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Computation over Algebraic Structures

Introduction

e Subject:
BSS RAM model over any structure — a framework for study of
o the abstract computability by machines over several structures
o the uniform decidability over algebraic structures
o the reducibility of problems
on a high abstraction level
e Meaning:
o allow to analyze the complexity of algorithms
o better understanding the principles of object-oriented programming
such as the encapsulation and the concept of virtual machines
e improve the quality and the design of algorithms for computers
e Including:
e several types of register machines
o the Turing machine
o the uniform BSS model of computation over the reals






e The model
e machines over algebraic structures
o Turing reductions
e computed by machines over algebraic structures
e A hierarchy
e derived from the arithmetical hierarchy
e A first characterization of the class A9
o the Limit Lemma
e The transfer of a further theorem from the Recursion Theory

e a generalization of the Friedberg-Muchnik Theorem
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Computation over Algebraic Structures

The Allowed Instructions

Computation over A= (U; (d})jes,; (fi)jer; (Rj)jes, =)-

e Computation instructions:
I: Zi == fi(Z,,. ... 2, ) (€9.1:Z:=Z; +Z,),
l: Z; = dj,
e Branching instructions:
I: if Z; = Z; then goto [; else goto /5,
I if Re(Zjy, . .., Z;, ) then goto [ else goto b,
o Copy instructions:

[ ZI, = ZIk’
@ Index instructions:

I: I; =1,

I :=1+1,

[: if I; = I} then goto [, else goto L.
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o Input and output space: U™ =4 ;> U’

e Input of ¥ = (x1,...,x,) € U™:

21 = X152 = X053 Ly = Xy
Znt+1 ‘= Xn; Zny2 1= Xn; - -
I :=mn;

e Output of Zy, ..., Z.



Computation over Algebraic Structures

The Machines

Input and output space: U™ =4 ;> Ui

Input of X = (x1,...,x,) € U™:

21 = X152 = X053 Ly = Xy
Znt1 = Xn; Znyo = X - -
I :=mn;

Output of Zy, ..., Zy,.

(]

M 4 — machines over A
@ M4(O) — machines using O C U as oracle

Oracle instructions:
1 if (Zy,...,Z;) € O then goto [; else goto .
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The Halting Problem

o Hu={(X.cp) | X € U® & M € My & M(X) |}

@ where
X = (xl, PN ,x,,)
cm = code(M) = (s1,...,85m)
(X.cm) = (XlyeeoyXnyStyeevsSm)
M(X)] = Mhaltsonx
o H 4 € REC4 if A is a structure of finite signature

H 4 ¢ DEC 4
REC 4 — recognizable (semi-decidable) problems
DEC 4 — decidable problems

HQ = {(¥.cm) | ¥ € U & M € M4 (0) & M(X) I}

HS ¢ DECY

(4
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The Turing Reduction
over Structures A

°P7Q§Ui21Ui

P <7y O Piseasier than Q,
P is decidable by a machine in M 4(Q).

P ;T Q  Pis strictly easier than Q,
O cannot be decided by a machine in M 4(P).

@ = For the Halting Problem:

P € REC 4 = P =<, H 4 (one-one reduction over .A)
= P <rHy
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o Definition (semantically by deterministic machines):

A is fixed.
28 = DECy,,
I = {U®\P|PeX)},
A = ¥0NTI,
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o The first level:
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I = {PCU®|P= U®\Ha},
A} = DECa = {PCU>®|P=r0},



A Hierarchy

(Analogously to the Arithmetical Hierarchy)

o Definition (semantically by deterministic machines):

A is fixed.
3y = DECy,,
I, = {U®\P|PeX)},
ab = enm,
$0,, = {PCU=|(3Qe)P = HY}L

e The second level:
) = RECHA = {PCU™|P=;H}},

L = {PCU®|P = U®\HY ),
A) = DECHA = {PCU™|P=yHyu}



A Characterization of AY = {P C U™ | P <7 H 4}




A Characterization of A) = {P C U™ | P <7 H 4}

e Let A contain an effectively enumerable set denoted by N.



A Characterization of A) = {P C U™ | P <7 H 4}

e Let A contain an effectively enumerable set denoted by N.

@ xp — the characteristic function of the problem P.



