytic problems. The user states the problem in a formal language and specifies a required absolute or
relative precision. The program should return a numerical result which is certified to meet the requirement
on the precision. A simple example is to compute an ε-approximation for π, for a given ε ∈ D>.

The Mathemagix system [vdH+02b] aims the implementation of efficient algorithms for the certified
resolution of numerical problems. Our ultimate goal is that these algorithms become as efficient as more
classical numerical methods, which are usually non certified and only operate at limited precision. A naive
approach is to systematically work with computable real numbers. Although this approach is convenient

Ball arithmetic 191

for theoretical purposes in the area of computable analysis, the computation with functions instead of
ordinary floating point numbers is highly inefficient.

In order to address this efficiency problem, the Mathemagix libraries for basic arithmetic on ana-
lytic objects (real numbers, matrices, polynomials, etc.) are subdivided into four layers of the so called
numerical hierarchy (see figure 2). We will illustrate this decomposition on the problem of multiplying
two n×n computable real matrices. The numerical hierarchy turns out to be a convenient framework for
more complex problems as well, such as the analytic continuation of the solution to a dynamical system.
As a matter of fact, the framework incites the developer to restate the original problem at the different
levels, which is generally a good starting point for designing an efficient solution.

Analytic problem

Robust problem

formal algorithm

Numerical problem

interval or ball arithmetic

numerical method
Approximate solution

Certified solution

Analytic solution

fast arithmetic
Arithmetic problem Exact solution

Arithmetical level

Numerical level

Reliable level

Mathematical level

Fig. 2. The numerical hierarchy.

Mathematical level On the mathematical top level, we are given two computable real n × n matrices
A,B ∈ (Rcom)n×n and an absolute error ε ∈ D>. The aim is to compute ε-approximations for all entries
of the product C = AB.

The simplest approach to this problem is to use a generic formal matrix multiplication algorithm, using
the fact that Rcom is an effective ring. However, as stressed above, instances of Rcom are really functions,
so that ring operations in Rcom are quite expensive. Instead, when working at precision p, we may first
compute ball approximations for all the entries of A and B, after which we form two approximation
matrices Ã, B̃ ∈ Bn×n. The multiplication problem then reduces to the problem of multiplying two
matrices in Bn×n. This approach has the advantage that O(n3) operations on “functions” in Rcom are
replaced by a single multiplication in Bn×n.

Reliable level The aim of this layer is to implement efficient algorithms on balls. Whereas the actual
numerical computation is delegated to the numerical level below, the reliable level should be able to
perform the corresponding error analysis automatically.

When operating on non-scalar objects, such as matrices of balls, it is often efficient to rewrite the
objects first. For instance, when working in fixed point arithmetic (i.e. all entries of A and B admit similar
orders of magnitude), a matrix in Bn×n may also be considered as a matricial ball in B(Dn×n,D) for
the matrix norm ‖ · ‖∞. We multiply two such balls using the formula

B(x, r) ·◦ B(y, s) = B(xy, [n((‖x‖∞ + r)s + r‖y‖∞)]↑),

which is a corrected version of (7), taking into account that the matrix norm ‖ · ‖∞ only satisfies
‖xy‖∞ 6 n‖x‖∞‖y‖∞. Whereas the naive multiplication in Bn×n involves 4n3 multiplications in D, the

192 Joris van der Hoeven

new method reduces this number to n3 + 2n2: one “expensive” multiplication in Dn×n and two scalar
multiplications of matrices by numbers. This type of tricks will be discussed in more detail in section 6.4
below.

Essentially, the new method is based on the isomorphism

B(D,D)n×n ∼= B(Dn×n,D).

A similar isomorphism exists on the mathematical level:

(Rcom)n×n ∼= (Rn×n)com

As a variant, we directly may use the latter isomorphism at the top level, after which ball approximations
of elements of (Rn×n)com are already in B(Dn×n,D).

Numerical level Being able to perform an automatic error analysis, the actual numerical computations
are done at the numerical level. In our example, we should implement an efficient algorithm to multiply
two matrices in Dn×n. In single or double precision, we may usually rely on highly efficient numerical
libraries (Blas, Lapack, etc.). In higher precisions, new implementations are often necessary: even
though there are efficient libraries for multiple precision floating point numbers, these libraries usually
give rise to a huge overhead. For instance, when using Mpfr [HLRZ00] at double precision, the overhead
with respect to machine doubles is usually comprised between 10 and 100.

When working with matrices with multiple precision floating point entries, this overhead can be
greatly reduced by putting the entries under a common exponent using the isomorphism

Dn×n = (Z2Z)n×n ∼= Zn×n2Z.

This reduces the matrix multiplication problem for floating point numbers to a purely arithmetic problem.
Of course, this method becomes numerically unstable when the exponents differ wildly; in that case, row
preconditioning of the first multiplicand and column preconditioning of the second multiplicand usually
helps.

Arithmetic level After the above succession of reductions, we generally end up with an arithmetic problem
such as the multiplication of two n× n matrices in Zn×n. The efficient resolution of this problem for all
possible n and integer bit lengths p is again non-trivial.

Indeed, libraries such as Gmp [Gra91] do implement Schönhage-Strassen’s algorithm [SS71] algorithm
for integer multiplication. However, the corresponding naive algorithm for the multiplication of matrices
has a time complexity O(I(p)n3), which is far from optimal for large values of n.

Indeed, for large n, it is better to use multi-modular methods. For instance, choosing sufficiently
many small primes q1, . . . , qk < 232 (or 264) with q1 · · · qk > 2n4p, the multiplication of the two integer
matrices can be reduced to k multiplications of matrices in (Z/qiZ)n×n. Recall that a 2p-bit number can
be reduced modulo all the qi and reconstructed from these reductions in time O(I(p) log p). The improved
matrix multiplication algorithm therefore admits a time complexity O(pn3 + n2I(p) log p) and has been
implemented in Linbox [DGG+02b,DGG+02a], Mathemagix and several other systems. FFT-based
methods achieve similar practical time complexities O(pn3 +n2I(p)) when n and p are of the same order
of magnitude.

6 Reliable linear algebra

In this section, we will start the study of ball arithmetic for non numeric types, such as matrices. We will
examine the complexity of common operations, such as matrix multiplication, linear system solving, and
the computation of eigenvectors. Ideally, the certified variants of these operations are only slightly more
expensive than the non certified versions. As we will see, this objective can sometimes be met indeed.
In general however, there is a trade-off between the efficiency of the certification and its quality, i.e.
the sharpness of the obtained bound. As we will see, the overhead of bound computations also tends to
diminish for increasing bit precisions p.

Ball arithmetic 193

6.1 Matrix multiplication

Let us first consider the multiplication of two n × n double precision matrices

M,N ∈ Bn×n
51,12.

Naive strategy The simplest multiplication strategy is to compute MN using the naive symbolic formula

(MN)i,k =

n∑

j=1

Mi,jNj,k. (19)

Although this strategy is efficient for very small n, it has the disadvantage that we cannot profit from
high performance Blas libraries which might be available on the computer.

Revisited naive strategy Reconsidering M and N as balls with matricial radii

M,N ∈ B(Dn×n
51,12,D

n×n
51,12),

we may compute MN using

MN = B([McNc]
l, [|Mc|Nr + Mr(|Nc| + Nr) + nǫ|Mc||Nc|]↑), (20)

where |M | is given by |M |i,j = |Mi,j |. A similar approach was first proposed in [Rum99a]. Notice that the
additional term nǫ|Mc| ·↑ |Nc| replaces ∆(MN). This extra product is really required: the computation of
(McNc)i,j may involve cancellations, which prevent a bound for the rounding errors to be read off from
the end-result. The formula (20) does assume that the underlying Blas library computes McNc using
the naive formula (19) and correct rounding, with the possibility to compute the sums in any suitable
order. Less naive schemes, such as Strassen multiplication [Str69], may give rise to additional rounding
errors.

Fast strategy The above naive strategies admit the disadvantage that they require four non certified
n × n matrix products in Dn×n

51,12. If M and N are well-conditioned, then the following formula may be
used instead:

MN = B(McNc, R) (21)

Ri,k = [‖(Mi,·)c‖‖(N·,k)r‖ + ‖(Mi,·)r‖‖(N·,k)c‖ + nǫ‖(Mi,·)c‖‖(Ni,·)c‖]↑, (22)

where Mi,· and N·,k stand for the i-th row of M and the k-th column of N . Since the O(n) norms can be
computed using only O(n2) operations, the cost of the bound computation is asymptotically negligible
with respect to the O(n3) cost of the multiplication McNc.

Hybrid strategy For large n×n matrices, chances increase that M or N gets badly conditioned, in which
case the quality of the error bound (22) decreases. Nevertheless, we may use a compromise between the
naive and the fast strategies: fix a not too small constant K, such as K ≈ 16, and rewrite M and N
as ⌈ n

K ⌉ × ⌈ n
K ⌉ matrices whose entries are K × K matrices. Now multiply M and N using the revisited

naive strategy, but use the fast strategy on each of the K × K block coefficients. Being able to choose
K, the user has an explicit control over the trade-off between the efficiency of matrix multiplication and
the quality of the computed bounds.

