Computation over Algebraic Structures and the Turing Reduction

Christine Gaßner

University Greifswald

CCC 2012 Trier
Subject:
BSS RAM model over any structure – a framework for study of
- the abstract computability by machines over several structures
- the uniform decidability over algebraic structures
- the reducibility of problems
on a high abstraction level

Meaning:
- allow to analyze the complexity of algorithms
- better understanding the principles of object-oriented programming
 such as the encapsulation and the concept of virtual machines
- improve the quality and the design of algorithms for computers

Including:
- several types of register machines
- the Turing machine
- the uniform BSS model of computation over the reals
Subject:
BSS RAM model over any structure – a framework for study of
- the abstract computability by machines over several structures
- the uniform decidability over algebraic structures
- the reducibility of problems

on a high abstraction level

Meaning:
- allow to analyze the complexity of algorithms
- better understanding the principles of object-oriented programming such as the encapsulation and the concept of virtual machines
- improve the quality and the design of algorithms for computers

Including:
- several types of register machines
- the Turing machine
- the uniform BSS model of computation over the reals
Subject:
BSS RAM model over any structure – a framework for study of
- the abstract computability by machines over several structures
- the uniform decidability over algebraic structures
- the reducibility of problems
on a high abstraction level

Meaning:
- allow to analyze the complexity of algorithms
- better understanding the principles of object-oriented programming
 such as the encapsulation and the concept of virtual machines
- improve the quality and the design of algorithms for computers

Including:
- several types of register machines
- the Turing machine
- the uniform BSS model of computation over the reals
Subject:
BSS RAM model over any structure – a framework for study of
- the abstract computability by machines over several structures
- the uniform decidability over algebraic structures
- the reducibility of problems

on a high abstraction level

Meaning:
- allow to analyze the complexity of algorithms
- better understanding the principles of object-oriented programming such as the encapsulation and the concept of virtual machines
- improve the quality and the design of algorithms for computers

Including:
- several types of register machines
- the Turing machine
- the uniform BSS model of computation over the reals
Outline

- The model
 - machines over algebraic structures

- Turing reductions
 - computed by machines over algebraic structures

- A hierarchy
 - derived from the arithmetical hierarchy

- A first characterization of the class Δ^0_2
 - the Limit Lemma

- The transfer of a further theorem from the Recursion Theory
 - a generalization of the Friedberg-Muchnik Theorem
The model
 - machines over algebraic structures

Turing reductions
 - computed by machines over algebraic structures

A hierarchy
 - derived from the arithmetical hierarchy

A first characterization of the class Δ^0_2
 - the Limit Lemma

The transfer of a further theorem from the Recursion Theory
 - a generalization of the Friedberg-Muchnik Theorem
Computation over Algebraic Structures

The Allowed Instructions

Computation over $\mathcal{A} = (U; (d_j)_{j \in J_0}; (f_j)_{j \in J_1}; (R_j)_{j \in J_2}; =)$.

- **Computation instructions:**

 l: $Z_j := f_k(Z_{j_1}, \ldots, Z_{j_m})$ (e.g. l: $Z_j := Z_{j_1} + Z_{j_2}$),

 l: $Z_j := d_k$,

- **Branching instructions:**

 l: if $Z_i = Z_j$ then goto l_1 else goto l_2,

 l: if $R_k(Z_{j_1}, \ldots, Z_{j_{nk}})$ then goto l_1 else goto l_2,

- **Copy instructions:**

 l: $Z_{I_j} := Z_{I_k}$,

- **Index instructions:**

 l: $I_j := 1$,

 l: $I_j := I_j + 1$,

 l: if $I_j = I_k$ then goto l_1 else goto l_2.
Computation over Algebraic Structures
The Allowed Instructions

Computation over $\mathcal{A} = (U; (d_j)_{j \in J_0}; (f_j)_{j \in J_1}; (R_j)_{j \in J_2}, =)$.

- **Computation instructions:**

 l: $Z_j := f_k(Z_{j_1}, \ldots, Z_{j_m})$ \hspace{0.5cm} (e.g. l: $Z_j := Z_{j_1} + Z_{j_2}$),

 l: $Z_j := d_k$,

- **Branching instructions:**

 l: if $Z_i = Z_j$ then goto l_1 else goto l_2,

 l: if $R_k(Z_{j_1}, \ldots, Z_{j_{nk}})$ then goto l_1 else goto l_2,

- **Copy instructions:**

 l: $Z_{I_j} := Z_{I_k}$,

- **Index instructions:**

 l: $I_j := 1$,

 l: $I_j := I_j + 1$,

 l: if $I_j = I_k$ then goto l_1 else goto l_2.
Computation over Algebraic Structures
The Allowed Instructions

Computation over $\mathcal{A} = (U; (d_j)_{j \in J_0}; (f_j)_{j \in J_1}; (R_j)_{j \in J_2}; =)$.

- **Computation instructions:**

 l: $Z_j := f_k(Z_{j_1}, \ldots, Z_{j_{m_k}})$ \ (e.g. l: $Z_j := Z_{j_1} + Z_{j_2}$),

 l: $Z_j := d_k$,

- **Branching instructions:**

 l: if $Z_i = Z_j$ then goto l_1 else goto l_2,

 l: if $R_k(Z_{j_1}, \ldots, Z_{j_{n_k}})$ then goto l_1 else goto l_2,

- **Copy instructions:**

 l: $Z_{I_j} := Z_{I_k}$,

- **Index instructions:**

 l: $I_j := 1$,

 l: $I_j := I_j + 1$,

 l: if $I_j = I_k$ then goto l_1 else goto l_2.
Computation over Algebraic Structures
The Allowed Instructions

Computation over $\mathcal{A} = (U; (d_j)_{j \in J_0}; (f_j)_{j \in J_1}; (R_j)_{j \in J_2}, =)$.

- **Computation instructions:**

 \[
 \begin{align*}
 l: & \quad Z_j := f_k(Z_{j1}, \ldots, Z_{jm_k}) \quad \text{(e.g. } l: \ Z_j := Z_{j1} + Z_{j2}), \\
 l: & \quad Z_j := d_k,
 \end{align*}
 \]

- **Branching instructions:**

 \[
 \begin{align*}
 l: & \quad \text{if } Z_i = Z_j \text{ then goto } l_1 \text{ else goto } l_2, \\
 l: & \quad \text{if } R_k(Z_{j1}, \ldots, Z_{jn_k}) \text{ then goto } l_1 \text{ else goto } l_2,
 \end{align*}
 \]

- **Copy instructions:**

 \[
 l: \ Z_{Ij} := Z_{Ik},
 \]

- **Index instructions:**

 \[
 \begin{align*}
 l: & \quad I_j := 1, \\
 l: & \quad I_j := I_j + 1, \\
 l: & \quad \text{if } I_j = I_k \text{ then goto } l_1 \text{ else goto } l_2.
 \end{align*}
 \]
Computation over Algebraic Structures
The Machines

- Input and output space: $U^\infty = \text{df } \bigcup_{i \geq 1} U^i$

- Input of $\vec{x} = (x_1, \ldots, x_n) \in U^\infty$:

 $Z_1 := x_1; Z_2 := x_2; \ldots; Z_n := x_n;$

 $Z_{n+1} := x_n; Z_{n+2} := x_n; \ldots$

 $I_1 := n;$

- Output of Z_1, \ldots, Z_{I_1}.

- M_A – machines over A

- $M_A(O)$ – machines using $O \subseteq U^\infty$ as oracle

Oracle instructions:

l: if $(Z_1, \ldots, Z_{I_1}) \in O$ then goto l_1 else goto l_2.
Computation over Algebraic Structures
The Machines

- **Input and output space:** $U^\infty = \bigcup_{i \geq 1} U^i$

- **Input of** $\vec{x} = (x_1, \ldots, x_n) \in U^\infty$:

 $Z_1 := x_1; Z_2 := x_2; \ldots; Z_n := x_n;$

 $Z_{n+1} := x_n; Z_{n+2} := x_n; \ldots$

 $I_1 := n$

- **Output of** Z_1, \ldots, Z_{I_1}.

- M_A – machines over A

- $M_A(\mathcal{O})$ – machines using $\mathcal{O} \subseteq U^\infty$ as oracle

Oracle instructions:

l: if $(Z_1, \ldots, Z_{I_1}) \in \mathcal{O}$ then goto l_1 else goto $l_2.$
Computation over Algebraic Structures
The Machines

- Input and output space: \(U^\infty = \bigcup_{i \geq 1} U^i \)

- Input of \(\vec{x} = (x_1, \ldots, x_n) \in U^\infty \):

\[
Z_1 := x_1; Z_2 := x_2; \ldots; Z_n := x_n;
Z_{n+1} := x_n; Z_{n+2} := x_n; \ldots
I_1 := n;
\]

- Output of \(Z_1, \ldots, Z_{I_1} \).