A Characterization of A) = {P C U™ | P <7 H 4}

e Let A contain an effectively enumerable set denoted by N.
@ xp — the characteristic function of the problem P.

o Let P C U™.
(1) P e A).
(2) There is a computable function g : U* — {0, 1}
definedon {(n.X) |n € N & X € U*}

—

such that xp(X) = limy_ g(s . X)



A Characterization of A) = {P C U™ | P <7 H 4}

e Let A contain an effectively enumerable set denoted by N.
@ xp — the characteristic function of the problem P.
o Let P C U™.
(1) P e A).
(2) There is a computable function g : U* — {0, 1}
definedon {(n.X) |n € N & X € U*}
such that xp(X) = limy_, g(s . X).

Lemma (First Part of Limit Lemma)
If (1), then (2).




A Characterization of A) = {P C U™ | P <7 H 4}

e Let A contain an effectively enumerable set denoted by N.
@ xp — the characteristic function of the problem P.
o Let P C U™.
(1) P e A).
(2) There is a computable function g : U* — {0, 1}
definedon {(n.X) |n € N & X € U*}
such that xp(X) = limy_, g(s . X).

Lemma (First Part of Limit Lemma)
If (1), then (2).

Lemma (Second Part of Limit Lemma)
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Lemma (First Part of Limit Lemma)

If P C U~ is in AY, then there is a computable function
g:U> — {0,1} definedon {(n.%) | n € N & ¥ € U*} such that
xp(X) = limy_,o0 g(5 . X).

Proof. Let M € M 4(H 1) decide the problem P and X € U°.

e let By, B2, ..., Br € N represent the answers of the queries
(39 .cp,) € H4? executed by M on input X.
° =

0 Bi=0 iff £;(FD) 1,
o B;i=1>0 iff £;(50) ! and £:(5D) |,
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@ Let g be computed by N' € M 4 executing:
o Input (s.X) € U>;
e if s € N, then simulate s instructions of M, but,
instead of

if (&) .cr,,;) € H g then goto to I, else goto I,

use
if L;;(¥7) |* then goto to I; else goto I.

e If the output of M is not reached within s steps of M, then output 0.
o seNxecU®=let B9, ... 8% < s (my < 5) with

BY #£ 0= Lo(50) 15771 and £,(80) 447 .

@ seN, ¥Xc U® = thereare 0 = 5o < 51 < 55 < --- < st such that
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(B1,B2,--5B) = (BS,B5,-..,B) for s > sy.
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@ Let g be computed by N' € M 4 executing:
o Input (s.X) € U>;
e if s € N, then simulate s instructions of M, but,
instead of

if (&) .cr,,;) € H g then goto to I, else goto I,

use
if L;;(¥7) |* then goto to I; else goto I.
e If the output of M is not reached within s steps of M, then output 0.
o seNxecU®=let B9, ... 8% < s (my < 5) with

BY #£ 0= Lo(50) 15771 and £,(80) 447 .

@ seN, ¥Xc U® = thereare 0 = 5o < 51 < 55 < --- < st such that

(ﬁl7627"'7ﬁi> = ( iia ;ir"aﬁfi) fOI'l-Sms;,
(Bl?ﬁ%"'vﬁk) = ( i?ﬂévaﬁ]ﬁ) fOfSZSk-
@ X € U™ = there is an s3
such that A/ outputs the same value as M on (s . X) for all s > s;.
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If there is a computable function g : U> — {0, 1} defined on
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A Characterization of A) = {P C U™ | P <7 H 4}

Lemma (Second Part of Limit Lemma)

If there is a computable function g : U> — {0, 1} defined on
{(n.X) |n €N & X € U*} such that xp(X) = lim,_, g(s.X), then
P C U™ isin A).

Proof. Let g be computed by N' € M4 and let M € M 4(H 4) execute:

o Inputx € U*;
@ Lets=1;
o I:
- Ask ((s.X).cc) € Ha? where
L: Input (s.X);
Halt if there is a k > s such that g(s.X) # g(k.X).

If L(s.X) |,

then s := s + 1 and goto 1

else compute g(s.x) by simulating N and output g(s . X).

M decides P.



Summary: AS and the Limit Lemma

e Let A contain an effectively enumerable set denoted by N.

@ xp — the characteristic function of the problem P.

Lemma (Limit Lemma)

P C U*isin AY if and only if there is a computable function
g:U> — {0,1} definedon {(n.%) | n € N & ¥ € U*} such that

xp(X) = limy_,o0 g(s. X)
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A Generalization of the Friedberg-Muchnik Theorem

e Let A contain

e only a finite number of operations and relations,
e an effectively enumerable set denoted by N,
e only two constants denoted by 0 and 1.

o = H,4 € REC4.

