Relativizations of the P =? DNP Question for the BSS Model

> Christine Gaßner Greifswald

The machines

Computation instructions:

 $l: Z_i := Z_j \circ Z_k, \qquad \circ \in \{+, -, \cdot\},$ $l: Z_j := c,$

Branching instructions:

l: if $Z_j = 0$ then go o l_1 else go l_2 ,

l: if $Z_j \ge 0$ then go o l_1 else go l_2 ,

Copy instructions:

 $l: Z_{I_j} := Z_{I_k},$

Index instructions:

$$egin{aligned} l\colon I_j &:= 1, \ l\colon I_j &:= I_j + 1, \ l\colon ext{ if } I_j &= I_k ext{ then goto } l_1 ext{ else goto } l_2. \end{aligned}$$

The complexity classes

The input: The guesses:

$$\mathbf{x} = (x_1, \dots, x_n) \in \bigcup_{i \ge 1} \mathbb{R}^i.$$

$$\mathbf{y} = (y_1, \dots, y_m) \in \bigcup_{i \ge 1} \mathbb{R}^i.$$

Assignment:

 $\mathbf{x} \mapsto Z_1, \ldots, Z_n \quad \mathbf{y} \mapsto Z_{n+1}, \ldots, Z_{n+m} \quad n \mapsto I_1.$

The complexity classes

The input:	$\mathbf{x} = (x_1$
The guesses:	$\mathbf{y} = (y_1)$

$$\mathbf{x} = (x_1, \dots, x_n) \in \bigcup_{i \ge 1} \mathbb{R}^i.$$

$$\mathbf{y} = (y_1, \dots, y_m) \in \bigcup_{i \ge 1} \mathbb{R}^i.$$

Assignment: $\mathbf{x} \mapsto Z_1, \dots, Z_n \quad \mathbf{y} \mapsto Z_{n+1}, \dots, Z_{n+m} \quad n \mapsto I_1.$

Polynomial time: $cost(\mathbf{x}) \leq kn^c$.

size(\mathbf{x}): n. cost(\mathbf{x}): Number of executed instructions on \mathbf{x} .

The complexity classes

The input:	$\mathbf{x} = (x_1, \ldots, x_n) \in \bigcup_{i \ge 1} \mathbf{R}^i$
The guesses:	$\mathbf{y} = (y_1, \ldots, y_m) \in \bigcup_{i \ge 1} \mathrm{I\!R}^i$

Assignment: $\mathbf{x} \mapsto Z_1, \dots, Z_n \quad \mathbf{y} \mapsto Z_{n+1}, \dots, Z_{n+m} \quad n \mapsto I_1.$

Polynomial time: $cost(\mathbf{x}) \leq kn^c$.

size(\mathbf{x}): n. cost(\mathbf{x}): Number of executed instructions on \mathbf{x} .

$$\underbrace{\begin{array}{c} \underbrace{y_1,\ldots,y_m=0}_{\Downarrow} & \underbrace{y_1,\ldots,y_m\in\{0,1\}}_{\Downarrow} & \underbrace{y_1,\ldots,y_m\in\mathbb{R}}_{\Downarrow} \\ P_{\mathbb{R}} & DNP_{\mathbb{R}} & NP_{\mathbb{R}} \end{array}$$

The oracle machines

An oracle: $\mathcal{O} \subseteq \mathbb{R}^{\infty}$.

The oracle machines:

if $(Z_1, \ldots, Z_{I_1}) \in \mathcal{O}$ then go o l_1 else go o l_2 .

 $P_{IR} \subseteq DNP_{IR} \subseteq NP_{IR}.$ $P_{IR}^{\mathcal{O}} \subseteq DNP_{IR}^{\mathcal{O}} \subseteq NP_{IR}^{\mathcal{O}}.$

 \Rightarrow

Structure	$P \neq DNP$	$DNP \neq NP$	$\mathbf{P}^{\mathcal{Q}} \neq \mathbf{DNP}^{\mathcal{Q}}$	$\mathrm{DNP}^{\mathcal{Q}} \neq \mathrm{NP}^{\mathcal{Q}}$
$(\mathbb{Z};\mathbb{Z};\cdot,+,-;=)$?	yes	defined analogously to BGS	Ø
$(\mathbb{Z};\mathbb{Z};\cdot,+,-;\geq)$?	yes	defined analogously to BGS	Ø
$({\rm I\!R}; {\rm I\!R}; \cdot ,+,-;=)$?	yes	derived from BGS or KP	Ø
$({\rm I\!R}; {\rm I\!R}; \cdot, +, -; \geq)$?	?	defined now	Z , Q , E

BGS: Baker-Gill-Solovay oracle, E: Emerson oracle, KP: Knapsack Problem

Ljubljana 2009

Structure	$\mathbf{P} \neq \mathbf{DNP}$	$\mathrm{DNP}\neq\mathrm{NP}$	$\mathbf{P}^{\mathcal{Q}} \neq \mathbf{DNP}^{\mathcal{Q}}$	$\mathrm{DNP}^{\mathcal{Q}} \neq \mathrm{NP}^{\mathcal{Q}}$
$(\mathbb{Z};\mathbb{Z};\cdot,+,-;\mathbf{Sin})$	nilarly to F	$PQ \neq NPQ$	defined analogously to BGS	Ø
$(\mathbb{Z};\mathbb{Z};\cdot,+,-;\geq)$?	ye	defined analogously to BGS	Ø
$({\rm I\!R}; {\rm I\!R}; \cdot ,+,-;=)$?	y Simila	arly to $PQ \neq NPQ$	Ø
$({ m I\!R}; { m I\!R}; \cdot, +, -; \geq)$?	?	defined now	Z , Q, E

BGS: Baker-Gill-Solovay oracle, E: Emerson oracle, KP: Knapsack Problem

Ljubljana 2009

Structure	cp. CCC	$DNP \neq NP$	$\mathbf{P}^{\mathcal{Q}} \neq \mathbf{DNP}^{\mathcal{Q}}$	$\mathrm{DNP}^{\mathcal{Q}} \neq \mathrm{NP}^{\mathcal{Q}}$
$(\mathbb{Z};\mathbb{Z};\cdot,+,-;=)$?	, 2009 , , , , , , , , , , , , , , , , , , ,	defined analogously to BGS	Ø
$(\mathbb{Z};\mathbb{Z};\cdot,+,-;\geq)$	CD. CO	yes	defined analogously to BGS	Ø
$(\mathrm{I\!R};\mathrm{I\!R};\cdot,+,-;=)$?	JC 2009	derived from BGS or KP	Ø
$(\mathrm{I\!R};\mathrm{I\!R};\cdot,+,-;\geq)$?	?	defined now	Z , Q , E

BGS: Baker-Gill-Solovay oracle, E: Emerson oracle, KP: Knapsack Problem

Ljubljana 2009

Structure	$P \neq DNP$	$DNP \neq NP$	$\mathbf{P}^{\mathcal{Q}} \neq \mathbf{DNP}^{\mathcal{Q}}$	$\mathrm{DNP}^{\mathcal{Q}} \neq \mathrm{NP}^{\mathcal{Q}}$
$(\mathbb{Z};\mathbb{Z};\cdot,+,-;=)$?	yes	defined analogously to BGS	Ø
$(\mathbb{Z};\mathbb{Z};\cdot,+,-;\geq)$?	yes	defined analogously to BGS	Ø
$({\rm I\!R}; {\rm I\!R}; \cdot, +, -; =)$?	yes	derived from BGS or KP	Ø
$({\rm I\!R}; {\rm I\!R}; \cdot, +, -; \geq)$?	?	defined now	Z , Q , E

BGS: Baker-Gill-Solovay oracle, E: Emerson oracle, KP: Knapsack Problem

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

$i \in \mathbb{N}^+$ the code of a pair (p_i, P_i)

- p_i polynomial
- P_i program of a P^O-machine using only the constants 0 and 1
- $\mathcal{N}_i^{\mathcal{B}}$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}$, P_i , and the time bound p_i

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

- $i \in \mathbb{N}^+$ the code of a pair (p_i, P_i)
- p_i polynomial
- P_i program of a P^O-machine using only the constants 0 and 1
- $\mathcal{N}_i^{\mathcal{B}}$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}$, P_i , and the time bound p_i

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

$$i \in \mathbb{N}^+$$
 the code of a pair (p_i, P_i)

