# Hierarchies of Decision Problems over Algebraic Structures Defined by Quantifiers 

Christine Gaßner

University of Greifswald
A shortened version of the slides that were presented at the CCC 2015

## Hierarchies over Algebraic Structures

## Introduction

## Subject:

- BSS RAM model over first order structures
- a framework for study of
- the abstract computability by machines over several structures
- the uniform abstract decidability and the reducibility of decision problems over algebraic structures
on a high abstraction level
- includes several types of register machines, the Turing machine, and the uniform BSS model of computation over the reals
- hierarchies of undecidable decision problems within this model Meaning:
- better understanding
- the structural complexity of decision problems
- the methods used in the recursion theory
- the limits of computations over several structures


## Outline

- The BSS RAM's
- uniform machines over first order structures
- Halting problems
- uniformity and codes for machines
- Known hierarchies
- derived from the arithmetical hierarchy
- Kleene-Mostowski, Cucker, ...
- A hierarchy over first order structures
- defined by quantifiers
- characterized by halting problems
- complete problems


## Computation over Algebraic Structures

## The Allowed Instructions (for BSS RAM's)

Computation over $\mathcal{A}=(\underbrace{U_{\mathcal{A}}}_{\text {universe }} ; \underbrace{U_{\mathcal{A}}}_{\text {constants }} ; \underbrace{f_{1}, \ldots, f_{n_{1}}}_{\text {operations }} ; \underbrace{R_{1}, \ldots, R_{n_{2}},=}_{\text {relations }})$.

| $Z_{1}$ | $Z_{2}$ | $Z_{3}$ | $Z_{4}$ | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: |
| $I_{1}$ | $I_{2}$ | $I_{3}$ | $I_{4}$ | $\ldots$ |

Registers for elements in $U_{\mathcal{A}}$
Registers for indices / addresses

- Computation instructions:
$\ell: Z_{j}:=f_{k}\left(Z_{j_{1}}, \ldots, Z_{j_{m_{k}}}\right)$
$\ell: Z_{j}:=d_{k}$
(e.g. $\ell: Z_{j}:=Z_{j_{1}}+Z_{j_{2}}$ )
$\left(d_{k} \in U_{\mathcal{A}}\right)$
- Branching instructions:
$\ell$ : if $Z_{i}=Z_{j}$ then goto $\ell_{1}$ else goto $\ell_{2}$
$\ell$ : if $R_{k}\left(Z_{j_{1}}, \ldots, Z_{j_{n_{k}}}\right)$ then goto $\ell_{1}$ else goto $\ell_{2}$
- Copy instructions:

$$
\ell: Z_{I_{j}}:=Z_{I_{k}}
$$

- Index instructions:

$$
\begin{aligned}
& \ell: I_{j}:=1 \\
& \ell: I_{j}:=I_{j}+1 \\
& \ell: \text { if } I_{j}=I_{k} \text { then goto } \ell_{1} \text { else goto } \ell_{2}
\end{aligned}
$$

## Uniform Computation over Algebraic Structures

 Inputs and Outputs for BSS RAM's in $\mathrm{M}_{\mathcal{A}}^{[\text {ND] }}$- $U_{\mathcal{A}}^{\infty}={ }_{\mathrm{df}} \bigcup_{i \geq 1} U_{\mathcal{A}}^{i}$ - input and output space (for the universe $U_{\mathcal{A}}$ )
- Input of $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in U_{\mathcal{A}}^{\infty}$ :


| $I_{1}$ | $I_{2}$ | $I_{3}$ | $I_{4}$ | $\ldots$ | $I_{k_{\mathcal{M}}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\uparrow$ | $\uparrow$ | $\uparrow$ | $\uparrow$ |  | $\uparrow$ |
| $n$ | 1 | 1 | 1 |  | 1 |

$k_{\mathcal{M}}$ index registers

- Input and guessing procedures of nondeterministic machines:


| $I_{1}$ | $I_{2}$ | $I_{3}$ | $I_{4}$ | $\cdots$ | $I_{k_{\mathcal{M}}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\uparrow$ | $\uparrow$ | $\uparrow$ | $\uparrow$ |  | $\uparrow$ |
| $n$ | 1 | 1 | 1 |  | 1 | $m \in \mathbb{N}^{+}$is also guessed.

- Output of $Z_{1}, \ldots, Z_{I_{1}}$.


