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Computation by BSS RAM’s over Algebraic Structures

(The Machines and the Allowed Instructions)

Computationover A= ( Ua ; Ca :fis-. o fuiRi, .. Ry, =).
~ O~ e —

universe constants  gperations relations
Z| Z] | Z] Zs | ... Registers for elements in U 4
| L] L] L] L] .| Ly | Registers for indices in N

e Computation instructions:
t: Zp = fil(Z, ..., Z;,) (eg9.l: Z =27, +7Z,)
0: Z; = d (dr € Cqp CUY)
e Branching instructions:
£: if Z; = Z; then goto ¢; else goto />
2 if Ri(Z;,, . .., Z;, ) then goto /; else goto £,
e Copy instructions:

l: Z[j = Zlk

e Index instructions:
0 1=1
C: =1+ 1

£: if I; = I then goto /; else goto ¢
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e Input of ¥ = (xy,...,x,) € UF:

X1 X X3 X4 Xy
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Uniform Computation over Algebraic Structures

(Input and Output Procedures of Machines in M 4)

@ U4 is the universe of A
e Input and output space: U =4t U Uy

e Input of ¥ = (xy,...,x,) € UF:
X1 X2 X3 X4 Xn Xn Xn
L VN | | {
’ Zl\ Zz\ Z3\ Z4\ \ Zn‘ Zn+1\ Zn+2\
L 0] b B[ 4] | Iy |
T T T
n 1 1 1 1
e

e Outputof 7;,...,7;

1"



[v-]Semi-Decidability

(The Definitions)
P C U is a decision problem.

P C U is semi-decidable
if there is a BSS RAM M such that ¥ € P < M(X) halts on x.

M@
We will also use:
P C U is nondeterministically semi-decidable

if there is a nondeterministic BSS RAM M such that ¥ € P
< M halts on X for some guesses.

~~

M@
P C UY is v-semi-decidable

if there is a v-oracle BSS RAM semi-deciding P.

v-oracle BSS RAM = BSS RAM being able to use operator v
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(Kleene’s Operator )

A fixed, N C U 4 effectively enumerable over A,
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——

{10}

Definition (Kleene’s operator for A)

w1ty .oy xn)
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Definition (Kleene’s operator for A)
w1ty .oy xn)
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fO(aly"'7anax) = p(x)
0 otherwise.

= plfol(ai, ..., a,) = the smallest zero of p
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u-Oracle BSS RAM’s with p-Operators for N C U4

(Kleene’s Operator )

A fixed, N C U 4 effectively enumerable over A,
f: UX — {a, b} partial function, computable over A.
——

{1,0
Definition (Kleene’s operator for A)
w1ty .oy xn)

=gt min{k € N | f(x1,...,x0,k) =1 & f(x1,...,x5,0)] forl < k,le N}

Definition (Oracle Instruction with Kleene’s operator)

3 i
C: Zi:=plfl(Zy,...,2Zy), ifl; =n

no minimum =- the machine loops forever

Properties
Any p-semi-decidable problem is semi-decidable over A.




v-Oracle BSS RAM’s for Structures with ¢ and »

(Moschovakis’ Operator v)

A is fixed. a, b are constants of A.
f:UX — {a, b} partial function, computable over A.

Definition (Moschovakis’ operator for A)

vif](x1, .., xn)
—df {yl € U.A | (3(y27aym) € Uilo)(f(xla-"7xn7ylay2a"'7ym) :Cl)}
—_—

yeuy

Definition (Oracle instruction with Moschovakis’ operator)

x 1
NONDETERMINISTIC!  ¢: Z; := v[f|(Zi,...,Z,)

0 = Z contains some z <€ v[f](z1,...,z)
) = no stop (the machine loops forever).

vifl(ziy .- yzn) #
V[f](Zl,---,Zn) =




Nondeterministic Machines versus v-oracle Machines

(Guessing Solutions and Nondeterministic Semi-Decidability)

f: UX — {a, b} partial function, computable by M; over A.

Properties (By v-operator of a v-oracle machine)

X1 ot X X1 oo Xp Y1
1 \ { 1 1
Z = viflZ,.... Z1); ... Zp = V[f)(Z, . ., Zay1, Z)
\: A
Vi Y2 :>f(-x17~--;-xn7yl~,~--aym):a )

Properties (By input-guessing procedure of nondeterm. machine)

X1 X2 Xn V1 Y2 Ym Xn
+ + 4 4 4
| 2] Z| ... ] Z]| Zupi| Zoir | -] Zugm | Zugmyr | --.

Then, simulate M.

Proposition

A C UY is v-semi-decidable iff A is nondeterm. semi-decidable.




v,-Oracle BSS RAM'’s versus v-Oracle BSS RAM’s

(For Motivation: Computable Choice Functions?)

A=(N;N;;=).

R( ) 1 if x; # x; forall i,j with i # j,
XiyoooyXpy) i= )
: " 0 otherwise.




v,-Oracle BSS RAM'’s versus v-Oracle BSS RAM’s

(For Motivation: Computable Choice Functions?)

A=(N;N;;=).

R(xp,...,xy) ==

1 if x; # x; forall i,j with i # j,
0 otherwise.

In both cases, we getaz e N\ {zi,...,z.} if 2 # zitx- >0

For the v,-computable correspondence N" 5 (z;,...,z,) — N\ {z1,...,2:}
we have a choice function computable by means of n + 1 constants.