- polynomial p_i
- $\begin{array}{c} P_i \\ \mathcal{N}_i^{\mathcal{B}} \end{array}$ program of a $P^{\mathcal{O}}$ -machine using only the constants 0 and 1
 - machine using $\mathcal{B} \subset \mathbb{R}^{\infty}$, P_i , and the time bound p_i

$$V_0 = \emptyset, \ m_0 = 0. \text{ Stage } i \ge 1: \text{ Let } n_i > m_{i-1} \text{ and } p_i(n_i) + n_i < 2^{n_i}.$$

$$W_i = \bigcup_{j < i} V_j,$$

$$V_i = \{ \mathbf{x} \in \{0, 1\}^{n_i} \mid \mathcal{N}_i^{W_i} \text{ rejects } (0, \dots, 0) \in \mathbb{R}^{n_i} \\ & \& \mathbf{x} \text{ is not queried by } \mathcal{N}_i^{W_i} \text{ on input } (0, \dots, 0) \in \mathbb{R}^{n_i} \},$$

$$m_i = 2^{n_i}.$$

$$\begin{aligned} & \mathcal{Q}_{\mathsf{R}} = \bigcup_{i \ge 1} W_i, \\ & L_{\mathsf{R}} = \{ \mathbf{y} \mid (\exists i \in \mathbb{N}^+) (\mathbf{y} \in \mathbb{R}^{n_i} \& V_i \neq \emptyset) \} \in \mathrm{DNP}_{\mathsf{R}}^{\mathcal{Q}_{\mathsf{R}}} \setminus \mathrm{P}_{\mathsf{R}}^{\mathcal{Q}_{\mathsf{R}}}. \\ & \mathsf{R} = (\mathbb{R}; 0, 1; \cdot, +, -; \ge). \end{aligned}$$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

$$i \in \mathbb{N}^+$$
 the code of a pair (p_i, P_i)

- polynomial p_i
- $\begin{array}{c} P_i \\ \mathcal{N}_i^{\mathcal{B}} \end{array}$ program of a $P^{\mathcal{O}}$ -machine using only the constants 0 and 1
 - machine using $\mathcal{B} \subset \mathbb{R}^{\infty}$, P_i , and the time bound p_i

$$V_0 = \emptyset, \ m_0 = 0. \text{ Stage } i \ge 1: \text{ Let } n_i > m_{i-1} \text{ and } p_i(n_i) + n_i < 2^{n_i}.$$

$$W_i = \bigcup_{j \le i} V_j,$$

$$V_i = \{ \mathbf{x} \in \{0, 1\}^{n_i} \mid \mathcal{N}_i^{W_i} \text{ rejects } (0, \dots, 0) \in \mathbb{R}^{n_i} \\ \& \mathbf{x} \text{ is not queried by } \mathcal{N}_i^{W_i} \text{ on input } (0, \dots, 0) \in \mathbb{R}^{n_i} \},$$

$$m_i = 2^{n_i}.$$

$$\mathcal{Q}_{\mathsf{R}} = \bigcup_{i \ge 1} W_i,$$

$$L_{\mathsf{R}} = \{ \mathbf{y} \mid (\exists i \in \mathbb{N}^+) (\mathbf{y} \in \mathbb{R}^{n_i} \& V_i \neq \emptyset) \} \in \mathrm{DNP}_{\mathsf{R}}^{\mathcal{Q}_{\mathsf{R}}} \setminus \mathrm{P}_{\mathsf{R}}^{\mathcal{Q}_{\mathsf{R}}}.$$

$$\mathsf{R} = (\mathbb{R}; 0, 1; \cdot, +, -; \ge).$$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

$$i \in \mathbb{N}^+$$
 the code of a pair (p_i, P_i)

- polynomial p_i
- $\begin{array}{c} P_i \\ \mathcal{N}_i^{\mathcal{B}} \end{array}$ program of a $P^{\mathcal{O}}$ -machine using only the constants 0 and 1
 - machine using $\mathcal{B} \subset \mathbb{R}^{\infty}$, P_i , and the time bound p_i

$$egin{aligned} V_0 &= \emptyset, \ m_0 = 0. \ ext{Stage} \ i \geq 1: \ ext{Let} \ n_i > m_{i-1} \ ext{and} \ p_i(n_i) + n_i < 2^{n_i}. \ W_i &= \cup_{j < i} V_j, \ V_i \ &= \{ \mathbf{x} \in \{0,1\}^{n_i} \mid \mathcal{N}_i^{W_i} \ ext{rejects} \ (0,\ldots,0) \in \mathbb{R}^{n_i} \ \& \ \mathbf{x} \ ext{is not queried by} \ \mathcal{N}_i^{W_i} \ ext{on input} \ (0,\ldots,0) \in \mathbb{R}^{n_i} \}, \ m_i = 2^{n_i}. \end{aligned}$$

$$\mathcal{Q}_{\mathsf{R}} = \bigcup_{i \ge 1} W_i,$$

$$L_{\mathsf{R}} = \{ \mathbf{y} \mid (\exists i \in \mathbb{N}^+) (\mathbf{y} \in \mathbb{R}^{n_i} \& V_i \neq \emptyset) \} \in \mathrm{DNP}_{\mathsf{R}}^{\mathcal{Q}_{\mathsf{R}}} \setminus \mathrm{P}_{\mathsf{R}}^{\mathcal{Q}_{\mathsf{R}}}.$$

$$\mathsf{R} = (\mathbb{R}; 0, 1; \cdot, +, -; \ge).$$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

BSS - only with 0 and 1

$$i \in \mathbb{N}^+$$
 the code of a pair (p_i, P_i)

polynomial p_i

 $\begin{array}{c} P_i \\ \mathcal{N}_i^{\mathcal{B}} \end{array}$ program of a $P^{\mathcal{O}}$ -machine using only the constants 0 and 1

machine using $\mathcal{B} \subset \mathbb{R}^{\infty}$, P_i , and the time bound p_i

$$V_{0} = \emptyset, \ m_{0} = 0. \text{ Stage } i \geq 1: \text{ Let } n_{i} > m_{i-1} \text{ and } p_{i}(n_{i}) + n_{i} < 2^{n_{i}}.$$

$$W_{i} = \bigcup_{j < i} V_{j},$$

$$V_{i} = \{\mathbf{x} \in \{0, 1\}^{n_{i}} \mid \mathcal{N}_{i}^{W_{i}} \text{ rejects } (0, \dots, 0) \in \mathbb{R}^{n_{i}}$$

$$\& \mathbf{x} \text{ is not queried by } \mathcal{N}_{i}^{W_{i}} \text{ on input } (0, \dots, 0) \in \mathbb{R}^{n_{i}}\},$$

$$m_{i} = 2^{n_{i}}.$$

$$\mathcal{Q}_{\mathsf{R}} = \bigcup_{i \geq 1} W_{i},$$

$$V_{i} \neq \emptyset \text{ iff } \mathcal{N}_{i}^{W_{i}} \text{ rejects } (0, \dots, 0) \in \mathbb{R}^{n_{i}}\}$$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

BSS - only with 0 and 1

$$i \in \mathbb{N}^+$$
 the code of a pair (p_i, P_i)

polynomial p_i

 $\begin{array}{c} P_i \\ \mathcal{N}_i^{\mathcal{B}} \end{array}$ program of a $P^{\mathcal{O}}$ -machine using only the constants 0 and 1

machine using $\mathcal{B} \subset \mathbb{R}^{\infty}$, P_i , and the time bound p_i

$$V_{0} = \emptyset, \ m_{0} = 0. \text{ Stage } i \geq 1: \text{ Let } n_{i} > m_{i-1} \text{ and } p_{i}(n_{i}) + n_{i} < 2^{n_{i}}.$$

$$W_{i} = \bigcup_{j < i} V_{j},$$

$$V_{i} = \{ \mathbf{x} \in \{0, 1\}^{n_{i}} | \mathcal{N}_{i}^{W_{i}} \text{ rejects } (0, \dots, 0) \in \mathbb{R}^{n_{i}} \\ \& \mathbf{x} \text{ is not queried by } \mathcal{N}_{i}^{W_{i}} \text{ on input } (0, \dots, 0) \in \mathbb{R}^{n_{i}} \},$$

$$m_{i} = 2^{n_{i}}.$$

$$V_{i} \neq \emptyset \text{ can be satisfied}$$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

BSS - only with 0 and 1

$$i \in \mathbb{N}^+$$
 the code of a pair (p_i, P_i)

- polynomial p_i
- $\begin{array}{c} P_i \\ \mathcal{N}_i^{\mathcal{B}} \end{array}$ program of a $P^{\mathcal{O}}$ -machine using only the constants 0 and 1
 - machine using $\mathcal{B} \subset \mathbb{R}^{\infty}$, P_i , and the time bound p_i

$$V_{0} = \emptyset, \ m_{0} = 0. \text{ Stage } i \geq 1: \text{ Let } n_{i} > m_{i-1} \text{ and } p_{i}(n_{i}) + n_{i} < 2^{n_{i}}.$$

$$W_{i} = \bigcup_{j \leq i} V_{j},$$

$$V_{i} = \{ \mathbf{x} \in \{0, 1\}^{n_{i}} | \mathcal{N}_{i}^{W_{i}} \text{ rejects } (0, \dots, 0) \in \mathbb{R}^{n_{i}} \\ \& \mathbf{x} \text{ is not queried by } \mathcal{N}_{i}^{W_{i}} \text{ on input } (0, \dots, 0) \in \mathbb{R}^{n_{i}} \},$$

$$m_{i} = 2^{n_{i}}.$$

$$V_{i} \neq \emptyset \text{ can be satisfied the path of } \mathcal{N}_{i}^{W_{i}} \text{ traversed by } (0, \dots, 0) \in \mathbb{R}^{n_{i}} \\ \bullet \text{ is uniquely determined } \bullet \text{ of polynomial length}$$

Ljubljana 2009

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

Ljubljana 2009

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

Only 0 and 1 as constants encoded by themselves

Ljubljana 2009

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

Only 0 and 1 as constants encoded by themselves

\Rightarrow

The polynomials are uniquely determined.

