Relativizations of the
 P =? DNP Question for the BSS Model

Christine Gaßner
Greifswald

The machines

Computation instructions:

$$
\begin{aligned}
& l: Z_{i}:=Z_{j} \circ Z_{k}, \quad \circ \in\{+,-, \cdot\} \\
& l: Z_{j}:=c
\end{aligned}
$$

Branching instructions:
l : if $Z_{j}=0$ then goto l_{1} else goto l_{2},
$l:$ if $Z_{j} \geq 0$ then goto l_{1} else goto l_{2},
Copy instructions:

$$
l: Z_{I_{j}}:=Z_{I_{k}}
$$

Index instructions:

$$
\begin{aligned}
& l: I_{j}:=1 \\
& l: I_{j}:=I_{j}+1 \\
& l: \text { if } I_{j}=I_{k} \text { then goto } l_{1} \text { else goto } l_{2}
\end{aligned}
$$

The complexity classes

The input:
The guesses:
Assignment:

$$
\begin{aligned}
& \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \cup_{i \geq 1} \mathbb{R}^{i} \\
& \mathbf{y}=\left(y_{1}, \ldots, y_{m}\right) \in \cup_{i \geq 1} \mathbb{R}^{i} .
\end{aligned}
$$

$\mathbf{x} \mapsto Z_{1}, \ldots, Z_{n} \quad \mathbf{y} \mapsto Z_{n+1}, \ldots, Z_{n+m} \quad n \mapsto I_{1}$.

The complexity classes

The input:
The guesses:
Assignment:

$$
\begin{aligned}
& \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \cup_{i \geq 1} \mathbb{R}^{i} . \\
& \mathbf{y}=\left(y_{1}, \ldots, y_{m}\right) \in \cup_{i \geq 1} \mathbb{R}^{i} .
\end{aligned}
$$

$$
\mathbf{x} \mapsto Z_{1}, \ldots, Z_{n} \quad \mathbf{y} \mapsto Z_{n+1}, \ldots, Z_{n+m} \quad n \mapsto I_{1} .
$$

Polynomial time: $\operatorname{cost}(\mathbf{x}) \leq k n^{c}$.
$\operatorname{size}(\mathbf{x}): n$.
$\operatorname{cost}(\mathbf{x})$: Number of executed instructions on \mathbf{x}.

The complexity classes

The input:
The guesses:
Assignment:

$$
\begin{aligned}
& \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \cup_{i \geq 1} \mathbb{R}^{i} . \\
& \mathbf{y}=\left(y_{1}, \ldots, y_{m}\right) \in \cup_{i \geq 1} \mathbb{R}^{i} .
\end{aligned}
$$

$$
\mathbf{x} \mapsto Z_{1}, \ldots, Z_{n} \quad \mathbf{y} \mapsto Z_{n+1}, \ldots, Z_{n+m} \quad n \mapsto I_{1}
$$

Polynomial time: $\operatorname{cost}(\mathbf{x}) \leq k n^{c}$. $\operatorname{size}(\mathbf{x}): n$.
$\operatorname{cost}(\mathbf{x})$: Number of executed instructions on \mathbf{x}.

The oracle machines

An oracle: $\mathcal{O} \subseteq \mathbb{R}^{\infty}$.

The oracle machines:

$$
\text { if }\left(Z_{1}, \ldots, Z_{I_{1}}\right) \in \mathcal{O} \text { then goto } l_{1} \text { else goto } l_{2}
$$

\Rightarrow

$$
\begin{aligned}
& \mathrm{P}_{\mathbb{R}} \subseteq \mathrm{DNP}_{\mathbb{R}} \subseteq \mathrm{NP}_{\mathbb{R}} \\
& \mathrm{P}_{\mathbb{R}}^{\mathcal{O}} \subseteq \mathrm{DNP}_{\mathbb{R}}^{\mathcal{O}} \subseteq \mathrm{NP}_{\mathbb{R}}^{\mathcal{O}}
\end{aligned}
$$

A summary

Structure	$\mathrm{P} \neq \mathrm{DNP}$	$\mathrm{DNP} \neq \mathrm{NP}$	$\mathrm{P}^{\mathcal{Q}} \neq \mathrm{DNP}^{\mathcal{Q}}$	$\mathrm{DNP}^{\mathcal{Q}} \neq \mathrm{NP}^{\mathcal{Q}}$
$(\mathbb{Z} ; \mathbb{Z} ; \cdot,+,-;=)$	$?$	yes	defined analogously to BGS	\emptyset
$(\mathbb{Z} ; \mathbb{Z} ; \cdot,+,-; \geq)$	$?$	yes	defined analogously to BGS	\emptyset
$(\mathbb{R} ; \mathbb{R} ; \cdot,+,-;=)$	$?$	yes	derived from BGS or KP	\emptyset
$(\mathbb{R} ; \mathbb{R} ; \cdot,+,-; \geq)$	$?$	$?$	defined now	$\mathbb{Z}, \mathbb{Q}, \mathrm{E}$

BGS: Baker-Gill-Solovay oracle, E: Emerson oracle, KP: Knapsack Problem

A summary

Structure	$\mathrm{P} \neq \mathrm{DNP}$	DNP \neq NP	$\mathrm{P}^{\mathcal{Q}} \neq \mathrm{DNP}^{\mathcal{Q}}$	$\mathrm{DNP}^{\mathcal{Q}} \neq \mathrm{NP}^{\mathcal{Q}}$
				\emptyset
$(\mathbb{Z} ; \mathbb{Z} ; \cdot,+,-; \geq)$?	ye	defined analogously to BGS	\emptyset
$(\mathbb{R} ; \mathbb{R} ; \cdot,+,-;=)$?	$y \text { Simil }$	crly to $P Q \neq N P Q$	\emptyset
$(\mathbb{R} ; \mathbb{R} ; \cdot,+,-; \geq)$?	?	CCA 2008 defined now	$\mathbb{Z}, \mathbb{Q}, \mathrm{E}$

BGS: Baker-Gill-Solovay oracle, E: Emerson oracle, KP: Knapsack Problem

A summary

BGS: Baker-Gill-Solovay oracle, E: Emerson oracle, KP: Knapsack Problem

A summary

Structure	$\mathrm{P} \neq \mathrm{DNP}$	$\mathrm{DNP} \neq \mathrm{NP}$	$\mathrm{P}^{\mathcal{Q}} \neq \mathrm{DNP}^{\mathcal{Q}}$	$\mathrm{DNP}^{\mathcal{Q}} \neq \mathrm{NP}^{\mathcal{Q}}$
$(\mathbb{Z} ; \mathbb{Z} ; \cdot,+,-;=)$	$?$	yes	defined analogously to BGS	\emptyset
$(\mathbb{Z} ; \mathbb{Z} ; \cdot,+,-; \geq)$	$?$	yes	defined analogously to BGS	\emptyset
$(\mathbb{R} ; \mathbb{R} ; \cdot,+,-;=)$	$?$	yes	derived from BGS or KP	\emptyset
$(\mathbb{R} ; \mathbb{R} ; \cdot,+,-; \geq)$	$?$	$?$	defined now	$\mathbb{Z}, \mathbb{Q}, \mathrm{E}$

BGS: Baker-Gill-Solovay oracle, E: Emerson oracle, KP: Knapsack Problem

An oracle Q with $\mathrm{P}_{\mathrm{R}}{ }^{Q} \neq \mathrm{DNP}_{\mathrm{R}}{ }^{Q}$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)
$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$
p_{i} polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine using only the constants 0 and 1
$\mathcal{N}_{i}^{\mathcal{B}} \quad$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}, P_{i}$, and the time bound p_{i}

An oracle Q with $\mathrm{P}_{\mathrm{R}}{ }^{Q} \neq \mathrm{DNP}_{\mathrm{R}}{ }^{Q}$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

BSS
 - only with 0 and 1

$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$
$p_{i} \quad$ polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine using only the constants 0 and 1
$\mathcal{N}_{i}^{\mathcal{B}} \quad$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}, P_{i}$, and the time bound p_{i}

An oracle Q with $\mathrm{P}_{\mathrm{R}}{ }^{Q} \neq \mathrm{DNP}_{\mathrm{R}}$

BSS - only with 0 and 1

$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$
$p_{i} \quad$ polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine using only the constants 0 and 1
$\mathcal{N}_{i}^{\mathcal{B}} \quad$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}, P_{i}$, and the time bound p_{i}

$$
\begin{aligned}
& V_{0}=\emptyset, m_{0}=0 \text {. Stage } i \geq 1 \text { : Let } n_{i}>m_{i-1} \text { and } p_{i}\left(n_{i}\right)+n_{i}<2^{n_{i}} . \\
& W_{i}=\cup_{j<i} V_{j}, \\
& V_{i}=\left\{x \in\{0,1\}^{n_{i}} \mid \mathcal{N}_{i}^{W_{i}} \text { rejects }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right. \\
& \left.\& \boldsymbol{x} \text { is not queried by } \mathcal{N}_{i}^{W_{i}} \text { on input }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right\} \text {, } \\
& m_{i}=2^{n_{i}} .
\end{aligned}
$$

$\mathcal{Q}_{\mathrm{R}}=\cup_{i \geq 1} W_{i}$,
$L_{\mathrm{R}}=\left\{\mathbf{y} \mid\left(\exists i \in \mathbb{N}^{+}\right)\left(\mathbf{y} \in \mathbb{R}^{n_{i}} \& V_{i} \neq \emptyset\right)\right\} \in \mathrm{DNP}_{\mathrm{R}}^{\mathcal{Q}_{\mathrm{R}}} \backslash \mathrm{P}_{\mathrm{R}}^{\mathcal{Q}_{\mathrm{R}}}$.
$\mathbf{R}=(\mathbb{R} ; 0,1 ; \cdot,+,-\geq)$.