## Two Hierarchies

- $\mathcal{A}$ is fixed.
- The first hierarchy defined semantically by deterministic machines:

$$
\begin{aligned}
\Sigma_{0}^{0} & =\mathrm{DEC}_{\mathcal{A}} \\
\Pi_{n}^{0} & =\left\{U_{\mathcal{A}}^{\infty} \backslash P \mid P \in \Sigma_{n}^{0}\right\} \\
\Delta_{n}^{0} & =\Sigma_{n}^{0} \cap \Pi_{n}^{0} \\
\Sigma_{n+1}^{0} & =\left\{P \subseteq U_{\mathcal{A}}^{\infty} \mid\left(\exists Q \in \Pi_{n}^{0}\right)\left(P \in \operatorname{SDEC}_{\mathcal{A}}^{Q}\right)\right\}
\end{aligned}
$$

- The second hierarchy defined syntactically by formulas:

\[

\]

## The Arithmetical Hierarchy (Kleene-Mostowski)

For Turing Machines

For $(\{0,1\} ; 0,1 ; ;=)$, both definitions provide the same hierarchy:

$$
\begin{aligned}
& \Sigma_{n+1}^{0}=\left\{P \subseteq\{0,1\}^{\infty} \mid\left(\exists Q \in \Pi_{n}^{0}\right)\left(P \in \mathrm{SDEC}^{Q}\right)\right\} \\
& \| \\
& \Sigma_{n+1}^{\mathrm{ND}}=\left\{P \subseteq\{0,1\}^{\infty} \mid\left(\exists Q \in \Pi_{n}^{0}\right)\right. \\
&\left.\forall \vec{x}\left(\vec{x} \in P \Leftrightarrow\left(\exists \vec{y} \in\{0,1\}^{\infty}\right)((\vec{y} \cdot \vec{x}) \in Q)\right)\right\}
\end{aligned}
$$



$$
" \rightarrow " \text { means "strong } \subset " \text {. }
$$

## Complete Problems in the Arithmetical Hierarchy

## For Turing Machines



CoFIN $=\left\{\operatorname{code}(\mathcal{M}) \mid(\exists n \in \mathbb{N})\left(\forall \vec{x} \in\{0,1\}^{(\geq n)}\right)(\mathcal{M}(\vec{x}) \downarrow)\right\}$
FIN $=\{\operatorname{code}(\mathcal{M}) \mid(\exists n \in \mathbb{N})(\forall \vec{x} \in\{0,1\}(\geq n))(\mathcal{M}(\vec{x}) \uparrow)\}$
TOTAL $=\left\{\operatorname{code}(\mathcal{M}) \mid\left(\forall \vec{x} \in\{0,1\}^{\infty}\right)(\mathcal{M}(\vec{x}) \downarrow)\right\}$
$\mathrm{H}^{\text {spec }}=\{\operatorname{code}(\mathcal{M}) \mid \mathcal{M}(\operatorname{code}(\mathcal{M})) \downarrow\}$
EMPTY $=\left\{\operatorname{code}(\mathcal{M}) \mid\left(\forall \vec{x} \in\{0,1\}^{\infty}\right)(\mathcal{M}(\vec{x}) \uparrow)\right\} \quad$ (cp. Soare, Kozen)

## Complete Problems in the BSS model (Cucker)

For Computation over the Ring of Reals $\mathbb{R}=(\mathbb{R} ; \mathbb{R} ; \cdot,+,-; \leq)$


## A Characterization of the First Hierarchy

## For BSS RAM's - Computation over Several Structures

For $\mathcal{A}$ :

- a finite number of operations \& relations, all elements are constants,
- contains an infinite set effectively enumerable over $\mathcal{A}: \mathbb{N} \subseteq U_{\mathcal{A}}$. Recall (the definition):

$$
\begin{aligned}
\Sigma_{0}^{0} & =\mathrm{DEC}_{\mathcal{A}} \\
\Pi_{n}^{0} & =\left\{U_{\mathcal{A}}^{\infty} \backslash P \mid P \in \Sigma_{n}^{0}\right\} \\
\Delta_{n}^{0} & =\Sigma_{n}^{0} \cap \Pi_{n}^{0} \\
\Sigma_{n+1}^{0} & =\left\{P \subseteq U_{\mathcal{A}}^{\infty} \mid\left(\exists Q \in \Pi_{n}^{0}\right)\left(P \in \operatorname{SDEC}_{\mathcal{A}}^{Q}\right)\right\} \\
\Rightarrow \Sigma_{n+1}^{0} & =\operatorname{SDEC}_{\mathcal{A}} \mathbb{H}_{\mathcal{A}}^{(n)}=\left\{P \subseteq U_{\mathcal{A}}^{\infty} \mid P \preceq_{1} \mathbb{H}_{\mathcal{A}}^{(n+1)}\right\}
\end{aligned}
$$