Ljubljana 2009

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

Only 0 and 1 as constants encoded by themselves

\Rightarrow

The polynomials are uniquely determined.

 \Rightarrow

The path is uniquely determined.

Ljubljana 2009

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

BSS - only with 0 and 1

$$i \in \mathbb{N}^+$$
 the code of a pair (p_i, P_i)

polynomial p_i

 $\begin{array}{c} P_i \\ \mathcal{N}_i^{\mathcal{B}} \end{array}$ program of a $P^{\mathcal{O}}$ -machine using only the constants 0 and 1

machine using $\mathcal{B} \subset \mathbb{R}^{\infty}$, P_i , and the time bound p_i

$$egin{aligned} V_0 &= \emptyset, \ m_0 = 0. \ ext{Stage} \ i \geq 1: \ ext{Let} \ n_i > m_{i-1} \ ext{and} \ p_i(n_i) + n_i < 2^{n_i}, \ W_i &= \cup_{j < i} V_j, \ V_i \ &= \{ \mathbf{x} \in \{0, 1\}^{n_i} \mid \mathcal{N}_i^{W_i} \ ext{rejects} \ (0, \dots, 0) \in \mathbb{R}^{n_i} \ \& \ \mathbf{x} \ ext{is not queried by} \ \mathcal{N}_i^{W_i} \ ext{on input} \ (0, \dots, 0) \in \mathbb{R}^{n_i} \}, \ m_i = 2^{n_i}. \end{aligned}$$

 $\mathcal{Q}_{\mathsf{R}} = \bigcup_{i \geq 1} W_i,$

$V_i \neq \emptyset$ iff $\mathcal{N}_i^{W_i}$ rejects $(0,...,0) \in \mathbb{R}^{n_i}$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

Ljubljana 2009

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

$$i \in \mathbb{N}^+$$
 the code of a pair (p_i, P_i)

- polynomial p_i
- $\begin{array}{c} P_i \\ \mathcal{N}_i^{\mathcal{B}} \end{array}$ program of a $P^{\mathcal{O}}$ -machine using only the constants 0 and 1
 - machine using $\mathcal{B} \subset \mathbb{R}^{\infty}$, P_i , and the time bound p_i

$$V_{0} = \emptyset, \ m_{0} = 0. \text{ Stage } i \ge 1: \text{ Let } n_{i} > m_{i-1} \text{ and } p_{i}(n_{i}) + n_{i} < 2^{n_{i}}.$$

$$W_{i} = \bigcup_{j < i} V_{j},$$

$$V_{i} = \{\mathbf{x} \in \{0, 1\}^{n_{i}} \mid \mathcal{N}_{i}^{W_{i}} \text{ rejects } (0, \dots, 0) \in \mathbb{R}^{n_{i}}$$

$$\& \mathbf{x} \text{ is not queried by } \mathcal{N}_{i}^{W_{i}} \text{ on input } (0, \dots, 0) \in \mathbb{R}^{n_{i}}\},$$

$$m_{i} = 2^{n_{i}}.$$

$$\mathcal{Q}_{\mathsf{R}} = \bigcup_{i \ge 1} W_{i},$$

$$\mathcal{N}_{i}^{\mathcal{Q}} \triangleq \mathcal{N}_{i}^{W_{i+1}} \triangleq \mathcal{N}_{i}^{W_{i}} \text{ on } (0, \dots, 0) \in \mathbb{R}^{n_{i}}$$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

BSS - only with 0 and 1 $i \in \mathbb{N}^+$ the code of a pair (p_i, P_i) polynomial p_i program of a $P^{\mathcal{O}}$ -machine using only the constants 0 and 1 P_i $\mathcal{N}^{\mathcal{B}}_{i}$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}$, P_i , and the time bound p_i $V_0 = \emptyset, m_0 = 0.$ Stage $i \ge 1$: Let $(n_i > m_{i-1})$ and $p_i(n_i) + n_i < 2^{n_i}$. $W_i = \bigcup_{i < i} V_i$ $V_i = \{\mathbf{x} \in \{0,1\}^{n_i} \mid \mathcal{N}_i^{W_i} \text{ rejects } (0,\ldots,0) \in \mathbb{R}^{n_i}\}$ & **x** is not queried by $\mathcal{N}_i^{W_i}$ on input $(0, \ldots, 0) \in \mathbb{R}^{n_i}$, $(m_i = 2^{n_i})$ $\Rightarrow \mathcal{N}_{i}^{W_{i+1}} \triangleq \mathcal{N}_{i}^{\mathcal{Q}} \text{ on } (0,...,0) \in \mathbb{R}^{n_{i}}$ $\mathcal{Q}_{\mathsf{R}} = \bigcup_{i>1} W_i,$

 $\mathcal{N}_{i}^{W_{i+1}} \triangleq \mathcal{N}_{i}^{Q}$ on $(0,...,0) \in \mathbb{R}^{n_{i}}$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

Ljubljana 2009

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

BSS - only with 0 and 1

$$i \in \mathbb{N}^+$$
 the code of a pair (p_i, P_i)

$$p_i$$
 polynomial

program of a $P^{\mathcal{O}}$ -machine using only the constants 0 and 1 $\begin{array}{c} P_i \\ \mathcal{N}_i^{\mathcal{B}} \end{array}$

machine using $\mathcal{B} \subset \mathbb{R}^{\infty}$, P_i , and the time bound p_i

$$egin{aligned} &V_0=\emptyset,\ m_0=0.\ ext{Stage}\ i\geq 1:\ ext{Let}\ n_i>m_{i-1}\ ext{and}\ p_i(n_i)+n_i<2^{n_i}.\ &W_i=\cup_{j< i}V_j,\ &V_i=\{\mathbf{x}\in\{0,1\}^{n_i}\mid\mathcal{N}_i^{W_i}\ ext{rejects}\ (0,\ldots,0)\in \mathbb{R}^{n_i}\ &\mathbb{R}\ &$$

 $\mathcal{N}_{i}^{W_{i}} \triangleq \mathcal{N}_{i}^{W_{i+1}} \triangleq \mathcal{N}_{i}^{Q}$ on $(0,...,0) \in \mathbb{R}^{n_{i}}$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

Ljubljana 2009

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

$$i \in \mathbb{N}^+$$
 the code of a pair (p_i, P_i)

- polynomial p_i
- $\begin{array}{c} P_i \\ \mathcal{N}_i^{\mathcal{B}} \end{array}$ program of a $P^{\mathcal{O}}$ -machine using only the constants 0 and 1
 - machine using $\mathcal{B} \subset \mathbb{R}^{\infty}$, P_i , and the time bound p_i

$$egin{aligned} V_0 &= \emptyset, \ m_0 = 0. \ ext{Stage} \ i \geq 1: \ ext{Let} \ n_i > m_{i-1} \ ext{and} \ p_i(n_i) + n_i < 2^{n_i}. \ W_i &= \cup_{j < i} V_j, \ V_i \ &= \{ \mathbf{x} \in \{0, 1\}^{n_i} \mid \mathcal{N}_i^{W_i} \ ext{rejects} \ (0, \dots, 0) \in \mathbb{R}^{n_i} \ \& \ \mathbf{x} \ ext{is not queried by} \ \mathcal{N}_i^{W_i} \ ext{on input} \ (0, \dots, 0) \in \mathbb{R}^{n_i} \}, \ m_i = 2^{n_i}. \end{aligned}$$

$$\begin{aligned} \mathcal{Q}_{\mathsf{R}} &= \bigcup_{i \ge 1} W_i, \\ L_{\mathsf{R}} &= \{ \mathbf{y} \mid (\exists i \in \mathbb{N}^+) (\mathbf{y} \in \mathbb{R}^{n_i} \& V_i \neq \emptyset) \} \in \mathrm{DNP}_{\mathsf{R}}^{\mathcal{Q}_{\mathsf{R}}} \setminus \mathrm{P}_{\mathsf{R}}^{\mathcal{Q}_{\mathsf{R}}}, \\ \mathsf{R} &= (\mathbb{R}; 0, 1; \cdot, +, -; \ge). \end{aligned}$$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

$$\begin{split} V_{0} &= \emptyset, \ m_{0} = 0. \ \text{Stage} \ i \geq 1: \ \text{Let} \ n_{i} > m_{i-1} \ \text{and} \ p_{i}(n_{i}) + n_{i} < 2^{n_{i}}. \\ W_{i} &= \bigcup_{j < i} V_{j}, \\ V_{i} &= \{\mathbf{x} \in \{0, 1\}^{n_{i}} \mid \mathcal{N}_{i}^{W_{i}} \text{ rejects} \ (0, \dots, 0) \in \mathbb{R}^{n_{i}} \\ & \& \ \mathbf{x} \text{ is} \quad \stackrel{*}{\underset{i \neq \mathcal{N}_{i}}{\overset{\text{upperp}}{\overset{\overset{\text{upperp}}{\overset{\text{upperp}}{\overset{\text{upperp}}{\overset{\overset{\text{upperp}}{\overset{\overset$$

