
An introduction to a model of abstract
computation: the BSS-RAM model

Christine Gaßner
Universität Greifswald, Germany (2019)

Abstract

We give a detailed definition of BSS RAM’s for the sequential com-
putation over first-order structures. These random access machines
are abstract machines with an input procedure and an output proce-
dure. For describing algorithms, all operations and relations of the
underlying structure are available at unit cost. Each program of a
machine is an element of a formal language whose syntax is defined
by syntactic rules. The semantics of any program is dependent on a
transition system that results from the interpretation of the symbols in
the program by means of the underlying structure. Since any machine
has its own program, it is not necessary to have universal machines in
this framework, but it can be useful to have them. Therefore, we also
discuss the possibility to define universal programs for a large number
of mathematical structures and some consequences.

1 Introduction

For modelling the computation over algebraic structures supplemented with
some relations, there are a lot of machine-oriented models such as the uni-
form models presented in [20, 17, 13] and the machine-independent models of
abstract computation studied in generalised recursion theory (see e.g. [19]).
For structures over the real numbers, we know machine-oriented models such
as the real RAM’s introduced on the basis of the concept presented in [23, 1],
the modified real RAM model considered in [7], and the uniform Blum-Shub-
Smale (BSS) machines introduced in [3]. A common feature of these machines
is that each real number can be stored as a single unit during the computa-
tion. They are suitable for describing algorithms and analysing their com-
plexity under the assumption that some operations and relations can be used
as primitive operations and relations at unit cost. However, the compara-
bility of the results is difficult since, for many models, the possibilities of
modelling and computation are not sufficiently investigated. [5, 4, 17, 7, 6]
can help to get an overview of the great variety of models.

Christine Gaßner: BSS RAM’s 2

For example, there are a lot of different real-RAM models. The first
real RAM’s were considered by Preparata and Shamos in [21]. The authors
adopted the definition of the random access machine that was introduced for
processing integers in [1]. In analogy with this model, many real RAM’s work
with an instruction for reading one input value and copying the real number
to a register and an instruction for writing the content of one register on an
output tape. Consequently, the evaluation of the complexity of algorithms
on the basis of real RAM’s refers often to an arbitrary fixed number of input
values since the uniform treatment of all sequences of input values by one
machine or one program is neither required nor expected. In contrast to that,
the BSS machines use an input procedure that allows an exact mathematical
description of the single steps of a uniform computational process for all
possible finite sequences of real numbers without any restriction of the input
space. It has been confirmed that the BSS model is suitable for developing
a theory of computation and complexity over the real numbers. That is one
reason why we continue this approach.

We present a random-access-machine model of abstract computation over
a first-order structure including the uniform machines. These machines, the
so-called BSS RAM’s, can use every operation of the underlying structure
as a primitive operation and the relations of the structure for changing their
state. Our model of computation has been developed on the basis of the
concept presented by Scott in [22] and the transition systems defined in [5].
It is a generalisation of the BSS model of computation over a ring and it
was used, for instance, in [15, 16]. More precisely, we extended the model
considered by Börger [5] in order to get a uniform model in the sense of the
BSS model. This means that several types of instructions are now available
for accessing memory and for using the indirect addressing techniques. How-
ever, the capabilities with respect to indirect addressing are so limited that
the BSS RAM’s over a finite structure (containing only a finite number of
elements) have a power that is comparable to the power of the Turing ma-
chine. Over the ordered ring (IR; IR; +,−, · ;≤), where all real numbers can
be used as constants, the BSS RAM’s have the same computational power
as the BSS machines over this ring.

Here, we continue the investigation in [14] and discuss the concept of
universal programs and machines for several structures. We present a model
of abstract computation without taking questions about a possible digitisa-
tion into consideration and we formalise the concept of algorithm as precisely
and extensively as possible in our framework. This means that we provide a

Christine Gaßner: BSS RAM’s 3

general framework for describing sequential computations by a uniform tran-
sition model and investigating the power of machines that can perform each
operation and use each relation of the underlying structures, by assumption,
in the same time unit. We hope this model helps to better understand the
different approaches to solve or analyse algorithmic problems, the meaning
of different models of sequential computation, and the common properties
and the differences of these models.

In Section 2 we give a detailed definition and description of A-machines
and BSS RAM’s over any first-order structure A of signature σ. The dis-
cussion includes σ-programs, the use of pseudo instructions, and multi-tape
machines. Section 3 presents the concept of universal σ-programs and univer-
sal BSS RAM’s and deals with questions concerning the meaning of universal
BSS RAM’s for the completeness of decision problems.

We use the usual mathematical notations. IN, IN+, and IR are the sets of
non-negative integers, positive integers, and real numbers, respectively. =df

means “is equal by definition”. In defining sets we use the usual symbols
such as ∀,∃,&,∈,max,≤, {x | φ(x)} is the set of all objects x satisfying
the property described by φ(x). The strings (0), (1), (i), i, . . . are indices
and placeholders for indices, respectively. For arithmetic expressions t such
as i + 1, t is usually the integer index resulting from the evaluation of t.
i ∈ {1, . . . , n} and i ≤ n means that i is an integer with 1 ≤ i ≤ n and
i ≥ 1 means i ∈ IN+, and so on. f :⊆ M → N means that f is a partially
defined function from M into N . We write f : M → N only if f is a
totally defined function. For f : M → N , let fi = f(i) for all i ∈ M
and, for M = IN and n ≥ 1, let f1, . . . , fn be the list of values assigned to
the integers 1 to n by f in this order. Let M∞ =

⋃
n≥1M

n be the set of
all tuples ~x =df (x1, . . . , xn) with xi ∈ M (i ≤ n) and n ≥ 1 and let Mω

be the set of all infinite sequences ū =df (u1, u2, . . .) with ui ∈ M for all
i ≥ 1. For n = 0, let x1, . . . , xn and ~x be the empty list, and so on. For
all ~x ∈ Mn, ~y ∈ Nm, and ū ∈ Nω, let (~x . ~y) = (x1, . . . , xn, y1, . . . , ym) ∈
(M ∪ N)n+m and (~x . ū) = (x1, . . . , xn, u1, u2, . . .) ∈ (M ∪ N)ω. We use,
for d ≥ 1, (~x (j))j=1..d =df (~x (1), . . . , ~x (d)) and (ū(j))j=1..d =df (ū(1), . . . , ū(d))
and, for all j ≥ 1, ~x (j) ∈ Mn, and ū(j) ∈ Nω, let ~x (j) = (xj,1, . . . , xj,n) and
ū(j) = (uj,1, uj,2, . . .). For any f :⊆ M∞ → N , let f(x1, . . . , xn) = f(~x). For
g :⊆ M → N and f :⊆ N → O, f ◦ g :⊆ M → O is given by (f ◦ g)(x) =
f(g(x)) for all x ∈M and, thus, defined for those x ∈M for which both g(x)
and f(g(x)) are defined. Let fgx = f(g(x)). {α1, . . . , αm}∗ (m ≥ 1) consists
of the empty string Λ and all strings αi1 · · ·αil with l ≥ 1 and i1, . . . , il ≤ m.

Christine Gaßner: BSS RAM’s 4

2 The BSS-RAM model

2.1 The idea and the background

For any algebraic structure A, every A-machine has its own program. It can
perform each operation of the underlying structure A in a single step of com-
putation. The BSS RAM’s over a structure A are A-machines that get as
inputs arbitrary finite sequences of elements of A. Figure 1 shows the essen-
tial processing steps for the computation of a function. The inputted values
are assigned to registers by an input procedure. Afterwards, the machine ex-
ecutes its program defined by a finite sequence of labelled instructions until
a stop criterion is satisfied. If the stop criterion is reached, then the machine
halts and the computed values can be outputted by means of an output pro-
cedure. If A is a structure with the universe UA, we will say that a partially
defined function f from U∞A into U∞A is computable by a BSS RAM over A
if there is a BSS RAM over A that halts on input (x1, . . . , xn) ∈ U∞A if and
only if the value of f is defined for (x1, . . . , xn), and then it outputs the value
f(x1, . . . , xn).

~x⇒ Input
procedure

A program

executed until stop criterion

Output
procedure

⇒ f(~x)

Figure 1: The BSS-RAM model

In general, we use infinite dimensional machines M over A that are
equipped with an infinite number of registers Z1, Z2, . . . for storing elements
of UA, a finite number of registers I1, I2, . . . , IkM for storing indices in IN+,
and an auxiliary register B for storing an instruction counter, the label of
the current instruction (see Figure 2). We will call Z1, Z2, . . . the Z-registers.
But sometime we use finite dimensional machines M over A that are only
equipped with a finite number of Z-registers Z1, Z2, . . . , ZnM for storing the
elements of UA and a register B for the instruction counter. Such machines
M can compute functions from Un

A into Um
A for some fixed n,m ≤ nM.

The index registers are important if a machine uses an infinite number of
Z-registers. They are used for storing the length of the input, for determining
the length of the output, and in copy instructions. The infinite dimensional
machines can copy the content of one Z-register to another Z-register by

Christine Gaßner: BSS RAM’s 5

Z1 Z2 Z3 Z4 Z5 . . . Z-registers (for elements in UA)

I1 I2 I3 I4 . . . IkM Index registers (for indices in IN+)

B A register for the instruction counter (for a label)

Figure 2: The registers of an A-machine

means of indirect addressing where each address that may be used in the copy
process must be stored in an index register. The content of an index register
can only be changed with the help of several types of index instructions.