Proposition (G. 2014)

$$
\Sigma_{n+1}^{0}=\left\{P \subseteq U_{\mathcal{A}}^{\infty} \mid\left(\exists Q \in \Pi_{n}^{0}\right) \forall \vec{x}(\vec{x} \in P \Leftrightarrow(\exists k \in \mathbb{N})((\vec{x} \cdot k) \in Q))\right\}
$$

Note: $\mathbb{H}_{\mathcal{A}}^{(0)}=\emptyset$
$\mathbb{H}_{\mathcal{A}}^{(n+1)}=$ Halting problem for BSS RAM's using $\mathbb{H}_{\mathcal{A}}^{(n)}$ as oracle

## A Characterization of the Second Hierarchy

## For BSS RAM's - Computation over Several Structures

$\mathcal{A}$ : a finite number of operations $\&$ relations, all elements $\hat{=}$ constants.
Recall (the definition):

\[

\]

## Proposition (G. 2015)

$$
\Sigma_{n+1}^{\mathrm{ND}}=\left\{P \subseteq U_{\mathcal{A}}^{\infty} \mid\left(\exists Q \in \Pi_{n}^{\mathrm{ND}}\right)\left(P \in\left(\mathrm{SDEC}_{\mathcal{A}}^{\mathrm{ND}}\right)^{Q}\right)\right\}
$$

$$
\Rightarrow \quad \sum_{n+1}^{\mathrm{ND}}=\left(\mathrm{SDEC}_{\mathcal{A}}^{\mathrm{ND}}\right)^{\left(\mathbb{H}_{\mathcal{A}}^{\mathrm{ND}}\right)^{(n)}}=\left\{P \subseteq U_{\mathcal{A}}^{\infty} \mid P \preceq_{1}\left(\mathbb{H}_{\mathcal{A}}^{\mathrm{ND}}\right)^{(n+1)}\right\}
$$

Note: $\left(\mathbb{H}_{\mathcal{A}}^{N D}\right)^{(0)}=\emptyset$
$\left(\mathbb{H}_{\mathcal{A}}^{\mathrm{ND}}\right)^{(n+1)}=$ Halting p. for ND-machines using $\left(\mathbb{H}_{\mathcal{A}}^{\mathrm{ND}}\right)^{(n)}$ as oracle

## Complete Problems in the First Hierarchy <br> For BSS RAM's - Computation over Several Structures

For $\mathcal{A}$ :

- a finite number of operations \& relations, all elements are constants,
- contains an infinite set effectively enumerable over $\mathcal{A}: \mathbb{N} \subseteq U_{\mathcal{A}}$.

$\operatorname{FIN}_{\mathbb{N}}=\left\{\operatorname{code}(\mathcal{M}) \in U_{\mathcal{A}}^{\infty}| | H_{\mathcal{M}} \cap \mathbb{N}^{\infty} \mid<\infty\right\} \quad\left(H_{\mathcal{M}}=\right.$ halting set $)$
$\operatorname{TOTAL}_{\mathbb{N}}=\left\{\operatorname{code}(\mathcal{M}) \in U_{\mathcal{A}}^{\infty} \mid\left(\forall \vec{x} \in \mathbb{N}^{\infty}\right)(\mathcal{M}(\vec{x}) \downarrow)\right\}$
$\mathrm{INCL}_{\mathbb{N}}=\left\{(\operatorname{code}(\mathcal{M}) \cdot \operatorname{code}(\mathcal{N})) \in U_{\mathcal{A}}^{\infty} \mid\left(H_{\mathcal{M}} \cap \mathbb{N}^{\infty}\right) \subseteq\left(H_{\mathcal{N}} \cap \mathbb{N}^{\infty}\right)\right\}$
$\mathbb{H}_{\mathcal{A}}^{[\text {spec }]} \hat{=}$ Halting problems for BSS RAM's over $\mathcal{A} \quad$ (cp. Gaßner)


## Complete Problems in the Second Hierarchy (Blue) <br> For BSS RAM's - Computation over Several Structures

$\mathcal{A}$ : a finite number of operations $\&$ relations, all elements $\hat{=}$ constants.
$\operatorname{TOTFIN}_{\mathcal{A}}^{\mathrm{ND}} \in \Sigma_{3}^{\mathrm{ND}}$