An oracle Q with $P_{\mathbb{R}(=)}^{Q} \neq DNP_{\mathbb{R}(=)}^{Q}$ Diagonalization techniques from Baker, Gill, and Solovay (only equality tests)

$$i \in \mathbb{N}^+$$
 the code of a pair (p_i, P_i)

 p_i polynomial

 $P_i \qquad \text{program of a P}^{\mathcal{O}}\text{-machine over } \mathbb{R}_{(=)} = (\mathbb{R}; \mathbb{R}; +, -, \cdot; =)$ using the constants c_1, \ldots, c_{k_i}

1,...,
$$k_i$$
 codes of $c_1, \ldots, c_{k_i} \in \mathbb{R}$
 $\mathcal{N}_i^{\mathcal{B}, c_1, \ldots, c_{k_i}}$ uses $\mathcal{B} \subseteq \mathbb{R}^\infty, c_1, \ldots, c_{k_i}, P_i$, and the time bound p_i

An oracle Q with $P_{\mathbb{R}(=)}^{Q} \neq DNP_{\mathbb{R}(=)}^{Q}$ Diagonalization techniques from Baker, Gill, and Solovay (only equality tests)

$$\begin{split} i \in \mathbb{N}^+ & \text{the code of a pair } (p_i, P_i) \\ p_i & \text{polynomial} \\ P_i & \text{program of a P}^{\mathcal{O}}\text{-machine over } \mathbb{R}_{(=)} = (\mathbb{R}; \mathbb{R}; +, -, \cdot; =) \\ & \text{using the constants } c_1, \dots, c_{k_i} \\ 1, \dots, k_i & \text{codes of } c_1, \dots, c_{k_i} \in \mathbb{R} \\ \mathcal{N}_i^{\mathcal{B}, c_1, \dots, c_{k_i}} & \text{uses } \mathcal{B} \subseteq \mathbb{R}^\infty, c_1, \dots, c_{k_i}, P_i, \text{ and the time bound } p_i \end{split}$$

An oracle Q with $P_{\mathbb{R}(=)}^{Q} \neq DNP_{\mathbb{R}(=)}^{Q}$

Diagonalization techniques from Baker, Gill, and Solovay (only equality tests)

only equality tests

$$i \in \mathbb{N}^+$$
 the code of a pair (p_i, P_i)

 p_i polynomial

 $P_i \qquad \text{program of a P}^{\mathcal{O}}\text{-machine over } \mathbb{R}_{(=)} = (\mathbb{R}; \mathbb{R}; +, -, \cdot; =)$ using the constants c_1, \ldots, c_{k_i}

$$1, \ldots, k_i \quad \text{codes of } c_1, \ldots, c_{k_i} \in \mathbb{R}$$

 $\mathcal{N}_i^{\mathcal{B},c_1,\ldots,c_{k_i}}$ uses $\mathcal{B} \subseteq \mathbb{R}^{\infty}, c_1,\ldots,c_{k_i}, P_i$, and the time bound p_i

An oracle Q with $P_{\mathbb{R}(=)}^{Q} \neq DNP_{\mathbb{R}(=)}^{Q}$

Diagonalization techniques from Baker, Gill, and Solovay (only equality tests)

only equality tests

- $i \in \mathbb{N}^+$ the code of a pair (p_i, P_i)
- p_i polynomial
- $P_i \qquad \text{program of a P}^{\mathcal{O}}\text{-machine over } \mathbb{R}_{(=)} = (\mathbb{R}; \mathbb{R}; +, -, \cdot; =)$ using the constants c_1, \ldots, c_{k_i}

1,...,
$$k_i$$
 codes of $c_1, \ldots, c_{k_i} \in \mathbb{R}$
 $\mathcal{N}_i^{\mathcal{B}, c_1, \ldots, c_{k_i}}$ uses $\mathcal{B} \subseteq \mathbb{R}^{\infty}, c_1, \ldots, c_{k_i}, P_i$, and the time bound p_i

$$V_i = \{ \mathbf{x} \in \{0, 1\}^{n_i} \mid \\ \forall c_1 \cdots \forall c_{k_i} (\mathcal{N}_i^{W_i, c_1, \dots, c_{k_i}} \text{ rejects } (0, \dots, 0) \in \mathbb{R}^{n_i} \\ \& \mathbf{x} \text{ is not queried by } \mathcal{N}_i^{W_i, c_1, \dots, c_{k_i}} \text{ on } (0, \dots, 0) \in \mathbb{R}^{n_i}) \}$$

An oracle Q with $P_{\mathbb{R}(=)}^{Q} \neq DNP_{\mathbb{R}(=)}^{Q}$

Diagonalization techniques from Baker, Gill, and Solovay (only equality tests)

only equality tests

- $i \in \mathbb{N}^+$ the code of a pair (p_i, P_i)
- p_i polynomial
- $P_i \qquad \text{program of a P}^{\mathcal{O}}\text{-machine over } \mathbb{R}_{(=)} = (\mathbb{R}; \mathbb{R}; +, -, \cdot; =)$ using the constants c_1, \ldots, c_{k_i}

1,...,
$$k_i$$
 codes of $c_1, \ldots, c_{k_i} \in \mathbb{R}$
 $\mathcal{N}_i^{\mathcal{B}, c_1, \ldots, c_{k_i}}$ uses $\mathcal{B} \subseteq \mathbb{R}^{\infty}, c_1, \ldots, c_{k_i}, P_i$, and the time bound p_i

$$V_{i} = \{ \mathbf{x} \in \{0, 1\}^{n_{i}} \mid \\ \forall c_{1} \cdots \forall c_{k_{i}} (\mathcal{N}_{i}^{W_{i}, c_{1}, \dots, c_{k_{i}}} \text{ rejects } (0, \dots, 0) \in \mathbb{R}^{n_{i}} \\ \& \mathbf{x} \text{ is not queried by } \mathcal{N}_{i}^{W_{i}, c_{1}, \dots, c_{k_{i}}} \text{ on } (0, \dots, 0) \in \mathbb{R}^{n_{i}}) \} \\ V_{i} = \emptyset \text{ can be satisfied although} \\ x \text{ is not queried on } (0, \dots, 0)$$
only equality tests

- $i \in \mathbb{N}^+$ the code of a pair (p_i, P_i)
- p_i polynomial
- $P_i \qquad \text{program of a P}^{\mathcal{O}}\text{-machine over } \mathbb{R}_{(=)} = (\mathbb{R}; \mathbb{R}; +, -, \cdot; =)$ using the constants c_1, \ldots, c_{k_i}

1,...,
$$k_i$$
 codes of $c_1, \ldots, c_{k_i} \in \mathbb{R}$
 $\mathcal{N}_i^{\mathcal{B}, c_1, \ldots, c_{k_i}}$ uses $\mathcal{B} \subseteq \mathbb{R}^\infty, c_1, \ldots, c_{k_i}, P_i$, and the time bound p_i

$$V_{i} = \{ \mathbf{x} \in \{0, 1\}^{n_{i}} \mid \\ \forall c_{1} \cdots \forall c_{k_{i}} (\mathcal{N}_{i}^{W_{i}, c_{1}, \dots, c_{k_{i}}} \text{ rejects } (0, \dots, 0) \in \mathbb{R}^{n_{i}} \\ \& \mathbf{x} \text{ is not queried by } \mathcal{N}_{i}^{W_{i}, c_{1}, \dots, c_{k_{i}}} \text{ on } (0, \dots, 0) \in \mathbb{R}^{n_{i}}) \} \\ V_{i} = \emptyset \text{ can be satisfied although} \\ x \text{ is not queried on } (0, \dots, 0)$$

only equality tests

$$\begin{split} & \sum_{j_1,\dots,j_k \ge 0} \alpha_{j_1,\dots,j_k} c_1^{j_1} \cdots c_k^{j_k} \in \{0,1\}? \\ & \text{where } k \le k_i, \, c_1,\dots,c_{k_i} \in \mathbb{R}, \, \alpha_{j_1,\dots,j_k} \in \mathbb{Z}. \\ & p(c_k) = 0? \\ & p(c_k) = 1? \quad \text{for} \quad p(x) = \sum_{j_1,\dots,j_k \ge 0} \alpha_{j_1,\dots,j_k} c_1^{j_1} \cdots c_{k-1}^{j_{k-1}} x^{j_k}. \end{split}$$