The underlying structure A can be an arbitrary first-order structure as
defined e.g. in [2, p. 22]. Let A = (U ; (ci)i∈N1 ; (fi)i∈N2 ; (ri)i∈N3) where U
is a non-empty set of individuals and, for suitable sets N1, N2, and N3,
(ci)i∈N1 is a family of constants ci ∈ U , (fi)i∈N2 is a family of operations fi
of arity mi, and (ri)i∈N3 is a family of relations ri ⊆ Uki of arity ki. Let
UA = U . The signature of A is (|N1|; (mi)i∈N2 ; (ki)i∈N3). In general, any
operation fi is an everywhere defined function from Umi

A into UA. But it
is also possible to permit partial functions fi :⊆ Umi

A → UA. This could
be interesting if we wanted to use certain computable functions as primi-
tive operations. Any structure B = (UA; (ci)i∈L1 ; (fi)i∈L2 ; (ri)i∈L3) with L1 =
{i1, . . . , in1} ⊆ N1, L2 = {j1, . . . , jn2} ⊆ N2, and L3 = {l1, . . . , ln3} ⊆ N3

(for some n1, n2, n3 ≥ 0) is a reduct of A and a structure of signature
σ =df (n1;mj1 , . . . ,mjn2

; kl1 , . . . , kln3). For such a structure, we use also the
notation (UA; ci1 , . . . , cin1 ; fj1 , . . . , fjn2 ; rl1 , . . . , rln3). σ is a finite signature
and a subsignature of the signature of A.

Since each program is a finite string that contains only a finite number
of symbols, we define a set of programs for every finite signature. Now, let
σ = (n1;m1, . . . ,mn2 ; k1, . . . , kn3) and n1, n2, n3 ≥ 0. Let Pσ be the set of all
σ-programs defined as follows. Every σ-program P has the following form.

1 : instruction1; 2 : instruction2; . . . ; `P − 1 : instruction`P−1; `P : stop.

It is a string that consists of a finite number of substrings, each of which
starts with a label i ∈ {1, . . . , `P} followed by the symbol : and a string
denoted by instructioni and called σ-instruction. Here and in the following,
each arithmetic expression before the symbol : such as `P − 1 stands for the
integer resulting from the evaluation of this expression. For each P , there is
some l ≥ 1 such that P results from the application of a syntactic rule to

Christine Gaßner: BSS RAM’s 6

each of the placeholders 〈instruction〉 in a string of the form

1 : 〈instruction〉; 2 : 〈instruction〉; . . . ; l−1 : 〈instruction〉; l : stop. (*)

Let `P = l. We distinguish 8 types of σ-instructions. 〈instruction〉 can be
replaced by an instruction of one of the types (1), . . . , (7) given after the labels
in Overview 1 where all j, k, j1, j2, . . . are placeholders for positive integers,
each ` is a placeholder for a label in {1, . . . , l− 1}, `1 and `2 are placeholders
for labels in {1, . . . , l}, and every i stands for a positive integer that is less
than or equal to n1, n2, and n3, respectively. The names of the types are
given in parentheses at the end of the lines.

Overview 1 (σ-instructions)

Computation instructions:
(1) ` : Zj := fmii (Zj1 , . . . , Zjmi) (F-instructions)
(2) ` : Zj := c0

i (F0-instructions)
Copy instructions:
(3) ` : ZIj := ZIk (C-instructions)
Branching instructions:
(4) ` : if rkii (Zj1 , . . . , Zjki) then goto `1 else goto `2 (T-instructions)
Index instructions:
(5) ` : if Ij = Ik then goto `1 else goto `2 (HT-instructions)
(6) ` : Ij := 1 (H1-instructions)
(7) ` : Ij := Ij + 1 (H+1-instructions)
Stop instruction:
(8) l : stop (S-instruction)

Purely formally, the instructions are only strings and we must distinguish
between the symbols in a program as presented in Overview 1 and their
interpretation determined by a structure of signature σ. This means that
one symbol for a binary operation, f 2

i , can stand for the addition or for the
multiplication, and so on. Strictly speaking, we always distinguish between
each symbol fmii for an mi-ary operation in a program and its interpretation,
between the symbols rkii and the used ki-ary relations, and between c0

i and
the constants themselves.

If a function can be computed by means of a finite number of Z-registers,
then few copy instructions of the form Zj := Zk with fixed addresses j and
k could be sufficient. The σ-programs for finite dimensional machines are
restricted to instructions of the form Zj := fmii (Zj1 , . . . , Zjmi), Zj := c0

i ,

Zj := Zk, and if rkii (Zj1 , . . . , Zjki) then goto `1 else goto `2.

Christine Gaßner: BSS RAM’s 7

2.2 The formal definition of A-machines

For any structure A, a machine over A should be able to execute a σ-program
P if A includes a reduct for interpreting all symbols of constants, operations,
and relations occurring in P and if there is a k ≤ kM such that any index
after a substring “I” in P is a number less than or equal to k. Let kP be
the smallest such k. Consequently, we can formally define an A-machine as
follows.

Definition 1 (Infinite dimensional A-machine [14]) Let a structure A,
any sets I and O, and a signature σ = (n1;m1, . . . ,mn2 ; k1, . . . , kn3) be given.
A tuple (Uω, (IN+)k,L,P ,B, In,Out) consisting of

• a space of memory states, Uω,

• a space of addresses (or indices), (IN+)k, with k ≥ 1,

• a set of labels, L = {1, . . . , l}, with l ≥ 1,

• a program P ∈ Pσ with `P = l and kP ≤ k,

• a structure B = (U ; c1, . . . , cn1 ; f1, . . . , fn2 ; r1, . . . , rn3) of signature σ,

• an input function In : I→ {(~ν . ū) | (~ν, ū) ∈ (IN+)k × Uω},
• an output function Out : {(~ν . ū) | (~ν, ū) ∈ (IN+)k × Uω} → O

is an infinite dimensional machine over A (or A-machine) with the machine
constants c1, . . . , cn1, the input space I, and the output space O if B is a reduct
of A.

Let IMA be the class of all infinite dimensional A-machines. For any machine
M = (Uω, (IN+)k,L,P ,B, In,Out) with L = {1, . . . , `P}, let kM = k, LM =
L, PM = P , BM = B, InM = In, and OutM = Out. Moreover, let the spaces
IM and OM be the domain of InM and the codomain of OutM, respectively,
and ~c (M) be the tuple (c1, . . . , cn1) of the constants of BM.

The overall state of M ∈ IMA results from the values assigned to the
registers as presented in Figure 3. It is given by a configuration and can be
changed by executing the program PM.

Definition 2 (Configuration) Any possible configuration of an A-machine
M is given by a sequence (` . ~ν . ū) where ` is a label in LM and ~ν =
(ν1, . . . , νkM) ∈ (IN+)kM and ū ∈ Uω

A hold. If ` = 1, then we call (` . ~ν . ū) an
initial configuration. If ` = `P , then we call (` . ~ν . ū) a stop configuration.

Christine Gaßner: BSS RAM’s 8

`
↓
B

~ν︷ ︸︸ ︷
ν1 ν2 νkM
↓ ↓ ↓
I1 I2 . . . IkM

ū︷ ︸︸ ︷
u1 u2 u3 u4 u5 . . .
↓ ↓ ↓ ↓ ↓
Z1 Z2 Z3 Z4 Z5 . . .

Figure 3: The assignment of values to the registers of an A-machine M

For any M ∈ IMA, let SM = {(` . ~ν . ū) | ` ∈ LM & ~ν ∈ (IN+)kM & ū ∈ Uω
A}

be the space of all possible configurations of M. For any register R, let the
content of R be the value stored in R and let it be denoted by c(R). Let
M∈ IMA. In case that, for any Z-register Zi ofM (with i ≥ 1), the current
content c(Zi) of Zi is ui and, for any register Ij of M (with j ≤ kM), the
current content c(Ij) of Ij is νj, and the current content c(B) of the register
B of M is `, the configuration (` . ~ν . ū) ∈ SM describes the current state
of M. M should work similarly as a usual finite machine equipped with
a finite number of Z-registers, however there are a few things one needs to
make clear if one wants to know the complete current state at any given
time t ≥ 1. That is the reason why we now define a transition system SM
for transforming one configuration in SM into the next configuration. For
any M ∈ IMA, let LM = LM,F ∪ LM,F0 ∪ LM,C ∪ LM,T ∪ LM,HT

∪ LM,H1 ∪
LM,H+1 ∪ LM,S be the union of the pairwise disjoint sets LM,F,LM,F0 , . . .
consisting of the labels of all F-instructions in PM, the labels of all F0-
instructions in PM, and so on, respectively, and let LM,S = {`PM}. For
determining the semantics of PM, the following family FM of totally defined
functions for changing the labels and the values in the registers of an A-
machine M ∈ IMA are introduced. The functions are determined by kM,
PM, and BM = (UA; c1, . . . , cn1 ; f1, . . . , fn2 ; r1, . . . , rn3). For ` ∈ LM, let
φM,` be a description such that the `th instruction of PM has exactly the form
(including the indices) presented for this type of instructions in Overview 1
if φM,` holds. For instance, for the instruction Z1 := f 3

2 (Z3, Z1, Z2) labelled
by 2, let φM,2 be the expression i = 2 & j = 1 & j1 = 3 & j2 = 1 & j3 = 2.

Definition 3 (Operations and functions in FM) For anyM∈ IMA, let
the functions in FM be defined as follows.