As an additional, but important observation, we notice that the user often has the means to perform
an “a posteri quality check”. Starting with a fast but low quality bound computation, we may then
check whether the computed bound is suitable. If not, then we recompute a better bound using a more
expensive algorithm.

High precision multiplication Assume now that we are using multiple precision arithmetic, say M,N ∈ Bn×n
p .

Computing MN using (20) requires one expensive multiplication inDn×n
p and three cheap multiplications

in Dn×n
64 . For large p, the bound computation therefore induces no noticeable overhead.

194 Joris van der Hoeven

6.2 Matrix inversion

Assume that we want to invert an n × n ball matrix M ∈ Bn×n
p . This a typical situation where the

naive application of a symbolic algorithm (such as gaussian elimination or LR-decomposition) may
lead to overestimation. An efficient and high quality method for the inversion of M is called Hansen’s
method [HS67,Moo66]. The main idea is to first compute the inverse of Mc using a standard numerical
algorithm. Only at the end, we estimate the error using a perturbative analysis. The same technique can
be used for many other problems.

More precisely, we start by computing an approximation Nc ∈ Dn×n
p of (Mc)

−1. Putting N =
B(Nc, 0), we next compute the product MN using ball arithmetic. This should yield a matrix of the
form 1 − E, where E is small. If E is indeed small, say ‖E‖ 6 2−p/2, then

‖(1 − E)−1 − 1 − E‖ 6
‖E‖2

1 − ‖E‖ . (23)

Denoting by Ωn the n × n matrix whose entries are all B(0, 1), we may thus take

(1 − E)−1 := 1 + E +
‖E‖2

1 − ‖E‖Ωn.

Having inverted 1−E, we may finally take M−1 = N(1−E)−1. Notice that the computation of ‖E‖ can
be quite expensive. It is therefore recommended to replace the check ‖E‖ 6 2−p/2 by a cheaper check,
such as n‖E‖∞ 6 2−p/2.

Unfortunately, the matrix E is not always small, even if M is nicely invertible. For instance, starting
with a matrix M of the form

M = Jn,K =

1 K

1
. . .

. . . K
1

,

with K large, we have

M−1 =

1 −K K2 · · · (−K)n−1

1 −K
. . .

...

1
. . . K2

. . . −K
1

.

Computing (Mc)
−1 using bit precision p, this typically leads to

‖E‖ ≈ Kn−12−p.

In such cases, we rather reduce the problem of inverting 1−E to the problem of inverting 1−E2, using
the formula

(1 − E)−1 = (1 + E)(1 − E2)−1. (24)

More precisely, applying this trick recursively, we compute E2, E4, E8, . . . until ‖E2k‖ becomes small

(say ‖E2k‖ 6 2−p/2) and use the formula

(1 − E)−1 = (1 + E)(1 + E2) · · · (1 + E2k−1

)(1 − E2k

)−1 (25)

(1 − E2k

)−1 := 1 + E2k

+
‖E2k‖2

1 − ‖E2k‖Ωn.

We may always stop the algorithm for 2k > n, since (Jn,K − 1)n = 0. We may also stop the algorithm

whenever ‖E2k‖ > 1 and ‖E2k‖ > ‖E2k−1‖, since M usually fails to be invertible in that case.

Ball arithmetic 195

In general, the above algorithm requires O(log m) ball n × n matrix multiplications, where m is the
size of the largest block of the kind JK,m in the Jordan decomposition of M . The improved quality
therefore requires an additional O(log n) overhead in the worst case. Nevertheless, for a fixed matrix M
and p → ∞, the norm ‖E‖ will eventually become sufficiently small (i.e. 2−p/2) for (23) to apply. Again,
the complexity thus tends to improve for high precisions. An interesting question is whether we can avoid
the ball matrix multiplication MN altogether, if p gets really large. Theoretically, this can be achieved
by using a symbolic algorithm such as Gaussian elimination or LR-decomposition using ball arithmetic.
Indeed, even though the overestimation is important, it does not depend on the precision p. Therefore,
we have (M−1)r = O(2−p) and the cost of the bound computations becomes negligible for large p.

6.3 Eigenproblems

Let us now consider the problem of computing the eigenvectors of a ball matrix M ∈ Bn×n
p , assuming

for simplicity that the corresponding eigenvalues are non zero and pairwise distinct. We adopt a similar
strategy as in the case of matrix inversion. Using a standard numerical method, we first compute a
diagonal matrix Λ ∈ Dn×n

p and an invertible transformation matrix T ∈ Dn×n
p , such that

T−1McT ≈ Λ. (26)

The main challenge is to find reliable error bounds for this computation. Again, we will use the technique
of small perturbations. The equation (26) being a bit more subtle than McNc ≈ 1, this requires more
work than in the case of matrix inversion. In fact, we start by giving a numerical method for the iterative
improvement of an approximate solution. A variant of the same method will then provide the required
bounds. Again, this idea can often be used for other problems. The results of this section are work in
common with B. Mourrain and Ph. Trebuchet; in [vdHMT], an even more general method is given,
which also deals with the case of multiple eigenvalues.

Given M̃ close to Mc, we have to find T̃ close to T and Λ̃ close to Λ, such that

T̃−1M̃T̃ = Λ̃. (27)

Putting

T̃ = T (1 + E)

Λ̃ = Λ(1 + ∆)

N = T−1M̃T

H = N − Λ,

this yields the equation

(1 + E)−1N(1 + E) = Λ(1 + ∆).

Expansion with respect to E yields

1

1 + E
N(1 + E) = N(1 + E) − E

1 + E
N(1 + E)

= N + NE − EN +
E2

1 + E
N − E

1 + E
NE

= N + [Λ,E] + [H,E] +
E2

1 + E
N − E

1 + E
NE (28)

= N + [Λ,E] + O([H,E]) + O(E2).

Forgetting about the non-linear terms, the equation

[E,Λ] + Λ∆ = H

196 Joris van der Hoeven

admits a unique solution

Ei,j =

{
Hi,j

Λj,j−Λi,i
if j 6= i

0 otherwise

∆i,j =

{
Hi,i

Λi,i
if i = j

0 otherwise

Setting

κ = κ(Λ) = max

{
max

{
1

|Λj,j − Λi,i|
: 1 6 i < j 6 n

}
,max

{
1

Λi,i
: 1 6 i 6 n

}}
,

it follows that

max{‖E‖, ‖∆‖} 6 κ
√

n‖H‖. (29)

Setting T ′ = T (1 + E), Λ′ = Λ(1 + ∆) and H ′ = (T ′)−1M̃T ′ − Λ′, the relation (28) also implies

H ′ = [H,E] +
E2

1 + E
(Λ + H) − E

1 + E
(Λ + H)E.

Under the additional condition ‖E‖ 6
1
2 , it follows that

‖H ′‖ 6 3‖H‖‖E‖ + 4‖E‖2‖Λ‖. (30)

For sufficiently small H, we claim that iteration of the mapping Φ : (T,Λ) 7→ (T ′, Λ′) converges to a
solution of (27).

Let us denote (T (k), Λ(k)) = Φk(T,Λ), H(k) = (T (k))−1M̃T (k)−Λ(k) and let (E(k),∆(k)) be such that
T (k+1) = T (k)(1 + E(k)) and Λ(k+1) = Λ(k)(1 + ∆(k)). Assume that

‖H‖ 6
1

80nκ2‖Λ‖ (31)

and let us prove by induction over k that

‖H(k)‖ 6 2−k‖H‖ (32)

‖Λ(k)‖ 6 2‖Λ‖ (33)

max{‖E(k)‖, ‖∆(k)‖} 6 2
√

nκ‖H(k)‖ (34)

6
1

40
√

nκ‖Λ‖2k

This is clear for k = 0, so assume that k > 0. In a similar way as (30), we have

‖H(k)‖ 6 3‖H(k−1)‖‖E(k−1)‖ + 4‖E(k−1)‖2‖Λ(k−1)‖. (35)

Using the induction hypotheses and κ‖Λ‖ > 1, it follows that

‖H(k)‖ 6 (3 + 16
√

nκ‖Λ‖)‖E(k−1)‖‖H(k−1)‖

6
1

2
‖H(k−1)‖,

which proves (32). Now let Σ(k) be such that

Λ(k) = Λ(1 + ∆(0)) · · · (1 + ∆(k−1))

= Λ(1 + Σ(k)).

From (34), it follows that

‖Σ(k)‖ 6
1

4κ‖Λ‖ .

Ball arithmetic 197

On the one hand, this implies (33). On the other hand, it follows that

κ(Λ(k)) 6 2κ,

whence (29) generalizes to (34). This completes the induction and the linear convergence of ‖H(k)‖ to
zero. In fact, the combination of (34) and (35) show that we even have quadratic convergence.

Let us now return to the original bound computation problem. We start with the computation of
H = T−1MT−Λ using ball arithmetic. If the condition (31) is met (using the most pessimistic rounding),
the preceding discussion shows that for every M̃ ∈ M (in the sense that M̃i,j ∈ Mi,j for all i, j), the
equation (27) admits a solution of the form

T̃ = T (1 + Υ̃) = T (1 + E(0))(1 + E(1)) · · ·
Λ̃ = Λ(1 + Σ̃) = Λ(1 + ∆(0))(1 + ∆(1)) · · · ,

with

max{‖E(k)‖, ‖∆(k)‖} 6 21−k
√

nκ‖H‖,

for all k. It follows that

max{‖Υ̃‖, ‖Σ̃‖} 6 η := 6
√

nκ‖H‖.