Ljubljana 2009

only equality tests

The answer to $p(c_k) = 0$? and $p(c_k) = 1$? is only dependent on some

$$\operatorname{char}(c_1,\ldots,c_{k_i})=(d_1,\ldots,d_{k_i},q_1,\ldots,q_{k_i})$$

where $d_k \ge 2 \Rightarrow q_k(c_k) = 0$ and q_k irreducible.

$$i \in \mathbb{N}^+$$
 the code of $(p_i, P_i, t_i),$
 $t_i = (d_1, \dots, d_{k_i}, q_1, \dots, q_{k_i}),$

only equality tests

The answer to $p(c_k) = 0$? and $p(c_k) = 1$? is only dependent on some

Ljubljana 2009

gassnerc@uni-greifswald.de

only equality tests

The answer to $p(c_k) = 0$? and $p(c_k) = 1$? is only dependent on some

$$\operatorname{char}(c_1,\ldots,c_{k_i})=(d_1,\ldots,d_{k_i},q_1,\ldots,q_{k_i})$$

where $d_k \ge 2 \Rightarrow q_k(c_k) = 0$ and q_k irreducible.

$$i \in \mathbb{N}^+$$
 the code of $(p_i, P_i, t_i),$
 $t_i = (d_1, \dots, d_{k_i}, q_1, \dots, q_{k_i}),$

only equality tests

The answer to $p(c_k) = 0$? and $p(c_k) = 1$? is only dependent on some

$$\operatorname{char}(c_1,\ldots,c_{k_i})=(d_1,\ldots,d_{k_i},q_1,\ldots,q_{k_i})$$

where $d_k \ge 2 \Rightarrow q_k(c_k) = 0$ and q_k irreducible.

$$i \in \mathbb{N}^+$$
 the code of $(p_i, P_i, t_i),$
 $t_i = (d_1, \dots, d_{k_i}, q_1, \dots, q_{k_i}),$

$$\begin{split} V_i &= \{ \mathbf{x} \in \{0,1\}^{n_i} \mid \forall c_1 \cdots \forall c_{k_i} (\operatorname{char}(c_1,\ldots,c_{k_i}) = t_i) \\ & \& \ \mathcal{N}_i^{W_i,c_1,\ldots,c_{k_i}} \text{ rejects } (0,\ldots,0) \in \mathrm{I\!R}^{n_i} \\ & \& \ \mathbf{x} \text{ is not queried by } \mathcal{N}_i^{W_i,c_1,\ldots,c_{k_i}} \text{ on } (0,\ldots,0) \in \mathrm{I\!R}^{n_i}) \}. \\ L_{\mathrm{I\!R}_{(=)}} &= \{ \mathbf{y} \mid (\exists i \in \mathrm{I\!N}^+) (\mathbf{y} \in \mathrm{I\!R}^{n_i} \ \& \ V_i \neq \emptyset) \} \in \mathrm{DNP}_{\mathrm{I\!R}_{(=)}}^{\mathcal{Q}_{\mathrm{I\!R}_{(=)}}} \setminus \mathrm{P}_{\mathrm{I\!R}_{(=)}}^{\mathcal{Q}_{\mathrm{I\!R}_{(=)}}} \\ \mathrm{I\!R}_{(=)} &= (\mathrm{I\!R}; \mathrm{I\!R}; +, -, \cdot; =). \end{split}$$

 $i \in \mathbb{N}^+$ the code of a pair (p_i, P_i)

- p_i polynomial
- P_i program of a P^O-machine containing $1, \ldots, k_i$ for c_1, \ldots, c_{k_i}
- $\mathcal{K}_{i,i}^{\mathcal{B}}$ set of machines using $\mathcal{B}, c_1, \ldots, c_{k_i}, P_i, p_i$, described by $N_{i,j}$

BSS - with order tests

- $i \in \mathbb{N}^+$ the code of a pair (p_i, P_i)
- p_i polynomial
- P_i program of a P^O-machine containing $1, \ldots, k_i$ for c_1, \ldots, c_{k_i}
 - set of machines using $\mathcal{B}, c_1, \ldots, c_{k_i}, P_i, p_i$, described by $N_{i,j}$

BSS - with order tests

 $\mathcal{K}^{\mathcal{B}}_{i,j}$

$$i \in \mathbb{N}^+$$
 the code of a pair (p_i, P_i)

- p_i polynomial
- P_i program of a P^O-machine containing $1, \ldots, k_i$ for c_1, \ldots, c_{k_i}
- $\mathcal{K}_{i,j}^{\mathcal{B}}$ set of machines using $\mathcal{B}, c_1, \ldots, c_{k_i}, P_i, p_i$, described by $N_{i,i}$

\Rightarrow We need a new encoding.

But: If n_i will be greater, then the test results are also dependent on the new zeros of the new polynonials.

BSS - with order tests

BSS - with -

$$i \in \mathbb{N}^{+} \text{ the code of a pair } (p_{i}, P_{i})$$

$$p_{i} \quad \text{polynomial}$$

$$P_{i} \quad \text{program of a P}^{\mathcal{O}}\text{-machine containing } 1, \dots, k_{i} \text{ for } c_{1}, \dots, c_{k_{i}}$$

$$\mathcal{K}_{i,j}^{\mathcal{B}} \quad \text{set of machines using } \mathcal{B}, c_{1}, \dots, c_{k_{i}}, P_{i}, p_{i}, \text{ described by } N_{i,j}$$

$$m_{0} = 0.$$
Stage $i \geq 1: n_{i} > m_{i-1}, p_{i}(n_{i}) < 2^{n_{i}-1}, p_{i}(n_{i}) + n_{i} < 2^{n_{i}}. V_{i,0} = \emptyset.$
Stage $j \geq 1:$

$$W_{i,j} = \bigcup_{i' < i}, V_{i'} \cup \bigcup_{j' < j}, V_{i,j'},$$

$$V_{i,j} = \{\mathbf{x} \in \{0, 1\}^{n_{i}-1} \times \{C_{i,j}\} \mid$$
?

$\mathcal{N}_{i}^{W_{i},c_{1},...,c_{k_{i}}}$ rejects $(0,...,0,C_{i,j}) \in \mathbb{R}^{n_{i}}$? Using further ideas for the full BSS model

$$\mathcal{N}_{i}^{W_{i},c_{1},...,c_{k_{i}}} \in K_{i,j};$$
Input: (0)
$$p_{v,1}(C_{i,j}) \geq p_{v,1}(C_{i,j}) \geq p_{v,1}(C_{i,j}),\dots$$

$$(q_{\mu,1}(C_{i,j}),\dots, q_{v}) \leq p_{v,m}(C_{i,j})$$

$$(q_{\lambda,1}(C_{i,j}),\dots, q_{v}) \leq p_{v,m}(C_{i,j})$$

 $(0,...,0,C_{i,j}) \in \mathbb{R}^{n_i}$ 0? $(q_{\mu,s_{\mu}}(C_{i,j})) \in W_i$? no $) \ge 0$? $q_{\lambda,s_{\lambda}}(C_{ij})) \in W_i$? Output: 0

The values of the polynomials at C_{ij} are uniquely determined by C_{ij} .

Ljubljana 2009

gassnerc@uni-greifswald.de

$\mathcal{N}_{i}^{W_{i},c_{1},...,c_{k_{i}}}$ rejects $(0,...,0,C_{i,j}) \in \mathbb{R}^{n_{i}}$? Using further ideas for the full BSS model

Input:
$$(0,..., 0, C_{ij}) \in \mathbb{R}^{n_i}$$

 $p_{v,1}(C_{ij}) \ge 0?$
 $(q_{\mu,1}(C_{ij}),..., q_{\mu,s_{\mu}}(C_{ij})) \in W_i?$
 yes
 $p_{v,m}(C_{ij}) \ge 0?$
 yes
 $(q_{\lambda,1}(C_{ij}),..., q_{\lambda,s_{\lambda}}(C_{ij})) \in W_i?$
 mo
Output: 0

The values of the polynomials at C_{ij} are uniquely determined by C_{ij} .

The path is uniquely determined.