• Elementary operations F` : Uω
A → Uω

A

F`(ū) = (u1, . . . , uj−1, fi(uj1 , . . . , ujmi), uj+1, . . .) for ` ∈ LM,F if φM,`

F`(ū) = (u1, . . . , uj−1, ci, uj+1, . . .) for ` ∈ LM,F0 if φM,`

Christine Gaßner: BSS RAM’s 9

• Copy functions C` : (IN+)kM × Uω
A → Uω

A

C`(~ν, ū) = (u1, . . . , uνj−1, uνk , uνj+1, . . .) for ` ∈ LM,C if φM,`

• Test functions T` : Uω
A → LM and T` : (IN+)kM → LM

T`(ū) =

{
`1 if (uj1 , . . . , ujki) ∈ ri
`2 if (uj1 , . . . , ujki) 6∈ ri

for ` ∈ LM,T if φM,`

T`(~ν) =

{
`1 if νj = νk
`2 if νj 6= νk

for ` ∈ LM,HT
if φM,`

• Auxiliary functions H` : (IN+)kM → (IN+)kM

H`(~ν) = (ν1, . . . , νj−1, 1, νj+1, . . . , νkM) for ` ∈ LM,H1 if φM,`

H`(~ν) = (ν1, . . . , νj−1, νj + 1, νj+1, . . . , νkM) for ` ∈ LM,H+1 if φM,`

In order to complete the concept of computation with respect to our
model, we define a computational system by means of FM for any machine
M∈ IMA.

Definition 4 (Computational system) For any M ∈ IMA, the compu-
tational system RM = (SM, InputM,OutputM, StopM) is given by

• the transition system SM = (SM,→M) defined by

→M= {((` . ~ν . ū), (`+ 1 . ~ν . F`(ū))) ∈ S2
M | ` ∈ LM,F ∪ LM,F0}

∪ {((` . ~ν . ū), (`+ 1 . ~ν . C`(~ν, ū)))∈ S2
M | ` ∈ LM,C}

∪ {((` . ~ν . ū), (T`(ū) . ~ν . ū)) ∈ S2
M | ` ∈ LM,T}

∪ {((` . ~ν . ū), (T`(~ν) . ~ν . ū)) ∈ S2
M | ` ∈ LM,HT

}
∪ {((` . ~ν . ū), (`+ 1 . H`(~ν) . ū)) ∈ S2

M | ` ∈ LM,H1 ∪ LM,H+1}
∪ {((` . ~ν . ū), (` . ~ν . ū)) ∈ S2

M | ` = `PM},
• the input procedure InputM : IM → SM with InputM(i) = (1 . InM(i))

for all i ∈ IM,

• the output procedure OutputM : SM → OM with OutputM(` . ~ν . ū) =
OutM(~ν . ū) for all (` . ~ν . ū) ∈ SM,

• the stop criterion StopM(` . ~ν . ū) = 0 satisfied if ` = `PM.

The relation →M determines the transition rules conf1 →M conf2 that are
permitted for all (conf1, conf2) ∈ S2

M if (conf1, conf2)∈ →M. Each instruc-
tion causes the change of a configuration by applying a transition rule.

Christine Gaßner: BSS RAM’s 10

(`0 + 1 . ~ν . (u1, . . . , uj−1, fi(uj1 , . . . , ujmi), uj+1, . . .)︸ ︷︷ ︸
F`0 (ū)

) if `0 ∈ LM,F

(`0 + 1 . (ν1, . . . , νj−1, 1, νj+1, . . . , νkM)︸ ︷︷ ︸
H`0 (~ν)

. ū) if `0 ∈ LM,H1

Figure 4: Examples for a possible successor of the configuration (`0 . ~ν . ū)

For instance, the instruction ZIj := ZIk labelled by `0 implies the trans-
formation of (`0 . ~ν . ū) into (`0 + 1 . ~ν . (u1, . . . , uνj−1, uνk , uνj+1, . . .)) for all
ū = (u1, u2, . . .) ∈U∞A (for further examples of transformations see Figure 4).

For any M ∈ IMA and each input i ∈ IM, the system (SM,→M) can be
used to generate finite sequences (`t . ~ν

(t) . ū(t))1..s of configurations or an infi-
nite sequence of configurations (`t . ~ν

(t) . ū(t)) where we have (`1 . ~ν
(1) . ū(1)) =

InputM(i) and (`t . ~ν
(t) . ū(t))→M (`t+1 . ~ν

(t+1) . ū(t+1)) and `t 6= `PM hold for
all t < s and t ≥ 1, respectively. We call the longest such sequences com-
putation paths. Informally, we say that M goes through a computation path
that is given by the sequence of instructions executed in this order by M
and that M does it in exactly t0 steps if this path is a sequence of t0 + 1
instructions. We say that M halts on i ∈ IM if the corresponding maximal
sequence contains the S-instruction labelled by `PM . Only in this case, the
machine outputs an element of OM.

Since →M is a unique mapping, it is possible to write (→M)(conf1) =
conf2 and (→M)1(conf1) = conf2 instead of conf1 →M conf2 and to use the
composition (→M)t+1 defined by (→M)t+1(conf) = (→M)((→M)t(conf)) for
all conf ∈ SM and t ≥ 1. Moreover, let (→M)StopM :⊆ SM → SM be a
function where (→M)StopM(conf) = (→M)t0(conf) holds if the set hconf =
{t | StopM((→M)t(conf)) = 0} is not empty and t0 = minhconf holds and
otherwise (→M)StopM(conf) is not defined. Thus, for any finite computation
path (`t . ~ν

(t) . ū(t))1..s, we get (→M)StopM(`1 . ~ν
(1) . ū(1)) = (`s . ~ν

(s) . ū(s)).

Definition 5 (Result function) For any A-machine M, the partial func-
tion ResM :⊆ IM → OM, defined by

ResM(i) = OutputM ◦ (→M)StopM ◦ InputM(i)

for all i ∈ IM, is called the result function of RM and computable over A.

We say that M computes ResM and M executes the program PM on input
i in order to compute ResM(i). For any A-machine M, the input function

Christine Gaßner: BSS RAM’s 11

InM and the output function OutM can be defined in several ways where the
input space and the output space can, for instance, be Un

A for some n ≥ 1,
U∞A , (Uω,u

A)fin =df {(u1, u2, . . .) ∈ Uω
A | (∃j ∈ IN+)(u = uj = uj+1 = · · ·)} for

some u ∈ UA, and Uω
A, respectively, or the result of a combination of these or

other sets. The following machine with the input space IR∞ is a variant of
the BSS machine over IR≥0 =df (IR; IR; +,−, · , /; {r | r ≥ 0}) that essentially
corresponds to the real Turing machines described in [11, pp. 455–456].

Example 1 (BSS IR≥0-machine) Let P be an (n1; 2, 2, 2, 2; 1)-program
each of whose instructions can be an F-instruction, an F0-instruction, an
index instruction of the type (6) or (7) for the two index register I1 and I2,
the C-instruction ZI2 := ZI1, or a T-instruction with the condition r1

1(Z1)
for evaluating c(Z1) ≥ 0. Then, the following tuple is a BSS IR≥0-machine.

MBSS
IR≥0 = (IRω, (IN+)2,L,P , IR≥0, In,Out), (x1, . . . , xn) ∈ IR∞

In(x1, . . . , xn) = (1, 1, x1, n, x2, 0, x3, . . . , 0, xn, 0, 0, . . .)
Out(ν1, ν2, u1, u2, u3, . . .) = (u1, u2, u3, . . .)

By [3], every BSS machine is a graph such that, for any input, the computa-
tional process of this machine can be represented by a computation path as
usual in flow charts where the nodes correspond to the labelled instructions
of some BSS IR≥0-machine.

2.3 Subprograms and pseudo instructions

Here, any σ-subprogram is a substring of a σ-program (a macro) that has
the form instruction`1 ; `1+1 : instruction`1+1; . . . ; `2 : instruction`2 where every
instruction` (`1 ≤ ` ≤ `2) denotes a σ-instruction. Thus, any P ∈ Pσ can be
represented by certain strings of the form

1 : subprogram1; `2 : subprogram2; . . . ; `s : subprograms; `P : stop.

with strings subprogramm (1 ≤ m ≤ s) denoting σ-subprograms and resulting
from replacing the placeholder 〈subprogram〉 with the help of syntactic rules
given in Table 1 (for suitable ` ≥ 1). Any pair (A1, A2) given in one row
of Table 1 means that the placeholder A1 given in the first column can be
replaced by the string A2 given in the second column by the application
of the rule A1 → A2. In the replacing process, all placeholders marked
by angle brackets 〈 and 〉 must be replaced step-by-step. Accordingly, all

Christine Gaßner: BSS RAM’s 12

A1 A2

〈condition〉 Ij = Ik
〈condition〉 rkii (Zj1 , . . . , Zjki)

〈condition〉 〈condition〉 & 〈condition〉
〈condition〉 〈condition〉 or 〈condition〉
〈instructions〉 〈instruction〉
〈instructions〉 〈pseudo−instr〉
〈instructions〉 〈instructions〉; ` : 〈instructions〉
〈pseudo−instr〉 goto `
〈pseudo−instr〉 if 〈condition〉 then 〈subprogram〉
〈pseudo−instr〉 if 〈condition〉 then 〈subprogram〉 else 〈subprogram〉
〈subprogram〉 〈instruction〉
〈subprogram〉 {〈instructions〉}

Table 1: Syntactic rules A1 → A2

placeholders 〈pseudo−instr〉 and 〈condition〉 may also be replaced by new
pseudo instructions and new conditions conditionj, respectively, introduced
later. In this way we get new strings for denoting subprograms. For example,
any resulting string “`1 : if conditionj then subprogramm; `2 :” corresponds to
“`1 : if conditionj then goto `1+1 else goto `2; `1+1 : subprogramm; `2 :” where
subprogramm can stand, e. g., for “instruction`1+1; `1 +2 : instruction`1+2; . . . ;
`1+s : instruction`1+s” if, for the arithmetic expressions, `2 = `1+s+1 holds.
In the following, some of the labels before an instruction that are not used
in branching instructions (and the symbol : after these labels) are omitted.
Summarizing, we can say that an application of a syntactic rule is only
permitted if the resulting string does not contain two (pseudo) instructions
with the same label and the result of all applications is — after a possible
renumbering of all instructions and the corresponding renaming of the labels
— a σ-program. The braces can be omitted if no ambiguity is possible.
Therefore, the braces in {〈instructions〉} are omitted if 〈instructions〉 is
replaced by a simple pseudo instruction without an if part (such as some of
the pseudo instructions given e.g. in Overview 2).