An oracle Q with $\mathrm{P}_{\mathrm{R}}{ }^{Q} \neq \mathrm{DNP}_{\mathrm{R}}$

BSS - only with 0 and 1

$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$
$p_{i} \quad$ polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine using only the constants 0 and 1
$\mathcal{N}_{i}^{\mathcal{B}} \quad$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}, P_{i}$, and the time bound p_{i}

$$
\begin{aligned}
& V_{0}=\emptyset, m_{0}=0 . \text { Stage } i \geq 1 \text { : Let } n_{i}>m_{i-1} \text { and } p_{i}\left(n_{i}\right)+n_{i}<2^{n_{i}} \\
& W_{i}=\cup_{j<i} V_{j}, \\
& V_{i}=\left\{x \in\{0,1\}^{n_{i}} \mid \mathcal{N}_{i}^{W_{i}} \text { rejects }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right. \\
& \left.\quad \& \mathbb{x} \text { is not queried by } \mathcal{N}_{i}^{W_{i}} \text { on input }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right\}, \\
& m_{i}=2^{n_{i}} .
\end{aligned}
$$

$\mathcal{Q}_{\mathrm{R}}=\cup_{i \geq 1} W_{i}$,
$L_{\mathrm{R}}=\left\{\mathbf{y} \mid\left(\exists i \in \mathbb{N}^{+}\right)\left(\mathbf{y} \in \mathbb{R}^{n_{i}} \& V_{i} \neq \emptyset\right)\right\} \in \mathrm{DNP}_{\mathrm{R}}^{\mathcal{Q}_{\mathrm{R}}} \backslash \mathrm{P}_{\mathrm{R}}^{\mathcal{Q}_{\mathrm{R}}}$.
$\mathrm{R}=(\mathbb{R} ; 0,1 ; \cdot+,-; \geq)$.

An oracle Q with $\mathrm{P}_{\mathrm{R}}{ }^{Q} \neq \mathrm{DNP}_{\mathrm{R}}$

BSS - only with 0 and 1

$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$
$p_{i} \quad$ polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine using only the constants 0 and 1
$\mathcal{N}_{i}^{\mathcal{B}} \quad$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}, P_{i}$, and the time bound p_{i}

$$
\begin{aligned}
& V_{0}=\emptyset, m_{0}=0 . \text { Stage } i \geq 1: \text { Let } n_{i}>m_{i-1} \text { and } p_{i}\left(n_{i}\right)+n_{i}<2^{n_{i}} \\
& W_{i}=\cup_{j<i} V_{j}, \\
& V_{i}=\left\{\mathbf{x} \in\{0,1\}^{n_{i}} \mid \mathcal{N}_{i}^{W_{i}} \text { rejects }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right. \\
& \left.\quad \& \mathbf{x} \text { is not queried by } \mathcal{N}_{i}^{W_{i}} \text { on input }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right\},
\end{aligned}
$$

$$
m_{i}=2^{n_{i}}
$$

$\mathcal{Q}_{\mathrm{R}}=\cup_{i \geq 1} W_{i}$,
$L_{\mathrm{R}}=\left\{\mathbf{y} \mid\left(\exists i \in \mathbb{N}^{+}\right)\left(\mathbf{y} \in \mathbb{R}^{n_{i}} \& V_{i} \neq \emptyset\right)\right\} \in \mathrm{DNP}_{\mathrm{R}}^{\mathcal{Q}_{\mathrm{R}}}\left(\backslash \mathrm{P}_{\mathrm{R}}^{\mathcal{Q}_{\mathrm{R}}}\right.$.
$\mathbf{R}=(\mathbb{R} ; 0,1 ; \cdot,+,-\geq)$.

An oracle Q with $\mathrm{P}_{\mathrm{R}}{ }^{Q} \neq \mathrm{DNP}_{\mathrm{R}}$

BSS - only with 0 and 1

$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$
$p_{i} \quad$ polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine using only the constants 0 and 1
$\mathcal{N}_{i}^{\mathcal{B}} \quad$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}, P_{i}$, and the time bound p_{i}
$V_{0}=\emptyset, m_{0}=0$. Stage $i \geq 1$: Let $n_{i}>m_{i-1}$ and $p_{i}\left(n_{i}\right)+n_{i}<2^{n_{i}}$. $W_{i}=\cup_{j<i} V_{j}$,
$V_{i}=\left\{\mathbf{x} \in\{0,1\}^{n_{i}} \mid \mathcal{N}_{i}^{W_{i}}\right.$ rejects $(0, \ldots, 0) \in \mathbb{R}^{n_{i}}$ $\& \mathbf{x}$ is not queried by $\mathcal{N}_{i}^{W_{i}}$ on input $\left.(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right\}$, $m_{i}=2^{n_{i}}$.
$\mathcal{Q}_{\mathrm{R}}=\cup_{i \geq 1} W_{i}$,

$$
\begin{aligned}
& V_{i} \neq \theta \text { important: } \\
& V_{i}^{\mu N_{i}} \text { rejects }(0, \ldots, 0,0) \in \mathbb{R}^{n_{i}}
\end{aligned}
$$

An oracle Q with $\mathrm{P}_{\mathrm{R}}{ }^{Q} \neq \mathrm{DNP}_{\mathrm{R}}$

BSS - only with 0 and 1

$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$
$p_{i} \quad$ polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine using only the constants 0 and 1
$\mathcal{N}_{i}^{\mathcal{B}} \quad$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}, P_{i}$, and the time bound p_{i}
$V_{0}=\emptyset, m_{0}=0$. Stage $i \geq 1$: Let $n_{i}>m_{i-1}$ and $p_{i}\left(n_{i}\right)+n_{i}<2^{n_{i}}$.
$W_{i}=\cup_{j<i} V_{j}$,
$V_{i}=\left\{\underset{x \in\{0,1\}^{n_{i}} \mid \mathcal{N}_{i}^{W_{i}} \text { rejects }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}}{\left.\& \mathcal{X} \text { is not queried by } \mathcal{N}_{i}^{W_{i}} \text { on input }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right\},}\right.$ $m_{i}=2^{n_{i}}$.

An oracle Q with $\mathrm{P}_{\mathrm{R}}{ }^{Q} \neq \mathrm{DNP}_{\mathrm{R}}$

BSS - only with 0 and 1

$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$
$p_{i} \quad$ polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine using only the constants 0 and 1
$\mathcal{N}_{i}^{\mathcal{B}} \quad$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}, P_{i}$, and the time bound p_{i}

$$
\begin{aligned}
& V_{0}=\emptyset, m_{0}=0 . \text { Stage } i \geq 1 \text { : Let } n_{i}>m_{i-1} \text { and } p_{i}\left(n_{i}\right)+n_{i}<2^{n_{i}} \\
& W_{i}=\cup_{j<i} V_{j}, \\
& V_{i}=\left\{\underset{x \in\{0,1\}^{n_{i}} \mid \mathcal{N}_{i}^{W_{i}} \text { rejects }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}}{\left.\& \bar{x} \text { is not queried by } \mathcal{N}_{i}^{W_{i}} \text { on input }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right\},}\right.
\end{aligned}
$$

$$
m_{i}=2^{n_{i}}
$$

since

the path of $\lambda_{i}^{W / i}$ traversed by $(0, \ldots, 0) \in \mathbb{R}^{n i}$

- is uniquely determined
- of polynomial length

$N_{i}^{W_{i}}$ rejects $(0, \ldots, 0) \in \mathbb{R}^{n_{i}}$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)
$N_{i}{ }^{W}$:

$N_{i}^{W_{i}}$ rejects $(0, \ldots, 0) \in \mathbb{R}^{n_{i}}$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)
$N_{i}{ }^{W}$.

Only 0 and 1 as constants encoded by themselves

$N_{i}^{W_{i}}$ rejects $(0, \ldots, 0) \in \mathbb{R}^{n_{i}}$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

Only 0 and 1 as constants encoded by themselves

$$
\Rightarrow
$$

The polynomials are uniquely determined.

$N_{i}^{W_{i}}$ rejects $(0, \ldots, 0) \in \mathbb{R}^{n_{i}}$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)
$N_{i}{ }^{W}$:

Only 0 and 1 as constants encoded by themselves

The polynomials are uniquely determined.
\Rightarrow
The path is uniquely determined.

