Abstract computation over first-order structures

Sufficient conditions for the existence of
universal BSS RAMs

Christine GalBner

University of Greifswald

Verona 2025

Outline

From algorithms over first-order structures to universal machines

Motivation: Reasons for our generalization

Introduction: The BSS-RAM model

e Structures A of signature o

e o-Programs

e Transition systems and BSS RAMs
e An example

Semi-decidable decision problems
Universal machines of type 1 and their importance

Constants and their recognizability

Algorithms over First-Order Structures

Informal

IF X>1 THEN X:=X+41.

describes an algorithm to compute x + 1 for x greater than 1.

We use
@ an operation to transform an object,
e a relation for evaluating a condition,
@ a constant.

The underlying structures

of our machines has this form:
A= (Uy ;(ciien; (fi)ien,; (ri)iens)-

universe constants operations relations

Known Machines over First-Order Structures

First-order structures .4 and several types of machines

({0,1};0,1;;=) Turing machines (1), Type-2 machines (3)
(N;0,1;+,—,;<,=) classical RAMs (2)

(R;R;+,—,;<,=) real RAMs (2), algebraic models (2), BSS machines (1)
(R;R; 4+, —; <, =) linear models (1), (2), additive BSS machines (1)

Minsky (1961), Scott (1967), Blum/Shub/Smale (1989),... (offline): (1)
X S .
(xl-._-"‘.—x:) I:'} II"IPLl't A PI‘GgraI‘n Dl.ltpl.[t E,‘\)(}) } machines over A
procedure - — procedure A-machines
executed until stop criterion |

BSS RAMs over A

Cook/Reckhow (1973), Aho/Hopcroft/Ullman (1974),... (offline / online):

(¢ % v L .. [READ > Aprogram PRINT > (1. Voo Vyle) machines over A
suitable inputs or [|

codes of objects executed until stop criterion

Weihrauch (1985"),... (online):

R N 3
(xy, 5, %5,.-.) [READ A program PRINT 01 V2, ¥so---) 3)
—E J

code/name of 1 cudefname of f {n} machines over A

|
u > f(u)

Known Machines over First-Order Structures

First-order structures
({0,1};0,1;;=) Turing machines (1)

(N;0,1;4,—,;<,=) classical RAMs (2)
(R;R;+,—,;<,=) real RAMs (3), algebraic models (3), BSS machines (4)
(R; R; 4+, — <, =) linear models (3), (5), additive BSS machines (5)

ntroduced and/or investigated by
1) Alan M. Turing,

I
(
(2) Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, ...
(3) Franco P. Preparata, Michael |. Shamos, ...
(4) Lenore Blum, Steve Smale, Michael Shub,

(5) Felipe Cucker, Klaus Meer, Pascal Koiran, ...

A Program for Semi-Deciding a Set
Over (R;Z; +, ;=)

Examples (Semi-deciding the square roots)

InpUt (xl’ T ’x") € R, \ Input: x,x.....0 — 2, 2,..., Z
1:if I; = I, then goto 2 else goto 1;
2.7, = —1; L0 Il—b
3: Z3 = 1; yes
4: 7, .= 7y x 2y, |z r‘l |
S: 72, :=7p + Z3; | =1 |
6: if Z, = Z, then goto 7 else goto 5; [7= ;lzz |
7.7 =1, K sz;)
8: stop.
Output ¢(Z;). <]_ZQ? no
Symbols: + and * for binary functions. yes
1 and -1 for a constant. 4 =1
Infix notation Z, + Z, stands for \Outpult: «Z) |
f£(21,2,) and so on.

Uniform Computation over First-Orde

Input and output procedures for

Input and output space: U7 =ar ;>4 Uy

r Structures

-deterministic BSS RAMs in MLD] s

Input of ¥ = (x1,...,x,) € U
X1 5.%) X3 X4 Xn V1 Y2
T b4 ! ! !
Ly | L 43| 24 Zn | Zpy1 | Zny2
11 12 13 14 “ o IkM
T 7 T 7 T
n 1 1 1 1
with guesses y;,...,y, € U4 or
”digitS” Viy.- -y VYm € {Cl, 6‘2}

Output after a stop-instruction:
(c(Z1), .. e(Zery)

Algorithms over First-Order Structures

o-programs for [in|finite .4-machines M

A o-program can be interpreted by any structure of a finite or infinite suitable signature.
To simplify matters, let us consider

@ a structure A= (Ug;cty. - sCniifiyeeofus FlyvesFny)
e a finite signature o= (ny;my,...,mpyiki, ... k)

0 My kn
e the first-order symbols PRGN S A B e

Definition (-program P, of an .4-machine)

1 :instruction;; ...; ¥¢p,, —1: instructiongPM_l; lp,, : stop.

e Any instruction; is a o-instruction.