- \(M_\mathcal{A} \) – machines over \(\mathcal{A} \)

- \(M_\mathcal{A}(\mathcal{O}) \) – machines using \(\mathcal{O} \subseteq U^\infty \) as oracle

Oracle instructions:

\(l: \) if \((Z_1, \ldots, Z_{I_1}) \in \mathcal{O} \) then goto \(l_1 \) else goto \(l_2 \).
Computation over Algebraic Structures
The Machines

- **Input and output space:** \(U^\infty = \bigcup_{i \geq 1} U^i \)

- **Input** of \(\vec{x} = (x_1, \ldots, x_n) \in U^\infty: \)

 \[
 Z_1 := x_1; Z_2 := x_2; \ldots; Z_n := x_n;
 \]

 \[
 Z_{n+1} := x_n; Z_{n+2} := x_n; \ldots
 \]

 \[
 I_1 := n;
 \]

- **Output** of \(Z_1, \ldots, Z_{I_1}. \)

- \(M_\mathcal{A} \) – machines over \(\mathcal{A} \)

- \(M_\mathcal{A}(O) \) – machines using \(O \subseteq U^\infty \) as oracle

Oracle instructions:

\[
l: \text{ if } (Z_1, \ldots, Z_{I_1}) \in O \text{ then goto } l_1 \text{ else goto } l_2.
\]
Computation over Algebraic Structures
The Machines

- Input and output space: \(U^\infty = \bigcup_{i \geq 1} U^i \)

- Input of \(\vec{x} = (x_1, \ldots, x_n) \in U^\infty: \)

 \[
 Z_1 := x_1; Z_2 := x_2; \ldots; Z_n := x_n; \\
 Z_{n+1} := x_n; Z_{n+2} := x_n; \ldots \\
 I_1 := n;
 \]

- Output of \(Z_1, \ldots, Z_{I_1}. \)

- \(M_A \) – machines over \(A \)

- \(M_A(O) \) – machines using \(O \subseteq U^\infty \) as oracle

Oracle instructions:

\[
l: \text{if } (Z_1, \ldots, Z_{I_1}) \in O \text{ then goto } l_1 \text{ else goto } l_2.
\]
Computation over Algebraic Structures
The Halting Problem

\[H_A = \{(\vec{x} \cdot c_M) \mid \vec{x} \in U^\infty \land M \in M_A \land M(\vec{x}) \downarrow\} \]

where

\[\vec{x} = (x_1, \ldots, x_n) \]
\[c_M = \text{code}(M) = (s_1, \ldots, s_m) \]
\[(\vec{x} \cdot c_M) = (x_1, \ldots, x_n, s_1, \ldots, s_m) \]

\[M(\vec{x}) \downarrow \overset{\sim}{=} M \text{ halts on } \vec{x} \]

\[H_A \in \text{REC}_A \text{ if } A \text{ is a structure of finite signature} \]
\[H_A \not\in \text{DEC}_A \]

\[\text{REC}_A \text{ – recognizable (semi-decidable) problems} \]
\[\text{DEC}_A \text{ – decidable problems} \]

\[H_O^A = \{(\vec{x} \cdot c_M) \mid \vec{x} \in U^\infty \land M \in M_A(O) \land M(\vec{x}) \downarrow\} \]

\[H_O^A \not\in \text{DEC}_A^O \]
Computation over Algebraic Structures
The Halting Problem

$H_A = \{ (\vec{x} \cdot c_M) \mid \vec{x} \in U^\infty \land M \in M_A \land M(\vec{x}) \downarrow \}$

where

$\vec{x} = (x_1, \ldots, x_n)$

$c_M = \text{code}(M) = (s_1, \ldots, s_m)$

$(\vec{x} \cdot c_M) = (x_1, \ldots, x_n, s_1, \ldots, s_m)$

$M(\vec{x}) \downarrow \overset{\text{def}}{=} M \text{ halts on } \vec{x}$

$H_A \in \text{REC}_A$ if A is a structure of finite signature
$H_A \not\in \text{DEC}_A$

REC_A – recognizable (semi-decidable) problems
DEC_A – decidable problems

$H^O_A = \{ (\vec{x} \cdot c_M) \mid \vec{x} \in U^\infty \land M \in M_A(O) \land M(\vec{x}) \downarrow \}$

$H^O_A \not\in \text{DEC}^O_A$
Computation over Algebraic Structures

The Halting Problem

\[H_A = \{(\vec{x} \cdot c_M) \mid \vec{x} \in U^\infty \land M \in M_A \land M(\vec{x}) \downarrow\} \]

where

\[\vec{x} = (x_1, \ldots, x_n) \]
\[c_M = \text{code}(M) = (s_1, \ldots, s_m) \]
\[(\vec{x} \cdot c_M) = (x_1, \ldots, x_n, s_1, \ldots, s_m) \]

\[M(\vec{x}) \downarrow \equiv M \text{ halts on } \vec{x} \]

\[H_A \in \text{REC}_A \text{ if } A \text{ is a structure of finite signature} \]
\[H_A \not\in \text{DEC}_A \]

REC \(_A\) – recognizable (semi-decidable) problems

DEC \(_A\) – decidable problems

\[H^O_A = \{(\vec{x} \cdot c_M) \mid \vec{x} \in U^\infty \land M \in M_A(O) \land M(\vec{x}) \downarrow\} \]

\[H^O_A \not\in \text{DEC}^O_A \]
Computation over Algebraic Structures

The Halting Problem

\[H_A = \{ (\vec{x} \cdot c_M) \mid \vec{x} \in U^\infty \land M \in M_A \land M(\vec{x}) \downarrow \} \]

where

\[\vec{x} = (x_1, \ldots, x_n) \]
\[c_M = \text{code}(M) = (s_1, \ldots, s_m) \]
\[(\vec{x} \cdot c_M) = (x_1, \ldots, x_n, s_1, \ldots, s_m) \]

\[M(\vec{x}) \downarrow \overset{\hat{\cdot}}{=} M \text{ halts on } \vec{x} \]

\[H_A \in \text{REC}_A \text{ if } A \text{ is a structure of finite signature} \]
\[H_A \notin \text{DEC}_A \]

\[\text{REC}_A \text{ – recognizable (semi-decidable) problems} \]
\[\text{DEC}_A \text{ – decidable problems} \]

\[H^O_A = \{ (\vec{x} \cdot c_M) \mid \vec{x} \in U^\infty \land M \in M_A(O) \land M(\vec{x}) \downarrow \} \]

\[H^O_A \notin \text{DEC}^O_A \]
The Turing Reduction over Structures \(\mathcal{A} \)

- \(P, Q \subseteq \bigcup_{i \geq 1} U^i \)

\[P \leq_T Q \quad \text{\(P \) is easier than \(Q \),} \]
\[\quad \text{\(P \) is decidable by a machine in \(M_{\mathcal{A}}(Q) \).} \]

\[P \not\leq_T Q \quad \text{\(P \) is strictly easier than \(Q \),} \]
\[\quad \text{\(Q \) cannot be decided by a machine in \(M_{\mathcal{A}}(P) \).} \]

- \(\Rightarrow \) For the Halting Problem:

\[P \in \text{REC}_{\mathcal{A}} \Rightarrow P \preceq_1 \mathbb{H}_{\mathcal{A}} \quad \text{(one-one reduction over \(\mathcal{A} \))} \]
\[\Rightarrow P \preceq_T \mathbb{H}_{\mathcal{A}} \]
The Turing Reduction over Structures \mathcal{A}

- $P, Q \subseteq \bigcup_{i \geq 1} U^i$

 - $P \preceq_T Q$

 P is easier than Q,
 P is decidable by a machine in $M_\mathcal{A}(Q)$.

 - $P \npreceq_T Q$

 P is strictly easier than Q,
 Q cannot be decided by a machine in $M_\mathcal{A}(P)$.

\Rightarrow For the Halting Problem:

- $P \in \text{REC}_\mathcal{A} \Rightarrow P \preceq_1 H_\mathcal{A}$ (one-one reduction over \mathcal{A})

 $\Rightarrow P \preceq_T H_\mathcal{A}$
The Turing Reduction
over Structures \mathcal{A}

- $P, Q \subseteq \bigcup_{i \geq 1} U^i$

 $P \preceq_T Q \quad P$ is easier than Q,
 P is decidable by a machine in $M_{\mathcal{A}}(Q)$.

 $P \not\preceq_T Q \quad P$ is strictly easier than Q,
 Q cannot be decided by a machine in $M_{\mathcal{A}}(P)$.

⇒ For the Halting Problem:

 $P \in \text{REC}_{\mathcal{A}} \Rightarrow P \preceq_1 H_{\mathcal{A}}$ (one-one reduction over \mathcal{A})
 $\Rightarrow P \preceq_T H_{\mathcal{A}}$
A Hierarchy
(Analogously to the Arithmetical Hierarchy)

- **Definition (semantically by deterministic machines):**
 \(A \) is fixed.

\[
\begin{align*}
\Sigma_0^0 &= \text{DEC}_A, \\
\Pi_n^0 &= \{ U^\infty \setminus P \mid P \in \Sigma_n^0 \}, \\
\Delta_n^0 &= \Sigma_n^0 \cap \Pi_n^0, \\
\Sigma_{n+1}^0 &= \{ P \subseteq U^\infty \mid (\exists Q \in \Sigma_n^0)(P \subseteq_1 H^n_A) \}.
\end{align*}
\]

- **The first level:**

\[
\begin{align*}
\Sigma_1^0 &= \text{REC}_A = \{ P \subseteq U^\infty \mid P \subseteq_1 H_A \}, \\
\Pi_1^0 &= \{ P \subseteq U^\infty \mid P \subseteq_1 U^\infty \setminus H_A \}, \\
\Delta_1^0 &= \text{DEC}_A = \{ P \subseteq U^\infty \mid P \subseteq_T \emptyset \},
\end{align*}
\]
Definition (semantically by deterministic machines):

\(A \) is fixed.

\[
\begin{align*}
\Sigma_0^0 &= \text{DEC}_A, \\
\Pi_n^0 &= \{ U^\infty \setminus P \mid P \in \Sigma_n^0 \}, \\
\Delta_n^0 &= \Sigma_n^0 \cap \Pi_n^0, \\
\Sigma_{n+1}^0 &= \{ P \subseteq U^\infty \mid (\exists Q \in \Sigma_n^0)(P \preceq_1 H^O_A) \}.
\end{align*}
\]