We conclude that

T̃ ∈ T (1 + ηΩn)

Λ̃ ∈ B(1, η)Λ.

We may thus return (T (1 + ηΩn),B(1, η)Λ) as the solution to the original eigenproblem associated to
the ball matrix M .

The reliable bound computation essentially reduces to the computation of three matrix products
and one matrix inversion. At low precisions, the numerical computation of the eigenvectors is far more
expensive in practice, so the overhead of the bound computation is essentially negligible. At higher
precisions p, the iteration (T,Λ) 7→ Φ(T,Λ) actually provides an efficient way to double the precision of
a numerical solution to the eigenproblem at precision p/2. In particular, even if the condition (31) is not
met initially, then it usually can be enforced after a few iterations and modulo a slight increase of the
precision. For fixed M and p → ∞, it also follows that the numerical eigenproblem essentially reduces to
a few matrix products. The certification of the end-result requires a few more products, which induces a
constant overhead. By performing a more refined error analysis, it is probably possible to make the cost
certification negligible, although we did not investigate this issue in detail.

6.4 Matricial balls versus ball matrices

In section 4.3, we have already seen that matricial balls in B(Dn×n,D) often provide higher quality error
bounds than ball matrices in B(D,D)n×n or essentially equivalent variants in B(Dn×n,Dn×n). However,
ball arithmetic in B(Dn×n,D) relies on the possibility to quickly compute a sharp upper bound for
the operator norm ‖M‖ of a matrix M ∈ Dn×n. Unfortunately, we do not know of any really efficient
algorithm for doing this.

One expensive approach is to compute a reliable singular value decomposition of M , since ‖M‖
coincides with the largest singular value. Unfortunately, this usually boils down to the resolution of the
eigenproblem associated to M∗M , with a few possible improvements (for instance, the dependency of
the singular values on the coefficients of M is less violent than in the case of a general eigenproblem).

Since we only need the largest singular value, a faster approach is to reduce the computation of ‖M‖
to the computation of ‖M∗M‖, using the formula

‖M‖ =
√

‖M∗M‖.

Applying this formula k times and using a naive bound at the end, we obtain

‖M‖ 6
2

k
√

n‖(M∗M)2k−1‖∞.

198 Joris van der Hoeven

This bound has an accuracy of ≈ k − O(log2 n) bits. Since M∗M is symmetric, the k − 1 repeated
squarings of M∗M only correspond to about k

2 matrix multiplications. Notice also that it is wise to
renormalize matrices before squaring them, so as to avoid overflows and underflows.

The approach can be speeded up further by alternating steps of tridiagonalization and squaring.
Indeed, for a symmetric tridiagonal matrix D, the computation of D2 and its tridiagonalization only
take O(n) steps instead of O(n3) for a full matrix product. After a few k = O(n2) steps of this kind,
one obtains a good approximation µ of ‖D‖. One may complete the algorithm by applying an algorithm
with quadratic convergence for finding the smallest eigenvalues of D − µ. In the lucky case when D has
an isolated maximal eigenvalue, a certification of this method will provide sharp upper bounds for ‖D‖
in reasonable time.

Even after the above improvements, the computation of sharp upper bounds for ‖M‖ remains quite
more expensive than ordinary matrix multiplication. For this reason, it is probably wise to avoid ball
arithmetic in B(Dn×n,D) except if there are good reasons to expect that the improved quality is really
useful for the application in mind.

Moreover, when using ball arithmetic in B(Dn×n,Dn×n), it is often possible to improve algorithms in
ways to reduce overestimation. When interpreting a complete computation as a dag, this can be achieved
by minimizing the depth of the dag, i.e. by using an algorithm which is better suited for parallelization.
Let us illustrate this idea for the computation of the k-th power Mk of a matrix M . When using Horner’s
method (multiply the identity matrix k times by M), we typically observe an overestimation of O(k)
bits (as for the example (18)). If we use binary powering, based on the rule

Mk = M⌊k/2⌋M⌈k/2⌉, (36)

then the precision loss drops down to O(log k) bits. We will encounter a less obvious application of the
same idea in section 7.5 below.

7 Reliable power series arithmetic

7.1 Ball series versus serial balls

There are two typical applications of power series f ∈ R[[z]] or f ∈ C[[z]] with certified error bounds.
When f occurs as a generating function in a counting problem or random object generator, then we are
interested in the computation of the coefficients fn for large n, together with reliable error bounds. A
natural solution is to systematically work with computable power series with ball coefficients inBp[[z]]com.
For many applications, we notice that p is fixed, whereas n ≫ p may become very large.

The second typical application is when f ∈ C[[z]] is the local expansion of an analytic function on a
disk B(0, ρ) and we wish to evaluate f at a point z with |z| < ρ. The geometric decrease of |fnzn| implies
that we will need only n = O(p) coefficients of the series. In order to bound the remaining error using
Cauchy’s formula, we do not only need bounds for the individual coefficients fn, but also for the norm
‖f‖ρ defined in (4). Hence, it is more natural to work with serial balls in B(Dp[i][[z]]com,D64), while
using the ‖ · ‖ρ norm. Modulo a rescaling f(z) 7→ f(ρz), it will be convenient to enforce ρ = 1. In order
to compute sharp upper bounds ⌈⌈f⌉⌉ for ‖f‖ = ‖f‖1, it will also be convenient to have an algorithm
which computes bounds ⌈⌈fn;⌉⌉ for the tails

fn; = fnzn + fn+1z
n+1 + · · · .

Compared to the computation of the corresponding head

f;n = f0 + · · · + fn−1z
n−1,

we will show in section 7.4 that the computation of such a tail bound is quite cheap.
Again the question arises how to represent f;n in a reliable way. We may either store a global upper

bound for the error, so that f;n ∈ B(Dp[i][z],D64), or compute individual bounds for the errors, so that
f;n ∈ B[i]p[z]. If our aim is to evaluate f at a point z with |z| ≈ 1, then both representations P ∈ B[i]p[z]

and P̂ = B(Pc, ‖Pr‖∞) ∈ B(Dp[i][z],D64) give rise to evaluations P (z), P̂ (z) ∈ B[i]p with equally
precise error bounds. Since the manipulation of global error bounds is more efficient, the corresponding
representation should therefore be preferred in this case. In the multivariate case, one has the additional

Ball arithmetic 199

benefit that “small” coefficients fiz
i (e.g. |fi| 6 ǫp‖f‖) can simply be replaced by a global error B(0, |fi|),

thereby increasing the sparsity of f . On the other hand, individual error bounds admit the advantage
that rescaling f(z) 7→ f(λz) is cheap. If we suddenly find out that f is actually convergent on a larger
disk and want to evaluate f at a point z with |z| > 1, then we will not have to recompute the necessary
error bounds for f;n from scratch.

Serial ball representations similar to what has been described above are frequently used in the area
of Taylor models [MB96,MB04] for the validated long term integration of dynamical systems. In the
case of Taylor models, there is an additional twist: given a dynamical system of dimension d, we not
only compute a series expansion with respect to the time t, but also with respect to small perturbations
ε1, . . . , εd of the initial conditions. In particular, we systematically work with power series in several
variables. Although such computations are more expensive, the extra information may be used in order
to increase the sharpness of the computed bounds. A possible alternative is to compute the expansions
in ε1, . . . , εd only up to the first order and to use binary splitting for the multiplication of the resulting
Jacobian matrices on the integration path. This approach will be detailed in section 7.5.

7.2 Reliable multiplication of series and polynomials

In order to study the reliable multiplication of series f and g, let us start with the case when f, g ∈
B(Dp[[z]]com,D64), using the sup-norm on the unit disk. We may take

h = fg = B(f̃cgc, [‖fc‖‖gr‖ + ‖fr‖(‖gc‖ + ‖gr‖) + δ]↑),

where hc = f̃cgc stands for a δ-approximation of fcgc. Since hc is really a numeric algorithm for the
computation of its coefficients, the difficulty resides in the fact that δ has to be chosen once and for
all, in such a way that the bound ‖hc − fcgc‖ will be respected at the limit. A reasonable choice is
δ = ǫp‖fc‖‖gc‖. We next distribute this error over the infinity of coefficients: picking some α < 1, each
coefficient (hc)n is taken to be an [(1−α)αnδ]-approximation of fcgc. Of course, these computation may
require a larger working precision than p. Nevertheless, f and g are actually convergent on a slightly
larger disk B(0, ρ). Picking α = 1/ρ, the required increase of the working precision remains modest.

Let us now turn our attention to the multiplication of two computable series f, g ∈ Bp[[z]]com with ball
coefficients. Except for naive power series multiplication, based on the formula (fg)n =

∑
i+j=n figj , most

other multiplication algorithms (whether relaxed or not) use polynomial multiplication as a subalgorithm.
We are thus left with the problem of finding an efficient and high quality algorithm for multiplying
two polynomials P,Q ∈ Bp[z] of degrees < n. In order to simplify the reading, we will assume that
P0, Pn−1, Q0, Qn−1 are all non-zero.