@ The execution of P, is:
the stepwise transformation of configurations
by the transition system (S, —).

Algorithms over First-Order Structures

o-instructions for infinite .A-machines M and transport instructions

Zv | 2| Z3 | Za| Zs | ... Z-registers (for individuals in U 4)

L| L | | L Ik, Index registers (for indices in N)
Computation ¢: Z; := f"(Z;,, .,iji) (1)
L: Z; = c? (2)
Copy l: ZI] = Z[k (3)

Branching £: if r(Z;,,...,Z;,) then goto /; else goto £, (4)

Index £: I; = (5)
C: =1+ 1 (6)
¢: if I; = I then goto ¢; else goto ¢, (7)
Stop [. stop (8)

The Z-registers contain individuals of the underlying structure. For copying these values
from one Z-register into another Z-register, we will use index registers and index

instructions.

Overall States
Configurations of an .A-machine M

Definition (Configurations in S /)

(¢.V.u) :(f,ul,...,ykM,ul,uz,...Z

A

~~

a configuration of M

B L | L | L| ...| Ik, 2y | Lo | 23| Zy | Zs
index registers Z-reqisters
lely 7= e N'M =) e UY
M UV Vlyeo s Viag 1 u up,up,... A

¢ alabelin L
v indices of Z-registers

u a sequence of individuals

Unit Costs by a Computational System for .A-Machines

Transformation of configurations of an .4A-machine M

Definition (Transition system for any .4-machine M)

Sm = (Sm, —m)

with a binary relation — C S3,

defined below.

— a depends on

e the types of the single instructions belonging to the program,
e the single parameters in these instructions, and

e the underlying structure.

(cf. Introduction 2020, . . .; see also Borger for finite machines, . . .)

Unit Costs of . 4-machines

Transformation of configurations of an .4A-machine M

(£.v.u) —m (E+1.0. (w,..u-, i, -4,) Wit - 2))

(fﬁljt) — M (g—l—l U. (ul, .,uj_l,ci,uj+1,...))

C.v.u) —m (UH+1.0. (ur, . Uy 1, Uy Uy 1y -))

0 if r(Z,...,Z;) thengoto ¢, else goto ¢,

(Eljljt) — M (flljljl) if (u]17 .,ujki)Er,
L.v.u) —m (br.V.n) it (..., w5) Eri

Unit Costs of . 4-machines

Transformation of configurations of an .4A-machine M

¢: it [; = I, then goto /¢, else goto ¢,

L.v.u) —m (4 .V.n) if v, =14
L.v.u) —pm (br.U.n) if v; # 1
C: [=1
C.v.u) —m (L+1.(v,... v, L, . ..) . 0)
C: [= I +1
C.v.u) —m (L+1.(v,...,v-1, v+ L vy,). i)
{p: stop

Semi-Decidable Problems: Halting Sets
Some decision problems of BSS RAMs

Definition (Decision problems)
Any subset P of U (that contains all tuples) is a decision problem.

Definition (Halting process)

M halts on input ¥ if ¢p: stop is reached [for some guesses].

M(x) | if M halts on input X after a finite number of steps

for some guesses].
M(X) 1 if M(X) | does not hold.

Definition (Halting set)

Hy ={Xxec U} | M(X) |} is the halting set of M.

Xxe Hy = M accepts Xx.
Resp(X) € UY and 0 # Respq(X) C U (resp.)

SDEC 4 = {Hpm | M € My} SDEC® = {Hum | M € M5P}

Complete Problems: Halting Problems

Over first-order structures

Properties (Halting problems)

Halt = {(input, machine) C U’ | (machine) halts on (input) }

= |t is useful to consider universal BSS RAMs.