The first level:

\[
\begin{align*}
\Sigma_1^0 &= \text{REC}_A = \{ P \subseteq U^\infty \mid P \preceq_1 H_A \}, \\
\Pi_1^0 &= \{ P \subseteq U^\infty \mid P \preceq_1 U^\infty \setminus H_A \}, \\
\Delta_1^0 &= \text{DEC}_A = \{ P \subseteq U^\infty \mid P \preceq_T \emptyset \}.
\end{align*}
\]
Definition (semantically by deterministic machines):
\(\mathcal{A} \) is fixed.

\[
\begin{align*}
\Sigma_0^0 &= \text{DEC}_\mathcal{A}, \\
\Pi_n^0 &= \{ U^\infty \setminus P \mid P \in \Sigma_n^0 \}, \\
\Delta_n^0 &= \Sigma_n^0 \cap \Pi_n^0, \\
\Sigma_{n+1}^0 &= \{ P \subseteq U^\infty \mid (\exists Q \in \Sigma_n^0)(P \preceq_1 \mathcal{H}^Q_\mathcal{A}) \}.
\end{align*}
\]

The first level:

\[
\begin{align*}
\Sigma_1^0 &= \text{REC}_\mathcal{A} = \{ P \subseteq U^\infty \mid P \preceq_1 \mathcal{H}_\mathcal{A} \}, \\
\Pi_1^0 &= \{ P \subseteq U^\infty \mid P \preceq_1 U^\infty \setminus \mathcal{H}_\mathcal{A} \}, \\
\Delta_1^0 &= \text{DEC}_\mathcal{A} = \{ P \subseteq U^\infty \mid P \preceq_T \emptyset \},
\end{align*}
\]
A Hierarchy
(Analogously to the Arithmetical Hierarchy)

Definition (semantically by deterministic machines):
\(\mathcal{A} \) is fixed.

\[
\begin{align*}
\Sigma^0_0 &= \text{DEC}_\mathcal{A}, \\
\Pi^0_n &= \{ U^\infty \setminus P \mid P \in \Sigma^0_n \}, \\
\Delta^0_n &= \Sigma^0_n \cap \Pi^0_n, \\
\Sigma^0_{n+1} &= \{ P \subseteq U^\infty \mid (\exists Q \in \Sigma^0_n)(P \preceq_1 \mathcal{H}_\mathcal{A}^Q) \}.
\end{align*}
\]

The second level:

\[
\begin{align*}
\Sigma^0_2 &= \text{REC}^{\mathcal{H}_\mathcal{A}}_\mathcal{A} = \{ P \subseteq U^\infty \mid P \preceq_1 \mathcal{H}_\mathcal{A} \}, \\
\Pi^0_2 &= \{ P \subseteq U^\infty \mid P \preceq_1 U^\infty \setminus \mathcal{H}_\mathcal{A} \}, \\
\Delta^0_2 &= \text{DEC}^{\mathcal{H}_\mathcal{A}}_\mathcal{A} = \{ P \subseteq U^\infty \mid P \preceq_T \mathcal{H}_\mathcal{A} \}.
\end{align*}
\]
Let \mathcal{A} contain an effectively enumerable set denoted by \mathbb{N}.

χ_P – the characteristic function of the problem P.

Let $P \subseteq U^\infty$.

1. $P \in \Delta^0_2$.
2. There is a computable function $g : U^\infty \to \{0, 1\}$ defined on $\{(n . \vec{x}) | n \in \mathbb{N} \& \vec{x} \in U^\infty\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s . \vec{x})$.

Lemma (First Part of Limit Lemma)
If (1), then (2).

Lemma (Second Part of Limit Lemma)
If (2), then (1).
A Characterization of $\Delta^0_2 = \{ P \subseteq U^\infty \mid P \leq_T \mathbb{H}_A \}$

- Let \mathcal{A} contain an effectively enumerable set denoted by \mathbb{N}.
- χ_P – the characteristic function of the problem P.
- Let $P \subseteq U^\infty$.
 1. $P \in \Delta^0_2$.
 2. There is a computable function $g : U^\infty \to \{0, 1\}$ defined on \{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^\infty\} such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x})$.

Lemma (First Part of Limit Lemma)

If (1), then (2).

Lemma (Second Part of Limit Lemma)

If (2), then (1).
Let \mathcal{A} contain an effectively enumerable set denoted by \mathbb{N}.

χ_P – the characteristic function of the problem P.

Let $P \subseteq U^\infty$.

1. $P \in \Delta^0_2$.
2. There is a computable function $g : U^\infty \to \{0, 1\}$ defined on $\{(n, \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^\infty\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s, \vec{x})$.

Lemma (First Part of Limit Lemma)
If (1), then (2).

Lemma (Second Part of Limit Lemma)
If (2), then (1).
A Characterization of $\Delta^0_2 = \{ P \subseteq U^\infty \mid P \preceq_T H_A \}$

- Let \mathcal{A} contain an effectively enumerable set denoted by \mathbb{N}.
- χ_P – the characteristic function of the problem P.
- Let $P \subseteq U^\infty$.
 (1) $P \in \Delta^0_2$.
 (2) There is a computable function $g : U^\infty \to \{0, 1\}$ defined on $\{(n, \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^\infty \}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s, \vec{x})$.

Lemma (First Part of Limit Lemma)
If (1), then (2).

Lemma (Second Part of Limit Lemma)
If (2), then (1).
A Characterization of $\Delta^0_2 = \{ P \subseteq U^\infty \mid P \leq_T H_A \}$

- Let \mathcal{A} contain an effectively enumerable set denoted by \mathbb{N}.
- χ_P – the characteristic function of the problem P.
- Let $P \subseteq U^\infty$.
 1. $P \in \Delta^0_2$.
 2. There is a computable function $g : U^\infty \rightarrow \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^\infty\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x})$.

Lemma (First Part of Limit Lemma)

If (1), then (2).

Lemma (Second Part of Limit Lemma)

If (2), then (1).
A Characterization of $\Delta^0_2 = \{ P \subseteq U^\infty \mid P \leq_T H_A \}$

- Let \mathcal{A} contain an effectively enumerable set denoted by \mathbb{N}.
- χ_P – the characteristic function of the problem P.
- Let $P \subseteq U^\infty$.

 1. $P \in \Delta^0_2$.
 2. There is a computable function $g : U^\infty \to \{0, 1\}$ defined on $\{(n, \vec{x}) \mid n \in \mathbb{N} \land \vec{x} \in U^\infty\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s, \vec{x})$.

Lemma (First Part of Limit Lemma)

If (1), then (2).

Lemma (Second Part of Limit Lemma)

If (2), then (1).
A Characterization of $\Delta^0_2 = \{ P \subseteq U^\infty \mid P \leq_T \mathbb{H}_A \}$

Lemma (First Part of Limit Lemma)

If $P \subseteq U^\infty$ is in Δ^0_2, then there is a computable function $g : U^\infty \to \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^\infty\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x})$.

Proof. Let $M \in M_A(\mathbb{H}_A)$ decide the problem P and $\vec{x} \in U^\infty$.

- let $\beta_1, \beta_2, \ldots, \beta_k \in \mathbb{N}$ represent the answers of the queries $(\vec{y}^{(i)} \cdot c_{L_i}) \in \mathbb{H}_A$ executed by M on input \vec{x}.
- \Rightarrow
- $\beta_i = 0$ iff $L_i(\vec{y}^{(i)}) \uparrow$,
- $\beta_i = t > 0$ iff $L_i(\vec{y}^{(i)}) \uparrow^{t-1}$ and $L_i(\vec{y}^{(i)}) \downarrow^t$.
Lemma (First Part of Limit Lemma)

If $P \subseteq U^\infty$ is in Δ_2^0, then there is a computable function $g : U^\infty \to \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \land \vec{x} \in U^\infty\}$ such that $
abla_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x})$.

Proof. Let $M \in M_A(\mathbb{H}_A)$ decide the problem P and $\vec{x} \in U^\infty$.

- let $\beta_1, \beta_2, \ldots, \beta_k \in \mathbb{N}$ represent the answers of the queries $(\vec{y}^{(i)} \cdot c_{L_i}) \in \mathbb{H}_A$? executed by M on input \vec{x}.

- \Rightarrow

- $\beta_i = 0$ iff $L_i(\vec{y}^{(i)}) \uparrow$,
- $\beta_i = t > 0$ iff $L_i(\vec{y}^{(i)}) \uparrow^{t-1}$ and $L_i(\vec{y}^{(i)}) \downarrow^t$.
A Characterization of $\Delta^0_2 = \{ P \subseteq U^\infty \mid P \preceq_T H_A \}$

Lemma (First Part of Limit Lemma)

If $P \subseteq U^\infty$ is in Δ^0_2, then there is a computable function $g : U^\infty \to \{0, 1\}$ defined on $\{(n . \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^\infty\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s . \vec{x})$.

Proof. Let $M \in M_A(H_A)$ decide the problem P and $\vec{x} \in U^\infty$.

- let $\beta_1, \beta_2, \ldots, \beta_k \in \mathbb{N}$ represent the answers of the queries $(\vec{y}^{(i)} . c_{L_i}) \in H_A$? executed by M on input \vec{x}.

- \Rightarrow

 - $\beta_i = 0$ iff $L_i(\vec{y}^{(i)}) \uparrow$,
 - $\beta_i = t > 0$ iff $L_i(\vec{y}^{(i)}) \uparrow^{t-1}$ and $L_i(\vec{y}^{(i)}) \downarrow^t$.

Lemma (First Part of Limit Lemma)

If $P \subseteq U^\infty$ is in Δ^0_2, then there is a computable function
$g : U^\infty \to \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} & \vec{x} \in U^\infty\}$ such that
$\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x})$.

Proof. Let $M \in M_A(\mathbb{H}_A)$ decide the problem P and $\vec{x} \in U^\infty$.