As in the case of matrix multiplication, there are various approaches with different qualities, efficien-
cies and aptitudes to profit from already available fast polynomial arithmetic in Dp[z]. Again, the naive
O(n2) approach provides almost optimal numerical stability and qualities for the error bounds. However,
this approach is both slow from an asymptotic point of view and unable to rely on existant multiplication
algorithms in Dp[z].

If the coefficients of P and Q are all of the same order of magnitude, then we may simply convert P
and Q into polynomial balls in B(Dp[z],D64) for the norm ‖ · ‖∞ and use the following crude formula
for their multiplication:

PQ = B(P̃cQc, [n‖Pc‖∞‖Qr‖∞ + n‖Pr‖∞(‖Qc‖∞ + ‖Qr‖∞) + δ]↑), (37)

where P̃cQc stands for a δ-approximation of PcQc. In other words, we may use any efficient multiplication
algorithm in Dp[z] for the approximation of PcQc, provided that we have a means to compute a certified
bound δ for the error.

In our application where P and Q correspond to ranges of coefficients in the series f and g, we usually
have Pi ≈ P0ρ

−i
f and Qi ≈ Q0ρ

−i
g for the convergence radii ρf and ρg of P and Q. In order to use (37),

it is therefore important to scale P (z) 7→ P (z/ρ) and Q(z) 7→ Q(z/ρ) for a suitable ρ. If we are really
interested in the evaluation of fg at points z in a disk B(0, r), then we may directly take ρ = r. In we
are rather interested in the coefficients of fg, then ρ = min(ρf , ρg) is the natural choice. However, since
ρf and ρg are usually unknown, we first have to compute suitable approximations for them, based on

200 Joris van der Hoeven

the available coefficients of P and Q. A good heuristic approach is to determine indices i < n/2 6 j such
that

∣∣∣∣
Pk

Pi

∣∣∣∣
j−i

6

∣∣∣∣
Pj

Pi

∣∣∣∣
k−i

,

for all k, and to take

ρf ≈
∣∣∣∣
Pi

Pi

∣∣∣∣
1

j−i

as the approximation for ρf . Recall that the numerical Newton polygon of NP is the convex hull of all
points (i, log |Pi|−λ) ∈ R2 with λ > 0. Consider the edge of NP whose projection on the x-axis contains
n/2. Then i and j are precisely the extremities of this projection, so they can be computed in linear
time.

For large precisions n = O(p), the scaling algorithm is both very efficient and almost of an optimal
quality. For small p and large n, there may be some precision loss which depends on the nature of the
smallest singularities of f and g. Nevertheless, for many singularities, such as algebraic singularities, the
precision loss is limited to O(log n) bits. For a more detailed discussion, we refer to [vdH02a, Section 6.2].

In other applications, where P and Q are not obtained from formal power series, it is usually in-
sufficient to scale using a single factor ρ. This is already the case when multiplying P = 1 + z and
Q = 1 + δz for small δ ≪ ǫp, since the error bound for (PQ)2 = δ exceeds ǫp. One possible remedy is
to “precondition” P and Q according to their numerical Newton polygons and use the fact that NPQ is
close to the Minkowski sum NP + NQ.

More precisely, for each i, let (NP)i > 0 denote the number such that (i, log(NP)i) lies on one of the
edges of NP . Then (NP)i is of the same order of magnitude as Pi, except for indices for which Pi is small
“by accident”. Now consider the preconditioned relative error

νP = max
i

(Pi)r

(NP)i

and similarly for Q. Then

[(PQ)i]r 6 n(νP + νQ + νP νQ)(NP + NQ)i, (38)

if PQ is computed using infinite precision ball arithmetic. Assuming a numerically stable multiplication
algorithm for the centers, as proposed in [vdH08a], and incorporating the corresponding bound for the
additional errors into the right hand side of (38), we thus obtain an efficient way to compute an upper
bound for (PQ)r.

Notice that the numerical Newton polygon NP has a close relation to the orders of magnitudes of
the roots of P . Even though the error bounds for some “accidentally small” coefficients (PQ)i may be
bad for the above method, the error bounds have a good quality if we require them to remain valid for
small perturbations of the roots of PQ.

7.3 Reliable series division and exponentiation

The algorithms from the previous section can in particular be used for the relaxed multiplication of two
ball power series f, g ∈ Bp[[z]]com. In particular, using the implicit equation

g = 1 + zfg, (39)

this yields a way to compute g = (1 − zf)−1. Unfortunately, the direct application of this method leads
to massive overestimation. For instance, the computed error bounds for the inverses of

g =
1

1 − 3z − 2z2

h =
1

1 − 3z + 2z2

Ball arithmetic 201

coincide. Indeed, even when using a naive relaxed multiplication, the coefficients of g and h are computed
using the recurrences

gn = 3gn−1 + 2gn−2

hn = 3hn−1 − 2hn−2,

but the error bound εn for gn and hn is computed using the same recurrence

εn = 3εn−1 + 2εn−2,

starting with ε0 ≈ ǫp. For n → ∞, it follows that gn ∼ λα−n and εn ∼ λǫpα
−n for some λ, where

α ≈ 0.281 is the smallest root of 1−3α−2α2. Hence the error bound for gn is sharp. On the other hand,
hn ∼ µβn for some µ, where β = 1

2 is the smallest root of 1 − 3β + 2β2. Hence, the error bound εn is
n log2(β/α) bits too pessimistic in the case of h. The remedy is similar to what we did in the case of
matrix inversion. We first introduce the series

ϕ =
1

1 − zfc
∈ Dp[[z]]com

ψ =
[ϕ(zf − 1)]1;

z
∈ Bp[[z]]com

and next compute g using

g =
ϕ

1 − zψ
,

where 1 − zψ is inverted using the formula (39). This approach has the advantage of being compatible
with relaxed power series expansion and it yields high quality error bounds.

Another typical operation on power series is exponentiation. Using relaxed multiplication, we may
compute the exponential g of an infinitesimal power series f ∈ zBp[[z]]com using the implicit equation

g = 1 +

∫
f ′g, (40)

where
∫
stands for “distinguished integration” in the sense that (

∫
h)0 = 0 for all h. Again, one might

fear that this method leads to massive overestimation. As a matter of fact, it usually does not. Indeed,
assume for simplicity that fr = 0, so that f ∈ Dp[[z]]. Recall that |f | denotes the power series with
|f |n = |fn|. Roughly speaking, the error bound for gn, when computed using the formula (40) will be
the coefficient εn of the power series ε = exp(ǫp|f |). Since |f | has the same radius of convergence as f ,
it directly follows that the bit precision loss is sublinear o(n). Actually, the dominant singularity of |f |
often has the same nature as the dominant singularity of f . In that case, the computed error bounds
usually become very sharp. The observation generalizes to the resolution of linear differential equations,
by taking a square matrix of power series for f .

7.4 Automatic tail bounds

In the previous sections, we have seen various reliable algorithms for the computation of the expansion f;n

of a power series f ∈ C[[z]] up till a given order n. Such expansions are either regarded as ball polynomials
in B[i]p[z] or as polynomial balls in B(Dp[i][z],D64). Assuming that f is convergent on the closed unit
disk B(0, 1), it remains to be shown how to compute tail bounds ⌈⌈fn;⌉⌉. We will follow [vdH07b]. Given
a ball polynomial P , then we notice that reasonably sharp upper and lower bounds ⌈⌈P ⌉⌉ and ⌊⌊P ⌋⌋
for P can be obtained efficiently by evaluating P at O(deg P) primitive roots of unity using fast Fourier
transforms [vdH07b, Section 6.2].

We will assume that the series f is either an explicit series, the result of an operation on other power
series or the solution of an implicit equation. Polynomials are the most important examples of explicit
series. Assuming that f is a polynomial of degree < d, we may simply take

⌈⌈fn;⌉⌉ =

{
⌈⌈z−nfn;d⌉⌉ if n < d
0 otherwise

, (41)

202 Joris van der Hoeven

where

fn;d = fnzn + · · · + fd−1z
d−1.