@ We construct an A ¢ N with

A;ﬁT H 4,

A Ar Pformany P C U,
A #Ar Pformany P € AS.
= Hy ﬁTP
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A Generalization of the Friedberg-Muchnik Theorem

A contains

@ only a finite number of operations and relations,
@ an effectively enumerable set denoted by N,

@ only two constants denoted by 0 and 1.

We use:

e Hpy NN (for the halting set Hy of M € My) is
o effectively enumerable
e a halting set of a machine in M 4.
e Forany O C N,
we can list M4 (0): MY, M9, . ...
(The index is the code of the corresponding program.)
o We can list M4: NVj, A5, . ...

e N; enumerating all positive integers ni1,ni2,... € Hy.

i
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Let A = ;> A, be defined in stages. Ag = 0, s > 0.
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where, for any j < s,
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A Generalization of the Friedberg-Muchnik Theorem

Let A = ;> A, be defined in stages. Ag = 0, s > 0.

L={i<s|WiNA; =0 & (Fx e Wi,)(2i <x & (Vj <i)(a(j,s) <x))}
where, for any j < s,

greatest integer used in a query by
. Ay e . Ag /|
° a(j,s) ¢ M;" onj within s steps if /\/ljA () 4°,
1 s (1 S
0 it M (j) 1.
@ W, is the set of integers computed by A; on s within s steps.
If I, # (0, then let

I = minlj,
i, = min{x € W, | 2i; < x & (Vj < i5)(a(j,s) < x)},
A B { A if I, =10

ST U AyU{x,}  otherwise.
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A Generalization of the Friedberg-Muchnik Theorem

The properties of A, for instance, for A = (R;0,1; 4+, —,- -+ ;<):
o A is effectively enumerable by an machine in M 4.
= A < Hyu.
e Aand N\ A are infinite.

@ Conditions for lowness for all n > 0:
(N,,) If M2 (n) | for infinitely many ¢, then M2 (n) |.

@ = Conditions for simplicity for all n > 0:
(Pn) If Wy, = Ujs| Wa is infinite, then A N W, # 0.

= A€ f] H 4.
o KA <7 K? where KO = {kp( | M € MY (O) & M(km) 1}
= A j_T H 4.
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A Generalization of the Friedberg-Muchnik Theorem

o Let A= (R’ 07 1a+a s S) or A= (C; 07 1,"’, _,,:) and
P = Anjg,
P=,>{xeR"| (3G Q") (q: + Sl qgicixi = X))
7ZCPorZNP=0.

A 27 P. \
Ha Ar P. \

Similar constructions are also possible, if all problems which are
semi-decidable by Turing machines are decidable over A.

° P 3r H 4 holds for A = (R;0, 1; 4, —, XHpy, ¢; <) with ¢p(x) =7
and 7Z C P (where A C 7Z) and so on.
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A Generalization of the Friedberg-Muchnik Theorem

A Z7 Pfor A= (R;0,1;+,—,;<)and ZC PC U.

Proof: Let us assume that A is decidable by a machine in M 4(P).

= (R\ A) NN is semi-decidable by an M € M4(P).
M can be modified:

e The integers are enumerated and compared with the input.
o If the input is a positive integer,

then M can be simulated by a machine in M4

since

o all queries of M are answered in the positive,
e each order test can be simulated by means of equality tests.

= (R\ A) NN is semi-decidable by a machine in M 4.
= (R\ A) NN = W, for some .
= By definition of A the assumption is wrong.



A Generalization of the Friedberg-Muchnik Theorem

Let A be a structure containing only a finite number of constants
and relations, the operations fi, . . ., f, of arities u;, ..., unu, and an
effectively enumerable set N C U.

Let F=Ey =N, F; = Ujgi Ej where

Eip = U{fkm,.. ) | (1, ny,) € FI%Y,

and let N be decidable on E =4 |, Ei

Moreover, let (a) or (b) be given.

(@) P=U,.,Pi1 % xPijwithE C Py CUforalli<n,k <.
(b) PN E> is decidable for all inputs in E.

Then, there is a semi-decidable A C N with A A7 P and thus
Hy4 A7 P.




The examples show that extensive knowledge of classical
recursion theory is a fundamental condition for a closer
examination of algebraic computation models.

Thank you very much for your attention!