2.4 Meaning of the space of indices and properties

The BSS machines introduced in [3] work with only two index registers and
they have been defined for a large class of commutative rings that includes

Christine Gaßner: BSS RAM’s 13

the ring over the real numbers and integers, respectively. Our generalisation
of this kind of machines leads to the concept of A-machines. Accordingly, all
Z-registers have an address such that their contents can definitely be read by
means of index registers. But, we clearly distinguish between the values used
as addresses of storage locations and the elements of the underlying struc-
ture A. We want to have the possibility to store some additional information
such as the length of the input regardless of whether the encoding of the
information by the inputted individuals or other elements of the structure
is possible. Therefore, the space of addresses contains, in general, tuples of
more than two components. The addresses belong to a second structure, to
the Peano structure AIN = (IN+; 1; succ; =) where succ(n) = n + 1 for all
n ≥ 1. Consequently, any A-machine is able to use the functions and the
relations of both structures A and AIN and to compute several arithmetic
functions f : INs

+ → IN+ by manipulating indices. With respect to pro-
cessing indices, we allow only the interpretation of the symbols as usual in
arithmetic. Therefore, we do not distinguish between the arithmetic func-
tions and relations and their symbols in arithmetic expressions occurring in
pseudo instructions and comparisons if they refer to indices or index reg-
isters. Hence, the semantics is easy to understand without explaining all
details and the meaning of each single pseudo instruction. Accordingly, we
use the following pseudo instructions and the like and further conditions A2

in syntactic rules of the form 〈condition〉 → A2. In Overview 2, let ν, µ ≥ 1
or, in the third line, let µ − ν > 0 and µ ≥ ν ≥ 0, respectively, and, in the
fourth line, let ν + µ ≥ 1. Any expression t+ 0 may be replaced by t.

Overview 2 (Pseudo instructions)

Ij := ν, Ij := Ij + ν, if Ij > ν then Ij := Ij − ν
Ij := Ik + ν, Ij := Ik + Im, ZIj := ZIk+Im, ZIj+Ik := ZIl+Im
Ij := µ− ν, (ZIj+ν , . . . , ZIj+µ) := (ZIk , . . . , ZIk+µ−ν)
(ZIj+ν , . . . , ZIk+ν) := (ZIj+µ, . . . , ZIk+µ)

(permitted if c(Ij) ≤ c(Ik) is ensured)
(Z1, Zµ+1, . . . , Zν·µ+1) := (Z1, Z2, . . . , Zν+1), (ZIj , ZIj+1) := (ci1 , ci2)
Further pseudo conditions: (ZIj , ZIj+1) = (ci1 , ci2)
Ij = ν, Ij > ν, Ij ≥ ν, Ij ≤ µ− ν, Ij ≥ Ik, Ij = Ik + ν, Ij > Ik + ν

For ν = 1, the third pseudo instruction can be realised as follows where K1

andK2 are new index registers. if Ij > 1 then goto `1 else goto `4; `1 : K1 := 1;
K2 := 1; `2 : K1 := K1 + 1; if K1 = Ij then goto `3 else K2 := K2 + 1; goto

Christine Gaßner: BSS RAM’s 14

`2; `3 : Ij := K2; `4 : . . . The fourth last pseudo instruction corresponds to
Im := Ij+ν; if Ik > Im then {ZIm := ZIk ; K1 := 1; goto `1} else {K1 := µ−ν;
goto `2}; `1 : if K1 ≤ µ− ν then {ZIm+K1 := ZIk+K1 ; K1 := K1 + 1; goto `1}
else goto `3; `2 : if K1 ≥ 1 then {ZIm+K1 := ZIk+K1 ; K1 := K1 − 1; goto `2};
ZIm := ZIk ; `3 :

In any program, every Zi is a variable to which values can be assigned.
However, informally we can associate Z1, Z2, . . . with places for storing ob-
jects. These places are boxes, cells or so-called registers. Since each of the
Z-registers has a number (an address), this corresponds to the idea that the
Z-registers form a tape infinite to the right and that any value on the tape
can be read by a head whose position is stored in one index register.

Let A0 = ({0, 1}; 0, 1; ; =). Then, any simple 1-tape Turing machine
M (for the definition see, e. g., [8, p. 159 in the German version]) comput-
ing a function f :⊆ {0, 1}∗ → {0, 1}∗ corresponds to the following Turing
A0-machine MT(M) with the input space IMT(M) = {0, 1}∗. Since every
positive integer has a unique binary representation, it is also possible that
M computes a function f :⊆ IN+ → IN+. For this purpose, we define a
Turing A0-machine MT

IN(M) with IMT
IN(M) = IN+ and new input and output

functions, InMT
IN(M) and OutMT

IN(M), derived from InMT(M) and OutMT(M).

Example 2 (Turing A0-machines) Let M work with the symbols 0, 1,
and a finite number of states in Q = {q1, . . . , qi0} for some i0 ≥ 1. Here, the
symbols 0 and 1 are encoded by (0, 0) and (0, 1), respectively, and the symbol

by (1, 1). The content of the relevant cells τ−s1 , . . . , τs2 of M (that do not
contain the symbol) is stored in the Z-registers Z1, . . . , Z2(s1+s2+1), the head
position s is given by the index register I2 such that c(I2) = 2(s1 + s+ 1)− 1.
c(I1) = 2(s1 + s2 + 1) is the address of the last relevant Z-register whereas
the first relevant cell τ−s1 corresponds to Z1 and Z2. Any state qi ∈ Q is
represented by one label `i ∈ LMT(M). The program P = PMT(M) contains,
for any label `i (i ≤ i0), a pseudo instruction of the following form with
(ci1 , ci2) ∈ {(0, 1), (0, 1), (1, 1)} and j ≤ i0.

`i : if (ZI2 , ZI2+1) = (ci1 , ci2) then {subprogrami,i1,i2 ; goto `j}

The Turing machine M can only change the content of a cell τs or make
a move to a neighbour cell τs−1 or τs+1 in dependence on the current state
and the content of τs. Hence, any subprogram subprogrami,i1,i2 is one of the
following pseudo instructions. (a) means to write the symbol encoded by
(ci1 , ci2). (b) means to go to the right. (c) means to go to the left.

Christine Gaßner: BSS RAM’s 15

(a) (ZI2 , ZI2+1) := (ci1 , ci2)
(b) if I1 = I2 + 1 then I1 := I1 + 2; I2 := I2 + 2
(c) if I2 > 2 then I2 := I2 − 2 else {I1 := I1 + 2;

(ZI2+2, . . . , ZI1+2) := (ZI2 , . . . , ZI1); (ZI2 , ZI2+1) := (1, 1)}

Without loss of generality, let Q contain only one final state. Therefore,
let the final state be represented by `P ∈ LMT(M). Formally, we describe
MT(M) as follows. L contains all `i for i ≤ i0 and the labels used in the
subprograms. k > 2 is also dependent on the subprograms. The integers
λ0 = min{ν | (2ν − 1 ≥ ν2 & (u2ν−1, u2ν) 6= (1, 1)) or ν = ν1

2
} and λ1 =

min{ν | ν ≥ λ0 & (u2ν+1, u2ν+2) = (1, 1)} give, if possible, the positions for
an output without the symbol .

MT(M) = ({0, 1}ω, (IN+)k,L,P ,A0, In∗,Out∗), x1 · · · xn ∈ {0, 1}∗

In∗(x1 · · ·xn) = ((2n, 1, . . . , 1) . (0, x1, 0, x2, . . . , 0, xn, 1, 1, 1, 1, . . .))
Out∗(ν1, . . . , νk, u1, u2, u3, . . .) = Λ if u2λ0−1 = 1
Out∗(ν1, . . . , νk, u1, u2, u3, . . .) = u2λ0u2λ0+2 · · ·u2λ1 otherwise

Let bin : IN+ → {0, 1}∗ be defined by bin(
∑n
i=1 xi · 2i−1) = xn · · ·x1 for all

~x ∈ {0, 1}∞ with xn = 1 and let bin−1 be the partial inverse of bin.

MT
IN(M) = ({0, 1}ω, (IN+)k,L,P ,A0, InIN,OutIN), m ∈ IN+

InIN(m) = In∗ ◦ bin(m)
OutIN(ν1, . . . , νk, u1, u2, u3, . . .) = bin−1 ◦Out∗(ν1, . . . , νk, u1, u2, u3, . . .)