- let $\beta_1, \beta_2, \ldots, \beta_k \in \mathbb{N}$ represent the answers of the queries
 $(\vec{y}^{(i)} \cdot c_{L_i}) \in \mathbb{H}_A$? executed by M on input \vec{x}.

- \Rightarrow

- $\beta_i = 0$ iff $L_i(\vec{y}^{(i)}) \uparrow$,

- $\beta_i = t > 0$ iff $L_i(\vec{y}^{(i)}) \uparrow^{t-1}$ and $L_i(\vec{y}^{(i)}) \downarrow^t$.

A Characterization of $\Delta^0_2 = \{ P \subseteq U^\infty \mid P \preceq_T \mathbb{H}_A \}$
A Characterization of $\Delta^0_2 = \{ P \subseteq U^\infty \mid P \preceq_T \mathbb{H}_A \}$

Lemma (First Part of Limit Lemma)

If $P \subseteq U^\infty$ is in Δ^0_2, then there is a computable function $g : U^\infty \to \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^\infty\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x})$.

Proof. Let $M \in M_A(\mathbb{H}_A)$ decide the problem P and $\vec{x} \in U^\infty$.

- let $\beta_1, \beta_2, \ldots, \beta_k \in \mathbb{N}$ represent the answers of the queries $(\vec{y}^{(i)} \cdot c_{L_i}) \in \mathbb{H}_A$? executed by M on input \vec{x}.

\Rightarrow

- $\beta_i = 0$ iff $L_i(\vec{y}^{(i)}) \uparrow$,
- $\beta_i = t > 0$ iff $L_i(\vec{y}^{(i)}) \uparrow^{t-1}$ and $L_i(\vec{y}^{(i)}) \downarrow^t$.
A Characterization of $\Delta^0_2 = \{ P \subseteq U^\infty \mid P \preceq_T H_A \}$

- Let g be computed by $N \in M_A$ executing:
 - Input $(s, \bar{x}) \in U^\infty$;
 - if $s \in \mathbb{N}$, then simulate s instructions of M, but, instead of

 \[\text{if } (\bar{y}^{(s,i)} \cdot c_{L_s,i}) \in H_A \text{ then goto to } l_1 \text{ else goto } l_2, \]

 use

 \[\text{if } L_{s,i}(\bar{y}^{(s,i)}) \downarrow^s \text{ then goto to } l_1 \text{ else goto } l_2. \]
 - If the output of M is not reached within s steps of M, then output 0.

- $s \in \mathbb{N}, \bar{x} \in U^\infty \Rightarrow$ let $\beta_1^{(s)}, \ldots, \beta_{m_s}^{(s)} \leq s \ (m_s \leq s)$ with
 \[\beta_i^{(s)} \neq 0 \Rightarrow L_{s,i}(\bar{y}^{(s,i)}) \uparrow^{\beta_i^{(s)}}_{i-1} \text{ and } L_{s,i}(\bar{y}^{(s,i)}) \downarrow^{\beta_i^{(s)}}. \]

- $s \in \mathbb{N}, \bar{x} \in U^\infty \Rightarrow$ there are $0 = s_0 < s_1 \leq s_2 \leq \cdots \leq s_k$ such that
 \[(\beta_1, \beta_2, \ldots, \beta_i) = (\beta_1^{s_i}, \beta_2^{s_i}, \ldots, \beta_i^{s_i}) \quad \text{for } i \leq m_s, \]
 \[(\beta_1, \beta_2, \ldots, \beta_k) = (\beta_1^{s}, \beta_2^{s}, \ldots, \beta_k^{s}) \quad \text{for } s \geq s_k. \]

- $\bar{x} \in U^\infty \Rightarrow$ there is an $s_{\bar{x}}$ such that N outputs the same value as M on (s, \bar{x}) for all $s \geq s_{\bar{x}}$.
A Characterization of $\Delta^0_2 = \{ P \subseteq U^\infty \mid P \leq_T H_A \}$

- Let g be computed by $N \in M_A$ executing:
 - Input $(s \cdot \vec{x}) \in U^\infty$;
 - if $s \in \mathbb{N}$, then simulate s instructions of M, but, instead of

 $$
 \text{if } (\vec{y}^{(s,i)} \cdot c_{L,s,i}) \in H_A \text{ then goto to } l_1 \text{ else goto } l_2,
 $$

 use

 $$
 \text{if } L_{s,i}(\vec{y}^{(s,i)}) \downarrow^s \text{ then goto to } l_1 \text{ else goto } l_2.
 $$

- If the output of M is not reached within s steps of M, then output 0.

- $s \in \mathbb{N}, \vec{x} \in U^\infty \Rightarrow$ let $\beta_1^{(s)}, \ldots, \beta_{m_s}^{(s)} \leq s \ (m_s \leq s)$ with
 $$
 \beta_i^{(s)} \neq 0 \Rightarrow L_{s,i}(\vec{y}^{(s,i)}) \uparrow^{\beta_i^{(s)}-1} \text{ and } L_{s,i}(\vec{y}^{(s,i)}) \downarrow^{\beta_i^{(s)}}.
 $$

- $s \in \mathbb{N}, \vec{x} \in U^\infty \Rightarrow$ there are $0 = s_0 < s_1 \leq s_2 \leq \cdots \leq s_k$ such that
 $$
 (\beta_1, \beta_2, \ldots, \beta_i) = (\beta_1^{s_i}, \beta_2^{s_i}, \ldots, \beta_i^{s_i}) \quad \text{for } i \leq m_{s_i},
 $$

 $$
 (\beta_1, \beta_2, \ldots, \beta_k) = (\beta_1^{s}, \beta_2^{s}, \ldots, \beta_k^{s}) \quad \text{for } s \geq s_k.
 $$

- $\vec{x} \in U^\infty \Rightarrow$ there is an $s_{\vec{x}}$
 such that N outputs the same value as M on $(s \cdot \vec{x})$ for all $s \geq s_{\vec{x}}$.

\square
A Characterization of $\Delta^0_2 = \{ P \subseteq U^\infty \mid P \preceq_T H_A \}$

- Let g be computed by $N \in M_A$ executing:
 - Input $(s . \vec{x}) \in U^\infty$;
 - if $s \in \mathbb{N}$, then simulate s instructions of M, but, instead of

 $$\text{if } (\vec{y}^{(s,i)} . c_{L,s,i}) \in H_A \text{ then goto to } l_1 \text{ else goto } l_2,$$

 use
 $$\text{if } L_{s,i}(\vec{y}^{(s,i)}) \downarrow^s \text{ then goto to } l_1 \text{ else goto } l_2.$$

 - If the output of M is not reached within s steps of M, then output 0.

- $s \in \mathbb{N}, \vec{x} \in U^\infty \Rightarrow$ let $\beta_1^{(s)}, \ldots, \beta_{m_s}^{(s)} \leq s$ ($m_s \leq s$) with

 $$\beta_i^{(s)} \neq 0 \Rightarrow L_{s,i}(\vec{y}^{(s,i)}) \uparrow \beta_i^{(s)}-1 \text{ and } L_{s,i}(\vec{y}^{(s,i)}) \downarrow \beta_i^{(s)}.$$

- $s \in \mathbb{N}, \vec{x} \in U^\infty \Rightarrow$ there are $0 = s_0 < s_1 \leq s_2 \leq \cdots \leq s_k$ such that

 $$\begin{align*}
 (\beta_1, \beta_2, \ldots, \beta_i) &= (\beta_1^{s_i}, \beta_2^{s_i}, \ldots, \beta_i^{s_i}) \quad \text{for } i \leq m_{s_i}, \\
 (\beta_1, \beta_2, \ldots, \beta_k) &= (\beta_1^{s}, \beta_2^{s}, \ldots, \beta_k^{s}) \quad \text{for } s \geq s_k.
 \end{align*}$$

- $\vec{x} \in U^\infty \Rightarrow$ there is an $s_{\vec{x}}$

 such that N outputs the same value as M on $(s . \vec{x})$ for all $s \geq s_{\vec{x}}$.

- \[\begin{align*}
 \beta_1^{(s)} &= \beta_1^{(s)} \quad \text{for } i \leq m_{s_i}, \\
 \beta_1^{(s)} &= \beta_1^{(s)} \quad \text{for } s \geq s_k.
 \end{align*} \]
A Characterization of $\Delta^0_2 = \{ P \subseteq U^\infty \mid P \preceq_T H_A \}$

- Let g be computed by $N \in M_A$ executing:
 - Input $(s \cdot \vec{x}) \in U^\infty$;
 - if $s \in \mathbb{N}$, then simulate s instructions of M, but, instead of

 $$\text{if } (\vec{y}^{(s,i)} \cdot c_{L_{s,i}}) \in H_A \text{ then goto to } l_1 \text{ else goto } l_2,$$

 use

 $$\text{if } L_{s,i} (\vec{y}^{(s,i)}) \uparrow^s \text{ then goto to } l_1 \text{ else goto } l_2.$$

 - If the output of M is not reached within s steps of M, then output 0.

- $s \in \mathbb{N}, \vec{x} \in U^\infty \Rightarrow \text{let } \beta_1^{(s)}, \ldots, \beta_{m_s}^{(s)} \leq s (m_s \leq s)$ with

 $$\beta_i^{(s)} \neq 0 \Rightarrow L_{s,i} (\vec{y}^{(s,i)}) \uparrow^{\beta_i^{(s)}-1} \text{ and } L_{s,i} (\vec{y}^{(s,i)}) \downarrow^{\beta_i^{(s)}}.$$

- $s \in \mathbb{N}, \vec{x} \in U^\infty \Rightarrow$ there are $0 = s_0 < s_1 \leq s_2 \leq \cdots \leq s_k$ such that

 $$(\beta_1, \beta_2, \ldots, \beta_i) = (\beta_1^{s_i}, \beta_2^{s_i}, \ldots, \beta_i^{s_i}) \text{ for } i \leq m_{s_i},$$

 $$(\beta_1, \beta_2, \ldots, \beta_k) = (\beta_1^s, \beta_2^s, \ldots, \beta_k^s) \text{ for } s \geq s_k.$$

- $\vec{x} \in U^\infty \Rightarrow$ there is an $s_{\vec{x}}$

 such that N outputs the same value as M on $(s \cdot \vec{x})$ for all $s \geq s_{\vec{x}}$.