An oracle Q with $\mathrm{P}_{\mathrm{R}}{ }^{Q} \neq \mathrm{DNP}_{\mathrm{R}}$

BSS - only with 0 and 1

$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$
$p_{i} \quad$ polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine using only the constants 0 and 1 $\mathcal{N}_{i}^{\mathcal{B}} \quad$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}, P_{i}$, and the time bound p_{i}

$$
\begin{aligned}
& V_{0}=\emptyset, m_{0}=0 . \text { Stage } i \geq 1 \text {. Let } n_{i}>m_{i-1} \text { and } p_{i}\left(n_{i}\right)+n_{i}<2^{n_{i}} . \\
& W_{i}=\cup_{j<i} V_{j}, \\
& V_{i}=\left\{\mathbf{x} \in\{0,1\}^{n_{i}} \mid \mathcal{N}_{i}^{W_{i}} \text { rejects }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right. \\
& \left.\quad \& \mathbf{x} \text { is not queried by } \mathcal{N}_{i}^{W_{i}} \text { on input }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right\}
\end{aligned}
$$

$$
m_{i}=2^{n_{i}}
$$

$$
\mathcal{Q}_{\mathrm{R}}=\cup_{i \geq 1} W_{i}
$$

$V_{i} \neq \varnothing$ iff $N_{i}^{W_{i}}$ rejects $(0, \ldots, 0) \in \mathbb{R}^{n_{i}}$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)
$\mathcal{N}_{i}^{W}{ }_{i}$.

length $\leq 2^{n_{i}}$

$$
\Rightarrow \exists x \in\{0,1\}^{n_{i}}
$$

(\boldsymbol{x} is not queried by $N_{i}^{W_{i}}$)
$\Rightarrow V_{i} \neq \varnothing$

An oracle Q with $\mathrm{P}_{\mathrm{R}}{ }^{Q} \neq \mathrm{DNP}_{\mathrm{R}}$

BSS - only with 0 and 1

$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$
$p_{i} \quad$ polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine using only the constants 0 and 1
$\mathcal{N}_{i}^{\mathcal{B}} \quad$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}, P_{i}$, and the time bound p_{i}

$$
\begin{aligned}
& V_{0}=\emptyset, m_{0}=0 . \text { Stage } i \geq 1: \text { Let } n_{i}>m_{i-1} \text { and } p_{i}\left(n_{i}\right)+n_{i}<2^{n_{i}} \\
& W_{i}=\cup_{j<i} V_{j}, \\
& V_{i}=\left\{\mathbf{x} \in\{0,1\}^{n_{i}} \mid \mathcal{N}_{i}^{W_{i}} \text { rejects }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right. \\
& \left.\quad \& \mathbf{x} \text { is not queried by } \mathcal{N}_{i}^{W_{i}} \text { on input }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right\}
\end{aligned}
$$

$$
m_{i}=2^{n_{i}}
$$

$\mathcal{Q}_{\mathrm{R}}=\cup_{i \geq 1} W_{i}$,

$$
\begin{aligned}
& {V_{i} Q}_{\wedge}^{\triangleq} \lambda_{i}^{W_{i+1}} \stackrel{\text { Important: }}{\triangleq} \Lambda_{i}^{W_{i}} \text { on }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}
\end{aligned}
$$

An oracle Q with $\mathrm{P}_{\mathrm{R}}{ }^{Q} \neq \mathrm{DNP}_{\mathrm{R}}$

BSS - only with 0 and 1

$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$
$p_{i} \quad$ polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine using only the constants 0 and 1
$\mathcal{N}_{i}^{\mathcal{B}} \quad$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}, P_{i}$, and the time bound p_{i}
$V_{0}=\emptyset, m_{0}=0$. Stage $i \geq 1$: Let $n_{i}>m_{i-1}$ and $p_{i}\left(n_{i}\right)+n_{i}<2^{n_{i}}$. $W_{i}=\cup_{j<i} V_{j}$,
$V_{i}=\left\{\mathbf{x} \in\{0,1\}^{n_{i}} \mid \mathcal{N}_{i}^{W_{i}}\right.$ rejects $(0, \ldots, 0) \in \mathbb{R}^{n_{i}}$ $\& \mathbf{x}$ is not queried by $\mathcal{N}_{i}^{W_{i}}$ on input $\left.(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right\}$,

$\mathcal{Q}_{\mathrm{R}}=\cup_{i \geq 1} W_{i}$,

$$
N_{i}^{W_{i+1}} \hat{=} N_{i}^{Q} \text { on }(0, \ldots, 0) \in \mathbb{R}_{i}^{n_{i}}
$$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)
N_{i}^{Q} :

$$
s_{\mu}, s_{\lambda} \leq n_{i+1}
$$

$$
\Downarrow
$$

$$
\triangleq \ldots \in W W_{i+1} ?
$$

An oracle Q with $\mathrm{P}_{\mathrm{R}}^{Q} \neq \mathrm{DNP}_{\mathrm{R}}$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

BSS - only with 0 and 1

$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$
p_{i} polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine using only the constants 0 and 1
$\mathcal{N}_{i}^{\mathcal{B}} \quad$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}, P_{i}$, and the time bound p_{i}
$V_{0}=\emptyset, m_{0}=0$. Stage $i \geq 1$: Let $n_{i}>m_{i-1}$ and $p_{i}\left(n_{i}\right)+n_{i}<2^{n_{i}}$. $W_{i}=\cup_{j<i} V_{j}$,
$V_{i}=\left\{\mathbf{x} \in\{0,1\}^{n_{i}} \mid \mathcal{N}_{i}^{W_{i}}\right.$ rejects $(0, \ldots, 0) \in \mathbb{R}^{n_{i}}$ $\& x$ is not queried by $\mathcal{N}_{i}^{W_{i}}$ on input $\left.(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right\}$, $m_{i}=2^{n_{i}}$.
$\mathcal{Q}_{\mathrm{R}}=\cup_{i \geq 1} W_{i}$,

$$
N_{i}^{W_{i}} \hat{\cong} N_{i}^{W_{i+1}} \hat{=} N_{i}^{Q} \text { on }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}
$$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)
N_{i}^{Q} :

$\boldsymbol{x} \in V_{i} \Rightarrow \boldsymbol{x} \in W_{i+1}$
$\Rightarrow \boldsymbol{x}$ is not queried by $N_{i}^{W_{i}}$

An oracle Q with $\mathrm{P}_{\mathrm{R}}{ }^{Q} \neq \mathrm{DNP}_{\mathrm{R}}$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

BSS - only with 0 and 1

$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$
p_{i} polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine using only the constants 0 and 1
$\mathcal{N}_{i}^{\mathcal{B}} \quad$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}, P_{i}$, and the time bound p_{i}
$V_{0}=\emptyset, m_{0}=0$. Stage $i \geq 1$: Let $n_{i}>m_{i-1}$ and $p_{i}\left(n_{i}\right)+n_{i}<2^{n_{i}}$.

$$
W_{i}=\cup_{j<i} V_{j}
$$

$$
V_{i}=\left\{\mathbf{x} \in\{0,1\}^{n_{i}} \mid \mathcal{N}_{i}^{W_{i}} \text { rejects }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right.
$$

$\& \mathbf{x}$ is not queried by $\mathcal{N}_{i}^{W_{i}}$ on input $\left.(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right\}$, $m_{i}=2^{n_{i}}$.
$\mathcal{Q}_{\mathrm{R}}=\cup_{i \geq 1} W_{i}$,
$L_{\mathrm{R}}=\left\{\mathbf{y} \mid\left(\exists i \in \mathbb{N}^{+}\right)\left(\mathbf{y} \in \mathbb{R}^{n_{i}} \& V_{i} \neq \emptyset\right)\right\} \in \mathrm{DNP}_{\mathrm{R}}^{\mathcal{Q}_{\mathrm{R}}} \backslash \mathrm{P}_{\mathrm{R}}^{\mathcal{Q}_{\mathrm{R}}}$
$\mathbf{R}=(\mathbb{R} ; \mathbf{0}, \mathbf{1} ; \cdot,+,-\geq)$.

An oracle Q with $\mathrm{P}_{\mathrm{R}}{ }^{Q} \neq \mathrm{DNP}_{\mathrm{R}}$

Diagonalization techniques from Baker, Gill, and Solovay (only 0 and 1 as constants)

BSS - only with 0 and 1

$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$
$p_{i} \quad$ polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine using only the constants 0 and 1
$\mathcal{N}_{i}^{\mathcal{B}} \quad$ machine using $\mathcal{B} \subseteq \mathbb{R}^{\infty}, P_{i}$, and the time bound p_{i}
$V_{0}=\emptyset, m_{0}=0$. Stage $i \geq 1$: Let $n_{i}>m_{i-1}$ and $p_{i}\left(n_{i}\right)+n_{i}<2^{n_{i}}$.
$W_{i}=\cup_{j<i} V_{j}$,
$V_{i}=\left\{\mathbf{x} \in\{0,1\}^{n_{i}} \mid \mathcal{N}_{i}^{W_{i}}\right.$ rejects $(0, \ldots, 0) \in \mathbb{R}^{n}$
$\& \mathbf{x}$ is $\lambda^{W_{i}}$ aneried by $\mathcal{N}_{i}^{W_{i}}$ on input $\left.(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right\}$,

$$
m_{i}=2^{n_{i}}
$$

$\mathcal{Q}_{\mathrm{R}}=\cup_{i \geq 1} W_{i}$,

$$
\text { on }(0, \ldots, 0) \in \mathbb{R}_{n i}
$$

$L_{\mathrm{R}}=\left\{\mathbf{y} \mid\left(\exists i \in \mathbb{N}^{+}\right)\left(\mathbf{y} \in \mathbb{R}^{n_{i}} \&\left(V_{i} \neq \emptyset\right)\right\} \in \mathrm{DNP}_{\mathrm{R}}^{\mathcal{Q}_{\mathrm{R}}} \backslash \mathrm{P}_{\mathrm{R}}^{\mathcal{Q}_{\mathrm{R}}}\right)$
$\mathbf{R}=(\mathbb{R} ; 0,1 ; \cdot,+,-\geq)$.