2.5 BSS RAM’s over A
One of the main characteristics of the infinite dimensional A-machines is that
anyM∈ IMA has its own program. This means that the code of the program
PM does not need to be part of the input ofM and it is not necessary to have
a universal algorithm for executing a program whose code is only given as
input. Moreover, A-machines have features suitable for modelling the object-
oriented programming where provided data structures, the so-called classes,
including the operations for processing the data, the so-called methods, can
be used without knowing the implementation of the methods. Besides these
properties, a further key feature of BSS RAM’s over A should be the ability
to process all tuples of elements of UA uniformly.

Christine Gaßner: BSS RAM’s 16

x1 · · · xn (the input)
↓ ↓
Z1 . . . Zn Zn+1 Zn+2 . . .

↑ ↑
xn xn

B I1 I2 I3 I4 . . . IkM
↑ ↑ ↑ ↑ ↑ ↑
1 n 1 1 1 1

B I1

`PM ν1 I2 I3 I4 . . . IkM

Z1 . . . Zν1 Zν1+1 Zν1+2 . . .

↓ ↓
z1 · · · zν1 (the output)

Figure 5: The input procedure and the output procedure for M∈ MA

Definition 6 (BSS RAM) For any structure A, any M ∈ IMA with the
spaces IM = OM = U∞A is called BSS RAM over A if InM and OutM are
defined for all (x1, . . . , xn) ∈ U∞A and ((ν1, . . . , νkM), (u1, u2, . . .)) ∈ INkM

+ ×Uω
A

as follows (see also Figure 5).

InM(x1, . . . , xn) = (n, 1, . . . , 1︸ ︷︷ ︸
kM indices

, x1, . . . , xn, xn, xn, . . .)

OutM(ν1, . . . , νkM , u1, u2, u3, . . .) = (u1, . . . , uν1)

Let MA be the class of all BSS RAM’s overA. Consequently, for anyM∈ MA
and each input (x1, . . . , xn) ∈ U∞A , the input procedure InputM of RM pro-
vides the initial configuration (1 . (n, 1, . . . , 1) . (x1, . . . , xn, xn, xn, . . .)). Here,
to simplify matters, the registers Zn+1, Zn+2, . . . get the value xn. Therefore,
for the input (x1, . . . , xn), M uses only the subspace (Uω,xn

A)fin of the space
Uω
A. Note that the concept could also be changed such that the initialisation

of Zj for j > n would be done during the computation before Zj should be
used. Moreover, a constant ci could be assigned to Zn+1, Zn+2, . . . if A is a
structure with a constant and ci is one of the constants of A. If the machine
halts, then the values c(Z1), . . . , c(Zc(I1)) are outputted. The following exam-
ple helps to understand that there are differences between the BSS RAM’s
and the real RAM’s working with a read instruction and a write instruction.
It remains unclear how the following functions could be computed by means
of real RAM’s of the latter form.

Example 3 (Functions computable over IR≥0) Since the register I1 of
any BSS RAM contains the length of any input at the beginning, for i ∈
{1, 2, 3}, there are BSS RAM’s Mi over IR≥0 computing the functions fi :
IR∞ → IR∞ everywhere defined by f1(x1, . . . , xn) =

∑n
i=1 xi, f2(x1, . . . , xn) =

Christine Gaßner: BSS RAM’s 17

xn, and f3(x1, . . . , xn) = n, respectively, for any n ≥ 1 and all (x1, . . . , xn) ∈
IR∞. More precisely, we have ResMi

= fi for each i ∈ {1, 2, 3}.

2.6 Multi-tape machines and the multi-tape mode

Now, we consider machines that work with a finite number of tapes. For any
d ≥ 1, a d-tape A-machine is a tuple ((Uω

A)d, INκ1
+ ×· · ·×INκd

+ ,L,P ,B, In,Out)
that can be defined analogously to the usual A-machines in IMA. It is
equipped, for all j ≤ d, with the Z-registers Zj,1, Zj,2, . . . forming the jth tape
and a finite number of index registers Ij,1, . . . , Ij,κj . For ` ∈ L, (~ν (j))j=1..d ∈
INκ1

+ × · · · × INκd
+ , and (ū (j))j=1..d ∈ (Uω

A)d, the tuple (`, (~ν (j) . ū(j))j=1..d) is a
configuration of this machine. The overall state of such a machine M is de-
scribed by (`, (~ν (j) . ū(j))j=1..d) if ` is the label c(B) stored in the register B of
M, every component νj,k of ~ν (j) is the content c(Ij,k) of the index register Ij,k
of M, and the component uj,k of ū(j) is the content c(Zj,k) of the Z-register

Zj,k of M. Let IM
(d)
A be the class of all d-tape A-machines. For signature

σ = (n1;m1, . . . ,mn2 ; k1, . . . , kn3), any d-tape σ-program results from replac-
ing each placeholder 〈instruction〉 in a string of the form (*) by one of the
d-tape σ-instructions whose form is given in Overview 3 where i is a positive
integer less than or equal to n1, n2, and n3, respectively, d0, d1, d2, . . . stand
for positive integers ≤ d, and all j, k, j1, j2, . . . are placeholders for positive
integers. Let P(d)

σ be the set of all d-tape σ-programs.

Overview 3 (d-tape σ-instructions)

Zd0,j := fmii (Zd1,j1 , . . . , Zdmi ,jmi), Zd0,j := c0
i , Zd1,Id1,j := Zd2,Id2,k

if rkii (Zd1,j1 , . . . , Zdki ,jki) then goto `1 else goto `2,

if Id1,j = Id2,k then goto `1 else goto `2, Id1,j := 1, Id1,j := Id1,j + 1

Each execution of an instruction in PM ∈ P(d)
σ by an M ∈ IM

(d)
A can cause

the change of the current configuration. For instance, `0 : Z1,I1,j := Z2,I2,k

means (`0, (~ν
(j) . ū(j))j=1..d) →M (`0 + 1, (~ν (j) . w̄(j))j=1..d) where w̄(j) = ū(j)

for j ∈ {2, . . . , d} and w̄(1) = (u1,1, . . . , u1,ν1,j−1
, u2,ν2,k , u1,ν1,j+1

, u1,ν1,j+2
, . . .).

Accordingly, let the result function be defined.
Any machine M ∈ IM

(d)
A is a d-tape BSS RAM if, for any input ~x =

(x1, . . . , xn), InM(~x) = (~ν (j) . ū(j))j=1..d is determined by ~ν (1) = (n, 1, . . . , 1)
and ū(1) = (x1, . . . , xn, xn, . . .) and by ~ν (j) = (1, . . . , 1) and ū(j) = (xn, xn, . . .)
for all j ∈ {2, . . . , d} and OutM is defined by OutM((~ν (j) . ū(j))j=1..d) =

(u1,1, u1,2, . . . , u1,ν1,1). Let M
(d)
A be the class of all d-tape BSS RAM’s.

Christine Gaßner: BSS RAM’s 18

Since the Z-registers of the first tape of a machine in M
(d)
A get the input

values and provide the output in the same way as the registers of a machine
in MA, we have M

(1)
A = MA. On the other hand, any program of a machine

M ∈ IM
(d)
A can be simulated by a machine NM ∈ IM

(1)
A . Let M be any

machine in IM
(d)
A and, for all j ≤ d, let Ij,1, . . . , Ij,κj be the index registers

of M allowing the access to the jth tape Zj,1, Zj,2, . . . of M. Then, let NM
be a machine in IM

(1)
A with kNM = κ1 + · · · + κd working in d-tape mode

with d tracks by using the jth track Zj, Zd+j, Z2d+j, . . . instead of the jth

tape Zj,1, Zj,2, . . . of M. If InputM(i) = (1, (~ν (j) . ū(j))j=1..d) holds, then let
InNM(i) = ((~ν(1) ~ν(d)) . ū) with (uj, ud+j, u2d+j, . . .) = ū(j) for all j ≤ d.
However, ifM and NM should be BSS RAM’s, then, after the input, let NM
arrange its input ~x ∈ U∞A on the first track Z1, Zd+1, Z2d+1, . . . and execute
I1 := (I1−1) ·d+1 before the simulation starts with a suitable configuration.

Proposition 1 (Simulation of d-tape A-machines) For any structure

A and all t ≥ 1, the work of any M ∈ IM
(d)
A can be done by a machine

NM ∈ IM
(1)
A where t steps of M can be realised by NM within dt steps.

Proof. Let PM contain only instructions given in Overview 3. To get the
corresponding program PNM , we replace every variable Zj,i (j ≤ d, i ≥ 1)
in PM by the variable Z(i−1)d+j so that we have to consider the register
blocks Z(i−1)d+1, . . . , Zid of NM instead of the registers Z1,i, . . . , Zd,i. The
variables for index registers I1, . . . , Iκ1+···+κd are substituted for I1,1, . . . , I1,κ1 ,
. . . Id,1, . . . , Id,κd in this order. Consequently, in all copy instructions in PM,
the indices of Z-registers including the index register variables must be re-
placed as follows. ZIκ1+···+κj−1+i

must be substituted for Zj,Ij,i . Moreover,
we replace any index instruction Ij,i := 1 in PM by Iκ1+···+κj−1+i := j and
Ij,i := Ij,i+1 by Iκ1+···+κj−1+i := Iκ1+···+κj−1+i+d. Then, the execution of each
of these pseudo instructions in PNM can be realised within d transformation
steps defined by→NM . Any other instruction of PM can be simulated in one
step.