For the v-computable correspondence N*° 3 (zj,...,z,) = N\ {z1,...,z,}
we do not have a computable choice function.




The Axiom of Choice in the Second-Order Logic

(Some Definitions and Relationships between Statements Related to AC in HPL)

AC™™ =4 YAVRIS(cor(R,A) — VX(AX — NW(R(X. W) AS(X.W))))
WO" =4 VAIT(wo(T,A))
LO" =g YA3IT(lo(T,A))

For Henkin-structures (satisfying the axioms of comprehension):

//N

Acl 1
ZL! AcCH! KWhil—2— pych!

If we find neither H; —? — H, nor, for a statement H3, H| — H3 and H3 — H, , then H| — H, is not deducible

from "ax. (GaBner 1994)



Effective Second Order Logic and a Generalization
(The Axiom of Choice)

Definition (An effective form of the axiom of choice over A)

A semi-decidable

R semi-decidable correspondence with domain A

= There is a semi-decidable mapping S such that (x) is satisfied.

Details (An effective AC™™) Details (An effective AC™)
AC U ACUR
RC U™ RCUY
scuy™ SCU¥

(*) (%)

A
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Effective Second Order Logic and a Generalization
(The Axiom of Choice)

Definition (An effective form of the axiom of choice over A)

A semi-decidable
R semi-decidable correspondence with domain A
= There is a semi-decidable mapping S such that (x) is satisfied.

Details (An effective AC™™) Details (An effective AC™)
AC U ACUR
RC U™ RCUY
scuy™ SCU¥

(*) (%)

A

VX(AX — MY(R(X.Y)ASX. V)| VX(AX — Y (R(X,Y) ASX,T)))

4 <

R()? 17) means (Xi,...,X,,Y1,...,Y,) €R (for tuples in U” and U"})
X,

R(X,Y) means (X, a,...,Xy_1,a,X,,b,Y1,0d,...,Ym_1,a,Y,) €R
(for tuples in UY)



Structures with AC*° and without AC*™

(Some Examples)

Example (Structures with effective AC*)
o ({0,1}0,1;5=)

o (N;O;s;=), s(n)=n+1

° (QQ;+,—<,=)

o (R;R;+, —; <, =)

° v




A Characterization of Semi-Decidability

(Transfer of a Method from the Second-Order Logic)

Properties (Representation of A by predicates)

REL 4 =4¢ {Rl,---7an,f1,---,Fnl}

n; mi+1
Rng‘i F/‘:{(xl ----- xmja)’) |y:fi(xl ----- xmj)}gUA]

7 permutation of U 4
m(A) =at U {(m(x1), o m(ea)) | (1,00 x0) € A} ACUD)
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A Characterization of Semi-Decidability
(Transfer of a Method from the Second-Order Logic)

Properties (Representation of A by predicates)
REL 4 =4 {R1, ... s Ry, F1, - o Fp b

n; m;+1
Rng‘i F/‘:{(xl ----- xmja)’) |y:fi(xl ----- xmj)}gUA]

7 permutation of U 4
m(A) =at U, {(m(x1), . m(x0)) | (x1,..., %) € A} ACUD)

G is the group of relations-preserving automorphisms 7 of U 4
with

T(Rj) = R;

m(Fj) = Fj.

Definition (Some subgroups of G)

GP) =a{reg|(VxeP)(r(x)=x)} (PCUA)
symg(A) =gt {m € G| m(A) = A} (ACUY)




A Characterization of Semi-Decidability

(Transfer of a Method from the Second-Order Logic)

G is the group of permutations 7 with 7(R;) = R; and 7 (F;) = Fj.
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A Characterization of Semi-Decidability

(Transfer of a Method from the Second-Order Logic)

G is the group of permutations 7 with 7(R;) = R; and 7 (F;) = Fj.

Definition (Some subgroups of G)

g(P) =af{reg|(vxeP)(r(x) =x)} (PCUa)
symg(A) = {m € G | 7(A) = A} (ASUZ)

Theorem (A property of [non-deterministic] semi-decidability)

For any A C U that is [non-deterministically] semi-dec. over A,
there is a finite P C U 4 such that G(P) C symg(A).

More general:
G is the group of permutations of U 4.
Let Z4 C P(U4 UREL4) be a normal ideal in U 4 with respect to G.

Theorem (Normal ideals and [non-deterministic] semi-decidability)

For any A C U that is [non-deterministically] semi-dec. over A,
there is a P € 74 such that G(P) C symg(A).




Structures with AC*° and without AC*™

(Some Examples)

Example (Structures with effective AC*>)

o ({0,1};0,1;;=)
(N;0;8;=), s(n)=n+1
(QQ;+,— <, =)
(R;R; +, — <, =)




Structures with AC*° and without AC*™

(Some Examples)

Example (Structures with effective AC™)
o ({0,1};0,1;;=)

(N;0;8;=), s(n)=n+1

(QQ+,—<,=)

R;R; +, —; <, =)

Example (Structures without effective AC*>)

°o (N;N;; =)

o (NxN;N x {0}; f; <iexi, =), f(n,m) = (n,0)
(Note: <je; is a decidable well-ordering on N x N.)

(QN;s55<,=), s(n)=n+1




BSS RAM’s with \nu-Oracle and the Axiom of Choice

(References)

Thank you very much for your attention!
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