A General BSS Model over Arbitrary Structures

Christine Gaßner Greifswald

Cape Town February, 2011

A general BSS model over arbitrary structures

- 1. The classical register machines and the BSS model
- 2. Comparison of BSS model and RAM's
- 3. Comparison of Type-2 machines, BSS machines, and classical RAM's

 - Type-2 machines ⇔ RAM's
 - Consequences
- 4. The Halting problems for several types of machines
- 5. Remarks to non-deterministic machines

Some known models of computation

- **Turing machines over** $\{0, 1\}$ (and a blank symbol)
 - Type-1
 - Type-2

Meaning: theory of computability and theory of complexity

- Register machines over $\{a_1,...,a_k\}$, \mathbb{N} , \mathbb{R} ,...
 - Finite dimensional machines
 - Infinite dimensional machines
 - Offline
 - Online

Meaning:

simple models for existing computers and theory of complexity

Some known models of computation offline / online

Minsky (1961), Scott (1967), Blum/Shub/Smale (1989),... (offline):

Some known models of computation offline / online

Minsky (1961), Scott (1967), Blum/Shub/Smale (1989),... (offline):

Cook/Reckhow (1973), Aho/Hopcroft/Ullman (1974),... (offline / online):

$$(x_1, x_2, ..., x_n[, ...])$$
 READ A program PRINT $(y_1, y_2, ..., y_m[,...])$ suitable inputs or codes of objects executed until stop criterion

Some known models of computation offline / online

Minsky (1961), Scott (1967), Blum/Shub/Smale (1989),... (offline):

Cook/Reckhow (1973), Aho/Hopcroft/Ullman (1974),... (offline / online):

$$(x_1, x_2, ..., x_n[, ...])$$
 READ A program PRINT $(y_1, y_2, ..., y_m[,...])$ suitable inputs or codes of objects executed until stop criterion

Weihrauch (1985?),... (online):

$$(x_1, x_2, x_3,...)$$
 READ A program PRINT $(y_1, y_2, y_3,...)$ code/name of u $(y_1, y_2, y_3,...)$ $(y_1, y_2, y_3,...)$ $(y_1, y_2, y_3,...)$

Our goal

Definition of a general model of computation

- by
 - comparing known standard models
 - generalizing the main concepts
- in order to
 - unify known models
 - gain new insights in the relationship between known models (similarities and differences)
 - transfer results from one theory of computation to another
 - better understand the open problems in the classical theory of complexity (Why is it difficult to solve the classical P-NP problem? ...)

Our register machines

Registers

a countable number of registers for storing numbers

Instructions

- start and halt instructions
- operation and test instructions

Program

- a finite sequence of labelled instructions (M. L. Minsky, 1961)
- represented by flow diagrams (Z. A. Melzak, 1961; J. Lambek, 1961)
- a program schema with operation and predicate symbols (D. Scott, 1967)

Machine

provides the interpretation for a program (D. Scott, 1967)

Model of computation

- the input and the output procedures
- the machine

Our register machines

Finite dimensional machines

a finite number of registers:

$$Z_1,...,Z_m$$

 Each configuration is determined by the label of the current instruction and the values of the registers.

Infinite dimensional machines

an infinite number of registers:

$$Z_1, Z_2, ..., Z_m, Z_{m+1}, Z_{m+2}, ...$$
m processor registers (or one accumulator)

- without indirect addressing
- with indirect addressing (can be realized by index registers $I_1,...,I_k$)

Examples for several structures

```
\mathbb{Z}_2 = (\{0, 1\}; 0, 1; +, \cdot; =)
                       ⇒ Turing machine
                       ⇒ Type-2 machines
\mathbb{N}_0 = (\mathbb{N}; 0; f_1, f_2; r_1), \quad f_1(n) = n + 1, \quad f_2(n) = n - 1, \quad r_1(n) = true \text{ iff } n \neq 0
                       ⇒ counter machine
                                                            (0 \div 1 = 0)
\mathbb{N} = (\mathbb{N}; \mathbb{N}; +, -; r_1)
                       ⇒ classical RAM
\mathbb{R} = (\mathbb{R}; \mathbb{R}; +, -, \cdot; \leq)
                       ⇒ real RAM
                       ⇒ BSS model
```