A Characterization of $\Delta_2^0 = \{ P \subseteq U^\infty \mid P \preceq_T H_A \}$

- Let g be computed by $\mathcal{N} \in M_A$ executing:
 - Input $(s \cdot \vec{x}) \in U^\infty$;
 - if $s \in \mathbb{N}$, then simulate s instructions of \mathcal{M}, but, instead of

 $$if \ (\vec{y}^{(s,i)} \cdot c_{L,s,i}) \in H_A \ then \ goto \ to \ l_1 \ else \ goto \ l_2,$$

 use

 $$if \ L_{s,i}(\vec{y}^{(s,i)}) \downarrow^s \ then \ goto \ to \ l_1 \ else \ goto \ l_2.$$
 - If the output of \mathcal{M} is not reached within s steps of \mathcal{M}, then output 0.

- $s \in \mathbb{N}, \vec{x} \in U^\infty \Rightarrow$ let $\beta_1^{(s)}, \ldots, \beta_{m_s}^{(s)} \leq s \ (m_s \leq s)$ with

 $$\beta_i^{(s)} \neq 0 \Rightarrow \ L_{s,i}(\vec{y}^{(s,i)}) \uparrow^{\beta_i^{(s)} - 1} \ and \ L_{s,i}(\vec{y}^{(s,i)}) \downarrow^{\beta_i^{(s)}}.$$

- $s \in \mathbb{N}, \vec{x} \in U^\infty \Rightarrow$ there are $0 = s_0 < s_1 \leq s_2 \leq \cdots \leq s_k$ such that

 $$(\beta_1, \beta_2, \ldots, \beta_i) = (\beta_1^{s_i}, \beta_2^{s_i}, \ldots, \beta_i^{s_i}) \quad \text{for } i \leq m_s,$$

 $$(\beta_1, \beta_2, \ldots, \beta_k) = (\beta_1^s, \beta_2^s, \ldots, \beta_k^s) \quad \text{for } s \geq s_k.$$

- $\vec{x} \in U^\infty \Rightarrow$ there is an $s_{\vec{x}}$

 such that \mathcal{N} outputs the same value as \mathcal{M} on $(s \cdot \vec{x})$ for all $s \geq s_{\vec{x}}$.
A Characterization of $\Delta^0_2 = \{ P \subseteq U^\infty \mid P \leq_T \mathbb{H}_A \}$

Lemma (Second Part of Limit Lemma)

If there is a computable function $g : U^\infty \to \{0, 1\}$ defined on
$\{(n . \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^\infty\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s . \vec{x})$, then $P \subseteq U^\infty$ is in Δ^0_2.

Proof. Let g be computed by $N \in M_A$ and let $M \in M_A(\mathbb{H}_A)$ execute:

- Input $\vec{x} \in U^\infty$;
- Let $s = 1$;
- 1:
 - Ask $((s . \vec{x}) . c_L) \in \mathbb{H}_A$? where
 - L: Input $(s . \vec{x})$;
 - Halt if there is a $k \geq s$ such that $g(s . \vec{x}) \neq g(k . \vec{x})$.
 - If $L(s . \vec{x}) \downarrow$,
 then $s := s + 1$ and goto 1
 - else compute $g(s . \vec{x})$ by simulating N and output $g(s . \vec{x})$.

M decides P.
A Characterization of $\Delta^0_2 = \{ P \subseteq U^\infty \mid P \preceq_T \mathbb{H}_A \}$

Lemma (Second Part of Limit Lemma)

If there is a computable function $g : U^\infty \rightarrow \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^\infty\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x})$, then $P \subseteq U^\infty$ is in Δ^0_2.

Proof. Let g be computed by $\mathcal{N} \in M_A$ and let $\mathcal{M} \in M_A(\mathbb{H}_A)$ execute:

- **Input** $\vec{x} \in U^\infty$;
- Let $s = 1$;
- 1:
 - Ask $((s \cdot \vec{x}) \cdot c_\mathcal{L}) \in \mathbb{H}_A$? where
 - \mathcal{L}: Input $(s \cdot \vec{x})$;
 - Halt if there is a $k \geq s$ such that $g(s \cdot \vec{x}) \neq g(k \cdot \vec{x})$.
 - If $\mathcal{L}(s \cdot \vec{x}) \downarrow$,
 - then $s := s + 1$ and goto 1
 - else compute $g(s \cdot \vec{x})$ by simulating \mathcal{N} and output $g(s \cdot \vec{x})$.

\mathcal{M} decides P.
A Characterization of $\Delta^0_2 = \{ P \subseteq U^\infty \mid P \preceq_T \mathbb{H}_A \}$

Lemma (Second Part of Limit Lemma)

If there is a computable function $g : U^\infty \rightarrow \{0, 1\}$ defined on
\(\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^\infty\}\) such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x})$, then
$P \subseteq U^\infty$ is in Δ^0_2.

Proof. Let g be computed by $\mathcal{N} \in M_A$ and let $\mathcal{M} \in M_A(\mathbb{H}_A)$ execute:

- Input $\vec{x} \in U^\infty$;
- Let $s = 1$;
- 1:
 - Ask $((s \cdot \vec{x}) \cdot c_L) \in \mathbb{H}_A$? where L:
 - Input $(s \cdot \vec{x})$;
 - Halt if there is a $k \geq s$ such that $g(s \cdot \vec{x}) \neq g(k \cdot \vec{x})$.
 - If $L(s \cdot \vec{x}) \downarrow$,
 - then $s := s + 1$ and goto 1
 - else compute $g(s \cdot \vec{x})$ by simulating \mathcal{N} and output $g(s \cdot \vec{x})$.

\mathcal{M} decides P.

Lemma (Second Part of Limit Lemma)

If there is a computable function \(g : U^\infty \rightarrow \{0, 1\} \) defined on \(\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^\infty\} \) such that \(\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x}) \), then \(P \subseteq U^\infty \) is in \(\Delta_2^0 \).

Proof. Let \(g \) be computed by \(\mathcal{N} \in M_A \) and let \(\mathcal{M} \in M_A(H_A) \) execute:

- Input \(\vec{x} \in U^\infty \);
- Let \(s = 1 \);
- 1:
 - Ask \(((s \cdot \vec{x}) \cdot c_L) \in H_A? \) where
 \(L : \text{Input } (s \cdot \vec{x}) \);
 Halt if there is a \(k \geq s \) such that \(g(s \cdot \vec{x}) \neq g(k \cdot \vec{x}) \).
 If \(L(s \cdot \vec{x}) \downarrow \),
 then \(s := s + 1 \) and goto 1
 else compute \(g(s \cdot \vec{x}) \) by simulating \(\mathcal{N} \) and output \(g(s \cdot \vec{x}) \).

\(\mathcal{M} \) decides \(P \).
Summary: Δ^0_2 and the Limit Lemma

- Let \mathcal{A} contain an effectively enumerable set denoted by \mathbb{N}.
- χ_P – the characteristic function of the problem P.

Lemma (Limit Lemma)

$P \subseteq U^\infty$ is in Δ^0_2 if and only if there is a computable function $g : U^\infty \to \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^\infty\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x})$.
Let \mathcal{A} contain
- only a finite number of operations and relations,
- an effectively enumerable set denoted by \mathbb{N},
- only two constants denoted by 0 and 1.

$\Rightarrow \exists H \in \text{REC}_\mathcal{A}$.

We construct an $\mathcal{A} \subset \mathbb{N}$ with
- $\mathcal{A} \not\preceq_T H$,
- $\mathcal{A} \not\preceq_T P$ for many $P \subseteq U^\infty$,
- $\mathcal{A} \not\preceq_T P$ for many $P \in \Delta^0_2$.

$\Rightarrow \exists H \preceq_T \not P$.

Let \mathcal{A} contain
- only a finite number of operations and relations,
- an effectively enumerable set denoted by \mathbb{N},
- only two constants denoted by 0 and 1.

$\Rightarrow \mathbb{H}_\mathcal{A} \in \text{REC}_\mathcal{A}$.

We construct an $\mathcal{A} \subset \mathbb{N}$ with
- $\mathcal{A} \not\preceq_T \mathbb{H}_\mathcal{A}$,
- $\mathcal{A} \not\preceq_T P$ for many $P \subseteq U^\infty$,
- $\mathcal{A} \not\preceq_T P$ for many $P \in \Delta^0_2$.
- $\Rightarrow \mathbb{H}_\mathcal{A} \not\preceq_T P$.
Let \mathcal{A} contain

- only a finite number of operations and relations,
- an effectively enumerable set denoted by \mathbb{N},
- only two constants denoted by 0 and 1.

$\implies H_{\mathcal{A}} \in \text{REC}_{\mathcal{A}}$.

We construct an $\mathcal{A} \subset \mathbb{N}$ with

- $\mathcal{A} \not\preceq_T H_{\mathcal{A}}$,
- $\mathcal{A} \not\preceq_T P$ for many $P \subseteq \mathcal{U}_\infty$,
- $\mathcal{A} \not\preceq_T P$ for many $P \in \Delta^0_2$.

$\implies H_{\mathcal{A}} \not\preceq_T P$.
A contains
- only a finite number of operations and relations,
- an effectively enumerable set denoted by \(\mathbb{N} \),
- only two constants denoted by 0 and 1.