An oracle Q with $\mathbf{P}_{\mathbb{R}_{(\cdot)}} \neq \mathrm{DNP}_{\mathbb{R}_{(\epsilon)}}$

Diagonalization techniques from Baker, Gill, and Solovay (only equality tests)

```
\(i \in \mathbb{N}^{+} \quad\) the code of a pair \(\left(p_{i}, P_{i}\right)\)
\(p_{i}\)
\(P_{i}\)
polynomial
    program of a \(\mathrm{P}^{\mathcal{O}}\)-machine over \(\mathbb{R}_{(=)}=(\mathbb{R} ; \mathbb{R} ;+,-, \cdot ;=)\)
    using the constants \(c_{1}, \ldots, c_{k_{i}}\)
\(1, \ldots, k_{i} \quad\) codes of \(c_{1}, \ldots, c_{k_{i}} \in \mathbb{R}\)
\(\mathcal{N}_{i}^{\mathcal{B}, c_{1}, \ldots, c_{k_{i}}}\) uses \(\mathcal{B} \subseteq \mathbb{R}^{\infty}, c_{1}, \ldots, c_{k_{i}}, P_{i}\), and the time bound \(p_{i}\)
```


An oracle Q with $\mathbf{P}_{\mathbb{R}_{(\theta)}}{ }^{Q} \neq \mathrm{DNP}_{\mathbb{R}_{(\theta)}}$

Diagonalization techniques from Baker, Gill, and Solovay (only equality tests)
$i \in \mathbb{N}^{+} \quad$ the code of a pair $\left(p_{i}, P_{i}\right)$
p_{i} polynomial
P_{i}
program of a $\mathrm{P}^{\mathcal{O}_{- \text {machine }} \text { over }} \mathbb{R}_{(=)}=(\mathbb{R} ; \mathbb{R} ;+,-, \cdot ;=)$ using the constants $c_{1}, \ldots, c_{k_{i}}$
$1, \ldots, k_{i}$ codes of $c_{1}, \ldots, c_{k_{i}} \in \mathbb{R}$
$\mathcal{N}_{i}^{\mathcal{B}, c_{1}, \ldots, c_{k_{i}}}$ uses $\mathcal{B} \subseteq \mathbb{R}^{\infty}, c_{1}, \ldots, c_{k_{i}}, P_{i}$, and the time bound p_{i}

An oracle Q with $\mathbf{P}_{\left.\mathbb{R}_{(}\right)}{ }^{Q} \neq \operatorname{DNP}_{\mathbb{R}_{(\Theta)}}$

Diagonalization techniques from Baker, Gill, and Solovay (only equality tests)
only equality tests
$i \in \mathbb{N}^{+} \quad$ the code of a pair $\left(p_{i}, P_{i}\right)$
p_{i} polynomial
P_{i}
program of a $\mathrm{P}^{\mathcal{O}_{-}}$machine over $\mathbb{R}_{(=)}=(\mathbb{R} ; \mathbb{R} ;+,-, \cdot ;=)$ using the constants $c_{1}, \ldots, c_{k_{i}}$
$1, \ldots, k_{i} \quad$ codes of $c_{1}, \ldots, c_{k_{i}} \in \mathbb{R}$
$\mathcal{N}_{i}^{\mathcal{B}, c_{1}, \ldots, c_{k_{i}}}$ uses $\mathcal{B} \subseteq \mathbb{R}^{\infty}, c_{1}, \ldots, c_{k_{i}}, P_{i}$, and the time bound p_{i}

An oracle Q with $\mathbf{P}_{\mathbb{R}_{\Theta}}{ }^{Q} \neq \operatorname{DNP}_{\mathbb{R}_{(\Theta)}}$

Diagonalization techniques from Baker, Gill, and Solovay (onlv equality tests)

only equality tests

$i \in \mathbb{N}^{+} \quad$ the code of a pair $\left(p_{i}, P_{i}\right)$
p_{i}
P_{i} polynomial
program of a $\mathrm{P}^{\mathcal{O}_{-}}$machine over $\mathbb{R}_{(=)}=(\mathbb{R} ; \mathbb{R} ;+,-, \cdot ;=)$ using the constants $c_{1}, \ldots, c_{k_{i}}$
$1, \ldots, k_{i} \quad$ codes of $c_{1}, \ldots, c_{k_{i}} \in \mathbb{R}$
$\mathcal{N}_{i}^{\mathcal{B}, c_{1}, \ldots, c_{k_{i}}}$ uses $\mathcal{B} \subseteq \mathbb{R}^{\infty}, c_{1}, \ldots, c_{k_{i}}, P_{i}$, and the time bound p_{i}
$V_{i}=\left\{\mathbf{x} \in\{0,1\}^{n_{i}} \mid\right.$
$\forall c_{1} \cdots \forall c_{k_{i}}\left(\mathcal{N}_{i}^{W_{i}, c_{1}, \ldots, c_{k_{i}}}\right.$ rejects $(0, \ldots, 0) \in \mathbb{R}^{n_{i}}$ $\& \mathbf{x}$ is not queried by $\mathcal{N}_{i}^{W_{i}, c_{1}, \ldots, c_{k_{i}}}$ on $\left.\left.(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right)\right\}$

An oracle Q with $\mathbf{P}_{\mathbb{R}_{\Theta}}{ }^{Q} \neq \mathrm{DNP}_{\mathbb{R}_{(\Theta)}}$

Diagonalization techniques from Baker, Gill, and Solovay (onlv equality tests)

only equality tests

$i \in \mathbb{N}^{+} \quad$ the code of a pair $\left(p_{i}, P_{i}\right)$
p_{i}
P_{i} polynomial
program of a $\mathrm{P}^{\mathcal{O}_{-}}$machine over $\mathbb{R}_{(=)}=(\mathbb{R} ; \mathbb{R} ;+,-, \cdot ;=)$ using the constants $c_{1}, \ldots, c_{k_{i}}$
$1, \ldots, k_{i} \quad$ codes of $c_{1}, \ldots, c_{k_{i}} \in \mathbb{R}$
$\mathcal{N}_{i}^{\mathcal{B}, c_{1}, \ldots, c_{k_{i}}}$ uses $\mathcal{B} \subseteq \mathbb{R}^{\infty}, c_{1}, \ldots, c_{k_{i}}, P_{i}$, and the time bound p_{i}
$V_{i}=\left\{\mathbf{x} \in\{0,1\}^{n_{i}} \mid\right.$
$\forall c_{1} \cdots \forall c_{k_{i}}\left(\mathcal{N}_{i}^{W_{i}, c_{1}, \ldots, c_{k_{i}}}\right.$ rejects $(0, \ldots, 0) \in \mathbb{R}^{n_{i}}$

An oracle Q with $\mathbf{P}_{\mathbb{R}_{\Theta}}{ }^{Q} \neq \mathrm{DNP}_{\mathbb{R}_{(\Theta)}}$

Diagonalization techniques from Baker, Gill, and Solovay (onlv equality tests)

only equality tests

$$
\begin{aligned}
& i \in \mathbb{N}^{+} \quad \text { the code of a pair }\left(p_{i}, P_{i}\right) \\
& p_{i} \\
& P_{i} \\
& \text { polynomial }
\end{aligned}
$$

An oracle Q with $\mathbf{P}_{\mathbb{R}_{(\theta)}} \neq \mathrm{DNP}_{\mathbb{R}_{(\theta)}}$

Diagonalization techniques from Baker, Gill, and Solovay (only equality tests)

only equality tests

$\sum_{j_{1}, \ldots, j_{k} \geq 0} \alpha_{j_{1}, \ldots, j_{k}} c_{1}^{j_{1}} \cdots c_{k}^{j_{k}} \in\{0,1\} ?$
where $k \leq k_{i}, c_{1}, \ldots, c_{k_{i}} \in \mathbb{R}, \alpha_{j_{1}, \ldots, j_{k}} \in \mathbb{Z}$.

$$
\begin{aligned}
& p\left(c_{k}\right)=0 ? \\
& p\left(c_{k}\right)=1 ?
\end{aligned} \quad \text { for } \quad p(x)=\sum_{j_{1}, \ldots, j_{k} \geq 0} \alpha_{j_{1}, \ldots, j_{k}} c_{1}^{j_{1}} \cdots c_{k-1}^{j_{k-1}} x^{j_{k}} .
$$

$$
F_{0}=\mathbb{Q} . \text { Stage } j=1, \ldots, k_{i}
$$

$$
F_{j}=F_{j-1}, \quad d_{j}=1 \quad \text { if } c_{j} \in F_{j-1}
$$

$$
F_{j}=F_{j-1}\left(c_{j}\right), \quad d_{j}=\infty \quad \text { if } c_{j} \text { is not algebraic over } F_{j-1}
$$

$$
F_{j}=F_{j-1}\left[c_{j}\right], \quad d_{j}=m \quad \text { if there is an irreducible } q_{j} \in F_{j-1}[x]
$$

$$
\operatorname{degree}\left(q_{j}\right) \geq 2 \& q_{j}\left(c_{j}\right)=0
$$

$$
\begin{aligned}
& d_{k}=1 \quad \Rightarrow \quad c_{k} \text { is not necessary. } \\
& d_{k}=\infty \Rightarrow \quad p\left(c_{k}\right) \neq 0 \text {. } \\
& d_{k} \geq 2 \Rightarrow \quad p\left(c_{k}\right)=0 \text { eff } q_{k} \mid p \text {. }
\end{aligned}
$$

An oracle Q with $\mathbf{P}_{\mathbb{R}_{(\theta)}} \neq \mathrm{DNP}_{\mathbb{R}_{(\theta)}}$

Diagonalization techniques from Baker, Gill, and Solovay (onlv equality tests)

only equality tests

The answer to $p\left(c_{k}\right)=0 ?$ and $p\left(c_{k}\right)=1 ?$ is only dependent on some

$$
\operatorname{char}\left(c_{1}, \ldots, c_{k_{i}}\right)=\left(d_{1}, \ldots, d_{k_{i}}, q_{1}, \ldots, q_{k_{i}}\right)
$$

where $d_{k} \geq 2 \Rightarrow q_{k}\left(c_{k}\right)=0$ and q_{k} irreducible.