3 Universal machines and consequences

3.1 Universal programs and machines: the definitions

We want to transfer the classical theorems about the existence of a universal
partial recursive function (see e.g. the Enumeration Theorem in [24, p. 18])

Christine Gaßner: BSS RAM’s 19

and the existence of a universal Turing machine (see e.g. [9, Theorem IV,
p. 22]) and generalise a result about the existence of a universal BSS machine
presented by a flow chart in Figure 15 in [3, p. 35]. The following definition
also includes the case considered for a similar model in [17, p. 39]. Let a and
b be two arbitrary objects and let k be an integer such that it is possible to
encode the characters in any string P ∈ Pσ (including all symbols such as
r3

21 after their replacement, e. g., by r 21 3) by tuples in {a, b}k. Then, for
any σ-program P , let code(a,b)(P) ∈ {a, b}∞ result from the concatenation
of an a and the sequence of the codes of all characters in P in this order.
Let code∗(P) be the string s1 · · · sm ∈ {0, 1}∗ if code(1,0)(P) = (s1, . . . , sm)
holds and let codeIN(P) = bin−1(code∗(P)). Let A be a structure. For any
M ∈ IMA with the constants in ~c (M) = (cj1 , . . . , cjn1), let code(a,b)(M) =

(code(a,b)(PM) .~a (M,a)) where ~a (M,a) = (a1, . . . , a`PM) is defined as follows.

For any ` ≤ `PM , let a` be the ith component cji in ~c (M) if the `th instruction
of PM is the instruction Zj := c0

i for some j and otherwise let a` = a.

Definition 7 (Universal machines of type 1 for BSS RAM’s) Let a
and b be two constants of A. We say thatM0 ∈ MA is a universal BSS RAM
over A if ResM0(code(a,b)(M) . ~x) = ResM(~x) holds for all ~x ∈ U∞A and any
M∈ MA.

The following definition includes also the definition of a further variant
of a universal BSS RAM for several structures. It is in particular suitable
for structures of finite signature without constants. For this purpose, let
p1, p2, . . . be the sequence of all prime numbers with pi ≤ pi+j for all i, j ≥ 1.

For any A-machine M0, let ireg : IN∞+ → (IN
kM0
+ ∩ (IN+ × {1} × · · · × {1}))

be any bijective function such that this function as well as its partial inverse
can be computed by BSS RAM’s over AIN. Moreover, for any k ≥ 1, let
the function endM0,k : SM0 → {(~ν . ū) | (~ν, ū) ∈ INk

+ × Uω
A} be defined, for

all (` . ~µ . ū) ∈ SM0 , by endM0,k(` . ~µ . ū) = (~ν . ū) where ~ν = (µ1, ν2, . . . , νk)
holds if µ2 = 2ν2 · · · pνkk and otherwise ~ν = (µ1, 1, . . . , 1) ∈ INk

+ holds.

Definition 8 (Universal programs and machines of type 2) Let M0

be an A-machine. We say that PM0 is IMA-universal (or universal) if, for
all M∈ IMA and i ∈ IM,

ResM(i) = OutM ◦ endM0,kM ◦ (→M0)StopM0
(initM0(M, i))

holds for the initial configuration initM0(M, i) ∈ SM0 that is given by

initM0(M, i) = (1 . ireg(~ν . codeIN(PM)) .~a (M,u1) . ū)

Christine Gaßner: BSS RAM’s 20

Type e1 e2 e3 e4 e5 e6 e7 · · · e··· µP,`

(1) 1 i j j1 j2 jmi 21 ·3i ·11j ·13j1 ·17j2 · · · pjmijmi+5

(2) 2 j 22 ·11j

(3) 3 j k 23 ·11j ·13k

(4) 4 i `1 `2 j1 j2 jki 24 ·3i ·5`1 ·7`2 ·13j1 ·17j2 · · · pjkijki+5

(5) 5 `1 `2 j k 25 ·5`1 ·7`2 ·11j ·13k

(6) 6 j 26 ·11j

(7) 7 j 27 ·11j

(8) 8 1

Table 2: The codes µP,` for the instruction with label ` in P

and (~ν . ū) = InM(i). M0 is called (MA-)universal BSS RAM if M0 ∈ MA.

If IM0 = {(M, i) | M ∈ IMA & i ∈ IM}, then let InputM0
= initM0 . If

we consider only BSS RAM’s, then the function ireg is determined by a
binary function. This means that there is some idx : IN2

+ → IN+ such that
ireg(~ν . µ) = (idx(ν1, µ), 1, . . . , 1) holds for all ~ν = (ν1, . . . , νk) ∈ IN∞+ .

In the following, we want to consider universal A-machines that are able
to simulate the execution of every M ∈ MA instruction-by-instruction. Let
σ = (n1;m1, . . . ,mn2 ; k1, . . . , kn3) and PM ∈ Pσ. Since we want to make the
important information about the instructions of PM available for easy ac-
cess, we use strings αe1 · · ·αemax{m1,...,mn2 ,k1,...,kn3}

∈ {α0, . . . , αhPM}
∗ for some

hPM ≥ 1 and Gödel numberings (for the definition see e. g. [18, p. 183]) for
storing the information about a single instruction labelled by ` in a Gödel
number µPM ,`. These numbers are dependent on the type of instructions and
φPM,` =df φM,` (used also in Definition 3) for ` ≤ `PM . Table 2 shows the
details. Let es = 0 if there is no other information. Moreover, let a be any
element of A. For any P ∈ Pσ, let the program information be given by
µ` = µP,` for ` ≤ `P and

codea(P) = (a, . . . , a) ∈ {a}νP ⊆ {a}∞ with νP = 2µ13µ2 · · · pµ`P−1

`P−1 p`P ∈ IN+.

For any M ∈ IMA, let `M = `PM and νM = νPM . Consequently, ev-
ery machine M ∈ IMA could be encoded by ~a (M,a) and a tuple (a, . . . , a)
whose length is dependent on the Gödel number νM = |codea(PM)| and the
length of the input. However, in order to complement any possible input

Christine Gaßner: BSS RAM’s 21

(x1, . . . , xn) ∈ U∞A of an M ∈ MA with a code of M that is computable
from the input by some machine in MA, we take ~a (M,x1) and a suitable tuple
in {xn}∞. For computing the total length of this tuple we use the Cantor
pairing function cantor : IN2 → IN defined by cantor(µ1, µ2) = 1

2
((µ1 +µ2)2 +

3µ1+µ2). Now, let coden,a(PM) = (a, . . . , a) ∈ {a}cantor(n,νM)−`M−n for n ≥ 1
and any possible a ∈ UA. In this way, for all ~x ∈ Un

A and M ∈ MA, we get
an input

(~a (M,x1) . ~x . coden,xn(PM)) ∈ U cantor(n,νM)
A (**)

for a universe BSS RAM M0 of type 2 such that we have

initM0(M, ~x) = (1 . (cantor(n, νM), 1, . . . , 1) . (~a (M,x1). ~x . (xn, xn, . . .)). (***)

3.2 Simulation of BSS RAM’s by universal machines

Here, we will describe the work of a universal BSS RAMM0 ∈ MA that can
simulate any machine M ∈ MA by means of three tracks after assigning its
own input to the first track in case that the input has the form (**). For

explaining the algorithm we only construct a BSS RAM M(3)
0 ∈ M

(3)
A that

is able to simulate any M ∈ MA by a program that is also useful for other
investigations. To simplify matters, we use further pseudo instructions. The
strings in square brackets are optional.

Overview 4 (Pseudo instructions for d tapes)

Z1,I1,k := fmii (Z1,I1,k+1
, . . . , Z1,I1,k+mi

)

(Zd1,[Id1,j+]1, . . . , Zd1,[Id1,j+]I1,m) := (Z1,[I1,k+]1, . . . , Z1,[I1,k+]I1,m)

Further pseudo conditions: rkii (Z1,I1,k+1
, . . . , Z1,I1,k+ki

)

In Overview 5, Ji, Jk, Jl, and Jm stand for I1,i, I1,k, I1,l, and I1,m. The operator
div denotes the integer division, and ν|µ means that ν is a divisor of µ.
Moreover, let cantor1(µ) = µ1 and cantor2(µ) = µ2 if µ = cantor(µ1, µ2).

Overview 5 (Pseudo instructions for decoding numbers)

Ji := cantor1(Jk), Ji := cantor2(Jk), Ji := pJkm , Ji := Jk · pJm
Ji := max{s | psm|Jk} (permitted if pm|c(Jk) is ensured)
Ji := [Jl+] max{s | psJm|Jk} (permitted if pc(Jm)|c(Jk) is ensured)
Ji := max{m | pm|Jk} (permitted if c(Jk) > 1 is ensured)

Ji := Ji div pJl−Jk−1
Jm (permitted if c(Ji) ≥ p

c(Jl)−c(Jk)−1
c(Jm) is ensured)

Further pseudo conditions: pm|Jk, psJm|Jk

Christine Gaßner: BSS RAM’s 22

If d1 ≤ 3, then the instructions in Overview 4 can be executed by a 3-tape
machine. All values that are necessary for executing the first pseudo instruc-
tion and checking the new condition are firstly copied on a second tape where
the new values are computed and the tests are performed. For this purpose,
a finite number of instructions of the form I2,1 := 1, I2,2 := 2, . . . , Z2,I2,1 :=
Z1,I1,k+1

