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Algorithms over First-Order Structures

Informal

IF X>1 THEN X:=X+41.

describes an algorithm to compute x + 1 for x greater than 1.

We use
@ an operation to transform an object,
e a relation for evaluating a condition,
@ a constant.

The underlying structures

of our machines has this form:
A= ( Uy ;(ciien; (fi)ien,; (ri)iens)-

universe constants operations relations



Known Machines over First-Order Structures

First-order structures .4 and several types of machines

({0,1};0,1;;=) Turing machines (1), Type-2 machines (3)
(N;0,1;+,—,;<,=) classical RAMs (2)

(R;R;+,—,;<,=) real RAMs (2), algebraic models (2), BSS machines (1)
(R;R; 4+, —; <, =) linear models (1), (2), additive BSS machines (1)

Minsky (1961), Scott (1967), Blum/Shub/Smale (1989),... (offline): (1 )
X S .
(xl-._-"‘.—x:) I:'} II"IPLl't A PI‘GgraI‘n Dl.ltpl.[t E,‘\)(} ) } machines over A
procedure - — procedure A-machines
executed until stop criterion |

BSS RAMs over A

Cook/Reckhow (1973), Aho/Hopcroft/Ullman (1974),... (offline / online):

(¢ % v L .. [ READ > Aprogram PRINT > (1. Voo Vyle ) machines over A
suitable inputs or [ |

codes of objects executed until stop criterion

Weihrauch (1985"),... (online):

R N 3
(xy, 5, %5,.-.) [ READ A program PRINT 01 V2, ¥so---) 3)
—E J

code/name of 1 cudefname of f {n} machines over A

|
u > f(u)




Known Machines over First-Order Structures

First-order structures
({0,1};0,1;;=) Turing machines (1)

(N;0,1;4,—,;<,=) classical RAMs (2)
(R;R;+,—,;<,=) real RAMs (3), algebraic models (3), BSS machines (4)
(R; R; 4+, — <, =) linear models (3), (5), additive BSS machines (5)

ntroduced and/or investigated by
1) Alan M. Turing,

I
(
(2) Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, ...
(3) Franco P. Preparata, Michael |. Shamos, ...
(4) Lenore Blum, Steve Smale, Michael Shub,

(5) Felipe Cucker, Klaus Meer, Pascal Koiran, ...



A Program for Semi-Deciding a Set
Over (R;Z; +, ;=)

Examples (Semi-deciding the square roots)

InpUt (xl’ T ’x") € R, \ Input: x,x.....0 — 2, 2,..., Z
1:if I; = I, then goto 2 else goto 1;
2.7, = —1; L0 Il—b
3: Z3 = 1; yes
4: 7, .= 7y x 2y, |z r‘l |
S: 72, :=7p + Z3; | =1 |
6: if Z, = Z, then goto 7 else goto 5; [ 7= ;lzz |
7.7 =1, K sz; )
8: stop.
Output ¢(Z;). <]_ZQ? no
Symbols: + and * for binary functions. yes
1 and -1 for a constant. 4 =1
Infix notation Z, + Z, stands for \Outpult: «Z) |
f£(21,2,) and so on.




Uniform Computation over First-Orde

Input and output procedures for

Input and output space: U7 =ar ;>4 Uy

r Structures

-deterministic BSS RAMs in MLD] s

Input of ¥ = (x1,...,x,) € U
X1 5.%) X3 X4 Xn V1 Y2
T b4 ! ! !
Ly | L 43| 24 Zn | Zpy1 | Zny2
11 12 13 14 “ o IkM
T 7 T 7 T
n 1 1 1 1
with guesses y;,...,y, € U4 or
”digitS” Viy.- -y VYm € {Cl, 6‘2}

Output after a stop-instruction:
(c(Z1), .. e(Zery)



Algorithms over First-Order Structures

o-programs for [in|finite .4-machines M

A o-program can be interpreted by any structure of a finite or infinite suitable signature.
To simplify matters, let us consider

@ a structure A= (Ug;cty. - sCniifiyeeofus FlyvesFny)
e a finite signature o= (ny;my,...,mpyiki, ... k)

0 My kn
e the first-order symbols PRGN S A B e

Definition ( -program P, of an .4-machine)

1 :instruction;; ...; ¥¢p,, —1: instructiongPM_l; lp,, : stop.

e Any instruction; is a o-instruction.