$$
\begin{aligned}
& i \in \mathbb{N}^{+} \text {the code of }\left(p_{i}, P_{i}, t_{i}\right), \\
& t_{i}=\left(d_{1}, \ldots, d_{k_{i}}, q_{1}, \ldots, q_{k_{i}}\right)
\end{aligned}
$$

An oracle Q with $\mathbf{P}_{\mathbb{R}_{\epsilon}}{ }^{Q} \neq \mathrm{DNP}_{\mathbb{R}_{(\theta)}}$

Diagonalization techniques from Baker, Gill, and Solovay (only equality tests)

only equality tests

The answer to $p\left(c_{k}\right)=0 ?$ and $p\left(c_{k}\right)=1 ?$ is only dependent on some

$$
\operatorname{char}\left(c_{1}, \ldots, c_{k_{i}}\right)=\left(d_{1}, \ldots, d_{k_{i}}, q_{1}, \ldots, q_{k_{i}}\right)
$$

where $d_{k} \geq 2 \Rightarrow q_{k}\left(c_{k}\right)=0$ and q_{k} irreducible.

$$
\begin{aligned}
& i \in \mathbb{N}^{+} \text {the code of }\left(p_{i}, P_{i}, t_{i}\right), \\
& t_{i}=\left(d_{1}, \ldots, d_{k_{i}}, q_{1}, \ldots, q_{k_{i}}\right)
\end{aligned}
$$

The path of $\lambda_{i}^{W}{ }_{i}, c_{1}, \ldots, c_{k_{i}}$ is

 uniquely determined.

An oracle Q with $\mathbf{P}_{\mathbb{R}_{(\theta)}} \neq \mathrm{DNP}_{\mathbb{R}_{(\theta)}}$

Diagonalization techniques from Baker, Gill, and Solovay (onlv equality tests)

only equality tests

The answer to $p\left(c_{k}\right)=0 ?$ and $p\left(c_{k}\right)=1 ?$ is only dependent on some

$$
\operatorname{char}\left(c_{1}, \ldots, c_{k_{i}}\right)=\left(d_{1}, \ldots, d_{k_{i}}, q_{1}, \ldots, q_{k_{i}}\right)
$$

where $d_{k} \geq 2 \Rightarrow q_{k}\left(c_{k}\right)=0$ and q_{k} irreducible.

$$
\begin{aligned}
& i \in \mathbb{N}^{+} \text {the code of }\left(p_{i}, P_{i}, t_{i}\right), \\
& t_{i}=\left(d_{1}, \ldots, d_{k_{i}}, q_{1}, \ldots, q_{k_{i}}\right)
\end{aligned}
$$

An oracle Q with $\mathbf{P}_{\mathbb{R}_{(\theta)}} \neq \mathrm{DNP}_{\mathbb{R}_{(\Theta)}}$

Diagonalization techniques from Baker, Gill, and Solovay (only equality tests)

only equality tests

The answer to $p\left(c_{k}\right)=0 ?$ and $p\left(c_{k}\right)=1 ?$ is only dependent on some

$$
\operatorname{char}\left(c_{1}, \ldots, c_{k_{i}}\right)=\left(d_{1}, \ldots, d_{k_{i}}, q_{1}, \ldots, q_{k_{i}}\right)
$$

where $d_{k} \geq 2 \Rightarrow q_{k}\left(c_{k}\right)=0$ and q_{k} irreducible.

$$
\begin{aligned}
& i \in \mathbb{N}^{+} \text {the code of }\left(p_{i}, P_{i}, t_{i}\right), \\
& t_{i}=\left(d_{1}, \ldots, d_{k_{i}}, q_{1}, \ldots, q_{k_{i}}\right), \\
& V_{i}=\left\{\mathbf{x} \in\{0,1\}^{n_{i}} \mid \forall c_{1} \cdots \forall c_{k_{i}}\left(\operatorname{char}\left(c_{1}, \ldots, c_{k_{i}}\right)=t_{i}\right.\right. \\
& \& \mathcal{N}_{i}^{W_{i}, c_{1}, \ldots, c_{k_{i}}} \text { rejects }(0, \ldots, 0) \in \mathbb{R}^{n_{i}} \\
&\left.\left.\& \mathbf{x} \text { is not queried by } \mathcal{N}_{i}^{W_{i}, c_{1}, \ldots, c_{k_{i}}} \text { on }(0, \ldots, 0) \in \mathbb{R}^{n_{i}}\right)\right\} . \\
& \\
& L_{\mathbb{R}_{(=)}}=\left\{\mathbf{y} \mid\left(\exists i \in \mathbb{N}^{+}\right)\left(\mathbf{y} \in \mathbb{R}^{n_{i}} \& V_{i} \neq \emptyset\right)\right\} \in \operatorname{DNP}_{\mathbb{R}_{(=)}}^{\mathcal{Q}_{\mathbb{R}_{(=)}}} \backslash \mathrm{P}_{\mathbb{R}_{(=)}}^{\mathcal{Q}_{\mathbb{R}_{(=)}} .} \\
& \mathbb{R}_{(=)}=(\mathbb{R} ; \mathbb{R} ;+,-;=) .
\end{aligned}
$$

An oracle Q with $\mathbf{P}_{\mathbb{R}}^{Q} \neq$ DNP $_{\mathbb{R}}$

 Problems in the full BSS model```
i}\in\mp@subsup{\mathbb{N}}{}{+}\mathrm{ the code of a pair (}\mp@subsup{p}{i}{},\mp@subsup{P}{i}{}
pi polynomial
P
\mp@subsup{\mathcal{K}}{i,j}{\mathcal{B}}}\quad\mathrm{ set of machines using }\mathcal{B},\mp@subsup{c}{1}{},\ldots,\mp@subsup{c}{\mp@subsup{k}{i}{}}{},\mp@subsup{P}{i}{},\mp@subsup{p}{i}{}\mathrm{ , described by }\mp@subsup{N}{i,j}{
```


## An oracle $Q$ with $\mathbf{P}_{\mathbb{R}}^{Q} \neq \mathbf{D N P}_{\mathbb{R}}$

 Problems in the full BSS model```
i}\in\mp@subsup{\mathbb{N}}{}{+}\mathrm{ the code of a pair ( }\mp@subsup{p}{i}{},\mp@subsup{P}{i}{}
pi polynomial
P
\mp@subsup{\mathcal{K}}{i,j}{\mathcal{B}}}\quad\mathrm{ set of machines using }\mathcal{B},\mp@subsup{c}{1}{},\ldots,\mp@subsup{c}{\mp@subsup{k}{i}{}}{},\mp@subsup{P}{i}{},\mp@subsup{p}{i}{},\mathrm{ described by }\mp@subsup{N}{i,j}{
```


An oracle Q with $\mathbf{P}_{\mathbb{R}}^{Q} \neq$ DNP $_{\mathbb{R}}$

 Problems in the full BSS model$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$

BSS - with order tests

$p_{i} \quad$ polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine containing $1, \ldots, k_{i}$ for $c_{1}, \ldots, c_{k_{i}}$ $\mathcal{K}_{i, j}^{\mathcal{B}} \quad$ set of machines using $\mathcal{B}, c_{1}, \ldots, c_{k_{i}}, P_{i}, p_{i}$, described by $N_{i . i}$

Characterization of the algebraic dependence of the constants $c_{1}, \ldots, c_{k_{i}}$ is not sufficient

An oracle Q with $\mathbf{P}_{\mathbb{R}}^{Q} \neq$ DNP $_{\mathbb{R}}$

 Problems in the full BSS model$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$

BSS - with order tests

$p_{i} \quad$ polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine containing $1, \ldots, k_{i}$ for $c_{1}, \ldots, c_{k_{i}}$ $\mathcal{K}_{i, j}^{\mathcal{B}} \quad$ set of machines using $\mathcal{B}, c_{1}, \ldots, c_{k_{i}}, P_{i}, p_{i}$, described by $N_{i . i}$

An oracle Q with $\mathbf{P}_{\mathbb{R}}^{Q} \neq \mathbf{D N P}_{\mathbb{R}}$

 Problems in the full BSS model$$
i \in \mathbb{N}^{+} \text {the code of a pair }\left(p_{i}, P_{i}\right)
$$

$p_{i} \quad$ polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine containing $1, \ldots, k_{i}$ for $c_{1}, \ldots, c_{k_{i}}$ $\mathcal{K}_{i, j}^{\mathcal{B}} \quad$ set of machines using $\mathcal{B}, c_{1}, \ldots, c_{k_{i}}, P_{i}, p_{i}$, described by $N_{i, j}$ $m_{0}=0$.
Stage $i \geq 1: n_{i}>m_{i-1}, p_{i}\left(n_{i}\right)<2^{n_{i}-1}, p_{i}\left(n_{i}\right)+n_{i}<2^{n_{i}} . V_{i, 0}=\emptyset$. Stage $j \geq 1$:

$$
\begin{aligned}
W_{i, j} & =\cup_{i^{\prime}<i,}, V_{i^{\prime}} \cup \cup_{j^{\prime}<j}, V_{i, j^{\prime}} \\
V_{i, j} & =\left\{\mathbf{x} \in\{0,1\}^{n_{i}-1} \times\left\{C_{i, j}\right\}\right.
\end{aligned}
$$

The values of the polynomials at $C_{i, j}$ are uniquely determined by $C_{i, j}$.

The values of the polynomials at $C_{i, j}$ are uniquely determined by $C_{i, j}$.

The path is uniquely determined.

