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Computation over Algebraic Structures
Introduction

Subject:
BSS RAM model over any structure – a framework for study of

the abstract computability by machines over several structures
the uniform decidability over algebraic structures
the reducibility of problems

on a high abstraction level
Meaning:

allow to analyze the complexity of algorithms
better understanding the principles of object-oriented programming
such as the encapsulation and the concept of virtual machines
improve the quality and the design of algorithms for computers

Including:
several types of register machines
the Turing machine
the uniform BSS model of computation over the reals
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Computation over Algebraic Structures
The Allowed Instructions

Computation over A= (U; (dj)j∈J0 ; (fj)j∈J1 ; (Rj)j∈J2 ,=).

Computation instructions:
l : Zj := fk(Zj1 , . . . ,Zjmk

) (e.g. l : Zj := Zj1 + Zj2),
l : Zj := dk,

Branching instructions:
l : if Zi = Zj then goto l1 else goto l2,
l : if Rk(Zj1 , . . . ,Zjnk

) then goto l1 else goto l2,

Copy instructions:
l : ZIj := ZIk ,

Index instructions:
l : Ij := 1,
l : Ij := Ij + 1,
l : if Ij = Ik then goto l1 else goto l2.
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Computation over Algebraic Structures
The Machines

Input and output space: U∞ =df
⋃

i≥1 Ui

Input of ~x = (x1, . . . , xn) ∈ U∞:

Z1 := x1; Z2 := x2; . . . ; Zn := xn;

Zn+1 := xn; Zn+2 := xn; . . .

I1 := n;

Output of Z1, . . . ,ZI1 .

MA – machines over A
MA(O) – machines using O ⊆ U∞ as oracle

Oracle instructions:
l : if (Z1, . . . ,ZI1) ∈ O then goto l1 else goto l2.
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Computation over Algebraic Structures
The Halting Problem

HA= {(~x . cM) | ~x ∈ U∞ & M∈ MA & M(~x) ↓}
where

~x = (x1, . . . , xn)
cM = code(M) = (s1, . . . , sm)

(~x . cM) = (x1, . . . , xn, s1, . . . , sm)

M(~x) ↓ =̂ M halts on~x

HA ∈ RECA if A is a structure of finite signature
HA 6∈ DECA

RECA – recognizable (semi-decidable) problems
DECA – decidable problems

HOA = {(~x . cM) | ~x ∈ U∞ & M∈ MA(O) & M(~x) ↓}

HOA 6∈ DECOA
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The Turing Reduction
over Structures A

P,Q ⊆
⋃

i≥1 Ui

P �T Q P is easier than Q,
P is decidable by a machine in MA(Q).

P �T6 Q P is strictly easier than Q,
Q cannot be decided by a machine in MA(P).

⇒ For the Halting Problem:

P ∈ RECA ⇒ P �1 HA (one-one reduction over A)
⇒ P �T HA
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A Hierarchy
(Analogously to the Arithmetical Hierarchy)

Definition (semantically by deterministic machines):
A is fixed.

Σ0
0 = DECA,

Π0
n = {U∞ \ P | P ∈ Σ0

n},
∆0

n = Σ0
n ∩ Π0

n,

Σ0
n+1 = {P ⊆ U∞ | (∃Q ∈ Σ0

n)(P �1 HQ
A)}.

The first level:

Σ0
1 = RECA = {P ⊆ U∞ | P �1 HA},

Π0
1 = {P ⊆ U∞ | P �1 U∞ \HA},

∆0
1 = DECA = {P ⊆ U∞ | P �T ∅},
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A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Let A contain an effectively enumerable set denoted by N.
χP – the characteristic function of the problem P.

Let P ⊆ U∞.
(1) P ∈ ∆0

2.
(2) There is a computable function g : U∞ → {0, 1}

defined on {(n .~x) | n ∈ N & ~x ∈ U∞}
such that χP(~x) = lims→∞ g(s .~x).

Lemma (First Part of Limit Lemma)
If (1), then (2).