For simple operations on power series, we may use the following bounds:

⌈⌈(f + g);n⌉⌉ = ⌈⌈f;n⌉⌉ + ⌈⌈g;n⌉⌉ (42)

⌈⌈(f − g);n⌉⌉ = ⌈⌈f;n⌉⌉ + ⌈⌈g;n⌉⌉ (43)

⌈⌈(fg);n⌉⌉ = ⌈⌈fn;⌉⌉(⌈⌈g;n⌉⌉ + ⌈⌈gn;⌉⌉) + ⌈⌈f;n⌉⌉⌈⌈gn;⌉⌉ + ⌈⌈(f;ng;n)n;⌉⌉ (44)

⌈⌈(
∫

f)n;⌉⌉ =
1

n + 1
⌈⌈fn;⌉⌉, (45)

where

⌈⌈(f;ng;n)n;⌉⌉ 6

n−1∑

k=0

|fk|
(

n−1∑

l=n−k

|gl|
)

can be computed in time O(n). Due to possible overestimation, division has to be treated with care.
Given an infinitesimal power series ε and

f =
1

1 − ε
,

so that

fn; =
1 + εf;n − f;n

1 − ε
,

we take

⌈⌈fn;⌉⌉ =
⌈⌈(εf;n)n;⌉⌉

⌊⌊1 − ε;n + B(0, ⌈⌈εn;⌉⌉)⌋⌋
, (46)

where ⌈⌈(εf;n)n;⌉⌉ is computed using (44).
Let Φ(f) be an expression which is constructed from f and polynomials, using the ring operations

and distinguished integration (we exclude division in order to keep the discussion simple). Assume that
each coefficient Φ(f)n only depends on the previous coefficients f0, . . . , fn−1 of f and not on fn, fn−1,
Then the sequence 0, Φ(0), Φ2(0), . . . tends to the unique solution f of the implicit equation

f = Φ(f), (47)

Moreover, Φk(0)n = fn for any k > n. In (39) and (40), we have already seen two examples of implicit
equations of this kind.

The following technique may be used for the computation of tail bounds ⌈⌈fn;⌉⌉. Given c ∈ D> and
assuming that ⌈⌈fn;⌉⌉ 6 c, we may use the rules (41–46) in order to compute a “conditional tail bound”
⌈⌈Φ(f)n;|c⌉⌉ for ‖Φ(f)n;‖. Mathematically speaking, this bound has the property that for any power
series g with g;n = f;n and ‖gn;‖ 6 c, we have ‖Φ(g)n;‖ 6 ⌈⌈Φ(g)n;|c⌉⌉. If ⌈⌈Φ(g)n;|c⌉⌉ 6 c, then it follows
that ‖[Φ(k)(f;n)];n‖ 6 c for all k. Given any disk B(0, ρ) with ρ < 1, it follows that ‖Φ(k)(f;n) − f‖ρ 6

2cρk/(1 − ρ) for any k > n, since Φ(k)(f;n) − f = O(zk). In other words, Φ(k)(f;n) uniformly converges
to f on B(0, ρ). Therefore, ‖fn;‖ρ 6 c and ‖fn;‖ 6 c, by letting ρ → 1.

Let us now consider the mapping ϕ : c 7→ ⌈⌈Φ(f)n;|c⌉⌉ and assume that Φ involves no divisions. When
computing ⌈⌈Φ(f)n;|c⌉⌉ using infinite precision and the rules (41–44), we notice that ϕ is a real analytic
function, whose power series expansion contains only positive coefficients. Finding the smallest c with
ϕ(c) 6 c thus reduces to finding the smallest fixed point cfix of ϕ, if such a fixed point exists. We may
use the secant method:

c0 := 0

c1 := ϕ(c0)

ck+2 := ck +
ϕ(ck) − ck

ck+1 − ϕ(ck+1) + ϕ(ck) − ck
(ck+1 − ck)

Ball arithmetic 203

If ck+1 < ck for some k or if k exceeds a given threshold K, then the method fails and we set ⌈⌈fn;⌉⌉ = +∞.
Otherwise, ck converges quadratically to cfix. As soon as |ck+1/ck−1| < ε, for some given ε > 0, we check
whether ϕ(c̃fix) 6 c̃fix for c̃fix = 2ck+1 − ck, in which case we stop. The resulting c̃fix is an approximation
of cfix with relative accuracy ε > 0.

Assuming that Ψ(f);n has been computed for every subexpression of Φ, we notice that the computa-
tion of ⌈⌈Φ(f)n;|c⌉⌉ only requires O(ns) floating point operations, where s is the size of Φ as an expression.
More generally, the evaluation of ⌈⌈Φ(f)n;|ci⌉⌉ for k different hypotheses c1, . . . , ck only requires O(nsk)
operations, since the heads Ψ(f);n do not need to be recomputed. Our algorithm for the computation of
c̃fix therefore requires at most O(nsK) floating point operations. Taking K = o(R(n)/n), it follows that
the cost of the tail bound computation remains negligible with respect to the series expansion itself.

The approach generalizes to the case when f is a vector or matrix of power series, modulo a more
involved method for the fixed point computation [vdH07b, Section 6.3]. If f is indeed convergent on
B(0, 1), then it can also be shown that ϕ indeed admits a fixed point if n is sufficiently large.

7.5 Long term integration of dynamical systems

Let us now consider a dynamical system

f = f(0) +

∫
Φ(f), (48)

where f is a vector of d unknown complex power series, f(0) ∈ B[i]dp, and Φ an expression built up
from the entries of f and polynomials in Dp[i][z] using the ring operations. Given t ∈ D[i] \ {0}, denote
by fz×t the scaled power series f(tz) and by fz+t the shifted power series f(t + z), assuming that f
converges at t. Also denote by Φz×t and Φz+t the expressions which are obtained when replacing each
polynomial P in Φ by Pz×t resp. Pz+t. Then fz×t and fz+t satisfy

fz×t = f(0) + t

∫
Φz×t(fz×t) (49)

fz+t = f(t) +

∫
Φz+t(fz+t) (50)

Since (48) is a particular case of an implicit equation of the form (47), we have an algorithm for the

computation of tail bounds ⌈⌈fn;⌉⌉ ∈ (D>
64 ∪ {∞})d for f on B(0, 1). Modulo rescaling (49), we may also

compute tail bounds ⌈⌈fn;⌉⌉ρ on more general disks B(0, ρ).
Assume that we want to integrate (48) along the real axis, as far as possible, and performing all

computations with an approximate precision of p bits. Our first task is to find a suitable initial step size
t and evaluate f at t. Since we require a relative precision of approximately p bits, we roughly want to
take t ≈ ρf/2, where ρf is the radius of convergence of f , and evaluate the power series f up to order
n ≈ p. We thus start by the numerical computation of fn; and the estimation ρ̃f of ρf , based on the
numerical Newton polygon of fn;. Setting t := ρ̃f/2, we next compute a tail bound ⌈⌈fn;⌉⌉t. This bound
is considered to be of an acceptable quality if

⌈⌈fn;⌉⌉t 6 ǫp⌈⌈f;n⌉⌉t.

In the contrary case, we keep setting t := t/2 and recomputing ⌈⌈fn;⌉⌉t, until we find a bound of acceptable
quality. It can be shown [vdH07b] that this process ultimately terminates, when p is sufficiently large.
We thus obtain an appropriate initial step size t which allows us to compute a δ-approximation of f(t)
with δ = 2ǫp⌈⌈f;n⌉⌉t +↑ (f;n(t))r.

In principle, we may now perform the translation z 7→ t + z and repeat the analytic continuation
process using the equation (50). Unfortunately, this approach leads to massive overestimation. Indeed,
if the initial condition f(0) is given with relative precision η, then the relative precisions of the com-
puted coefficients fk are typically a non trivial factor times larger than η, as well as the next “initial
condition” f(t) at t. Usually, we therefore lose O(1) bits of precision at every step.

One remedy is the following. Let ∆ = ∆0,t be the analytic continuation operator which takes an
initial condition c ∈ Cd on input and returns the evaluation f(t) ∈ Cd of the unique solution to (48)
with f(0) = c. Now instead of computing f;n using a ball initial condition f(0) ∈ B[i]dp, we rather use its

204 Joris van der Hoeven

center f(0)c as our initial condition and compute ∆(f(0)c) using ball arithmetic. In order to obtain a
reliable error bound for f(t), we also compute the Jacobian J∆ of ∆ at f(0)c using ball arithmetic, and
take

f(t) = ∆(f(0)c) + B(0, [J∆(f(0)c)f(0)r]
↑).

The Jacobian can either be computed using the technique of automatic differentiation [BS83] or using
series with coefficients in a jet space of order one.

With this approach ∆(f(0)c) is computed with an almost optimal p-bit accuracy, and J∆(f(0)c)
with an accuracy which is slightly worse than the accuracy of the initial condition. In the lucky case
when J∆(f(0)c) is almost diagonal, the accuracy of f(t) will therefore be approximately the same as
the accuracy of f(0). However, if J∆(f(0)c) is not diagonal, such as in (18), then the multiplication
J∆(f(0)c)f(0)r may lead to overestimation. This case may already occur for simple linear differential
equations such as

(
f
g

)
=

(
1
0

)
+

∫ (
0 −1
1 0

)(
f
g

)
(51)

and the risk is again that we lose O(1) bits of precision at every step.
Let us describe a method for limiting the harm of this manifestation of the wrapping effect. Consider

the analytic continuations of f at successive points 0 = t0 < t1 < · · · < tk and denote

Ji = J∆ti−1,ti
(f(ti−1)c), i = 1, . . . , k.

Instead of computing the error at ti due to perturbation of the initial condition f(0) using the formula

[f(t)r]
per(0) = Jk(Jk−1(. . . J1f(0)r . . .)),

we may rather use the formula

[f(t)r]
per(0) = (JkJk−1 · · · J1)f(0)r,

where matrix chain products are computed using a variant of binary powering (36):

Jj · · · Ji = (Jj · · · J⌊(i+j)/2⌋+1)(J⌊(i+j)/2⌋ · · · Ji).