The definition of $C_{i, j}$

BSS - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{p_{i}\left(n_{i}\right)}\left(\sum_{j_{1}, \ldots, j_{k}=0}^{p_{i} p_{i}\left(n_{i}\right)} \alpha_{j_{1}, \ldots, j_{k_{i} ; ~}, j}^{(k)} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}\right) x^{j} .
\end{aligned}
$$

The definition of $C_{i, j}$

$$
\begin{aligned}
f_{1}, f_{2}, \ldots, & f_{s} \\
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}}\left(\sum_{j_{1}, \ldots, j_{k_{i}}=0}^{p_{i}\left(n_{i}\right)} \alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}\right) x^{j} .
\end{aligned}
$$

- with order tests

The definition of $C_{i, j}$

BSS
 - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}(\sum_{j_{1}, \ldots, j_{k_{i}}}^{2^{p_{i}\left(n_{i}\right)}}=0 \underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j}} \underset{\in \mathbb{Z} \cap\left[-2^{p_{i}\left(n_{i}\right)}, 2^{p_{i}\left(n_{i}\right)}\right]}{ }
\end{aligned}
$$

The definition of $C_{i, j}$

BSS - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2_{i}^{p_{i}\left(n_{i}\right)}}(\sum_{j_{1}, \ldots, j_{k_{i}}=0}^{2^{p_{i}\left(n_{i}\right)}} \underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j} . \\
& \in \mathbb{Z} \cap\left[-2^{\left.p_{i}\left(n_{i}\right), 2^{p_{i}\left(n_{i}\right)}\right]}\right.
\end{aligned}
$$

$N_{\mathrm{char}}\left(i, c_{1}, \ldots, c_{k_{i}}\right)$
Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$ where
$\mu_{k}=$
$\mu_{k}=$
$\nu_{k}=$
$\mu=$
$\mu^{\prime}=$
$\nu=$

The definition of $C_{i, j}$

BSS - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}}(\sum_{j_{1}, \ldots, j_{k_{i}}=0}^{2^{p_{i}\left(n_{i}\right)}} \underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j} . \\
& \in \mathbb{Z} \cap\left[-2^{p_{i}\left(n_{i}\right)}, 2^{p_{i}\left(n_{i}\right)}\right]
\end{aligned}
$$

$N_{\text {char }}\left(i, c_{1}, \ldots, c_{k_{i}}\right)$
Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$ where
$\mu_{k}=\operatorname{code}\left(f_{k}\right) \in \mathbb{N}^{+} \quad$ if $f_{k} \in \mathbb{Q}[x]$,
$\mu_{k}=$
$\nu_{k}=$
$\mu=$
$\mu^{\prime}=$
$\nu=$

The definition of $C_{i, j}$

BSS - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}}(\sum_{j_{1}, \ldots, j_{k_{i}}=0}^{2^{p_{i}\left(n_{i}\right)}} \underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j} . \\
& \in \mathbb{Z} \cap\left[-2^{\left.p_{i}\left(n_{i}\right), 2^{p_{i}\left(n_{i}\right)}\right]}\right.
\end{aligned}
$$

$N_{\text {char }}\left(i, c_{1}, \ldots, c_{k_{i}}\right)$
Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$ where
$\mu_{k}=\operatorname{code}\left(f_{k}\right) \in \mathbb{N}^{+} \quad$ if $f_{k} \in \mathbb{Q}[x]$,
$\mu_{k}=$
$\nu_{k}=$
$\mu=$
$\mu^{\prime}=$
$\nu=$

$$
\begin{aligned}
& \text { determines order tests } p_{v, \mu}(x) \geq 0 \text { and queries } \\
& \qquad \text { on }(0, \ldots, 0, N) \\
& \text { if } N \in \mathbb{N}, p_{v, \mu} q_{\lambda, \mu} \in \mathbb{Q}[x]
\end{aligned}
$$

The definition of $C_{i, j}$

BSS - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}}(\sum_{j_{1}, \ldots, j_{k_{i}}=0}^{2^{p_{i}\left(n_{i}\right)}} \underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j} . \\
& \in \mathbb{Z} \cap\left[-2^{p_{i}\left(n_{i}\right)}, 2^{p_{i}\left(n_{i}\right)}\right]
\end{aligned}
$$

$N_{\text {char }}\left(i, c_{1}, \ldots, c_{k_{i}}\right)$
Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$ where
$\mu_{k}=\operatorname{code}\left(f_{k}\right) \in \mathbb{N}^{+} \quad$ if $f_{k} \in \mathbb{Q}[x]$,
$\mu_{k}=0$ otherwise,
$\nu_{k}=$
$\mu=$
$\mu^{\prime}=$
$\nu=$

The definition of $C_{i, j}$

BSS - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}}(\sum_{j_{1}, \ldots, j_{k_{i}}=0}^{2_{i}^{p_{i}\left(n_{i}\right)}} \underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j} . \\
& \in \mathbb{Z} \cap\left[-2^{\left.p_{i}\left(n_{i}\right), 2^{p_{i}\left(n_{i}\right)}\right]}\right.
\end{aligned}
$$

$N_{\text {char }}\left(i, c_{1}, \ldots, c_{k_{i}}\right)$
Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$ where
$\mu_{k}=$
$\mu_{k}=$
$\nu_{k}=$
$\mu=\min \cap_{\substack{k=1, \ldots, s \\ \text { degree }\left(f_{l}\right)>1}}\left\{n \in \mathbb{N} \mid \forall x\left(f_{k}(x)=0 \vee f_{k}(x)=1 \Rightarrow n>x\right)\right\}$,
$\mu^{\prime}=$
$\nu=$

The definition of $C_{i, j}$

BSS - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}}(\sum_{j_{1}, \ldots, j_{k_{i}}=0}^{2^{p_{i}\left(n_{i}\right)}} \underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j} . \\
& \in \mathbb{Z} \cap\left[-2^{\left.p_{i}\left(n_{i}\right), 2^{p_{i}\left(n_{i}\right)}\right]}\right.
\end{aligned}
$$

$N_{\text {char }}\left(i, c_{1}, \ldots, c_{k_{i}}\right)$
Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$ where
$\mu_{k}=$
$\mu_{k}=$
$\nu_{k}=$
$\mu=\min \cap \begin{gathered}k=1, \ldots, s, \\ \operatorname{deg} \operatorname{cec}\left(f_{L}\right)>1\end{gathered}, ~\left\{n \in \mathbb{N} \mid \forall x\left(f_{k}(x)=0 \vee f_{k}(x)=1 \Rightarrow n>x\right)\right\}$,
$\mu^{\prime}=$
greater than the zeros

The definition of $C_{i, j}$

BSS - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}}(\sum_{j_{1}, \ldots, j_{k_{i}}}^{2^{p_{i}\left(n_{i}\right)}}=\underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j} . \\
& \in \mathbb{Z} \cap\left[-2^{\left.p_{i}\left(n_{i}\right), 2^{p_{i}\left(n_{i}\right)}\right]}\right.
\end{aligned}
$$

$N_{\text {char }}\left(i, c_{1}, \ldots, c_{k_{i}}\right)$
Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$ where
$\mu_{k}=$
$\mu_{k}=$
$\nu_{k}=\lim _{x \rightarrow \infty} \operatorname{sgn}\left(f_{k}(x)\right)$,
$\mu=$
$\mu^{\prime}=$
$\nu=$

The definition of $C_{i, j}$

BSS - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}}(\sum_{j_{1}, \ldots, j_{k_{i}}=0}^{2^{p_{i}\left(n_{i}\right)}} \underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j} . \\
& \in \mathbb{Z} \cap\left[-2^{\left.p_{i}\left(n_{i}\right), 2^{p_{i}\left(n_{i}\right)}\right]}\right.
\end{aligned}
$$

$N_{\text {char }}\left(i, c_{1}, \ldots, c_{k_{i}}\right)$
Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$ where

$$
\begin{aligned}
& \mu_{k}= \\
& \mu_{k}= \\
& \nu_{k}=\lim _{x \rightarrow \infty} \operatorname{sgn}\left(f_{k}(x)\right), \\
& \mu= \\
& \mu^{\prime}= \\
& \nu=
\end{aligned}
$$

$$
\longleftarrow \text { on }(0, \ldots, 0, N)
$$

The definition of $C_{i, j}$

BSS - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}}(\sum_{j_{1}, \ldots, j_{k_{i}}=0}^{2^{p_{i}\left(n_{i}\right)}} \underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j} . \\
& \in \mathbb{Z} \cap\left[-2^{\left.p_{i}\left(n_{i}\right), 2^{p_{i}\left(n_{i}\right)}\right]}\right.
\end{aligned}
$$

$N_{\text {char }}\left(i, c_{1}, \ldots, c_{k_{i}}\right)$
Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$ where

$$
\text { determine order tests } p_{v, \mu}(x) \geq 0
$$

$$
\begin{array}{ll}
\mu_{k}= & \text { on }(0, \ldots, 0, N) \\
\mu_{k}= \\
\nu_{k}=\lim _{x \rightarrow \infty} \operatorname{sgn}\left(f_{k}(x)\right), & \text { for large } N \geq N_{\text {char }}(\ldots) \\
\mu=\min _{\substack{k=1 \\
\text { degree }\left(f_{L}, s\right)>1}}\left\{n \in \mathbb{N} \mid \forall x\left(f_{k}(x)=0 \vee f_{k}(x)=1 \Rightarrow n>x\right)\right\}, \\
\mu^{\prime}= \\
\nu & =
\end{array}
$$

The definition of $C_{i, j}$

BSS - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}}(\sum_{j_{1}, \ldots, j_{k_{i}}=0}^{2^{p_{i}\left(n_{i}\right)}} \underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j} . \\
& \in \mathbb{Z} \cap\left[-2^{\left.p_{i}\left(n_{i}\right), 2^{p_{i}\left(n_{i}\right)}\right]}\right.
\end{aligned}
$$