@ The execution of P, is:
the stepwise transformation of configurations
by the transition system (S, — ).



Algorithms over First-Order Structures

o-instructions for infinite .A-machines M and transport instructions

Zv | 2| Z3 | Za| Zs | ... Z-registers (for individuals in U 4)

L| L | | L Ik, Index registers (for indices in N )
Computation  ¢: Z; := f"(Z;,, .,iji) (1)
L: Z; = c? (2)
Copy l: ZI] = Z[k (3)

Branching  £: if r(Z;,,...,Z;, ) then goto /; else goto £,  (4)

Index £: I; = (5)
C: =1+ 1 (6)
¢: if I; = I then goto ¢; else goto ¢, (7)
Stop [. stop (8)

The Z-registers contain individuals of the underlying structure. For copying these values
from one Z-register into another Z-register, we will use index registers and index

instructions.



Overall States
Configurations of an .A-machine M

Definition (Configurations in S /)

(¢.V.u) :(f,ul,...,ykM,ul,uz,...Z

A

~~

a configuration of M

B L | L | L| ...| Ik, 2y | Lo | 23| Zy | Zs
index registers Z-reqisters
lely 7= e N'M = ) e UY
M UV Vlyeo s Viag 1 u up,up,... A

¢ alabelin L
v indices of Z-registers

u a sequence of individuals



Unit Costs by a Computational System for .A-Machines

Transformation of configurations of an .4A-machine M

Definition (Transition system for any .4-machine M)

Sm = (Sm, —m)

with a binary relation —  C S3,

defined below.

— a depends on

e the types of the single instructions belonging to the program,
e the single parameters in these instructions, and

e the underlying structure.

(cf. Introduction 2020, . . .; see also Borger for finite machines, . . .)



Unit Costs of . 4-machines

Transformation of configurations of an .4A-machine M

(£.v.u) —m (E+1.0. (w,..u-, i, -4, ) Wit - 2))

(fﬁljt) — M (g—l—l U. (ul, .,uj_l,ci,uj+1,...))

C.v.u) —m (UH+1.0. (ur, . Uy 1, Uy Uy 1y -))

0 if r( Z,...,Z; ) thengoto ¢, else goto ¢,

(Eljljt) — M (flljljl) if (u]17 .,ujki)Er,
L.v.u) —m (br.V.n) it (..., w5 ) Eri



Unit Costs of . 4-machines

Transformation of configurations of an .4A-machine M

¢: it [; = I, then goto /¢, else goto ¢,

L.v.u) —m (4 .V.n) if v, =14
L.v.u) —pm (br.U.n) if v; # 1
C: [ =1
C.v.u) —m (L+1.(v,... v, L, . ..) . 0)
C: [ = I +1
C.v.u) —m (L+1.(v,...,v-1, v+ L vy, ). i)
{p: stop




Semi-Decidable Problems: Halting Sets
Some decision problems of BSS RAMs

Definition (Decision problems)
Any subset P of U (that contains all tuples) is a decision problem.

Definition (Halting process)

M halts on input ¥ if ¢p: stop is reached [for some guesses].

M(x) | if M halts on input X after a finite number of steps

for some guesses].
M(X) 1 if M(X) | does not hold.

Definition (Halting set)

Hy ={Xxec U} | M(X) |} is the halting set of M.

Xxe Hy = M accepts Xx.
Resp(X) € UY and 0 # Respq(X) C U (resp.)