We use:
- \(H_M \cap \mathbb{N} \) (for the halting set \(H_M \) of \(M \in M_A \)) is
effectively enumerable
- a halting set of a machine in \(M_A \).

For any \(\mathcal{O} \subseteq \mathbb{N} \),
we can list \(M_A(\mathcal{O}) : M_1^\mathcal{O}, M_2^\mathcal{O}, \ldots \).
(The index is the code of the corresponding program.)

We can list \(M_A : \mathcal{N}_1, \mathcal{N}_2, \ldots \).
\(\bar{N}_i \) enumerating all positive integers \(n_{i,1}, n_{i,2}, \ldots \in H_{\mathcal{N}_i} \).
A contains
- only a finite number of operations and relations,
- an effectively enumerable set denoted by \(\mathbb{N} \),
- only two constants denoted by 0 and 1.

We use:
- \(H_M \cap \mathbb{N} \) (for the halting set \(H_M \) of \(M \in M_A \)) is
 - effectively enumerable
 - a halting set of a machine in \(M_A \).

- For any \(O \subseteq \mathbb{N} \),
 we can list \(M_A(O) \): \(M^O_1, M^O_2, \ldots \).
 (The index is the code of the corresponding program.)
- We can list \(M_A \): \(\mathcal{N}_1, \mathcal{N}_2, \ldots \).
- \(\mathcal{N}_i \) enumerating all positive integers \(n_{i,1}, n_{i,2}, \ldots \in H_{\mathcal{N}_i} \).
A contains

- only a finite number of operations and relations,
- an effectively enumerable set denoted by \mathbb{N},
- only two constants denoted by 0 and 1.

We use:

- $H_M \cap \mathbb{N}$ (for the halting set H_M of $M \in M_A$) is
 - effectively enumerable
 - a halting set of a machine in M_A.

- For any $\mathcal{O} \subseteq \mathbb{N}$, we can list $M_A(\mathcal{O})$: $M_1^\mathcal{O}, M_2^\mathcal{O}, \ldots$. (The index is the code of the corresponding program.)

- We can list M_A: N_1, N_2, \ldots

- \bar{N}_i enumerating all positive integers $n_{i,1}, n_{i,2}, \ldots \in H_{N_i}$.
A contains
- only a finite number of operations and relations,
- an effectively enumerable set denoted by \(\mathbb{N} \),
- only two constants denoted by 0 and 1.

We use:
- \(H_M \cap \mathbb{N} \) (for the halting set \(H_M \) of \(M \in M_A \)) is
 - effectively enumerable
 - a halting set of a machine in \(M_A \).

For any \(\mathcal{O} \subseteq \mathbb{N} \),
we can list \(M_A(\mathcal{O}) : M_1^\mathcal{O}, M_2^\mathcal{O}, \ldots \)
(The index is the code of the corresponding program.)

We can list \(M_A : N_1, N_2, \ldots \)
- \(\bar{N}_i \) enumerating all positive integers \(n_{i,1}, n_{i,2}, \ldots \in H_{\bar{N}_i} \).
A contains

- only a finite number of operations and relations,
- an effectively enumerable set denoted by \(\mathbb{N} \),
- only two constants denoted by 0 and 1.

We use:

- \(H_M \cap \mathbb{N} \) (for the halting set \(H_M \) of \(M \in M_A \)) is
 - effectively enumerable
 - a halting set of a machine in \(M_A \).

For any \(O \subseteq \mathbb{N} \),

we can list \(M_A(O) \): \(M_1^O, M_2^O, \ldots \)

(The index is the code of the corresponding program.)

We can list \(M_A \): \(\mathcal{N}_1, \mathcal{N}_2, \ldots \)

\(\tilde{\mathcal{N}}_i \) enumerating all positive integers \(n_{i,1}, n_{i,2}, \ldots \in H_{\mathcal{N}_i} \).
Let $\mathbb A = \bigcup_{s \geq 0} \mathbb A_s$ be defined in stages. $\mathbb A_0 = \emptyset$, $s \geq 0$.

$$I_s = \{ i \leq s \mid W_{i,s} \cap \mathbb A_s = \emptyset \land (\exists x \in W_{i,s})(2i < x \land (\forall j \leq i)(a(j, s) < x))\}$$

where, for any $j \leq s$,

$$a(j, s) \begin{cases} \text{greatest integer used in a query by} \\ \mathcal M_j^{\mathbb A_s} \text{ on } j \text{ within } s \text{ steps} \\ 0 \end{cases} \quad \text{if } \mathcal M_j^{\mathbb A_s}(j) \downarrow^s,$$

$$\text{if } \mathcal M_j^{\mathbb A_s}(j) \uparrow^s.$$

$W_{i,s}$ is the set of integers computed by $\bar N_i$ on s within s steps.

If $I_s \neq \emptyset$, then let

$$i_s = \min I_s,$$

$$x_{i_s} = \min \{ x \in W_{i_s, s} \mid 2i_s < x \land (\forall j \leq i_s)(a(j, s) < x) \},$$

$$\mathbb A_{s+1} = \begin{cases} \mathbb A_s \quad \text{if } I_s = \emptyset \\ \mathbb A_s \cup \{ x_{i_s} \} \quad \text{otherwise.}\end{cases}$$
Let $\mathbb{A} = \bigcup_{s \geq 0} \mathbb{A}_s$ be defined in stages. $\mathbb{A}_0 = \emptyset$, $s \geq 0$.

$$I_s = \{i \leq s \mid W_{i,s} \cap \mathbb{A}_s = \emptyset \& (\exists x \in W_{i,s})(2i < x \& (\forall j \leq i)(a(j, s) < x))\}$$

where, for any $j \leq s$,

1. $a(j, s) \begin{cases} \text{greatest integer used in a query by} \\ \mathcal{M}^{\mathbb{A}_s}_j \text{ on } j \text{ within } s \text{ steps} \\ 0 \end{cases}$ if $\mathcal{M}^{\mathbb{A}_s}_j(j) \downarrow^s$,
 if $\mathcal{M}^{\mathbb{A}_s}_j(j) \uparrow^s$.

2. $W_{i,s}$ is the set of integers computed by \tilde{N}_i on s within s steps.

If $I_s \neq \emptyset$, then let

$$i_s = \min I_s,$$
$$x_{i_s} = \min \{x \in W_{i,s} \mid 2i_s < x \& (\forall j \leq i_s)(a(j, s) < x)\},$$
$$\mathbb{A}_{s+1} = \begin{cases} \mathbb{A}_s & \text{if } I_s = \emptyset \\ \mathbb{A}_s \cup \{x_{i_s}\} & \text{otherwise}. \end{cases}$$
The properties of \(A \), for instance, for \(A = (\mathbb{R}; 0, 1; +, -, \cdots; \leq) \):

- \(A \) is effectively enumerable by an machine in \(M_A \).
 \[\Rightarrow A \preceq_1 \mathbb{H}_A. \]

- \(A \) and \(\mathbb{N} \setminus A \) are infinite.

- Conditions for lowness for all \(n > 0 \):
 \((N_n) \) If \(M_n^{A_t}(n) \downarrow_t \) for infinitely many \(t \), then \(M_n^A(n) \downarrow. \)
 \[\Rightarrow \text{Conditions for simplicity for all } n > 0: \]
 \((P_n) \) If \(W_n = \bigcup_{i \geq 1} W_{n,i} \) is infinite, then \(A \cap W_n \neq \emptyset. \)
 \[\Rightarrow A^C \not\preceq_1 \mathbb{H}_A. \]

- \(K^A \preceq_T K^0 \) where \(K^O = \{ k_M \mid M \in M^1_A(O) \land M(k_M) \downarrow \} \).
 \[\Rightarrow A \not\preceq_T \mathbb{H}_A. \]
A Generalization of the Friedberg-Muchnik Theorem

The properties of A, for instance, for $A = (\mathbb{R}; 0, 1; +, −, \cdots ; \leq)$:

- A is effectively enumerable by an machine in M_A.

 $\Rightarrow A \preceq_1 H_A$.

- A and $\mathbb{N} \setminus A$ are infinite.

- Conditions for lowness for all $n > 0$:
 (N_n) If $M_n^A(t)(n) \downarrow^t$ for infinitely many t, then $M_n^A(n) \downarrow$.

 \Rightarrow Conditions for simplicity for all $n > 0$:
 (P_n) If $W_n = \bigcup_{i \geq 1} W_{n,i}$ is infinite, then $A \cap W_n \neq \emptyset$.

 $\Rightarrow A^C \not\preceq_1 H_A$.

- $K^A \preceq_T K^0$ where $K^O = \{k_M \mid M \in M^1_A(O) \& M(k_M) \downarrow\}$.

 $\Rightarrow A \not\preceq_T H_A$.

The properties of A, for instance, for $A = (\mathbb{R}; 0, 1; +, −, \cdots ; ≤)$:

- A is effectively enumerable by an machine in M_A.
 \[\Rightarrow A \leq_1 H_A. \]

- A and $\mathbb{N} \setminus A$ are infinite.

- Conditions for lowness for all $n > 0$:
 \[
 (N_n) \text{ If } M^A_n (n) \downarrow^t \text{ for infinitely many } t, \text{ then } M^A_n (n) \downarrow.
 \]
 \[\Rightarrow \text{ Conditions for simplicity for all } n > 0: \]
 \[
 (P_n) \text{ If } W_n = \bigcup_{i \geq 1} W_{n,i} \text{ is infinite, then } A \cap W_n \neq \emptyset.
 \]
 \[\Rightarrow A^C \not\leq_1 H_A. \]

- $K^A \leq_T K^\emptyset$ where $K^\emptyset = \{ k_M | M \in M^1_A (O) \text{ & } M(k_M) \downarrow \}$.
 \[\Rightarrow A \not\leq_T H_A. \]
The properties of \mathbb{A}, for instance, for $\mathcal{A} = (\mathbb{R}; 0, 1; +, −, \cdots; \leq)$:

- \mathbb{A} is effectively enumerable by a machine in $M_\mathcal{A}$.