$N_{\text {char }}\left(i, c_{1}, \ldots, c_{k_{i}}\right)$
Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$ where
$\mu_{k}=$
$\mu_{k}=$
$\nu_{k}=$
$\mu=$
$\mu^{\prime}=\min \bigcap_{\substack{k=1, \ldots, s \\ \mu_{k}=0}}\left\{n \in \mathbb{N} \mid(\forall x \in \mathbb{N})\left(f_{k}(x) \in \mathbb{N} \Rightarrow n>x\right)\right\}$,
$\nu=$

The definition of $C_{i, j}$

BSS - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}}(\sum_{j_{1}, \ldots, j_{k_{i}}=0}^{2^{p_{i}\left(n_{i}\right)}} \underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j} . \\
& \in \mathbb{Z} \cap\left[-2^{\left.p_{i}\left(n_{i}\right), 2^{p_{i}\left(n_{i}\right)}\right]}\right.
\end{aligned}
$$

$N_{\text {char }}\left(i, c_{1}, \ldots, c_{k_{i}}\right)$
Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$ where

```
\(\mu_{k}=\)
\(\mu_{k}=\)
\(\nu_{k}=\)
\(\mu=\)
\[
\mu^{\prime}=\min \cap_{\substack{k=1, \ldots, s \\ \mu_{k}=0}}\left\{n \in \mathbb{N} \mid(\forall x \in \mathbb{N})\left(f_{k}(x) \in \mathbb{N} \Rightarrow n>x\right)\right\}
\]
\[
\nu=
\]
```


The definition of $C_{i, j}$

BSS - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}}(\sum_{j_{1}, \ldots, j_{k_{i}}=0}^{2^{p_{i}\left(n_{i}\right)}} \underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j} . \\
& \in \mathbb{Z} \cap\left[-2^{p_{i}\left(n_{i}\right)}, 2^{p_{i}\left(n_{i}\right)}\right]
\end{aligned}
$$

$<\overline{N_{\text {char }}}\left(i, c_{1}, \ldots, c_{k_{i}}\right)$
Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$ where

$$
\begin{aligned}
& \mu_{k}= \\
& \mu_{k}= \\
& \nu_{k}= \\
& \text { letermine parts of the queries on }(0, \ldots, 0, N) \\
& \text { for large } N \geq N_{\text {char }}(\ldots), N \in \mathbb{N} \\
& \mu=\min \cap_{\substack{k=1, \ldots, s \\
\text { degree }\left(f_{k}\right) \geq 1}}\left\{n \in \mathbb{N} \mid \forall x\left(f_{k}(x)=0 \vee f_{k}(x)=1 \Rightarrow n>x\right)\right\}, \\
& \mu^{\prime}=\min \cap_{\substack{k=1, \ldots, s \\
\mu_{k}=0}}^{\substack{\text {, }}}\left\{n \in \mathbb{N} \mid(\forall x \in \mathbb{N})\left(f_{k}(x) \in \mathbb{N} \Rightarrow n>x\right)\right\} \text {, } \\
& \nu=
\end{aligned}
$$

The definition of $C_{i, j}$

BSS - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}}(\sum_{j_{1}, \ldots, j_{k_{i}}=0}^{2_{i}\left(n_{i}\right)} \underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j} . \\
& \in \mathbb{Z} \cap\left[-2^{\left.p_{i}\left(n_{i}\right), 2^{p_{i}\left(n_{i}\right)}\right]}\right.
\end{aligned}
$$

$N_{\text {char }}\left(i, c_{1}, \ldots, c_{k_{i}}\right)$
Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$ where
$\mu_{k}=$
$\mu_{k}=$
$\nu_{k}=$
$\mu=$
$\mu^{\prime}=$
$\nu=\min \cap_{k=1, \ldots, s}\left\{n \in \mathbb{N} \mid f_{k}(n)<2^{n}\right\}$.

The definition of $C_{i, j}$

BSS - with order tests

$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}}(\sum_{j_{1}, \ldots, j_{k_{i}}=0}^{2^{p_{i}\left(n_{i}\right)}} \underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j} . \\
& \in \mathbb{Z} \cap\left[-2^{\left.p_{i}\left(n_{i}\right), 2^{p_{i}\left(n_{i}\right)}\right]}\right.
\end{aligned}
$$

$N_{\text {char }}\left(i, c_{1}, \ldots, c_{k_{i}}\right)$
Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$ where

$$
\begin{aligned}
& \mu_{k}= \\
& \mu_{k}= \\
& \nu_{k}= \\
& \mu= \\
& \mu^{\prime}= \\
& \nu=\min \cap_{k=1, \ldots, s}\left\{n \in \mathbb{N} \mid f_{k}(n)<2^{n}\right\} .
\end{aligned}
$$

The definition of $C_{i, j}$

BSS

- with order tests
$f_{1}, f_{2}, \ldots, f_{s}$ where

$$
\begin{aligned}
& f_{k} \in \mathbb{R}[x], \\
& f_{k}(x)=\sum_{j=0}^{2^{p_{i}\left(n_{i}\right)}}(\sum_{j_{1}, \ldots, j_{k_{i}}=0}^{2^{p_{i}\left(n_{i}\right)}} \underbrace{\alpha_{j_{1}, \ldots, j_{k_{i}}, j}^{(k)}} c_{1}^{j_{1}} \cdots c_{k_{i}}^{j_{k_{i}}}) x^{j} . \\
& \in \mathbb{Z} \cap\left[-2^{\left.p_{i}\left(n_{i}\right), 2^{p_{i}\left(n_{i}\right)}\right]}\right.
\end{aligned}
$$

$N_{\text {char }}\left(i, c_{1}, \ldots, c_{k_{i}}\right)$
Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$ where

$$
\begin{array}{ll}
\mu_{k}=\operatorname{code}\left(f_{k}\right) \in \mathbb{N}^{+} & \text {if } f_{k} \in \mathbb{Q}[x], \\
\mu_{k}=0 & \text { otherwise }, \\
\nu_{k}=\lim _{x \rightarrow \infty} \operatorname{sgn}\left(f_{k}(x)\right), & \\
\mu=\min _{\substack{k=1 \\
\operatorname{degrec}^{\prime}, \ldots, s, s \\
k}}\left\{n \in \mathbb{N} \mid \forall x\left(f_{k}(x)=0 \vee f_{k}(x)=1 \Rightarrow n>x\right)\right\}, \\
\mu^{\prime}=\min _{\substack{k=1, \ldots, s \\
\mu_{k}=0, s}}\left\{n \in \mathbb{N} \mid(\forall x \in \mathbb{N})\left(f_{k}(x) \in \mathbb{N} \Rightarrow n>x\right)\right\}, \\
\nu=\min \cap_{k=1, \ldots, s}\left\{n \in \mathbb{N} \mid f_{k}(n)<2^{n}\right\} .
\end{array}
$$

The definition of $C_{i, j}$

BSS

- with order tests

$$
N_{\text {char }}\left(i, c_{1}, \ldots, c_{k_{i}}\right)
$$

Cantor number of $\left(\mu_{1}, \ldots, \mu_{s}, \nu_{1}, \ldots, \nu_{s}, \mu, \mu^{\prime}, \nu\right)$

$$
N_{i, 1}, N_{i, 2}, \ldots
$$

an enumeration of

$$
\left\{N_{\mathrm{char}}\left(i, c_{1}, \ldots, c_{k_{i}}\right) \mid c_{1}, \ldots, c_{k_{i}} \in \mathbb{R}\right\}
$$

$$
N_{i, j+1}>N_{i, j}
$$

$$
\begin{aligned}
& C_{i, j}=\max \left\{2^{C_{i, j-1}}, N_{i, j}\right\} . \\
& \mathcal{K}_{i, j}^{\mathcal{B}}=\left\{\mathcal{N}_{i}^{\mathcal{B}, c_{1}, \ldots, c_{k_{i}}} \mid N_{i, j}=N_{\text {char }}\left(i, c_{1}, \ldots, c_{k_{i}}\right)\right\} .
\end{aligned}
$$

$N_{i}^{W_{i} c_{1}, \ldots, c_{k_{i}}}$ rejects $\left(0, \ldots, 0, C_{i, j}\right) \in \mathbb{R}^{n_{i}}$

The values of the polynomials at $C_{i, j}$ are uniquely determined by $C_{i, j}$.