$\operatorname{TOTAL}_{\mathcal{A}}^{\mathrm{ND}}=\left\{\operatorname{code}(\mathcal{M}) \mid\left(\forall \vec{x} \in \mathbb{R}^{\infty}\right)(\mathcal{M}(\vec{x}) \downarrow)\right\} \quad\left(\mathcal{M} \in \mathrm{M}_{\mathcal{A}}^{\mathrm{ND}}\right)$
$\mathrm{INJ}_{\mathcal{A}}^{\mathrm{ND}}=\{\operatorname{code}(\mathcal{M}) \mid \mathcal{M}$ computes a/an [super] injective function $\}$
$\operatorname{CONST}_{\mathcal{A}}^{\mathrm{ND}}=\{\operatorname{code}(\mathcal{M}) \mid \mathcal{M}$ computes a total constant function $\}$
$\operatorname{FIN}_{\mathcal{A}}^{\mathrm{ND}} \quad=\left\{\operatorname{code}(\mathcal{M}) \mid(\forall i \in \mathbb{N} \backslash I)\left(H_{\mathcal{M}} \cap U_{\mathcal{A}}^{i}=\emptyset\right)\right.$ for some $\left.|I|<\omega\right\}$
$\operatorname{TOTFIN}_{\mathcal{A}}^{\mathrm{ND}}=\left\{\operatorname{code}(\mathcal{M}) \mid(\forall i \in \mathbb{N} \backslash I)\left(H_{\mathcal{M}} \cap U_{\mathcal{A}}^{i} \neq U_{\mathcal{A}}^{i}\right)\right.$ for some $\left.|I|<\omega\right\}$
$\mathbb{H}_{\mathcal{A}}^{\mathbb{N D}} \quad=$ Halting problem for ND-machines over A (in $\mathrm{M}_{\mathcal{A}}^{\mathrm{ND}}$ )
$\mathrm{INCL}_{\mathcal{A}, i}^{\mathrm{ND}}=\left\{(\operatorname{code}(\mathcal{M}) \cdot \operatorname{code}(\mathcal{N})) \mid(\mathcal{M}, \mathcal{N}) \in \mathrm{M}_{\mathcal{A}, i} \times \mathrm{M}_{\mathcal{A}}^{\mathcal{N D}} \& H_{\mathcal{M}} \subseteq H_{\mathcal{N}}\right\}$
$M_{\mathcal{A}, 1}=M_{\mathcal{A}}, \quad M_{\mathcal{A}, 2}=M_{\mathcal{A}}\left(\mathbb{H}_{\mathcal{A}}\right), \quad M_{\mathcal{A}, 3}=M_{\mathcal{A}}\left(\mathbb{H}_{\mathcal{A}}^{N D}\right), \quad M_{\mathcal{A}, 4}=M_{\mathcal{A}}^{N D}\left(\mathbb{H}_{\mathcal{A}}^{N D}\right)$

Summary
For BSS RAM's - Computation over Several Structures
1st hierarchy:


2nd hierarchy:

```
\(\operatorname{TOTFIN}_{\mathcal{A}}^{\mathrm{ND}} \in \Sigma_{3}^{\mathrm{ND}}\)
\[
\mathrm{FIN}_{\mathcal{A}}^{\mathrm{ND}} \in \Sigma_{2}^{\mathrm{ND}} \varlimsup_{\lambda_{2}}^{\Delta_{3}^{\mathrm{ND}}}{ }_{\nearrow}^{\mathrm{ND}} \quad \Pi_{2}^{\mathrm{ND}} \ni \quad \operatorname{TOTAL}_{\mathcal{A}}^{\mathrm{ND}}, \mathrm{INCL}_{\mathcal{A}, i}^{\mathrm{ND}}, \operatorname{CONST}_{\mathcal{A}}^{\mathrm{ND}}
\]
```

Thank you very much for your attention!

## References

L. Blum, M. Shub, and S. Smale: "On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines" (1989)
F. Cucker: "The arithmetical hierarchy over the reals" (1992)
C. GASSNER: "Computation over algebraic structures and a classification of undecidable problems" (to appear in: MSCS)
D. C. Kozen: "Theory of computation" (2006)
R. I. Soare: "Recursively enumerable sets and degrees: a study of computable functions and computably generated sets" (1987)

E-mail: gassnerc@uni-greifswald.de