Universal Machines of Type 1 and their Halting Sets

Halting problems

A — (UA7 (Ci)i€N1;f17 <o 7fn2;r17 .. -7rn3) ({1,2} € Ny)

Type 1 here means encoding by using two constants

a=cy,
b=).
code(, (M) € {a,b}> (for all BSS RAMs M over A)

Definition (Halting problems of type 1)
Hy = {(codep)(M).X) e UP | MeMy & M(X) |}

HYP = {(code(,;)(M).X) € UY | M e MYP & M(X) |}

ND
for BSS RAMs over A, in ML], without guessing, with guessing

v

Simulation of M by a Universal Machine M, (Type 1)

Computing Resas = Resaq, 0 Respyry, for A with {1,2} C N,
X =N (code(a,b) (./\/l))?)
\U/ Input » 4 \u Input M,
initial configuration for M initial configuration for M,

(1 c (n, 1, 500 g 1) X, (xn,xn, ° o)) (1 e (}’lo, 1, 500 1) c (COde(a7b)(M) X, (xn,xn, ° o)))
with ng = [(code,) (M) . %)

|/ The execution of M {} The execution of M,
end configuration end configuration

(epr.Ij.ITt) (ﬁpMOﬁZ)

\U/ Output \U/ Output o

Respq(X) = (ug, ... up,) | = (215 -+ 52u;) = Respq, (code(y 4y (M) . X)

Simulation of M by a Universal Machine M, (Type 1)

The reduction of halting sets

Input of M Input of M,
X = (COde(a,m(./\/l) f)

= N computes the reduction of Hpq to H v,
for M € M4 (in linear time).

XeEHy = (COde(a,b)(M) . X) € Hpz,
XZ€Hy = (COde(ajb)(M) . X) & Hpm,
Mhaltsonx <« M, halts on (code(, ;) (M) . %)

Note, we have also:

N computes the reduction of H, to H 30 for M € MNP (in linear time).

Encoding BSS RAMs M for their Simulation

Strings in {a, b}" as codes for the o-programs

Our instructions ¢: Z; :=f"(Z;,...,Z;,) (1), ... encoded by
codey(+) in {a,b}* (codes for labels and indices)
= (codex(-) . codex(-)....) in{a,b}" (codes forinstructions)
Type | e; ex e3 e4 es e e7 --- e...| Codes of length k
(1) |1 i J 1 J2 Jm: | (codex(1). codey(i). ...)
2) | 2 J (code)(2) . codex(0). ...)
(3) |3 j k
4) |4 i bl 1 j2 Jk
(5) 5 61 52 J k
(6) | 6 Jj
(7) |7 J
(8) |0

Recall: a = ¢, b = o5.
Are the codes (are c¢; and c¢,) recognizable or distinguishable?

Subprograms for Evaluating Codes?

Subprograms for deciding codes?

The equality relation = can be used in executing a branching instruction of type (4)
only if the relation = belongs to the underlying structure A.

o A structure A = (U4; (¢i)ien,;fiy - sfnaiTly- - stny) ({1,2} CNy)
@ an expansion AT = (Ug; ()ienyifts -+ s Sigi Fls e -y Trgy =)
@ a new signature ot = (ni;my, ... mp ki, .. ks, 2)
e new symbols (for the identity) =, id, r; |

Examples (Useful pseudo instructions for computation over A?)

¢: ifid(Z;,c?) then goto ¢ else goto ¢, 6)
¢: ifid(Z,, <)) then goto ¢, else goto ¢, (ii)

id is a symbol for a binary relation. id could be interpreted, e.g., by the equality relation =.

If the equality relation is decidable over A by a subprogram, then

both pseudo instructions can stand for subprograms allowing to decide {c;} and {c,}.

Which properties must A possess in order to
be able to evaluate the codes?

Subprograms for Evaluating Codes

Sufficient conditions for subprograms helping to decide codes

Definition (The classes SDEC 4 and DEC 4)
SDEC 4 :{HM|M€MA}

DEC4, ={PCU®|PcSDEC4 & U¥ \P € SDEC4}
(@) A contains idy,,
(b) idy, € DECy,
(¢) idy, € SDECy,
(d) {a}{c} € SDEC 4.

Theorem (Pseudo instructions for evaluating codes over A)

Let one of conditions, (a) or (b) or (¢) or (d), hold.