, Z2,I2,2 := Z1,I1,k+2
, . . . , Z2,1 := fmii (Z2,1, . . . , Z2,mi), Z1,I1,k := Z2,I2,1 ,

and if rkii (Z2,1, . . . , Z2,ki) then goto `1 else goto `2, respectively, can be used.
As known from the classical recursion theory, the pseudo instructions listed
in Overview 5 can be used for evaluating Gödel numbers, and they can be re-
placed by subprograms consisting only of index instructions of the types (5) to
(7). For example, since Jk|Ji holds if and only if Ji ≥ Jk & (Ji div Jk)·Jk = Ji
holds, the pseudo instruction if Jk|Ji then goto `1 else goto `2 can be performed
as follows. One goes to `2 if c(Ji) < c(Jk). Otherwise one takes a new index
register Jl, executes Jl := Jk, repeats the loop where Jl := Jl + 1 is executed
c(Jk) times while c(Jl) < c(Ji), but stops immediately if c(Jl) = c(Ji). If
c(Jl) = c(Jk) or Jl := Jl + 1 can be executed c(Jk) times in the last loop,
then the execution can be continued with the instruction labelled by `1 and,
otherwise, with the instruction labelled by `2. The number of the loops where
the addition c(Jl)+c(Jk) is completely executed is (c(Ji) div c(Jk))−1. Thus,
we can also use the pseudo instruction Jj := Ji div Jk that allows to compute
c(Jj) = max{s ∈ IN+ | (∃s0 ∈ IN)(0 ≤ s0 < s & s · c(Jk) + s0 = c(Ji))} if
c(Ji) ≥ c(Jk). c(Jk) = pm can be computed by a program as follows where
the index register K1 is used for storing the index of the next searched prime
number after pc(K1)−1 (if c(K1) − 1 ≥ 1), the index register K2 is used for
storing the integers greater than pc(K1)−1 and checking whether the stored
number c(K2) is the next prime number, and the index register K3 is used
for storing a possible non-trivial factor of c(K2). `1 : K1 := 1; K2 := 2;
`2 : if K1 = m then goto `7; `3 : K1 := K1 + 1; `4 : K2 := K2 + 1; K3 := 1;
`5 : K3 := K3 + 1; if K2 = K3 then goto `2; `6 : if K3|K2 then goto `4 else
goto `5; `7 : Jk := K2.

Now, we assume that corresponding to (**) the registers Z1,1, Z1,2, . . . of

the first tape M(3)
0 contain the values a1, . . . , a`M , x1, . . . , xn, xn, xn, . . . for

(a1, . . . , a`M) = ~a (M,x1) before M(3)
0 executes the program P(3)

0 given in Fig-

ure 6. Let PM(3)
0

= P(3)
0 . In P(3)

0 , the index registers I1,1, . . . , I1,2m0+15 with

m0 = max{m1, . . . ,mn2 , k1, . . . , kn3} are denoted by N0, N, C, L, LP , V, S,
E1, . . . , Em0+5, J0, . . . , Jm0 , H1, and H2. c(N0) is firstly the length n0 of

the input of M(3)
0 and later the length of the output M(3)

0 . c(N) is firstly

Christine Gaßner: BSS RAM’s 23

1 : N := cantor1(N0); C := cantor2(N0);
LP := max{m | pm|C}; (Z3,1, . . . , Z3,LP) := (Z1,1, . . . , Z1,LP);
(Z1,N0+1, . . . , Z1,N0+N) := (Z1,LP+1, . . . , Z1,LP+N); V := pN1 ; L := 1;

`1 : if L = LP then goto `7 else goto `2;

`2 : S := max{s | psL|C};
if p1|S then E1 := max{e | pe1|S}; . . . ;
if pm0+5|S then Em0+5 := max{e | pem0+5|S};
if E1 = 1 or E1 = 2 then J0 := N0 + E5;
if E1 = 1 or E1 = 4 then {J1 := N0 + E6; . . . ; Jm0 := N0 + Em0+5};
if E1 = 3 or E1 = 5 then {H1 := compE5

; H2 := compE6
};

if E1 = 6 or E1 = 7 then H1 := compE5
;

`3 : if E1 = 1 then goto ˜̀
1; . . . ; if E1 = 7 then goto ˜̀

7;

˜̀
1 : if E2 = 1 then Z1,J0 := fm1

1 (Z1,J1 , . . . , Z1,Jm1
); . . . ;

if E2 = n2 then Z1,J0 := f
mn2
n2 (Z1,J1 , . . . , Z1,Jmn2

); goto `4;

˜̀
2 : Z1,J0 := Z3,L; goto `4;

˜̀
3 : Z1,H1 := Z1,H2 ; goto `4;

˜̀
4 : if E2 = 1 & rk11 (Z1,J1 , . . . , Z1,Jk1

) then goto `5 else goto `6; . . . ;

if E2 = n3 & r
kn3
n3 (Z1,J1 , . . . , Z1,Jkn3

) then goto `5 else goto `6;

˜̀
5 : if H1 = H2 then goto `5 else goto `6;

˜̀
6 : if H1 > N0 + 1 then V := V div pH1−N0−1

E5
; goto `4;

˜̀
7 : V := V · pE5 ;

`4 : L := L+ 1; goto `1;

`5 : L := E3; goto `1;

`6 : L := E4; goto `1;

`7 : N := max{j | pj1|V }; H1 := 1;

`8 : if N ≥ H1 then {Z1,H1 := Z1,N0+H1 ; H1 := H1 + 1; goto `8};N0 := N ;

`9 : stop.

Subprogram Hν := compEµ
if pEµ |V then Hν := N0 + max{s | psEµ |V } else {V := V · pEµ ; Hν := N0 + 1}

Figure 6: The program P(3)
0 of the universal machine M(3)

0

Christine Gaßner: BSS RAM’s 24

the length n of the input of M. C is used for storing the Gödel number
νM, and we use c(LP) = `M. Since any machine can contain only a finite

number of index registers, M(3)
0 cannot store all values c(I1), . . . , c(IkM) for

every possible kM ≥ 1 in different index registers. Thus, we use the possibil-
ity to store all values of the registers I1, . . . , IkM of M in one index register

of M(3)
0 . V contains the product p

c(Is1)
s1 · · · pc(Isµ)

sµ for the registers Is1 , . . . , Isµ
(s1, . . . , sµ ≤ kM) of M having already been considered during the simula-

tion ofM byM(3)
0 until that time. L and S contain the label and the code,

respectively, of the current instruction of PM, E1, E2, . . . contain the current
values e1, e2, J0, J1, . . . contain the values n0 + e5, n0 + e6, Since the
Z-registers Z1,n0+1, Z1,n0+2, . . . are used for storing all values c(Z1), c(Z2), . . .

of the Z-registers ofM during the simulation, the universal machineM(3)
0 as-

signs the start values x1, . . . , xn to its registers Z1,n0+1, . . . , Z1,n0+n+1 and the
start values a1, . . . , a`M to the registers Z3,1, . . . , Z3,`M by the subprogram of

P(3)
0 that is labelled by 1 at the beginning. Z1,n0+n+1, Z1,n0+n+2, . . . have got

the value xn by the input procedure of M(3)
0 . For any e1 ≤ 7, P(3)

0 contains
a subprogram labelled by ˜̀

e1 for simulating the instructions of type (e1). In
addition to the pseudo instructions listed in Overview 5, the subprograms
contain 3-tape pseudo instructions that can be introduced in analogy with
the pseudo instructions given in Overview 2 and the like. Since P(3)

0 can also
contain only a finite number of strings denoting indices of Z-registers, the
F-instructions Zj := fmii (Zj1 , . . . , Zjmi) cannot in general be simulated by
executing F-instructions of the form Z1,n0+j := fmii (Z1,n0+j1 , . . . , Z1,n0+jmi

).
The parameters n0 + j, n0 + j1, . . . , n0 + jmi may vary depending on the ma-
chines that should be simulated. Therefore, the index registers J0, J1, . . . get
these values before, for k = m0 + 13, the first pseudo instruction given in
Overview 4 or a branching instruction with a pseudo condition will be exe-
cuted. Moreover, further pseudo instructions given in Overview 5 are used
before some registers of the second tape Z2,1, Z2,2, . . . can be used by M(3)

0

for the simulation of an F-instruction or a T-instruction byM. To search an
information in c(C) = |codea(PM)| necessary for the simulation of the con-

sidered instruction of M, the machine M(3)
0 uses L for storing the current

label. The instruction labelled by `2 in Figure 6 means to search the code
of the instruction with label c(L). During computing the code c(S) of the
instruction with the current label c(L) from c(C), pc(L) is the corresponding
prime number. The subprogram labelled by `2 in Figure 6 also allows to
compute the values c(E1) = e1, c(E2) = e2, . . . (as given in Table 2) for the

Christine Gaßner: BSS RAM’s 25

current instruction with label c(L). The index register E1 stands for the type
of the current instruction and E2, . . . , E4 for the used indices i and the labels
`1 and `2, respectively, in the current instruction of PM. Then, depending
on the type of the instruction, further values e5, e6, . . . can be made avail-
able before simulating the current instruction. The subprograms labelled by
`4, `5, and `6 in Figure 6 are intended for determining the label of the next
relevant instruction in PM. The subprograms labelled by `7 and `8 are used
for preparing the output of M(3)

0 . The subprogram Hν := compEµ allows to
compute the values c(Ic(E5)) and c(Ic(E6)) of the relevant index registers of
M from c(V).

Consequently, by Proposition 1, we have shown the following theorem.

Theorem 1 For any structure A with a finite number of operations and
relations, there exists an MA-universal machine of type 2.

3.3 Complete problems

The here considered decision problems are algorithmic problems completely
defined by a decision question for which we want to get the answer yes or the
answer no only. For instance, for any structure A and I = MA×U∞A , the halt-
ing problem HPt

A = {(M, ~x) ∈ I | M(~x) ↓t} where M(~x) ↓t stands for the
fact thatM halts (stops) on input ~x after the execution of t transformation
steps is a decision problem.