Instructions over Σ

A structure:
$$\Sigma = (U; c_1, c_2, ...; f_1, f_2, ...; r_1, r_2, ...)$$

Computation:
$$l: Z_k := f_j(Z_{k_1}, ..., Z_{k_{m_j}});$$
 $l: Z_k := c_i;$

Branching: $l: \text{ if } r_j(Z_{k_1}, ..., Z_{k_{n_i}}) \text{ then goto } l_1 \text{ else goto } l_2;$

Copy: $l: Z_{I_k} = Z_{I_j};$

Index computation: $I_k = 1$; $I_k = I_k + 1$; if $I_k = I_j$ then goto I_1 else goto I_2 ;

An example for a finite dimensional machine

```
By Minsky (1961).
\Sigma = (\mathbb{N}; 0; f_1, f_2; r_1), \quad f_1(n) = n + 1, \quad f_2(n) = n - 1 \quad (0 - 1 = 0), \quad r_1(n) = true \quad \text{iff} \quad n \neq 0
Registers: Z_1, Z_2
Computation:
           l: Z_1 := Z_1 + 1; l: Z_1 := Z_2 + 1; l: Z_2 := Z_1 + 1; l: Z_2 := Z_2 + 1;
           l: Z_1 := Z_1 \div 1; l: Z_2 := Z_2 \div 1; l: Z_2 := Z_1 \div 1; l: Z_2 := Z_2 \div 1;
Branching:
           l: if Z_1 \neq 0 then goto l_1 else goto l_2; l: if Z_2 \neq 0 then goto l_1 else goto l_2;
Input:
           In(n)=(2^n, 0)
Output:
           Out(z_1, z_2) = m, if (z_1, z_2) = (2^m, 0)
            Out(z_1, z_2) undefined otherwise
```

An example for an infinite dimensional machine

The Model of L. Blum, M. Shub, S. Smale (1989) is similar to:

Registers: $I_1, I_2, Z_1, Z_2, \dots$

Computation and Branching: $+, -, \bullet, ..., \leq$ Copy: $Z_1 = Z_{I_i}; Z_{I_i} = Z_1;$

Input and Output:

$$(x_1, \dots, x_n) \in \cup_{i \ge 1} \mathbb{R}^i \quad \text{identified} \quad (x_1, \dots, x_n, 0, 0, \dots) \in \mathbb{R}^\omega, \ x_n \ne 0$$

$$In(x_1,...,x_n,0,0,...) = (1,1,x_1,n,x_2,0,...,x_n,0,0,...), \quad x_n \neq 0$$

$$Out(i_1,i_2,z_1,z_2,...) = (z_1,z_3,z_5,...) \in \mathbb{R}^{\omega}$$

K. Meer (1992):
$$In(x_1,...,x_n,0,0,...) = (1,1,x_1,0,x_2,0,...,x_n,0,0,...)$$

E. Grädel (2007): $In(x_1,...,x_n,0,0,...) = (1,1,x_1,x_2,...,x_n,0,0,...)$

An further example for an infinite dimensional machine

By C. Gaßner (1996),

Registers: $I_1, I_2, ..., I_k, Z_1, Z_2, ...$

Computation and branching: $+, -, \bullet, \dots, r_j(Z_{k_1}, \dots, Z_{k_{n_j}})$ Copy: $Z_{l_k} = Z_{l_j}$;

Input (cp. P. Koiran, 1994) and output space:

$$(x_1,\ldots,x_n)\in\cup_{i\geq 1}\mathbb{R}^i$$

Input:

$$In(x_1,...,x_n) = (n, 1, ..., 1, x_1,...,x_n, 0, 0, ...)$$

Output:

$$Out(i_1, i_2, ..., i_k, z_1, z_2, ...) = (z_1, ..., z_{i_1}) \in \bigcup_{i \ge 1} \mathbb{R}^i$$