SDEC 4 = {Hpm | M € My} SDEC® = {Hum | M € M5P}



Complete Problems: Halting Problems

Over first-order structures

Properties (Halting problems)

Halt = {(input, machine) C U’ | (machine) halts on (input) }

= |t is useful to consider universal BSS RAMs.



Universal Machines of Type 1 and their Halting Sets

Halting problems

A — (UA7 (Ci)i€N1;f17 <o 7fn2;r17 .. -7rn3) ({1,2} € Ny)

Type 1 here means encoding by using two constants

a=cy,
b= ).
code(, (M) € {a,b}> (for all BSS RAMs M over A)

Definition (Halting problems of type 1)
Hy = {(codep)(M).X) e UP | MeMy & M(X) |}

HYP = {(code(,;)(M).X) € UY | M e MYP & M(X) |}

ND
for BSS RAMs over A, in ML ], without guessing, with guessing

v




Simulation of M by a Universal Machine M, (Type 1)

Computing Resas = Resaq, 0 Respyry, for A with {1,2} C N,
X =N (code(a,b) (./\/l) )?)
\U/ Input » 4 \u Input M,
initial configuration for M initial configuration for M,

(1 c (n, 1, 500 g 1) X, (xn,xn, ° o )) (1 e (}’lo, 1, 500 1) c (COde(a7b)(M) X, (xn,xn, ° o )))
with ng = [(code, ) (M) . %)

|/ The execution of M {} The execution of M,
end configuration end configuration

(epr.Ij.ITt) (ﬁpMOﬁZ)

\U/ Output \U/ Output o

Respq(X) = (ug, ... up,) | = (215 -+ 52u;) = Respq, (code(y 4y (M) . X)




Simulation of M by a Universal Machine M, (Type 1)

The reduction of halting sets

Input of M Input of M,
X = (COde(a,m(./\/l) f)

= N computes the reduction of Hpq to H v,
for M € M4 (in linear time).

XeEHy = (COde(a,b)(M) . X) € Hpz,
XZ€Hy = (COde(ajb)(M) . X) & Hpm,
Mhaltsonx <« M, halts on (code(, ;) (M) . %)

Note, we have also:

N computes the reduction of H, to H 30 for M € MNP (in linear time).



Encoding BSS RAMs M for their Simulation

Strings in {a, b}" as codes for the o-programs

Our instructions ¢: Z; :=f"(Z;,...,Z;, ) (1), ... encoded by
codey(+) in {a,b}* (codes for labels and indices)
= (codex(-) . codex(-)....) in{a,b}" (codes forinstructions)
Type | e; ex e3 e4 es e e7 --- e...| Codes of length k
(1) |1 i J 1 J2 Jm: | (codex(1). codey(i). ...)
2) | 2 J (code)(2) . codex(0). ...)
(3) |3 j k
4) |4 i bl 1 j2 Jk
(5) 5 61 52 J k
(6) | 6 Jj
(7) |7 J
(8) |0

Recall: a = ¢, b = o5.
Are the codes (are c¢; and c¢,) recognizable or distinguishable?



Subprograms for Evaluating Codes?

Subprograms for deciding codes?

The equality relation = can be used in executing a branching instruction of type (4)
only if the relation = belongs to the underlying structure A.

o A structure A = (U4; (¢i)ien,;fiy - sfnaiTly- - stny)  ({1,2} CNy)
@ an expansion AT = (Ug; ()ienyifts -+ s Sigi Fls e -y Trgy =)
@ a new signature ot = (ni;my, ... mp ki, .. ks, 2)
e new symbols (for the identity) =, id, r; |

Examples (Useful pseudo instructions for computation over A?)

¢: ifid(Z;,c?) then goto ¢ else goto ¢, 6)
¢: ifid(Z,, <)) then goto ¢, else goto ¢, (ii)

id is a symbol for a binary relation.  id could be interpreted, e.g., by the equality relation =.