Let A be a structure of signature (|N1|;m1, . . . ,mn2 ; k1, . . . , kn3). Then,
HPt
A is decidable by a machine M0 ∈ IMA with IM0 = I, OM0 = {yes, no},

InputM0
= initM0 (as defined by (***)), and the function OutM0 defined, for

all (~ν, ū) ∈ INkM0 × Uω
A, by OutM0(~ν . ū) = yes if ν1 = 1 and otherwise by

OutM0(~ν . ū) = no. Starting from a configuration given by (***), the execu-
tion of M on ~x can be simulated by M0 with the help of an IMA-universal
program derived from P(3)

0 where the simulated steps are simultaneously
counted by means of an additional index register. After simulating t steps,
M0 can output yes if the S-instruction of M is reached and otherwise no.
Thus, the corresponding result function ResM0 is totally defined on IM0 .

With respect to BSS RAM’s over A, any decision problem is a subset
P ⊆ U∞A connected with the question whether ~x ∈ U∞A is in P . If A has at
least two constants, denoted here by a and b, we want to assume that a stands
for the answer yes and the second constant b stands for the answer no. Under
this condition, anM∈ MA decides the problem P if the computed function is

Christine Gaßner: BSS RAM’s 26

the characteristic function χP : U∞A → {a, b} such that ResM(~x) = χP (~x) = a
holds for all ~x ∈ P and ResM(~x) = χP (~x) = b holds for all ~x ∈ U∞A \ P . In
more general terms, we can define the notion decidable by a BSS RAM as
follows. A set P ⊆ U∞A is a halting set (over A) if it is the domain of definition
of the result function ResM for someM∈ MA. A problem P ⊆ U∞A is semi-
decidable (over A) if it is the halting set of a BSS RAM. Consequently, a
semi-decidable set P ⊆ U∞A does not have to be recursively enumerable by
a function f : U∞A → U∞A with the properties that f is computable over A,
P is the image of f , and f(~x) = f(~y) holds for all ~x ∈ Un

A and ~y ∈ Um
A if

n = m. P ⊆ U∞A is decidable (over A) if P and its complement U∞A \ P are
semi-decidable over A and, thus, halting sets of BSS RAM’s.

In [16], two hierarchies of decision problems over algebraic structures are
defined such that both definitions coincide with the usual descriptions of the
arithmetical hierarchy over (IN; IN; +; =) and the definitions given in [10].
For any Q ⊆ U∞A , let MQ

A be the class of all oracle BSS RAM’s over A that
are able to execute, additionally to the instructions of the types (1), . . . , (8),
all oracle instructions of the form if (Z1, . . . , ZI1) ∈O then goto `1 else goto `2

by evaluating the query (c(Z1), . . . , c(Zc(I1)) ∈ Q?. Then, the first hierarchy
consists of the class A-Σ0

0 = DECA of all problems decidable by a machine in
MA and the classes A-Σ0

n =
⋃
Q∈A-Σ0

n−1
SDECQ

A of all problems semi-decidable

by a machine in MQ
A for some Q ∈ A-Σ0

n−1. Whereas in [16], the halting
problems are considered only for structures with two constants a and b that
are effectively distinguishable, we can now define further halting problems as
follows, where the oracle instructions are encoded by 29 ·5`1 ·7`2 and M(~x) ↓
means M(~x) ↓t for some t ≥ 1.

IHQ
A =df {(~a (M,x1) . ~x . coden,xn(PM)) | M ∈ MQ

A & ~x ∈ U∞A & M(~x) ↓}

If (|N1|;m1, . . . ,mn2 ; k1, . . . , kn3) is the signature of A, then let MQ
0 ∈ MQ

A
be the universal oracle machine defined analogously to the universal BSS
RAM considered in Section 3.2. If the set of constants of A is decidable,
then I =df {(~a (M,x1) . ~x . coden,xn(PM)) | (M, ~x) ∈ MQ

A × U∞A } is decidable

and IHQ
A ⊆ U∞A is semi-decidable by a machine in MQ

A that uses PMQ
0

for all

inputs in I and does not halt for all inputs in U∞A \ I. By generalising Theorem
1 we get the following result.

Theorem 2 For any structure A with a decidable set of constants and a
finite number of operations and relations, the Halting problem IHQ

A is semi-
decidable by a universal oracle machine in MQ

A.

Christine Gaßner: BSS RAM’s 27

The decision problems IH
(n)
A =df IH

IH
(n−1)
A
A (for n > 0) form a sequence of

halting problems resulting from the so-called jumps where IH
(0)
A =df ∅ and

each IH
(n)
A is semi-decidable by a machine in M

IH
(n−1)
A
A . Let P ⊆ U∞A and

Q ⊆ U∞A be given. Then, by analogy with the classical case (cf. [24], p. 50
and p. 19), we say that P is Turing reducible to Q (denoted by P �A,T Q) if

P is decidable by a machine in MQ
A and P is one-one reducible to Q (denoted

by P �A,1 Q) if there is anM∈ MA computing a total and injective function
ResM such that, for all ~x ∈ U∞A , ResM(~x) ∈ Q holds if and only if ~x ∈ P

holds. IH
(n)
A is called complete in A-Σ0

n since any problem of this class is

one-one-reducible to it. This means that A-Σ0
n = {P ⊆ U∞A | P �A,1 IH

(n)
A }

and (A-Σ0
n) ∩ {U∞A \ P | P ∈ A-Σ0

n} = {P ⊆ U∞A | P �A,T IH
(n−1)
A } hold.

The described universal oracle A-machines allow to extend the results
from [16]. Note that the discussion about the existence of universal BSS
RAM’s is also very helpful for characterising complexity classes by complete
problems, in particular, for structures without constants and for groups (see
e.g. [12]).

References

[1] Aho, A. V., J. E. Hopcroft, and J. D. Ullman: The design and analysis of
computer algorithms. Addison-Wesley (1974).

[2] Asser, G.: Einführung in die mathematische Logik, Teil 2, Prädikatenkalkül
der ersten Stufe. BSB B. G. Teubner Verlagsgesellschaft (1975).

[3] Blum, L., M. Shub, and S. Smale: On a theory of computation and complexity
over the real numbers: NP-completeness, recursive functions and universal
machines. Bulletin of the Amer. Math. Soc. 21 (1989), 1–46.

[4] Blum, L., F. Cucker, M. Shub, and S. Smale: Complexity and real computa-
tion. Springer (1998).

[5] Börger, E.: Berechenbarkeit, Komplexität, Logik. Vieweg (1992). In English:
Computability, complexity, logic. Elsevier (1889).

[6] Bournez, O. and A. Pouly: A survey on analog models of computation.
arXiv:1805.05729 (2018).

[7] Brattka, V., and P. Hertling: Feasible real random access machines. Journal
of complexity 14 (1998), 490–526.

[8] Hopcroft, J. E., and J. D. Ullman: Einführung in die Automatentheorie,
formale Sprachen und Komplexitätstheorie. Addison-Wesley (1993). In En-

Christine Gaßner: BSS RAM’s 28

glish: Introduction to automata theory, languages, and computation. Addison-
Wesley (1979).

[9] Rogers, H.: Theory of recursive functions and effective computability.
McGraw-Hill (1967).

[10] Cucker, F.: The arithmetical hierarchy over the reals. Journal of Logic and
Computation 2 (3) (1992), 375–395.

[11] Cucker, F., and A. Torrecillas: Two P-complete problems in the theory of the
reals. Journal of Complexity 8 (1992), 454–466.

[12] Gaßner, C.: Computation over groups. In: Arnold Beckmann, Costas Dim-
itracopoulos, and Benedikt Löwe (eds.): Logic and Theory of Algorithms
(2008), 147–156.

[13] Gaßner, C.: Oracles and relativizations of the P =? NP question for several
structures. Journal of Universal Computer Science 15 (6) (2009), 1186–1205.

[14] Gaßner, C.: Gelöste und offene P-NP-Probleme über verschiedenen Struk-
turen. Habilitationsschrift, Greifswald (2011).

[15] Gaßner, C.: Strong Turing degrees for additive BSS RAM’s. Logical Methods
in Computer Science 9 (4:25) (2013), 1–18.

[16] Gaßner, C.: Computation over algebraic structures and a classification of
undecidable problems. Mathematical Structures in Computer Science 27 (8)
(2017) 1386–1413.

[17] Hemmerling, A.: Computability of string functions over algebraic structures.
Mathematical Logic Quarterly 44 (1998), 1–44.

[18] Kondakow, N. I.: Wörterbuch der Logik. Erhard Albrecht, Günter Asser
(eds.); Bibliographisches Institut, Leipzig (1983).

[19] Moschovakis, Y. N.: Abstract first order computability. I. Transactions of the
American Mathematical Society 138 (1969), 427–464.

[20] Poizat, B.: Les petits cailloux. Aléas (1995).

[21] Preparata, F. P., and M. I. Shamos: Computational geometry: an introduc-
tion. Springer (1985).

[22] Scott, D.: Some definitional suggestions for automata theory. Journal of Com-
puter and System Sciences 1 (1967), 187–212.

[23] Shepherdson, J. C., and H. E. Sturgis: Computability of recursive functions.
Journal of the Association for Computing Machinery 10 (1963), 217–255.

[24] Soare, R. I.: Recursively enumerable sets and degrees: a study of computable
functions and computably generated sets. Springer (1987).