An oracle Q with $\mathbf{P}_{\mathbb{R}}^{Q} \neq \mathrm{DNP}_{\mathbb{R}}$

 Problems in the full BSS model$i \in \mathbb{N}^{+}$the code of a pair $\left(p_{i}, P_{i}\right)$

BSS - with order tests

$p_{i} \quad$ polynomial
$P_{i} \quad$ program of a $\mathrm{P}^{\mathcal{O}}$-machine containing $1, \ldots, k_{i}$ for $c_{1}, \ldots, c_{k_{i}}$
$\mathcal{K}_{i, j}^{\mathcal{B}} \quad$ set of machines using $\mathcal{B}, c_{1}, \ldots, c_{k_{i}}, P_{i}, p_{i}$, describan $N_{i, j}$ $m_{0}=0$.
Stage $i \geq 1$: $n_{i}>m_{i-1}, p_{i}\left(n_{i}\right)<2^{n_{i}-1}, p_{i}(y$ see my paper. Stage $j \geq 1$:

$$
\begin{aligned}
W_{i, j}= & \cup_{i^{\prime}<i,}, V_{i^{\prime}} \cup \cup_{j^{\prime}<j}, V_{i, j^{\prime}} \\
V_{i, j}= & \left\{\mathbf{x} \in\{0,1\}^{n_{i}-1} \times\left(\left\{C_{i, j}\right\}\right) \mid\right. \\
& \left(\exists \mathcal{M} \in \mathcal{K}_{i, j}^{W_{i, j}}\right)\left(\mathcal{M} \text { rejects }\left(0, \ldots, 0, C_{i, j}\right)\right.
\end{aligned}
$$

$\& \mathbf{x}$ is not queried by \mathcal{M} on input $\left.\left.\left(0, \ldots, 0, C_{i, j}\right) \in \mathbb{N}^{n_{i}}\right)\right\}$.
$m_{i}=2^{n_{i}}, V_{i}=\cup_{j \geq 1} V_{i, j}$.
$\mathcal{Q}_{1}=\cup_{i \geq 1} V_{i}$,
$\left.L_{1}=\cup_{i \geq 1}\left\{\left(y_{1}, \ldots, y_{n_{i}-1}, N\right) \in \mathbb{R}^{n_{i}} \mid V_{i} \cap\left(\{0,1\}^{n_{i}-1} \times\{N\}\right) \neq \emptyset\right)\right\}$.
$\Rightarrow L_{1} \in \mathrm{DNP}_{\mathbb{R}}^{\mathcal{Q}_{1}} \backslash \mathrm{P}_{\mathbb{R}}^{\mathcal{Q}_{1}}$.

A second oracle Q with $\mathbf{P}_{\mathbb{R}}^{Q} \neq \mathrm{DNP}_{\mathbb{R}}$ Problems in the full BSS model

$$
\begin{aligned}
E_{0} & =\mathbb{Q}, \tau_{1}, \tau_{2}, \ldots \text { where } \tau_{i+1} \text { is transcendental over } E_{i}={ }_{\mathrm{df}} E_{i-1}\left(\tau_{i}\right) \\
A_{n} & =\left\{\left(v_{1}, \ldots, v_{2 n}\right) \in\{0, v\}^{2 n} \mid v \in \mathbb{Z} \backslash\{0\} \& \sum_{i=1}^{2 n} v_{i}=n v\right\} . \\
\mathcal{Q}_{2} & =\cup_{n=1}^{\infty}\left\{\left(\operatorname{sgn}\left(\left|v_{1}\right|\right), \ldots, \operatorname{sgn}\left(\left|v_{2 n}\right|\right), \sum_{i=1}^{2 n} v_{i} \tau_{i}\right) \in \mathbb{R}^{2 n+1} \mid\left(v_{1}, \ldots, v_{2 n}\right) \in A_{n}\right\} . \\
L_{2} & =\cup_{n=1}^{\infty}\left\{\left(0, \ldots, 0, \Sigma_{i=1}^{2 n} v_{i} \tau_{i}\right) \in \mathbb{R}^{2 n+1} \mid\left(v_{1}, \ldots, v_{2 n}\right) \in A_{n}\right\} .
\end{aligned}
$$

A second oracle Q with $\mathbf{P}_{\mathbb{R}}^{Q} \neq \mathbf{D N P}_{\mathbb{R}}$ Problems in the full BSS model

$E_{0}=\mathbb{Q}, \tau_{1}, \tau_{2}, \ldots$ where τ_{i+1} is transcendental over $E_{i}={ }_{\mathrm{df}} E_{i-1}\left(\tau_{i}\right)$
$A_{n}=\left\{\left(v_{1}, \ldots, v_{2 n}\right) \in\{0, v\}^{2 n} \mid v \in \mathbb{Z} \backslash\{0\} \& \sum_{i=1}^{2 n} v_{i}=n v\right\}$.
$\mathcal{Q}_{2}=\cup_{n=1}^{\infty}\left\{\left(\operatorname{sgn}\left(\left|v_{1}\right|\right), \ldots, \operatorname{sgn}\left(\left|v_{2 n}\right|\right), \Sigma_{i=1}^{2 n} v_{i} \tau_{i}\right) \in \mathbb{R}^{2 n+1} \mid\left(v_{1}, \ldots, v_{2 n}\right) \in A_{n}\right\}$.
$L_{2}=\cup_{n=1}^{\infty}\left\{\left(0, \ldots, 0, \Sigma_{i=1}^{2 n} v_{i} \tau_{i}\right) \in \mathbb{R}^{2 n+1} \mid\left(v_{1}, \ldots, v_{2 n}\right) \in A_{n}\right\}$.
\Rightarrow Each computation path of a $\mathrm{P}^{\mathcal{Q}_{2}}$-machine is traversed by $(0, \ldots, 0, x)$ only if x satisfies some

$$
\left(z_{1}, \ldots, z_{s}, p_{k}(x)\right) \notin \mathcal{Q}_{2}, \quad\left(z_{1}, \ldots, z_{s}, p_{k}(x)\right) \in \mathcal{Q}_{2}
$$

A second oracle Q with $\mathbf{P}_{\mathbb{R}}^{Q} \neq \mathrm{DNP}_{\mathbb{R}}$ Problems in the full BSS model

$$
\text { Input: }(0, \ldots, 0, r) \in \mathbb{R}^{n}
$$

$$
\frac{!}{p_{v 1}(r) \geq 0 ?}
$$

$$
\left(q_{\mu, 1}(r), \ldots, q_{\mu, s, p}(r)\right) \notin W_{i} ?
$$

A second oracle Q with $\mathbf{P}_{\mathbb{R}}{ }^{Q} \neq \mathrm{DNP}_{\mathbb{R}}$

 Problems in the full BSS model$E_{0}=\mathbb{Q}, \tau_{1}, \tau_{2}, \ldots$ where τ_{i+1} is transcendental over $E_{i}={ }_{\mathrm{df}} E_{i-1}\left(\tau_{i}\right)$
$A_{n}=\left\{\left(v_{1}, \ldots, v_{2 n}\right) \in\{0, v\}^{2 n} \mid v \in \mathbb{Z} \backslash\{0\} \& \sum_{i=1}^{2 n} v_{i}=n v\right\}$.
$\mathcal{Q}_{2}=\cup_{n=1}^{\infty}\left\{\left(\operatorname{sgn}\left(\left|v_{1}\right|\right), \ldots, \operatorname{sgn}\left(\left|v_{2 n}\right|\right), \sum_{i=1}^{2 n} v_{i} \tau_{i}\right) \in \mathbb{R}^{2 n+1} \mid\left(v_{1}, \ldots, v_{2 n}\right) \in A_{n}\right\}$.
$L_{2}=\cup_{n=1}^{\infty}\left\{\left(0, \ldots, 0, \sum_{i=1}^{2 n} v_{i} \tau_{i}\right) \in \mathbb{R}^{2 n+1} \mid\left(v_{1}, \ldots, /{ }_{n}\right) \in \mathcal{A}\right.$
only if x satisfies some

$$
\left(z_{1}, \ldots, z_{s}, p_{k}(x)\right) \notin \mathcal{Q}_{2}, \quad\left(z_{1}, \ldots, z_{s}, p_{k}(x)\right) \sqrt{\mathcal{Q}_{2}} .
$$

For any $\mathrm{P}^{\mathcal{Q}_{2}}$-machine there is an i_{0} such that
(1) $x=\sum_{i=i_{0}+1}^{2 n} v_{i} \tau_{i}$,
(2) $v_{l} \neq 0, v_{l+1}=\cdots=v_{n}=0\left(i_{0}<l \leq 2 n\right)$,
(3) $\left(z_{1}, \ldots, z_{s}, p_{k}(x)\right) \in \mathcal{Q}_{2}$
$\Rightarrow s \geq 2 n$ and $\left(z_{i_{0}+1}, \ldots, z_{s}\right)=\left(\operatorname{sgn}\left(\left|v_{i_{0}+1}\right|\right), \ldots, \operatorname{sgn}\left(\left|v_{l}\right|\right), 0, \ldots, 0\right)$.
$\Rightarrow L_{2} \in \mathrm{DNP}_{\mathbb{\mathbb { R }}}^{\mathcal{Q}_{2}} \backslash \mathrm{P}_{\mathbb{R}}^{\mathcal{Q}_{2}}$.

A summary

Structure	$\mathrm{P} \neq \mathrm{DNP}$	$\mathrm{DNP} \neq \mathrm{NP}$	$\mathrm{P}^{\mathcal{Q}} \neq \mathrm{DNP}^{\mathcal{Q}}$	$\mathrm{DNP} \mathcal{Q} \neq \mathrm{NP}^{\mathcal{Q}}$
$(\mathbb{Z} ; \mathbb{Z} ; \cdot,+,-;=)$	$?$	yes	defined analogously to BGS	\emptyset
$(\mathbb{Z} ; \mathbb{Z} ; \cdot,+,-; \geq)$	$?$	yes	defined analogously to BGS	\emptyset
$(\mathbb{R} ; \mathbb{R} ; \cdot,+,-;=)$	$?$	yes	derived from BGS or KP	\emptyset
$(\mathbb{R} ; \mathbb{R} ; \cdot,+,-; \geq)$	$?$	$?$	$\mathcal{Q}_{1}, \mathcal{Q}_{2}$	$\mathbb{Z}, \mathbb{Q}, \mathrm{E}$

BGS: Baker-Gill-Solovay oracle, E: Emerson oracle, KP: Knapsack Problem

Relativizations of the $\mathrm{P}=$? DNP Question for the BSS Model

Thank you for your attention!

Christine Gaßner

Greifswald.

Thanks also to
Volkmar Liebscher, the organizers of the CCA 2009, the referees reading my paper.