 \Rightarrow

Ljubljana 2009

gassnerc@uni-greifswald.de

$$f_1, f_2, \dots, f_s$$
 where
 $f_k \in \mathrm{I\!R}[x],$
 $f_k(x) = \sum_{j=0}^{2^{p_i(n_i)}} (\sum_{j_1,\dots,j_{k_i}=0}^{2^{p_i(n_i)}} \alpha_{j_1,\dots,j_{k_i},j}^{(k)} c_1^{j_1} \cdots c_{k_i}^{j_{k_i}}) x^j.$

The definition of $C_{i,j}$

$$\begin{array}{l} \text{BSS} \text{ - with order tests}\\ f_1, f_2, \dots, f_s\\ f_k \in \mathrm{IR}[x],\\ f_k(x) = \sum_{j=0}^{2^{p_i(n_i)}} (\sum_{j_1,\dots,j_{k_i}=0}^{2^{p_i(n_i)}} \alpha_{j_1,\dots,j_{k_i},j}^{(k)} c_1^{j_1} \cdots c_{k_i}^{j_{k_i}}) x^j. \end{array}$$

 f_1, f_2, \dots, f_s where $f_k \in \mathrm{I\!R}[x],$ $f_k(x) = \sum_{j=0}^{2^{p_i(n_i)}} (\sum_{j_1,\dots,j_{k_i}=0}^{2^{p_i(n_i)}} \underbrace{\alpha_{j_1,\dots,j_{k_i},j}^{(k)}}_{j_1,\dots,j_{k_i},j} c_1^{j_1} \cdots c_{k_i}^{j_{k_i}}) x^j.$

 $\in \mathbb{Z} \cap [-2^{p_i(n_i)}, 2^{p_i(n_i)}]$

gassnerc@uni-greifswald.de

BSS - with order tests f_1, f_2, \ldots, f_s where $f_k \in \mathbb{R}[x],$ $f_k(x) = \sum_{j=0}^{2^{p_i(n_i)}} (\sum_{j_1,\dots,j_{k_i}=0}^{2^{p_i(n_i)}} \alpha_{j_1,\dots,j_{k_i},j}^{(k)} c_1^{j_1} \cdots c_{k_i}^{j_{k_i}}) x^j.$ $\in \mathbb{Z} \cap [-2^{p_i(n_i)}, 2^{p_i(n_i)}]$ $N_{\mathrm{char}}(i, c_1, \ldots, c_{k_i})$ Cantor number of $(\mu_1, \ldots, \mu_s, \nu_1, \ldots, \nu_s, \mu, \mu', \nu)$ where $\mu_k =$ $\mu_k =$ $\nu_k =$ $\mu =$ $\mu' =$ $\nu =$

Ljubljana 2009

gassnerc@uni-greifswald.de

$$f_{1}, f_{2}, \dots, f_{s} \text{ where}$$

$$f_{k} \in \mathbb{R}[x],$$

$$f_{k}(x) = \sum_{j=0}^{2^{p_{i}(n_{i})}} (\sum_{j_{1},\dots,j_{k_{i}}=0}^{2^{p_{i}(n_{i})}} \underbrace{\alpha_{j_{1},\dots,j_{k_{i}},j}^{(k)}}_{\in \mathbb{Z} \cap [-2^{p_{i}(n_{i})}, 2^{p_{i}(n_{i})}]} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j}.$$

 $egin{aligned} N_{ ext{char}}(i,c_1,\ldots,c_{k_i}) \ & ext{Cantor number of } (\mu_1,\ldots,\mu_s,
u_1,\ldots,
u_s,\mu,\mu',
u) ext{ where} \ & \mu_k = \ &
u_k = \ & \mu = \end{aligned}$

- $\mu' =$
- u =

$$f_{1}, f_{2}, \dots, f_{s} \text{ where}$$

$$f_{k} \in \mathbb{R}[x],$$

$$f_{k}(x) = \sum_{j=0}^{2^{p_{i}(n_{i})}} (\sum_{j_{1},\dots,j_{k_{i}}=0}^{2^{p_{i}(n_{i})}} \underbrace{\alpha_{j_{1},\dots,j_{k_{i}},j}^{(k)}}_{\in \mathbb{Z} \cap [-2^{p_{i}(n_{i})}, 2^{p_{i}(n_{i})}]} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j}.$$

$$\in \mathbb{Z} \cap [-2^{p_{i}(n_{i})}, 2^{p_{i}(n_{i})}]$$

$$N_{\text{char}}(i, c_{1}, \dots, c_{k_{i}})$$

Cantor number of $(\mu_1, \ldots, \mu_s, \nu_1, \ldots, \nu_s, \mu, \mu', \nu)$ where

determines order tests $p_{\nu,\mu}(x) \ge 0$ and queries on (0, ..., 0, N)if $N \in \mathbb{N}$, $p_{\nu,\mu} q_{\lambda,\mu} \in \mathbb{Q}[x]$

 $\mu' =$

 $\nu =$

$$f_{1}, f_{2}, \dots, f_{s} \text{ where}$$

$$f_{k} \in \mathbb{R}[x],$$

$$f_{k}(x) = \sum_{j=0}^{2^{p_{i}(n_{i})}} (\sum_{j_{1},\dots,j_{k_{i}}=0}^{2^{p_{i}(n_{i})}} \underbrace{\alpha_{j_{1},\dots,j_{k_{i}},j}^{(k)}}_{\in \mathbb{Z} \cap [-2^{p_{i}(n_{i})}, 2^{p_{i}(n_{i})}]} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j}.$$

 $N_{\text{char}}(i, c_1, \dots, c_{k_i})$ Cantor number of $(\mu_1, \dots, \mu_s, \nu_1, \dots, \nu_s, \mu, \mu', \nu)$ where $\mu_k = \text{code}(f_k) \in \mathbb{N}^+ \quad \text{if } f_k \in \mathbb{Q}[x],$

 $egin{aligned} \mu_k &= \operatorname{code}(f_k) \in \mathbb{N}^+ & ext{if } f_k \in \mathbb{Q}[x] \ \mu_k &= 0 & ext{otherwise,} \
u_k &= & \ \mu &= & \ \mu' &= & \
u &= & \$

$$f_{1}, f_{2}, \dots, f_{s} \text{ where}$$

$$f_{k} \in \mathbb{R}[x],$$

$$f_{k}(x) = \sum_{j=0}^{2^{p_{i}(n_{i})}} (\sum_{j_{1},\dots,j_{k_{i}}=0}^{2^{p_{i}(n_{i})}} \underbrace{\alpha_{j_{1},\dots,j_{k_{i}},j}^{(k)}}_{\in \mathbb{Z} \cap [-2^{p_{i}(n_{i})}, 2^{p_{i}(n_{i})}]} x^{j}.$$

$$egin{aligned} &\mu_k = \ &\mu_k = \ &
u_k = \ &\mu &= \min \cap_{k=1,\dots,s \ \mathrm{degree}(f_L)>1} \left\{ n \in \mathbb{N} \mid orall x(f_k(x) = 0 \lor f_k(x) = 1 \Rightarrow n > x)
ight\}, \ &\mu' &= \ &
u &= \end{aligned}$$

$$f_{1}, f_{2}, \dots, f_{s} \text{ where}$$

$$f_{k} \in \mathbb{R}[x],$$

$$f_{k}(x) = \sum_{j=0}^{2^{p_{i}(n_{i})}} (\sum_{j_{1},\dots,j_{k_{i}}=0}^{2^{p_{i}(n_{i})}} \underbrace{\alpha_{j_{1},\dots,j_{k_{i}},j}^{(k)}}_{\in \mathbb{Z} \cap [-2^{p_{i}(n_{i})}, 2^{p_{i}(n_{i})}]} x^{j}.$$

$$\in \mathbb{Z} \cap [-2^{p_{i}(n_{i})}, 2^{p_{i}(n_{i})}]$$

$$\begin{array}{l} \mu_{k} = \\ \mu_{k} = \\ \nu_{k} = \\ \mu = \min \bigcap_{\substack{k=1,\dots,s \\ \text{degree}(f_{L})>1}} \{n \in \mathbb{N} \mid \forall x (f_{k}(x) = 0 \lor f_{k}(x) = 1 \Rightarrow n > x)\}, \\ \mu' = \\ \nu = \\ \nu = \end{array}$$

$$f_{1}, f_{2}, \dots, f_{s} \text{ where}$$

$$f_{k} \in \operatorname{I\!R}[x],$$

$$f_{k}(x) = \sum_{j=0}^{2^{p_{i}(n_{i})}} (\sum_{j_{1},\dots,j_{k_{i}}=0}^{2^{p_{i}(n_{i})}} \underbrace{\alpha_{j_{1},\dots,j_{k_{i}},j}^{(k)}}_{\in \mathbb{Z} \cap [-2^{p_{i}(n_{i})}, 2^{p_{i}(n_{i})}]} x^{j}.$$

$$egin{aligned} &\mu_k = \ &\mu_k = \ &
u_k = \lim_{x o \infty} \mathrm{sgn}(f_k(x)), \ &\mu &= \ &\mu' = \ &
u &= \end{aligned}$$