If the equality relation is decidable over A by a subprogram, then

both pseudo instructions can stand for subprograms allowing to decide {c;} and {c,}.

Which properties must A possess in order to
be able to evaluate the codes?



Subprograms for Evaluating Codes

Sufficient conditions for subprograms helping to decide codes

Definition (The classes SDEC 4 and DEC 4)
SDEC 4 :{HM|M€MA}

DEC4, ={PCU®|PcSDEC4 & U¥ \P € SDEC4}
(@) A contains idy,,
(b) idy, € DECy,
(¢) idy, € SDECy,
(d) {a}{c} € SDEC 4.

Theorem (Pseudo instructions for evaluating codes over A)

Let one of conditions, (a) or (b) or (¢) or (d), hold.

Then, {c}, {c2} € DEC4 and

(i) and (ii) describe subprograms for deciding {c;} and {¢;,} over A.

y

¢: ifid(Z;, <) then goto ¢; else goto ¢, i)
¢: ifid(Z;,c9) then goto ¢, else goto ¢, (ii)



More Background (for Evaluating Codes)

|dentity, constants, and basic implications

Definition (The classes SDEC 4 and DEC 4)

SDEC,4 ={Hm | M € My}

DEC, ={PCU¥|PecSDEC, & U¥\P € SDEC4}
a) A contains idy,,
b) idy, € DEC 4,
idy € SDEC,

U

{c1},{c2} € SDEC4,
{61,62}00 € SDEC 4.

Let (@) = (b) mean (a) implies (), . ..

AN N AN N TN

There hold

(a) = (b) = (c) = (d) = (e) (cf. Part ITb)
and there are structures with

(a) <£ (b) or (c)<£ (d) or (d) < (e). (cf. Part ITb)

What do we have, (b) <4 (¢) or (b) < (c)?




More Background (for Evaluating Codes)

Basic properties and some equivalences

Definition (The classes SDEC 4 and DEC 4)

SDEC,4 ={Hm | M € My}
DEC4 ={PC U} |PcSDECy4 & U \ P € SDEC 4}
(a) A contains idy ,,
(b) idy, c DEC 4,
() idy, € SDEC 4,
(d) {c1},{c2} € SDECy,
(e) {c1,c2}>® € SDEC4.
Let (a) < (b) mean (a) = (b) and (b) = (a), ...
Then: (c) & 1idy, € DEC 4. (cf. Part IIb)
(d) S {Cl}, {C2} € DEC 4. (cf. Part IIb)
(8) = {Cl, C2} € DEC4. (cf. Part IIb)
Thus: (b) < (c)
- Xidy , S {RGSM | M e MA}. (see below)




More: Decidability of P and Computability of yp

Over structures with two constants and P C U’

Definition (The characteristic function)

c1 IfxeP,

. (©.@) ¥\ —
XP - UA —>{C1702} and XP(x) _{ o lf)?e U%\P :

PeDECy = xpe€{Resp | M e Myl (cf. Part Ib)

The computation of xp by an M € M4 should mean that

@ yp(X)=c; means XcP and Xxis accepted by M,
@ xp(XY) =c, means xXc U} \P and Xisrejected by M.



More: Decidability of P and Computability of yp

Over structures with two constants and P C U’

Definition (The characteristic function)

c1 IfxeP,

. J]00 A
xp:UY — {c1,c2} and xp(X) {62 fREUT\P

PeDECy = xpe€{Resp | M e Myl (cf. Part Ib)

What about with “«<"?

xp € {Resp | M eMytand (d) = P e DECy.

(for several proofs see Part llb)

Recall: (a) = (b) & (¢) = (d)

where (@) A contains idy,,
(b) idy, € DEC 4,
(¢) idy, € SDEC 4,
(d) {ea}{c2} € SDEC4.
(e) {c1,c2} € SDEC 4 is not sufficient.
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