In order to be complete, we also have to take into account the additional error δi, which occurs during
the computation of ∆ti−1,ti

(f(ti−1)c). Setting δ0 = f(0)r, we thus take

f(ti)r = δi + Jiδi−1 + · · · + (Jk · · · J1)δ0. (52)

When using this algorithm, at least in the case of simple systems such as (51), the precision loss at step
k will be limited to O(log k) bits. Notice that we benefit from the fact that the Jacobian matrices remain
accurate as long as the initial conditions remain accurate.

Although we have reduced the wrapping effect, the asymptotic complexity of the above algorithm is
cubic or at least quadratic in k when evaluating (52) using a binary splitting version of Horner’s method.
Let us now describe the final method which requires only O(k log k) matrix multiplications up till step
k. For 0 6 i < j, we define

δi,j = δj−1 + Jj−1δj−2 + · · · + (Jj−1 · · · Ji+1)δi.

Ji,j = Jj−1 · · · Ji,

where J0 = 1. At stage i = 2e1 + · · · + 2el with e1 > · · · > el, we assume that

δ[j] := δ[i;j] := δ2e1+···+2ej−1 ,2e1+···+2ej

J[j] := J[i;j] := J2e1+···+2ej−1 ,2e1+···+2ej

are stored in memory for all 1 6 j 6 l. From these values, we may compute

f(ti−1)r = δ[l] + J[l](δ[l−1] + · · · J[3](δ[2] + J[2]δ[1]) · · ·)

Ball arithmetic 205

using only O(l) = O(log i) matrix multiplications. Now assume that we go to the next stage i + 1. If m
is maximal such that 2m divides i + 1, then i + 1 = 2e1 + · · ·+ 2el−m + 2m. Consequently, δ[i+1;j] = δ[i;j]

and J[i+1;j] = J[i;j] for j < l′ := l − m + 1 and

δ[i+1;l′] = δi + Ji(δ[i;l] + · · · J[i;l′+2](δ[i;l′+1] + J[i;l′+1]δ[i;l′]) · · ·)
J[i+1;l′] = JiJ[i;l] · · · J[i;l′].

Hence, the updated lists δ[i+1;j] and J[i+1;j] can be computed using O(m) = O(log i) matrix multiplica-
tions. Furthermore, we only need to store O(log i) auxiliary matrices at step i.

7.6 Discussion

There is a vast literature on validated integration of dynamical systems and reduction of the wrapping
effect [Moo65,Moo66,Nic85,Loh88,GS88,Neu93,K8,Loh01,Neu02,MB04]. We refer to [Loh01] for a nice
review. Let us briefly discuss the different existing approaches.

The wrapping effect was noticed in the early days of interval arithmetic [Moo65] and local coordinate
transformations were proposed as a remedy. The idea is to work as much as possible with respect to
coordinates in which all errors are parallel to axes. Hence, instead of considering blocks x ∈ Bd

p, we rather

work with parallelepipeds x = c + TB(0, r), with c ∈ Dd
p, T ∈ Dd×d

p and r ∈ Dd
p. A natural choice for

T after k steps is T = Jk · · · J1, but more elaborate choices may be preferred [Loh88]. Other geometric
shapes for the enclosures have been advanced in the literature, such as ellipsoids [Neu93], which are also
invariant under linear transformations, and zonotopes [K8]. However, as long as we integrate (48) using
a straightforward iterative method, and even if we achieve a small average loss ε ≪ 1 of the bit precision
at a single step, the precision loss after k steps will be of the form kε.

The idea of using dichotomic algorithms in order to reduce the wrapping effect was first described in
the case of linear differential equations [GS88]. The previous section shows how to adapt that technique
to non linear equations. We notice that the method may very well be combined with other geometric
shapes for the enclosures: this will help to reduce the precision loss to (log k)ε instead of kε in the above
discussion.

Notice that there are two common misunderstandings about the dichotomic method. Contrary to
what we have shown above (see also [GS88] in the linear case), it is sometimes believed that we need to
keep all matrices J1, . . . , Jk in memory and that we have to reevaluate products Jj · · · Ji over and over
again. Secondly, one should not confuse elimination and reduction of the wrapping effect: if M is the

2×2 rotation matrix by a 30◦ angle, then none of its repeated squarings M2l

will be the identity matrix,

so every squaring (M2l

)2 will involve a wrapping. Even though we have not eliminated the wrapping
effect, we did achieve to reduce the number of wrappings to l instead of 2l.

Taylor models are another approach for the validated long term integration of dynamical systems
[EKW84,EMOK91,MB96,MB04]. The idea is to rely on higher k-th order expansions of the continuation
operator ∆. This allows for real algebraic enclosures which are determined by polynomials of degree k.
Such enclosures are a priori more precise for non linear problems. However, the method requires us to
work in order k jet spaces in d variables; the mere storage of such a jet involves

(
d+k

d

)
coefficients. From

a theoretical point of view it is also not established that Taylor methods eliminate the wrapping effect
by themselves. Nevertheless, Taylor models can be combined with any of the above methods and the
non linear enclosures seem to be more adapted in certain cases. For a detailed critical analysis, we refer
to [Neu02].

Let us finally investigate how sharp good error bounds actually may be. If ρf(0) = ‖f(0)r‖/‖f(0)‖c

denotes the relative precision of the initial condition at the start and ρf(t) = ‖f(t)r‖/‖f(t)‖c the relative
precision of the final result, then it is classical that

ρf(t) > κ(J∆(f(0)))ρf(0),

κ(J∆(f(0))) = ‖J∆(f(0))‖‖J∆(f(0))−1‖,

where κ(J∆(f(0))) is the condition number of the matrix J∆(f(0)). We propose to define the condition
number κ(Φ, f(0), 0, t) for the integration problem (48) on [0, t] by

K = κ(Φ, f(0), 0, t) = max
06t16t26t

κ(J∆t1,t2
(f(t1))).

206 Joris van der Hoeven

Indeed, without using any particular mathematical properties of Φ or f , we somehow have to go through
the whole interval [0, t]. Of course, it may happen that Φ is indeed special. For instance, if Φ = Mf for
a matrix M with a special triangular or diagonal form, then special arguments may be used to improve
error bounds and more dedicated condition numbers will have to be introduced.

However, in general, we suspect that a precision loss of log K cannot be avoided. If K gets large, the
only real way to achieve long term stability is to take p > 2 log K (say), whence the interest of efficient
multiple precision and high order ball algorithms. It seems to us that the parallelepiped method should
manage to keep the precision loss bounded by log K, for p > 2 log K and ε ≈ ǫp. The algorithm from
section 7.5 (without coordinate transformations) only achieves a log k log K in the worst case, although
a log K bound is probably obtained in many cases of interest. We plan to carry out a more detailed
analysis once we will have finished a first efficient multiple precision implementation.

References

[Abe80] O. Aberth. Computable analysis. McGraw-Hill, New York, 1980.
[AH83] G. Alefeld and J. Herzberger. Introduction to interval analysis. Academic Press, New York, 1983.
[ANS08] ANSI/IEEE. IEEE standard for binary floating-point arithmetic. Technical report, ANSI/IEEE,

New York, 2008. ANSI-IEEE Standard 754-2008. Revision of IEEE 754-1985, approved on June 12,
2008 by IEEE Standards Board.

[ANS09] ANSI/IEEE. IEEE interval standard working group - p1788.
http://grouper.ieee.org/groups/1788/, 2009.

[BB85] E. Bishop and D. Bridges. Foundations of constructive analysis. Die Grundlehren der mathematische
Wissenschaften. Springer, Berlin, 1985.

[BCC+06] Andrea Balluchi, Alberto Casagrande, Pieter Collins, Alberto Ferrari, Tiziano Villa, and Alberto L.
Sangiovanni-Vincentelli. Ariadne: a framework for reachability analysis of hybrid automata. In Pro-
ceedings of the 17th International Symposium on the Mathematical Theory of Networks and Systems,
pages 1269âĂŞ–1267, Kyoto, July 2006.

[BCO+06] A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, É. Schost, and A. Sedoglavic. Fast computation of power
series solutions of systems of differential equation. preprint, april 2006. submitted, 13 pages.

[Ber98] M. Berz. Cosy infinity version 8 reference manual. Technical Report MSUCL-1088, Michigan State
University, East Lansing, 1998.

[BF00] D. A. Bini and G. Fiorentino. Design, analysis, and implementation of a multiprecision polynomial
rootfinder. Numerical Algorithms, 23:127–173, 2000.

[BHL00] D.H. Bailey, Y. Hida, and X.S. Li. QD, a C/C++/Fortran library for double-double and quad-double
arithmetic. http://crd.lbl.gov/~dhbailey/mpdist/, 2000.

[BHL01] D.H. Bailey, Y. Hida, and X.S. Li. Algorithms for quad-double precision floating point arithmetic.
In 15th IEEE Symposium on Computer Arithmetic, pages 155–162, June 2001.

[BK78] R.P. Brent and H.T. Kung. Fast algorithms for manipulating formal power series. Journal of the
ACM, 25:581–595, 1978.

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theor. Comput. Sci.,
22:317–330, 1983.