The general BSS machine and the input

The input:
$$(Z_1, ..., Z_n) \coloneqq (x_1, ..., x_n); \ I_1 \coloneqq n; \ I_2 \coloneqq 1; ...; I_{k,M} \coloneqq 1;$$

$$\in \bigcup_{i \geq 1} \mathbb{R}^i$$

The general BSS machine and the input

The input:
$$(Z_1, ..., Z_n) := (x_1, ..., x_n); I_1 := n; I_2 := 1; ...; I_{k \lambda \lambda} := 1;$$

The general BSS machine and the input

The input:
$$(Z_1,...,Z_n) := (x_1,...,x_n); I_1 := n; I_2 := 1;...; I_{kM} := 1;$$

The non-deterministic BSS machines (input and guessing)

The general BSS machine and the output

The size of the output

BSS machine for the problem of ordered tuples

Input:

Problem:

Decision:

```
i := 1;

1: if i = n
then x_1 := 1;
else
if x_i \le x_{i+1}
then i := i + 1;
goto 1;
else x_1 := 0;
```

a tuple of integers $(x_1,...,x_n) \in \bigcup_{i\geq 1} \mathbb{N}^i$ Is the input ordered?

BSS machine for the computation of the sum

Input: a tuple of integers $(x_1,...,x_n) \in \bigcup_{i\geq 1} \mathbb{N}^i$

Output: $\sum_{i=1...n} x_i$

Computation:

```
i := 1;
1: if i < n
then i := i + 1;
x_1 := x_1 + x_i;
goto 1;
```

for
$$i := 2$$
 to n do

{
 $x_1 := x_1 + x_i;$
}

The simulation of machines by BSS machines

An online RAM with $I, O \subseteq \mathbb{R}^{\omega}$

A Type-2 machine with $I, O \subseteq \{0, 1\}^{\omega}$

A RAM with one-way write-only output tape

neans "can be simulated by"

Our BSS model and classical RAM's with $I \subseteq \bigcup_{i \geq 1} \mathbb{R}^i$

	BSS machine	Classical RAM's			
In-, output mode	offline			online	
In-, output space	$I, O = \bigcup_{i \ge 1} \mathbb{R}^i$	$I \subseteq \mathbb{N}^n$ $O \subseteq \mathbb{N}$	$I \subset I \subset$	$\bigcup_{i \ge 1} \mathbb{N}^i$ $\bigcup_{i \ge 1} \mathbb{R}^i$	$I,O\subseteq\mathbb{R}^{\omega}$
Indirect addressing	yes	no	yes		
Any machine has its own program.	yes	no / yes			
Number of registers	∞	< ∞		∞	
Number of 'tapes'	1			3	
Input	input procedure			read instruction	
Output	output procedure			print instruction	

Our BSS model and classical RAM's with $I \subseteq \bigcup_{i \geq 1} \mathbb{R}^i$ (Offline)

The end of the input is not decidable by a classical RAM with READ since there is not a blank symbol.

	BSS model	Classical RAM		
The size of each input	is stored in an index register.	cannot be computed.		
The output of the last value of each input	is possible.	is not possible.		
The sum of all the input values	can be computed.	cannot be computed.		

The classical real RAM without input and output procedure

The classical real RAM without input and output procedure

Comparison of Type-2 machines, BSS model, and the classical RAM's

The Type-2 machines with
$$Y_1, Y_0 = \{0, 1\}^*$$
 or $Y_1, Y_0 = \{0, 1\}^{\omega}$

From an input tape of Type-2 machine with Y_1 , $Y_0 = \{0, 1\}^*$ to a BSS input

The initial configuration for the 'Type-2' machine and for input 110001:

From an output tape of Type-2 machine with Y_1 , $Y_0 = \{0, 1\}^*$ to a BSS output

From a Type-2 machine with Y_1 , $Y_0 = \{0, 1\}^{\omega}$ to a $\{0, 1\}$ -RAM

Consequences Simulation of offline RAM's without input tape

Input space of the RAM	Simulation		Tuples are represented
	by	on space	by
$\bigcup_{i\geq 1} \{0,1\}^i$	Type-2 machines	$\{0,1\}^*\{0\}^\omega$	infinite strings
$\bigcup_{i\geq 1} \mathbb{N}^i$	finite dimensional	\mathbb{N}^k	Gödel numbers
	register machines	for a fixed k	
(Turing machines	{0, 1}*	binary codes
$\bigcup_{i\geq 1} \mathbb{R}^i$	BSS machines	$\bigcup_{i\geq 1} \mathbb{R}^i$	tuples over the reals

The domain of reals and consequences

- For RAM's with one-way write-only output tape we get (cp. K. Weihrauch, 2001):
 - (FP) Every finite portion of the output is already determined by a finite portion of the input.
- H. Friedman, R. Mansfield: 'Algorithmic Procedure' (1992),
 Theorem 17:
 - \implies There is no 1-1 computable mapping of \mathbb{R}^2 into \mathbb{R} .