Then, {c}, {c2} € DEC4 and

(i) and (ii) describe subprograms for deciding {c;} and {¢;,} over A.

y

¢: ifid(Z;, <) then goto ¢; else goto ¢, i)
¢: ifid(Z;,c9) then goto ¢, else goto ¢, (ii)

More Background (for Evaluating Codes)

|dentity, constants, and basic implications

Definition (The classes SDEC 4 and DEC 4)

SDEC,4 ={Hm | M € My}

DEC, ={PCU¥|PecSDEC, & U¥\P € SDEC4}
a) A contains idy,,
b) idy, € DEC 4,
idy € SDEC,

U

{c1},{c2} € SDEC4,
{61,62}00 € SDEC 4.

Let (@) = (b) mean (a) implies (), . ..

AN N AN N TN

There hold

(a) = (b) = (c) = (d) = (e) (cf. Part ITb)
and there are structures with

(a) <£ (b) or (c)<£ (d) or (d) < (e). (cf. Part ITb)

What do we have, (b) <4 (¢) or (b) < (c)?

More Background (for Evaluating Codes)

Basic properties and some equivalences

Definition (The classes SDEC 4 and DEC 4)

SDEC,4 ={Hm | M € My}
DEC4 ={PC U} |PcSDECy4 & U \ P € SDEC 4}
(a) A contains idy ,,
(b) idy, c DEC 4,
() idy, € SDEC 4,
(d) {c1},{c2} € SDECy,
(e) {c1,c2}>® € SDEC4.
Let (a) < (b) mean (a) = (b) and (b) = (a), ...
Then: (c) & 1idy, € DEC 4. (cf. Part IIb)
(d) S {Cl}, {C2} € DEC 4. (cf. Part IIb)
(8) = {Cl, C2} € DEC4. (cf. Part IIb)
Thus: (b) < (c)
- Xidy , S {RGSM | M e MA}. (see below)

More: Decidability of P and Computability of yp

Over structures with two constants and P C U’

Definition (The characteristic function)

c1 IfxeP,

. (©.@) ¥\ —
XP - UA —>{C1702} and XP(x) _{ o lf)?e U%\P :

PeDECy = xpe€{Resp | M e Myl (cf. Part Ib)

The computation of xp by an M € M4 should mean that

@ yp(X)=c; means XcP and Xxis accepted by M,
@ xp(XY) =c, means xXc U} \P and Xisrejected by M.

More: Decidability of P and Computability of yp

Over structures with two constants and P C U’

Definition (The characteristic function)

c1 IfxeP,

. J]00 A
xp:UY — {c1,c2} and xp(X) {62 fREUT\P

PeDECy = xpe€{Resp | M e Myl (cf. Part Ib)

What about with “«<"?

xp € {Resp | M eMytand (d) = P e DECy.

(for several proofs see Part llb)

Recall: (a) = (b) & (¢) = (d)

where (@) A contains idy,,
(b) idy, € DEC 4,
(¢) idy, € SDEC 4,
(d) {ea}{c2} € SDEC4.
(e) {c1,c2} € SDEC 4 is not sufficient.

Thank you for your attention!
My thanks also go to the organizers.

| also thank
Patrick Steinbrunner and Sebastian Bierbal3,
Arno Pauly, Florian Steinberg,
Vasco Brattka, Philipp Schlicht, and Rupert Holz!
for discussions.

My research was supported by many colleagues and
the International Office of the University Greifswald and the DVMLG.

| thank
Michael Schirmann, Volkmar Liebscher, Rainer Schimming,
Michael Rathjen, and Peter Schuster.

FeesIxes eI e el e

~ 0011101....

“T11001110...

References

Incl. further references

GalBner An introduction to a model of abstract computation: The
BSS-RAM model, Adrian Rezus (ed.): Contemporary Logic and
Computing, College Publications [Landscapes in Logic 1], London 2020,
pp. 574-603.

GaBnerAbstract computation over first-order structures. Part I:
Deterministic and non-deterministic BSS RAMs, arXiv:2502.17539.

GaBnerAbstract computation over first-order structures. .Part IIb:
Moschovakis’ operator and other non-determinisms, arXiv:2507.03827.

Lenore Blum, Michael Shub, and Steve Smale On a theory of computation
and complexity over the real numbers; NP-completeness, recursive
functions and universal machines, Bulletin of the American
Mathematical Society 21 1989, pp. 1-46.

Armin Hemmerling Computability of string functions over algebraic
structures, Mathematical Logic Quarterly 44, 1998, pp. 1-44.
Alan M. Turing On computable numbers, with an application to the
Entscheidungsproblem, Proceedings of the London Mathematical
Society 42 (1), 1937, pp. 230-265.

C-H-T