[CK91] D.G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta
Informatica, 28:693–701, 1991.

[CT65] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier series.
Math. Computat., 19:297–301, 1965.

[CW87] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. In Proc. of the
19th Annual Symposium on Theory of Computing, pages 1–6, New York City, may 25–27 1987.

[DGG+02a] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen, B. D. Saunders, W. J.
Turner, and G. Villard. Linbox: A generic library for exact linear algebra. In First Internat. Congress
Math. Software ICMS, pages 40–50, Beijing, China, 2002.

[DGG+02b] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen, B. D. Saun-
ders, W. J. Turner, and G. Villard. Project linbox: Exact computational linear algebra.
http://www.linalg.org/, 2002.

[ea67] U.W. Kulisch et al. Scientific computing with validation, arithmetic requirements, hardware solution
and language support. http://www.math.uni-wuppertal.de/~xsc/, 1967.

[EKW84] J.-P. Eckmann, H. Koch, and P. Wittwer. A computer-assisted proof of universality in area-preserving
maps. Memoirs of the AMS, 47(289), 1984.

[EMOK91] J.-P. Eckmann, A. Malaspinas, and S. Oliffson-Kamphorst. A software tool for analysis in function
spaces. In K. Meyer and D. Schmidt, editors, Computer aided proofs in analysis, pages 147–166.
Springer, New York, 1991.

Ball arithmetic 207

[Für07] M. Fürer. Faster integer multiplication. In Proceedings of the Thirty-Ninth ACM Symposium on
Theory of Computing (STOC 2007), pages 57–66, San Diego, California, 2007.

[GG02] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 2-nd
edition, 2002.

[Gra91] T. Granlund et al. GMP, the GNU multiple precision arithmetic library.
http://www.swox.com/gmp, 1991.

[Grz57] A. Grzegorczyk. On the definitions of computable real continuous functions. Fund. Math., 44:61–71,
1957.

[GS88] T.N. Gambill and R.D. Skeel. Logarithmic reduction of the wrapping effect with application to
ordinary differential equations. SIAM J. Numer. Anal., 25(1):153–162, 1988.

[Hai95] B. Haible. CLN,a Class Library for Numbers. http://www.ginac.de/CLN/cln.html, 1995.
[HLRZ00] G. Hanrot, V. Lefèvre, K. Ryde, and P. Zimmermann. MPFR, a C library for multiple-precision

floating-point computations with exact rounding. http://www.mpfr.org, 2000.
[HS67] E. Hansen and R. Smith. Interval arithmetic in matrix computations, part ii. Siam J. Numer. Anal.,

4:1–9, 1967.
[JKDW01] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied interval analysis. Springer, London, 2001.
[K8] W. Kühn. Rigourously computed orbits of dynamical systems without the wrapping effect. Com-

puting, 61:47–67, 1998.
[KLRK97] V. Kreinovich, A.V. Lakeyev, J. Rohn, and P.T. Kahl. Computational Complexity and Feasibility of

Data Processing and Interval Computations. Springer, 1997.
[KO63] A. Karatsuba and J. Ofman. Multiplication of multidigit numbers on automata. Soviet Physics

Doklady, 7:595–596, 1963.
[KR06] V. Kreinovich and S. Rump. Towards optimal use of multi-precision arithmetic: a remark. Technical

Report UTEP-CS-06-01, UTEP-CS, 2006.
[Kul08] U.W. Kulisch. Computer Arithmetic and Validity. Theory, Implementation, and Applications. Num-

ber 33 in Studies in Mathematics. de Gruyter, 2008.
[Lam07] B. Lambov. Reallib: An efficient implementation of exact real arithmetic. Mathematical Structures

in Computer Science, 17(1):81–98, 2007.
[Loh88] R. Lohner. Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwen-

dugen. PhD thesis, Universität Karlsruhe, 1988.
[Loh01] R. Lohner. On the ubiquity of the wrapping effect in the computation of error bounds. In U. Kulisch,

R. Lohner, and A. Facius, editors, Perspectives on enclosure methods, pages 201–217, Wien, New
York, 2001. Springer.

[M0] N. Müller. iRRAM, exact arithmetic in C++. http://www.informatik.uni-trier.de/iRRAM/, 2000.
[MB96] K. Makino and M. Berz. Remainder differential algebras and their applications. In M. Berz,

C. Bischof, G. Corliss, and A. Griewank, editors, Computational differentiation: techniques, applica-
tions and tools, pages 63–74, SIAM, Philadelphia, 1996.

[MB04] K. Makino and M. Berz. Suppression of the wrapping effect by Taylor model-based validated inte-
grators. Technical Report MSU Report MSUHEP 40910, Michigan State University, 2004.

[Moo65] R.E. Moore. Automatic local coordinate transformations to reduce the growth of error bounds in
interval computation of solutions to ordinary differential equation. In L.B. Rall, editor, Error in
Digital Computation, volume 2, pages 103–140. John Wiley, 1965.

[Moo66] R.E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, N.J., 1966.
[Mul06] Jean-Michel Muller. Elementary Functions, Algorithms and Implementation. Birkhauser Boston,

Inc., 2006.
[Neu90] A. Neumaier. Interval methods for systems of equations. Cambridge university press, Cambridge,

1990.
[Neu93] A. Neumaier. The wrapping effect, ellipsoid arithmetic, stability and confedence regions. Computing

Supplementum, 9:175–190, 1993.
[Neu02] A. Neumaier. Taylor forms - use and limits. Reliable Computing, 9:43–79, 2002.
[Nic85] K. Nickel. How to fight the wrapping effect. In Springer-Verlag, editor, Proc. of the Intern. Symp.

on interval mathematics, pages 121–132, 1985.
[Pan84] V. Pan. How to multiply matrices faster, volume 179 of Lect. Notes in Math. Springer, 1984.
[Rev01] N. Revol. MPFI, a multiple precision interval arithmetic library.

http://perso.ens-lyon.fr/nathalie.revol/software.html, 2001.
[Rum99a] S.M. Rump. Fast and parallel inteval arithmetic. BIT, 39(3):534–554, 1999.
[Rum99b] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Develop-

ments in Reliable Computing, pages 77–104. Kluwer Academic Publishers, Dordrecht, 1999.
http://www.ti3.tu-harburg.de/rump/.

[SS71] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281–292, 1971.
[Str69] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:352–356, 1969.

208 Joris van der Hoeven

[Tur36] A. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proc. London
Maths. Soc., 2(42):230–265, 1936.

[vdH02a] J. van der Hoeven. Relax, but don’t be too lazy. JSC, 34:479–542, 2002.
[vdH+02b] J. van der Hoeven et al. Mathemagix, 2002. http://www.mathemagix.org.
[vdH06a] J. van der Hoeven. Computations with effective real numbers. TCS, 351:52–60, 2006.
[vdH06b] J. van der Hoeven. Newton’s method and FFT trading. Technical Report 2006-17, Univ. Paris-Sud,

2006. Submitted to JSC.
[vdH07a] J. van der Hoeven. New algorithms for relaxed multiplication. JSC, 42(8):792–802, 2007.
[vdH07b] J. van der Hoeven. On effective analytic continuation. MCS, 1(1):111–175, 2007.
[vdH08a] J. van der Hoeven. Making fast multiplication of polynomials numerically stable. Technical Report

2008-02, Université Paris-Sud, Orsay, France, 2008.
[vdH08b] J. van der Hoeven. Meta-expansion of transseries. In Y. Boudabbous and N. Zaguia, editors,

ROGICS ’08: Relations Orders and Graphs, Interaction with Computer Science, pages 390–398,
Mahdia, Tunesia, May 2008.

[vdHMT] J. van der Hoeven, B. Mourrain, and Ph. Trébuchet. Efficient and reliable resolution of eigenproblems.
In preparation.

[Wei00] K. Weihrauch. Computable analysis. Springer-Verlag, Berlin/Heidelberg, 2000.

Recursive Analysis Complexity in Terms of Discrete
Complexity

Olivier Bournez1, Walid Gomaa2,3, and Emmanuel Hainry2,4

1 Ecole Polytechnique, LIX, 91128 Palaiseau Cedex, France Olivier.Bournez@lix.polytechnique.fr
2 Loria, BP 239 - 54506 Vandœuvre-lès-Nancy Cedex, France

walid.gomaa@loria.fr,Emmanuel.Hainry@loria.fr
3 Alexandria University, Faculty of Engineering, Alexandria, Egypt
4 Nancy Université, Université Henri Poincaré, Nancy, France

1 Introduction

Recursive analysis is the most classical approach to model and discuss computations over the reals. It is
usually presented using Type 2 or higher order Turing machines: see e.g. monograph [3]. Recently, it has
been shown that computability classes of functions computable in recursive analysis can also be defined
(or characterized) in an algebraic machine independent way, without resorting to Turing machines. In
particular nice connections between the class of computable functions (and some of its sub- and sup-
classes) over the reals and algebraically defined (sub- and sup-) classes of R-recursive functions à la
Moore 96 have been obtained: see e.g. survey [2].

However, until now, this has been done only at the computability level, and not at the complexity
level.