 $\implies \mathbb{A} \preceq_1 \mathbb{H}_\mathcal{A}$.

- \mathbb{A} and $\mathbb{N} \setminus \mathbb{A}$ are infinite.

Conditions for lowness for all $n > 0$:

(N_n) If $M^{\mathbb{A}_t}_n(n) \downarrow^t$ for infinitely many t, then $M^n_\mathcal{A}(n) \downarrow$.

\implies Conditions for simplicity for all $n > 0$:

(P_n) If $W_n = \bigcup_{i \geq 1} W_{n,i}$ is infinite, then $\mathbb{A} \cap W_n \neq \emptyset$.

$\implies \mathbb{A}^C \npreceq_1 \mathbb{H}_\mathcal{A}$.

- $K^{\mathbb{A}} \preceq_T K^0$ where $K^O = \{ k_M \mid M \in M^{1}_{\mathcal{A}}(O) \ \& \ M(k_M) \downarrow \}$.

 $\implies \mathbb{A} \npreceq_T \mathbb{H}_\mathcal{A}$.
The properties of \mathbb{A}, for instance, for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdots ; \leq)$:

- \mathbb{A} is effectively enumerable by a machine in $M_{\mathcal{A}}$.
 \[\Rightarrow \mathbb{A} \preceq_1 \mathbb{H}_{\mathcal{A}}. \]

- \mathbb{A} and $\mathbb{N} \setminus \mathbb{A}$ are infinite.

- Conditions for lowness for all $n > 0$:
 - (N_n) If $M_{\mathbb{A}^t}(n) \downarrow^t$ for infinitely many t, then $M_{\mathbb{A}}(n) \downarrow$.
 \[\Rightarrow \text{Conditions for simplicity for all } n > 0: \]
 - (P_n) If $W_n = \bigcup_{i \geq 1} W_{n,i}$ is infinite, then $\mathbb{A} \cap W_n \neq \emptyset$.
 \[\Rightarrow \mathbb{A}^C \npreceq_1 \mathbb{H}_{\mathcal{A}}. \]

- $K^\mathbb{A} \preceq_T K^0$ where $K^O = \{ k_M \mid M \in M_{\mathcal{A}}(O) \& M(k_M) \downarrow \}$.
 \[\Rightarrow \mathbb{A} \npreceq_T \mathbb{H}_{\mathcal{A}}. \]
The properties of \mathbb{A}, for instance, for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -; \leq)$:

- \mathbb{A} is effectively enumerable by a machine in $M_\mathcal{A}$.
 \[\Rightarrow \mathbb{A} \preceq_1 \mathbb{H}_\mathcal{A} \]

- \mathbb{A} and $\mathbb{N} \setminus \mathbb{A}$ are infinite.

- Conditions for lowness for all $n > 0$:
 (N_n) If $M_{n}^{\mathbb{A}_t}(n) \downarrow^t$ for infinitely many t, then $M_{n}^{\mathbb{A}}(n) \downarrow$.
 \[\Rightarrow \text{Conditions for simplicity for all } n > 0: \]
 (P_n) If $W_n = \bigcup_{i \geq 1} W_{n,i}$ is infinite, then $\mathbb{A} \cap W_n \neq \emptyset$.
 \[\Rightarrow \mathbb{A}^C \npreceq_1 \mathbb{H}_\mathcal{A} \]

- $K^{\mathbb{A}} \preceq_T K^\emptyset$ where $K^O = \{ k_M \mid M \in M_\mathcal{A}(O) \land M(k_M) \downarrow \}$.
 \[\Rightarrow \mathbb{A} \npreceq_T \mathbb{H}_\mathcal{A} \]
Let $A = (\mathbb{R}; 0, 1; +, −, ⋅; ≤)$ or $A = (\mathbb{C}; 0, 1; +, −, ⋅; =)$ and
$P = A_{\text{Alg}},$
$P = \bigcup_{n \geq 1} \{ \vec{x} \in \mathbb{R}^n | (\exists \vec{q} \in \mathbb{Q}^n) (q_1 + \sum_{i=1}^{n-1} q_{i-1} x_i = x_n) \}$
$\mathbb{Z} \subseteq P$ or $\mathbb{Z} \cap P = \emptyset.$

Lemma
$A \nleq_T P.$

Corollary
$\mathbb{H}_A \nleq_T P.$

Remark
Similar constructions are also possible, if all problems which are semi-decidable by Turing machines are decidable over $A.$

$P \nleq_T \mathbb{H}_A$ holds for $A = (\mathbb{R}; 0, 1; +, −, \chi_{\text{TM}}, \phi; \leq)$ with $\phi(x) = \pi$
and $\pi \mathbb{Z} \subseteq P$ (where $A \subseteq \pi \mathbb{Z}$) and so on.
Let $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$ or $\mathcal{A} = (\mathbb{C}; 0, 1; +, -, \cdot; =)$ and

$P = \mathcal{A}_{\text{Alg}}$

$P = \bigcup_{n \geq 1} \{ \vec{x} \in \mathbb{R}^n \mid (\exists \vec{q} \in \mathbb{Q}^n)(q_1 + \sum_{i=1}^{n-1} q_i - x_i = x_n) \}$,

$\mathbb{Z} \subseteq P$ or $\mathbb{Z} \cap P = \emptyset$.

Lemma

$\mathcal{A} \not\preceq_T P$.

Corollary

$\mathbb{H}_A \not\preceq_T P$.

Remark

Similar constructions are also possible, if all problems which are semi-decidable by Turing machines are decidable over \mathcal{A}.

$P \not\preceq_T \mathbb{H}_A$ holds for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \chi_{\text{TM}}, \phi; \leq)$ with $\phi(x) = \pi$ and $\pi\mathbb{Z} \subseteq P$ (where $\mathcal{A} \subseteq \pi\mathbb{Z}$) and so on.
A Generalization of the Friedberg-Muchnik Theorem

Let $A = (\mathbb{R}; 0, 1; +, −, \cdot; \leq)$ or $A = (\mathbb{C}; 0, 1; +, −, \cdot; =)$ and

$P = A_{\mathrm{Alg}},$

$P = \bigcup_{n \geq 1} \{ \vec{x} \in \mathbb{R}^n \mid (\exists \vec{q} \in \mathbb{Q}^n)(q_1 + \sum_{i=1}^{n-1} q_{i-1}x_i = x_n) \},$

$\mathbb{Z} \subseteq P$ or $\mathbb{Z} \cap P = \emptyset.$

Lemma

$A \not\leq_T P.$

Corollary

$\mathbb{H}A \not\leq_T P.$

Remark

Similar constructions are also possible, if all problems which are semi-decidable by Turing machines are decidable over $A.$

$P \not\leq_T \mathbb{H}A$ holds for $A = (\mathbb{R}; 0, 1; +, −, \chi_{\mathrm{TM}}, \phi; \leq)$ with $\phi(x) = \pi$ and $\pi\mathbb{Z} \subseteq P$ (where $A \subseteq \pi\mathbb{Z}$) and so on.
Let $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$ or $\mathcal{A} = (\mathbb{C}; 0, 1; +, -, \cdot; =)$ and $P = \mathcal{A}_{\text{Alg}}$, $P = \bigcup_{n \geq 1} \{ \vec{x} \in \mathbb{R}^n \mid (\exists \vec{q} \in \mathbb{Q}^n)(q_1 + \sum_{i=1}^{n-1} q_{i-1}x_i = x_n) \}$, $\mathbb{Z} \subseteq P$ or $\mathbb{Z} \cap P = \emptyset$.

Lemma

$\mathcal{A} \not\preceq_T P$.

Corollary

$\mathbb{H}_\mathcal{A} \not\preceq_T P$.

Remark

Similar constructions are also possible, if all problems which are semi-decidable by Turing machines are decidable over \mathcal{A}.

$P \not\preceq_T \mathbb{H}_\mathcal{A}$ holds for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \chi_{\text{TM}}, \phi; \leq)$ with $\phi(x) = \pi$ and $\pi \mathbb{Z} \subseteq P$ (where $\mathcal{A} \subseteq \pi \mathbb{Z}$) and so on.
A Generalization of the Friedberg-Muchnik Theorem

Let \(A = (\mathbb{R}; 0, 1; +, -, \cdot; \leq) \) or \(A = (\mathbb{C}; 0, 1; +, -, \cdot; =) \) and
\[
P = \mathbb{R}_{\text{Alg}},
\]
\[
P = \bigcup_{n \geq 1} \{ \bar{x} \in \mathbb{R}^n \mid (\exists \bar{q} \in \mathbb{Q}^n)(q_1 + \sum_{i=1}^{n-1} q_{i-1}x_i = x_n) \},
\]
\[
\mathbb{Z} \subseteq P \text{ or } \mathbb{Z} \cap P = \emptyset.
\]

Lemma
\[\mathbb{A} \not\leq_T P.\]

Corollary
\[\mathbb{H}_A \not\leq_T P.\]

Remark

Similar constructions are also possible, if all problems which are semi-decidable by Turing machines are decidable over \(A \).

\[P \not\leq_T \mathbb{H}_A \text{ holds for } A = (\mathbb{R}; 0, 1; +, -, \chi_{\text{TM}}, \phi; \leq) \text{ with } \phi(x) = \pi \text{ and } \pi\mathbb{Z} \subseteq P \text{ (where } \mathbb{A} \subseteq \pi\mathbb{Z}) \text{ and so on.} \]
Lemma

\(A \not\leq_T P \) for \(A = (\mathbb{R}; 0, 1; +, -, \cdot; \leq) \) and \(\mathbb{Z} \subseteq P \subseteq U \).