$$\begin{aligned} f_{1}, f_{2}, \dots, f_{s} \text{ where} \\ f_{k} \in \mathrm{I\!R}[x], \\ f_{k}(x) &= \sum_{j=0}^{2^{p_{i}(n_{i})}} (\sum_{j_{1},\dots,j_{k_{i}}=0}^{2^{p_{i}(n_{i})}} \alpha_{j_{1},\dots,j_{k_{i}},j}^{(k)} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j}. \\ &\in \mathbb{Z} \cap [-2^{p_{i}(n_{i})}, 2^{p_{i}(n_{i})}] \\ N_{\mathrm{char}}(i, c_{1}, \dots, c_{k_{i}}) \\ \mathrm{Cantor number of } (\mu_{1}, \dots, \mu_{s}, \nu_{1}, \dots, \nu_{s}, \mu, \mu', \nu) \text{ where} \\ \\ \mu_{k} &= \\ \mu_{k} &$$

$$\begin{split} f_1, f_2, \dots, f_s \text{ where } \\ f_k \in \mathrm{I\!R}[x], \\ f_k(x) &= \sum_{j=0}^{2^{p_i(n_i)}} (\sum_{j_1,\dots,j_{k_i}=0}^{2^{p_i(n_i)}} \underline{\alpha}_{j_1,\dots,j_{k_i},j}^{(k)} c_1^{j_1} \cdots c_{k_i}^{j_{k_i}}) x^j. \\ &\in \mathbb{Z} \cap [-2^{p_i(n_i)}, 2^{p_i(n_i)}] \\ N_{\mathrm{char}}(i, c_1, \dots, c_{k_i}) \\ &\operatorname{Cantor number of } (\mu_1, \dots, \mu_s, \nu_1, \dots, \nu_s, \mu, \mu', \nu) \text{ where } \\ \mu_k &= \\$$

$$f_{1}, f_{2}, \dots, f_{s} \text{ where}$$

$$f_{k} \in \mathbb{R}[x],$$

$$f_{k}(x) = \sum_{j=0}^{2^{p_{i}(n_{i})}} (\sum_{j_{1},\dots,j_{k_{i}}=0}^{2^{p_{i}(n_{i})}} \underbrace{\alpha_{j_{1},\dots,j_{k_{i}},j}^{(k)}}_{\in \mathbb{Z} \cap [-2^{p_{i}(n_{i})}, 2^{p_{i}(n_{i})}]} x^{j}.$$

$$egin{aligned} &\mu_k = \ &\mu_k = \ &
u_k = \ &\mu &= \ &\mu' = \min \cap_{k=1,\dots,s \atop \mu_k = 0} \{n \in \mathbb{N} \mid (orall x \in \mathbb{N}) (f_k(x) \in \mathbb{N} \Rightarrow n > x)\}, \ &
u &= \end{aligned}$$

$$f_{1}, f_{2}, \dots, f_{s} \text{ where}$$

$$f_{k} \in \mathbb{R}[x],$$

$$f_{k}(x) = \sum_{j=0}^{2^{p_{i}(n_{i})}} (\sum_{j_{1},\dots,j_{k_{i}}=0}^{2^{p_{i}(n_{i})}} \underbrace{\alpha_{j_{1},\dots,j_{k_{i}},j}^{(k)}}_{\in \mathbb{Z} \cap [-2^{p_{i}(n_{i})}, 2^{p_{i}(n_{i})}]} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j}.$$

BSS - with order tests f_1, f_2, \ldots, f_s where $f_k \in \mathbb{R}[x],$ $f_k(x) = \sum_{j=0}^{2^{p_i(n_i)}} (\sum_{j_1,\dots,j_{k_i}=0}^{2^{p_i(n_i)}} \alpha_{j_1,\dots,j_{k_i},j}^{(k)} c_1^{j_1} \cdots c_{k_i}^{j_{k_i}}) x^j.$ $\in \mathbb{Z} \cap [-2^{p_i(n_i)}, 2^{p_i(n_i)}]$ $N_{\mathrm{char}}(i, c_1, \ldots, c_{k_i})$ Cantor number of $(\mu_1, \ldots, \mu_s, \nu_1, \ldots, \nu_s, \mu, \mu', \nu)$ where $\mu_k =$ determine parts of the queries on $(0, \ldots, 0, N)$ $\mu_k =$ for large $N \ge N_{char}(\ldots), N \in \mathbb{N}$ $\nu_k =$ $\mu = \min \bigcap_{\substack{k=1,\dots,s\\ \text{degree}(f_k)>1}} \{ n \in \mathbb{N} \mid \forall x (f_k(x) = 0 \lor f_k(x) = 1 \Rightarrow n > x) \},\$ $\mu' = \min \bigcap_{k=1,\dots,s \atop \mu_k = 0} \{ n \in \mathbb{N} \mid (\forall x \in \mathbb{N}) (f_k(x) \in \mathbb{N} \Rightarrow n > x) \},\$

u =

$$f_{1}, f_{2}, \dots, f_{s} \text{ where}$$

$$f_{k} \in \mathbb{R}[x],$$

$$f_{k}(x) = \sum_{j=0}^{2^{p_{i}(n_{i})}} (\sum_{j_{1},\dots,j_{k_{i}}=0}^{2^{p_{i}(n_{i})}} \underbrace{\alpha_{j_{1},\dots,j_{k_{i}},j}^{(k)}}_{\in \mathbb{Z} \cap [-2^{p_{i}(n_{i})}, 2^{p_{i}(n_{i})}]} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j}.$$

$$egin{aligned} &\mu_k = \ &\mu_k = \ &
u_k = \ &
u_k = \ &\mu &= \ &\mu' = \ &
u &= \min \cap_{k=1,...,s} \{n \in {
m I\!N} \mid f_k(n) < 2^n \}. \end{aligned}$$

$$f_{1}, f_{2}, \dots, f_{s} \text{ where}$$

$$f_{k} \in \mathbb{R}[x],$$

$$f_{k}(x) = \sum_{j=0}^{2^{p_{i}(n_{i})}} (\sum_{j_{1},\dots,j_{k_{i}}=0}^{2^{p_{i}(n_{i})}} \underbrace{\alpha_{j_{1},\dots,j_{k_{i}},j}^{(k)}}_{\in \mathbb{Z} \cap [-2^{p_{i}(n_{i})}, 2^{p_{i}(n_{i})}]} x^{j}.$$

BSS - with order tests f_1, f_2, \ldots, f_s where $f_k \in \mathbb{R}[x],$ $f_k(x) = \sum_{j=0}^{2^{p_i(n_i)}} (\sum_{j_1,\dots,j_{k_i}=0}^{2^{p_i(n_i)}} \alpha_{j_1,\dots,j_{k_i},j}^{(k)} c_1^{j_1} \cdots c_{k_i}^{j_{k_i}}) x^j.$ $\in \mathbb{Z} \cap [-2^{p_i(n_i)}, 2^{p_i(n_i)}]$ $N_{\text{char}}(i, c_1, \ldots, c_{k_i})$ Cantor number of $(\mu_1, \ldots, \mu_s, \nu_1, \ldots, \nu_s, \mu, \mu', \nu)$ where $\mu_k = \operatorname{code}(f_k) \in \mathbb{N}^+$ if $f_k \in \mathbb{Q}[x]$, $\mu_k = 0$ otherwise, $\nu_k = \lim_{x \to \infty} \operatorname{sgn}(f_k(x)),$ $\mu = \min \bigcap_{\substack{k=1,\dots,s\\ \text{degree}(f_k) > 1}} \{ n \in \mathbb{N} \mid \forall x (f_k(x) = 0 \lor f_k(x) = 1 \Rightarrow n > x) \},\$ $\mu' = \min \bigcap_{k=1,\dots,s \atop \mu_k = 0} \{ n \in \mathbb{N} \mid (\forall x \in \mathbb{N}) (f_k(x) \in \mathbb{N} \Rightarrow n > x) \},\$ $\nu = \min \bigcap_{k=1,...,s} \{ n \in \mathbb{N} \mid f_k(n) < 2^n \}.$

Ljubljana 2009

 $W_{i}, c_{1}, \dots, c_{k_{i}}$ rejects $(0, \dots, 0, C_{i, j}) \in \mathbb{R}^{n_{i}}$

$$\mathcal{N}_i^{W_i,c_1,\ldots,c_{k_i}} \in K_{i,i}$$

Input:
$$(0,..., 0, C_{ij}) \in \mathbb{R}^{n_i}$$

 $p_{v,1}(C_{ij}) \geq 0$?
yes
 $(q_{\mu,1}(C_{ij}),..., q_{\mu,s_{\mu}}(C_{ij})) \in W_i$?
yes
 $p_{v,m}(C_{ij}) \geq 0$?
yes
 $(q_{\lambda,1}(C_{ij}),..., q_{\lambda,s_{\lambda}}(C_{ij})) \in W_i$?
No
Output: 0

The values of the polynomials at $C_{i,j}$ are uniquely determined by $C_{i,j}$.