Semi-decidability of Halting problems over the reals

 $B \subseteq \bigcup_{i>1} \mathbb{R}^i$. B is decidable if the characteristic function is computable.

$$H_{\mathbb{R}} = \{(x_1, ..., x_n, Code(M)) \mid (x_1, ..., x_n) \in \bigcup_{i \ge 1} \mathbb{R}^i \}$$

& M is a machine over \mathbb{R} & M halts on x}

$$H_{\mathbb{R}}^{\text{spec}} = \{Code(M) \mid M \text{ is a machine over } \mathbb{R} \& M \text{ halts on } Code(M)\}$$

Semi-decidability of Halting problems over the reals

 $B \subseteq \bigcup_{i>1} \mathbb{R}^i$. B is decidable if the characteristic function is computable.

$$H_{\mathbb{R}} = \{(x_1, ..., x_n, Code(M)) \mid (x_1, ..., x_n) \in \bigcup_{i \ge 1} \mathbb{R}^i \}$$

& M is a machine over \mathbb{R} & M halts on x}

$$H_{\mathbb{R}}^{\text{spec}} = \{Code(M) \mid M \text{ is a machine over } \mathbb{R} \& M \text{ halts on } Code(M)\}$$

Is $H_{\mathbb{R}}$ semi-decidable? Yes, if the codes are suitable.

For BSS machines: by one machine

For finite dim. register machines: by a system of machines (cp. D. Scott)

The number of used registers is unary encoded

in the codes of the machines.

For infinite classical real RAM's: by one machine

Decidability of Halting problems over the reals

 $B \subseteq \bigcup_{i>1} \mathbb{R}^i$. B is decidable if the characteristic function is computable.

$$H_{\mathbb{R}} = \{(x_1, ..., x_n, Code(M)) \mid (x_1, ..., x_n) \in \bigcup_{i \ge 1} \mathbb{R}^i \}$$

& M is a machine over \mathbb{R} & M halts on x}

$$H_{\mathbb{R}}^{\text{spec}} = \{Code(M) \mid M \text{ is a machine over } \mathbb{R} \& M \text{ halts on } Code(M)\}$$

Can the undecidability of $H_{\mathbb{R}}^{\text{spec}}$ be shown?

For BSS machines: by diagonalization

For finite dimensional register machines: ? (not by the usual proof)

For infinite classical real RAM's: by diagonalization

Reducibility of semi-decidable problems over the reals to the Halting problems

 $B \subseteq \bigcup_{i>1} \mathbb{R}^i$. B is decidable if the characteristic function is computable.

$$H_{\mathbb{R}} = \{(x_1, ..., x_n, Code(M)) \mid (x_1, ..., x_n) \in \bigcup_{i \ge 1} \mathbb{R}^i \}$$

& M is a machine over \mathbb{R} & M halts on x}

$$H_{\mathbb{R}}^{\text{spec}} = \{Code(M) \mid M \text{ is a machine over } \mathbb{R} \& M \text{ halts on } Code(M)\}$$

Can any semi-decidable problem be reduced to the corresponding $H_{\mathbb{R}}$?

For BSS machines: yes

For finite dimensional register machines: by a system of machines

For infinite classical real RAM's without READ: no, e.g. $\{(x_1, ..., x_n) \in \mathbb{R}^{\infty} \mid \exists i \ (x_i \neq 0)\}$

Remarks to the non-deterministic machines

means "can be simulated by"

A general BSS model over arbitrary structures

Thank you very much! Christine Gaßner

I also thank my students Paul Grieger, Franz Huwald, and Isabel Desire Schwende.