Proof: Let us assume that \(A \) is decidable by a machine in \(M_A(P) \).

- \(\rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \) is semi-decidable by an \(M \in M_A(P) \).
- \(M \) can be modified:
 - The integers are enumerated and compared with the input.
 - If the input is a positive integer, then \(M \) can be simulated by a machine in \(M_A \) since
 - all queries of \(M \) are answered in the positive,
 - each order test can be simulated by means of equality tests.

- \(\rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \) is semi-decidable by a machine in \(M_A \).
- \(\rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} = W_j \) for some \(j \).
- \(\Rightarrow \) By definition of \(A \) the assumption is wrong.
Lemma

$\mathcal{A} \not\leq_T P$ for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.

Proof: Let us assume that \mathcal{A} is decidable by a machine in $M_{\mathcal{A}}(P)$.

1. $\Rightarrow (\mathbb{R} \setminus \mathcal{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in M_{\mathcal{A}}(P)$.

2. \mathcal{M} can be modified:
 - The integers are enumerated and compared with the input.
 - If the input is a positive integer, then \mathcal{M} can be simulated by a machine in $M_{\mathcal{A}}$ since all queries of \mathcal{M} are answered in the positive, each order test can be simulated by means of equality tests.

3. $\Rightarrow (\mathbb{R} \setminus \mathcal{A}) \cap \mathbb{N}$ is semi-decidable by a machine in $M_{\mathcal{A}}$.

4. $\Rightarrow (\mathbb{R} \setminus \mathcal{A}) \cap \mathbb{N} = W_j$ for some j.

5. \Rightarrow By definition of \mathcal{A} the assumption is wrong.
Lemma

\(A \not\preceq_T P \) for \(A = (\mathbb{R}; 0, 1; +, -, \cdot; \leq) \) and \(\mathbb{Z} \subseteq P \subseteq U \).

Proof: Let us assume that \(A \) is decidable by a machine in \(M_A(P) \).

\[\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \text{ is semi-decidable by an } M \in M_A(P). \]

\(M \) can be modified:

- The integers are enumerated and compared with the input.
- If the input is a positive integer, then \(M \) can be simulated by a machine in \(M_A \) since
 - all queries of \(M \) are answered in the positive,
 - each order test can be simulated by means of equality tests.

\[\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \text{ is semi-decidable by a machine in } M_A. \]

\[\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} = W_j \text{ for some } j. \]

\[\Rightarrow \text{By definition of } A \text{ the assumption is wrong.} \]
Lemma

\(A \not \leq_T P \) for \(A = (\mathbb{R}; 0, 1; +, -; \leq) \) and \(\mathbb{Z} \subseteq P \subseteq U \).

Proof: Let us assume that \(A \) is decidable by a machine in \(M_A(P) \).

\[\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \] is semi-decidable by an \(M \in M_A(P) \).

\(M \) can be modified:

- The integers are enumerated and compared with the input.
- If the input is a positive integer,
 then \(M \) can be simulated by a machine in \(M_A \) since
 - all queries of \(M \) are answered in the positive,
 - each order test can be simulated by means of equality tests.

\[\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \] is semi-decidable by a machine in \(M_A \).

\[\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} = W_j \text{ for some } j. \]

\[\Rightarrow \text{By definition of } A \text{ the assumption is wrong}. \]
Lemma

\[A \not\leq_T P \] for \(A = (\mathbb{R}; 0, 1; +, -, \cdot; \leq) \) and \(\mathbb{Z} \subseteq P \subseteq U \).

Proof: Let us assume that \(A \) is decidable by a machine in \(M_A(P) \).

- \(\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \) is semi-decidable by an \(\mathcal{M} \in M_A(P) \).
- \(\mathcal{M} \) can be modified:
 - The integers are enumerated and compared with the input.
 - If the input is a positive integer, then \(\mathcal{M} \) can be simulated by a machine in \(M_A \) since all queries of \(\mathcal{M} \) are answered in the positive, each order test can be simulated by means of equality tests.
 - \(\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \) is semi-decidable by a machine in \(M_A \).
 - \(\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} = W_j \) for some \(j \).
 - \(\Rightarrow \) By definition of \(A \) the assumption is wrong.
Lemma

$A \not\leq_T P$ for $A = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.

Proof: Let us assume that A is decidable by a machine in $M_A(P)$.

$\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N}$ is semi-decidable by an $M \in M_A(P)$.

M can be modified:

- The integers are enumerated and compared with the input.
- If the input is a positive integer, then M can be simulated by a machine in M_A since
 - all queries of M are answered in the positive,
 - each order test can be simulated by means of equality tests.

$\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N}$ is semi-decidable by a machine in M_A.

$\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} = W_j$ for some j.

\Rightarrow By definition of A the assumption is wrong.
Lemma

\[A \not \leq_T P \text{ for } A = (\mathbb{R}; 0, 1; +, -; \cdot, \leq) \text{ and } \mathbb{Z} \subseteq P \subseteq U. \]

Proof: Let us assume that \(A \) is decidable by a machine in \(\mathcal{M}_A(P) \).

- \(\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \) is semi-decidable by an \(\mathcal{M} \in \mathcal{M}_A(P) \).
- \(\mathcal{M} \) can be modified:
 - The integers are enumerated and compared with the input.
 - If the input is a positive integer, then \(\mathcal{M} \) can be simulated by a machine in \(\mathcal{M}_A \) since
 - all queries of \(\mathcal{M} \) are answered in the positive,
 - each order test can be simulated by means of equality tests.

- \(\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \) is semi-decidable by a machine in \(\mathcal{M}_A \).

- \(\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} = W_j \) for some \(j \).
- \(\Rightarrow \) By definition of \(A \) the assumption is wrong.
Lemma

\(A \not\preceq_T P \) for \(A = (\mathbb{R}; 0, 1; +, -, \cdot; \leq) \) and \(\mathbb{Z} \subseteq P \subseteq U \).

Proof: Let us assume that \(A \) is decidable by a machine in \(M_A(P) \).

\[\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \text{ is semi-decidable by an } M \in M_A(P). \]

\(M \) can be modified:

- The integers are enumerated and compared with the input.
- If the input is a positive integer, then \(M \) can be simulated by a machine in \(M_A \) since
 - all queries of \(M \) are answered in the positive,
 - each order test can be simulated by means of equality tests.

\[\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \text{ is semi-decidable by a machine in } M_A. \]

\[\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} = W_j \text{ for some } j. \]

\[\Rightarrow \text{By definition of } A \text{ the assumption is wrong.} \]
A Generalization of the Friedberg-Muchnik Theorem

Lemma

\[A \not\leq_T P \text{ for } A = (\mathbb{R}; 0, 1; +, -, \cdot, \leq) \text{ and } \mathbb{Z} \subseteq P \subseteq U. \]

Proof: Let us assume that \(A \) is decidable by a machine in \(M_A(P) \).

\[\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \text{ is semi-decidable by an } M \in M_A(P). \]
\[M \text{ can be modified:} \]

- The integers are enumerated and compared with the input.
- If the input is a positive integer, then \(M \) can be simulated by a machine in \(M_A \) since
 - all queries of \(M \) are answered in the positive,
 - each order test can be simulated by means of equality tests.

\[\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \text{ is semi-decidable by a machine in } M_A. \]

\[\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} = W_j \text{ for some } j. \]

\[\Rightarrow \text{ By definition of } A \text{ the assumption is wrong.} \]
A Generalization of the Friedberg-Muchnik Theorem

Lemma

\[A \not\preceq_T P \text{ for } A = (\mathbb{R}; 0, 1; +, -, \cdot; \leq) \text{ and } \mathbb{Z} \subseteq P \subseteq U. \]

Proof: Let us assume that \(A \) is decidable by a machine in \(M_A(P) \).

\[\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \text{ is semi-decidable by an } M \in M_A(P). \]

\(M \) can be modified:

- The integers are enumerated and compared with the input.
- If the input is a positive integer, then \(M \) can be simulated by a machine in \(M_A \) since all queries of \(M \) are answered in the positive, each order test can be simulated by means of equality tests.

\[\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} \text{ is semi-decidable by a machine in } M_A. \]

\[\Rightarrow (\mathbb{R} \setminus A) \cap \mathbb{N} = W_j \text{ for some } j. \]

\[\Rightarrow \text{ By definition of } A \text{ the assumption is wrong.} \]
A Generalization of the Friedberg-Muchnik Theorem

Theorem

Let \mathcal{A} be a structure containing only a finite number of constants and relations, the operations f_1, \ldots, f_m of arities μ_1, \ldots, μ_m, and an effectively enumerable set $N \subseteq U$.

Let $F_0 = E_0 = N$, $F_i = \bigcup_{j \leq i} E_j$ where

$$E_{i+1} = \bigcup_{k=1}^{m} \{ f_k(n_1, \ldots, n_{\mu_k}) \mid (n_1, \ldots, n_{\mu_k}) \in F_i^{\mu_k} \},$$

and let N be decidable on $E = \text{df} \bigcup_{i \geq 0} E_i$.

Moreover, let (a) or (b) be given.

(a) $P = \bigcup_{i \leq n} P_{i,1} \times \cdots \times P_{i,j_i}$ with $E \subseteq P_{i,k} \subseteq U$ for all $i \leq n, k \leq j_i$.

(b) $P \cap E^\infty$ is decidable for all inputs in E^∞.

Then, there is a semi-decidable $\mathbb{A} \subset N$ with $\mathbb{A} \not\leq_T P$ and thus $\mathbb{H}_\mathbb{A} \not\leq_T P$.
The examples show that extensive knowledge of classical recursion theory is a fundamental condition for a closer examination of algebraic computation models.

Thank you very much for your attention!