The path is uniquely determined.

 \Rightarrow

Ljubljana 2009

gassnerc@uni-greifswald.de

BSS - with

$$\begin{split} i \in \mathbb{N}^{+} \text{ the code of a pair } (p_{i}, P_{i}) \\ p_{i} \qquad \text{polynomial} \\ P_{i} \qquad \text{program of a } \mathbb{P}^{\mathcal{O}}\text{-machine containing } 1, \dots, k_{i} \text{ for } c_{1}, \dots, c_{k_{i}}, \\ \mathcal{K}_{i,j}^{\mathcal{B}} \qquad \text{set of machines using } \mathcal{B}, c_{1}, \dots, c_{k_{i}}, P_{i}, p_{i}, \text{ described} \quad N_{i,j} \\ m_{0} = 0. \\ \text{Stage } i \geq 1: n_{i} > m_{i-1}, p_{i}(n_{i}) < 2^{n_{i}-1}, p_{i}(\mathbf{r} \quad \text{see my paper.} \\ \text{Stage } j \geq 1: \\ W_{i,j} = \bigcup_{i' < i}, V_{i'} \cup \bigcup_{j' < j}, V_{i,j'}, \\ V_{i,j} = \{\mathbf{x} \in \{0, 1\}^{n_{i}-1} \times \{C_{i,j}\}\} | \\ \quad (\exists \mathcal{M} \in \mathcal{K}_{i,j}^{W_{i,j}}) (\mathcal{M} \text{ rejects } (0, \dots, 0, C_{i,j}) \\ \& \mathbf{x} \text{ is not queried by } \mathcal{M} \text{ on input } (0, \dots, 0, C_{i,j}) \in \mathbb{N}^{n_{i}}) \}. \\ m_{i} = 2^{n_{i}}, V_{i} = \bigcup_{j \geq 1} V_{i,j}. \\ \mathcal{Q}_{1} = \bigcup_{i \geq 1} V_{i}, \\ L_{1} = \bigcup_{i \geq 1} \{(y_{1}, \dots, y_{n_{i}-1}, N) \in \mathbb{R}^{n_{i}} \mid V_{i} \cap (\{0, 1\}^{n_{i}-1} \times \{N\}) \neq \emptyset) \}. \\ \Rightarrow L_{1} \in \text{DNP}_{\mathbb{R}}^{\mathcal{Q}_{1}} \setminus P_{\mathbb{R}}^{\mathcal{Q}_{1}}. \end{split}$$

 $E_0 = \mathbb{Q}, \tau_1, \tau_2, \ldots$ where τ_{i+1} is transcendental over $E_i =_{df} E_{i-1}(\tau_i)$

 $A_{n} = \{ (v_{1}, \dots, v_{2n}) \in \{0, v\}^{2n} \mid v \in \mathbb{Z} \setminus \{0\} \& \sum_{i=1}^{2n} v_{i} = nv \}.$ $Q_{2} = \bigcup_{n=1}^{\infty} \{ (\operatorname{sgn}(|v_{1}|), \dots, \operatorname{sgn}(|v_{2n}|), \sum_{i=1}^{2n} v_{i}\tau_{i}) \in \mathbb{R}^{2n+1} \mid (v_{1}, \dots, v_{2n}) \in A_{n} \}.$ $L_{2} = \bigcup_{n=1}^{\infty} \{ (0, \dots, 0, \sum_{i=1}^{2n} v_{i}\tau_{i}) \in \mathbb{R}^{2n+1} \mid (v_{1}, \dots, v_{2n}) \in A_{n} \}.$

 $E_0 = \mathbb{Q}, \tau_1, \tau_2, \ldots$ where τ_{i+1} is transcendental over $E_i =_{df} E_{i-1}(\tau_i)$

$$A_{n} = \{ (v_{1}, \dots, v_{2n}) \in \{0, v\}^{2n} \mid v \in \mathbb{Z} \setminus \{0\} \& \sum_{i=1}^{2n} v_{i} = nv \}.$$

$$Q_{2} = \bigcup_{n=1}^{\infty} \{ (\operatorname{sgn}(|v_{1}|), \dots, \operatorname{sgn}(|v_{2n}|), \sum_{i=1}^{2n} v_{i}\tau_{i}) \in \mathbb{R}^{2n+1} \mid (v_{1}, \dots, v_{2n}) \in A_{n} \}.$$

$$L_{2} = \bigcup_{n=1}^{\infty} \{ (0, \dots, 0, \sum_{i=1}^{2n} v_{i}\tau_{i}) \in \mathbb{R}^{2n+1} \mid (v_{1}, \dots, v_{2n}) \in A_{n} \}.$$

 \Rightarrow Each computation path of a P \mathcal{Q}_2 -machine is traversed by $(0, \ldots, 0, x)$ only if x satisfies some

 $(z_1,\ldots,z_s,p_k(x)) \not\in \mathcal{Q}_2, \qquad (z_1,\ldots,z_s,p_k(x)) \in \mathcal{Q}_2.$
A second oracle Q with $P_{\mathbb{R}}^{Q} \neq DNP_{\mathbb{R}}^{Q}$ Problems in the full BSS model

Ljubljana 2009

gassnerc@uni-greifswald.de

A second oracle Q with $P_{\mathbb{R}}^{Q} \neq DNP_{\mathbb{R}}^{Q}$ Problems in the full BSS model

 $E_0 = \mathbb{Q}, \tau_1, \tau_2, \ldots$ where τ_{i+1} is transcendental over $E_i =_{df} E_{i-1}(\tau_i)$

 $\begin{aligned} A_{n} &= \{ (v_{1}, \dots, v_{2n}) \in \{0, v\}^{2n} \mid v \in \mathbb{Z} \setminus \{0\} \& \sum_{i=1}^{2n} v_{i} = nv \}. \\ \mathcal{Q}_{2} &= \bigcup_{n=1}^{\infty} \{ (\operatorname{sgn}(|v_{1}|), \dots, \operatorname{sgn}(|v_{2n}|), \sum_{i=1}^{2n} v_{i}\tau_{i}) \in \mathbb{R}^{2n+1} \mid (v_{1}, \dots, v_{2n}) \in A_{n} \}. \\ L_{2} &= \bigcup_{n=1}^{\infty} \{ (0, \dots, 0, \sum_{i=1}^{2n} v_{i}\tau_{i}) \in \mathbb{R}^{2n+1} \mid (v_{1}, \dots, v_{n}) \in A \}. \\ \Rightarrow \text{ Each computation path of a } P^{\mathcal{Q}_{2}} \text{-machine is transformed on } See \text{ my paper.} \\ \text{ only if } x \text{ satisfies some} \end{aligned}$

 $(z_1,\ldots,z_s,p_k(x)) \notin \mathcal{Q}_2, \qquad (z_1,\ldots,z_s,p_k(x)) \setminus \mathcal{Q}_2.$

For any P^{Q_2} -machine there is an i_0 such that (1) $x = \sum_{i=i_0+1}^{2n} v_i \tau_i$, (2) $v_l \neq 0, v_{l+1} = \cdots = v_n = 0$ $(i_0 < l \le 2n)$, (3) $(z_1, \dots, z_s, p_k(x)) \in Q_2$ $\Rightarrow s \ge 2n \text{ and } (z_{i_0+1}, \dots, z_s) = (\text{sgn}(|v_{i_0+1}|), \dots, \text{sgn}(|v_l|), 0, \dots, 0)$. $\Rightarrow L_2 \in \text{DNP}_{\mathbb{R}}^{Q_2} \setminus P_{\mathbb{R}}^{Q_2}$.

A summary

Structure	$P \neq DNP$	$DNP \neq NP$	$\mathbf{P}^{\mathcal{Q}} \neq \mathbf{DNP}^{\mathcal{Q}}$	$\mathrm{DNP}^{\mathcal{Q}} \neq \mathrm{NP}^{\mathcal{Q}}$
$(\mathbb{Z};\mathbb{Z};\cdot,+,-;=)$?	yes	defined analogously to BGS	Ø
$(\mathbb{Z};\mathbb{Z};\cdot,+,-;\geq)$?	yes	defined analogously to BGS	Ø
$({\rm I\!R}; {\rm I\!R}; \cdot ,+,-;=)$?	yes	derived from BGS or KP	Ø
$({\rm I\!R}; {\rm I\!R}; \cdot, +, -; \geq)$?	?	$\mathcal{Q}_1,\mathcal{Q}_2$	Z , Q , E

BGS: Baker-Gill-Solovay oracle, E: Emerson oracle, KP: Knapsack Problem

Ljubljana 2009

Relativizations of the P =? DNP Question for the BSS Model

Thank you for your attention!

Christine Gaßner Greifswald.

Thanks also to

Volkmar Liebscher, the organizers of the CCA 2009, the referees reading my paper.

Ljubljana 2009

gassnerc@uni-greifswald.de