We recently studied a framework that allows us to dive into the complexity level of functions over
the reals. In particular we provide the first algebraic characterization of polynomial time computable
functions over the reals. This framework opens the field of implicit complexity of functions over the
reals, and also provide a new reading of some of the existing characterizations at the computability level.

In this extended abstract, we present some of our results. We divide our discussion into two parts:
the first deals with the easier case of Lipschitz functions and the other part deals with the more difficult
general case.

2 Lipschitz Functions

The Lipschitz condition provides the continuity information necessary for computability in recursive
analysis. In the following we define a notion of approximation that will be used to relate integer com-
putability/complexity to the corresponding analog computability/complexity.

Definition 1 (Approximation) Let C be a class of functions from R2 to R. Let D be a class of functions
from N2 to N. Assume a function f : [0, 1]→ R.

1. We say that C approximates D if for any function g ∈ D, there exists some function g̃ ∈ C such that
for all x, y ∈ N we have

|g̃(x, y)− g(x, y)| ≤ 1/4 (1)

2. We say that f is C-definable if there exists a function g̃ ∈ C such that the following holds

∀x ∈ N,∀y ∈ N≥1, x ≤ y : |g̃(x, y)− yf(
x

y
)| ≤ 3 (2)

We then have the following result which relates analog complexity over [0, 1] to approximate com-
plexity over N2.

Theorem 1 Consider a class C of polytime computable real functions that approximates the class of
polytime computable discrete functions. Assume that f : [0, 1] → R is Lipschitz. Then f is polytime
computable iff f is C-definable.

210 Olivier Bournez, Walid Gomaa, and Emmanuel Hainry

3 The General Case

In order to provide for the continuity condition we need another notion of ‘approximation’ which is a
sort of converse to that given in Definition 1.

Definition 2 (Polytime computable integer approximation) A function g : Rd → R is said to
have a polytime computable integer approximation if there exists some polytime computable function
h : Nd → N with |h(x̄)− g(x̄)| ≤ 1 for all x̄ ∈ Nd.

A sufficient condition is that the restriction of g to N2 is polytime computable. Assume a function
T : N → N and define #T : R≥1 → R by #T [x] = 2T (blog2 xc). When T is a polynomial function with
T (x) = Θ(xk) we write #k to simplify the notation. As will be seen below the function #T is used to
quantify the smoothness of real functions (it plays a role similar to that of the modulus of continuity).
In the following we define a class of real functions that are well-behaved with respect to their restrictions
to the integers. (For ease of notation, we will use [a, b] to denote both [a, b] and [b, a].)

Definition 3 (Peaceful functions) A function g : R2 → R is said to be peaceful if

∀x ∈ R≥0,∀y ∈ N : g(x, y) ∈ [g(bxc, y), g(dxe, y)] (3)

We say that a class C of real functions peacefully approximates some class D of integer functions, if
the subclass of peaceful functions of C approximates D.

Definition 4 Let C be a class of functions from R2 to R. Assume a function f : [0, 1] → R and a
function T : N→ N.

1. We say that f is T -C-definable if there exists some peaceful function g ∈ C such that

∀x ∈ N,∀y ∈ N≥1, x ≤ #T [y] : |g(x, y)− yf(
x

#T [y]
)| ≤ 2, (4)

2. We say that f is T -smooth if there exists some integer M such that

∀x, x′ ∈ R≥0,∀y ∈ R≥1, x, x′ ≤ #T [y] :

|x− x′| ≤ 1⇒ y|f(
x

#T [y]
)− f(

x′

#T [y]
)| ≤M (5)

Now we have the necessary tools to relate analog complexity of arbitrary functions over [0, 1] to
approximate complexity over N2.

Theorem 2 Consider a class C of real functions that peacefully approximates polytime computable dis-
crete functions, and whose functions have polytime computable integer approximations.5 Then the fol-
lowing are equivalent:

1. a function f : [0, 1]→ R is polytime computable,
2. there exists some integer k such that

(a) f is nk-C-definable,
(b) f is nk-smooth.

Remark 1 Note that all the previous results can be generalized to any complexity and computability
class.

5 A sufficient condition for that is restrictions to integers of functions from C are polytime computable.

Recursive Analysis Complexity in Terms of Discrete Complexity 211

4 Definability by a Function Algebra

A function algebra is the smallest class of functions that consists of a set of basic functions and their
closure under a set of operations. Functions algebra have been used in the discrete computation context
to give a machine independent characterization of computability and complexity-theoretic classes. They
have also been used in the recursive analysis context to give characterizations of computability classes.
However, to the best of our knowledge, no such work has been done at the complexity level. The above
results can be used to contribute to that end as follows below.

we define a class of real functions which are essentially extensions to R of the Bellantoni-Cook class
[1]. This latter class was developed to exactly capture discrete polytime computability in an algebraic
machine-independent way. In the next definition any function f(x1, . . . , xm; y1, . . . , yn) has two types
of arguments (see [1]): normal arguments which come first followed by safe arguments using ‘;’ for
separation. For any n ∈ Z we call [2n, 2n+ 1] an even interval and [2n+ 1, 2n+ 2] an odd interval.

Definition 5 Define the function algebra

W = [0, 1,+,−, U, p, c, parity;SComp, SI] (6)

1. zero-ary functions for the constants 0 and 1,
2. a binary addition function: +(;x, y) = x+ y,
3. a binary subtraction function: −(;x, y) = x− y,
4. a set of projection functions U = {U j

i : i, j ∈ N, i ≤ j} where:

Um+n
i (x1, . . . , xm;xm+1, . . . , xm+n) = xi,

5. a continuous predecessor function p defined as follows:

p(;x) =

{
n x ∈ [2n, 2n+ 1] for some n ∈ Z
x− n− 1 x ∈ [2n+ 1, 2n+ 2]

(7)

Note that when x belongs to an even interval p(;x) acts exactly like bx
2 c. Otherwise, the function is

piecewise linear between even intervals.
6. a piecewise linear continuous conditional function c defined as follows:

c(;x, y, z) =

y x ≥ 1
z x ≤ 0
xy + (1− x)z 0 ≤ x ≤ 1

(8)

7. a continuous parity function:

parity(;x) =

4(x− 2n) x ∈ [2n, 2n+ 1

2] for some n ∈ Z
4(2n+ 1− x) x ∈ [2n+ 1

2 , 2n+ 1]
0 ow

(9)

Hence, parity(;x) is non-zero if and only if x lies inside an even interval. Furthermore, for any
n ∈ Z the following holds:

∫ 2n+1

2n
parity(;x)dx = 1.

8. a safe composition operator SComp: assume a vector of functions ḡ1(x̄;) ∈ W, a vector of functions
ḡ2(x̄; ȳ) ∈ W, and a function h ∈ W of arity len(ḡ1) + len(ḡ2) (where len denotes the vector length).
Define a new function f

f(x̄; ȳ) = h(ḡ1(x̄;); ḡ2(x̄; ȳ)) (10)

It is clear from the asymmetry in this definition that normal arguments can be repositioned in safe
places whereas the opposite can not happen and that is what controls the computational complexity
of the functions generated inside the class.

212 Olivier Bournez, Walid Gomaa, and Emmanuel Hainry

9. a safe integration operator SI: assume functions g, h0, h1 ∈ W. Let p′(;x) = p(;x− 1) + 1. Consider
the following differential equation:

f(0, ȳ; z̄) =g(ȳ; z̄)
∂xf(x, ȳ; z̄) = parity(x;)[h1(p(x;), ȳ; z̄, f(p(x;), ȳ; z̄))

− f(2p(x;), ȳ; z̄)]
+ parity(x− 1;)[h0(p′(x;), ȳ; z̄, f(p′(x;), ȳ; z̄))

− f(2p′(x;)− 1, ȳ; z̄)]

(11)

Notice that for simplicity we misused the basic functions (and p′) so that their arguments are now in
normal positions (the alternative is to redefine a new set of basic functions with arguments in normal
positions).

The class W satisfies nice properties that give rise to the following crucial result.

Theorem 3 1. A Lipschitz function f : [0, 1]→ R is polytime computable iff it is W-definable.
2. Let f : [0, 1] → R be some nk-smooth function for some k. Then f is polytime computable iff it is

nk-W-definable.

Notice that C-definability of a function can be seen as a schema that builds a function f from a
function g̃ ∈ C (see definition of C-definability). Hence, the class of polytime computable functions can
be algebraically characterized in a machine-independent way as follows.

Corollary 1 Let Def [C] stands for C-definability. Then a function f : [0, 1]→ R is polytime computable
iff either

1. f is Lipschitz and belongs to Def [0, 1,+,−, U, p, c, parity;SComp, SI] or
2. f is nk-smooth and belongs to nk-Def[0, 1,+,−, U, p, c, parity;SComp, SI].

References

1. Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the polytime functions.
Computational Complexity, 2:97–110, 1992.

2. Olivier Bournez and Manuel L. Campagnolo. New Computational Paradigms. Changing Conceptions of What
is Computable, chapter A Survey on Continuous Time Computations, pages 383–423. Springer, New York,
2008.

3. Klaus Weihrauch. Computable Analysis: an Introduction. Springer, 2000.

	Randomness and the ergodic decomposition
	Mathieu Hoyrup
	Références		