Lemma (Second Part of Limit Lemma)
If (2), then (1).
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A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Lemma (First Part of Limit Lemma)

If P ⊆ U∞ is in ∆0
2, then there is a computable function

g : U∞ → {0, 1} defined on {(n .~x) | n ∈ N & ~x ∈ U∞} such that
χP(~x) = lims→∞ g(s .~x).

Proof. LetM∈ MA(HA) decide the problem P and~x ∈ U∞.

let β1, β2, . . . , βk ∈ N represent the answers of the queries
(~y(i) . cLi) ∈ HA? executed byM on input~x.

⇒
βi = 0 iff Li(~y(i)) ↑,
βi = t > 0 iff Li(~y(i)) ↑t−1 and Li(~y(i)) ↓t.
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A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Let g be computed by N ∈ MA executing:
Input (s .~x) ∈ U∞;
if s ∈ N, then simulate s instructions ofM, but,
instead of

if (~y(s,i) . cLs,i) ∈ HA then goto to l1 else goto l2,

use
if Ls,i(~y(s,i)) ↓s then goto to l1 else goto l2.

If the output ofM is not reached within s steps ofM, then output 0.

s ∈ N,~x ∈ U∞⇒ let β(s)1 , . . . , β
(s)
ms ≤ s (ms ≤ s) with

β
(s)
i 6= 0⇒ Ls,i(~y(s,i)) ↑β

(s)
i −1 and Ls,i(~y(s,i)) ↓β

(s)
i .

s ∈ N,~x ∈ U∞⇒ there are 0 = s0 < s1 ≤ s2 ≤ · · · ≤ sk such that

(β1, β2, . . . , βi) = (βsi
1 , β

si
2 , . . . , β

si
i ) for i ≤ msi ,

(β1, β2, . . . , βk) = (βs
1, β

s
2, . . . , β

s
k) for s ≥ sk.

~x ∈ U∞⇒ there is an s~x
such that N outputs the same value asM on (s .~x) for all s ≥ s~x.
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2 = {P ⊆ U∞ | P �T HA}

Lemma (Second Part of Limit Lemma)

If there is a computable function g : U∞ → {0, 1} defined on
{(n .~x) | n ∈ N & ~x ∈ U∞} such that χP(~x) = lims→∞ g(s .~x), then
P ⊆ U∞ is in ∆0

2.

Proof. Let g be computed by N ∈ MA and letM∈ MA(HA) execute:

Input~x ∈ U∞;

Let s = 1;

1:
- Ask ((s .~x) . cL) ∈ HA? where
L: Input (s .~x);

Halt if there is a k ≥ s such that g(s .~x) 6= g(k .~x).
If L(s .~x) ↓,
then s := s + 1 and goto 1
else compute g(s .~x) by simulating N and output g(s .~x).

M decides P.
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Summary: ∆0
2 and the Limit Lemma

Let A contain an effectively enumerable set denoted by N.
χP – the characteristic function of the problem P.

Lemma (Limit Lemma)

P ⊆ U∞ is in ∆0
2 if and only if there is a computable function

g : U∞ → {0, 1} defined on {(n .~x) | n ∈ N & ~x ∈ U∞} such that
χP(~x) = lims→∞ g(s .~x).



A Generalization of the Friedberg-Muchnik Theorem

Let A contain

only a finite number of operations and relations,
an effectively enumerable set denoted by N,
only two constants denoted by 0 and 1.

⇒ HA ∈ RECA.

We construct an A ⊂ N with

A �T6 HA,
A 6�T P for many P ⊆ U∞,
A 6�T P for many P ∈ ∆0

2.
⇒ HA 6�T P.
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A contains

only a finite number of operations and relations,

an effectively enumerable set denoted by N,

only two constants denoted by 0 and 1.

We use:

HM ∩ N (for the halting set HM ofM∈ MA) is

effectively enumerable
a halting set of a machine in MA.

For any O ⊆ N,
we can list MA(O): MO1 ,MO2 , . . ..
(The index is the code of the corresponding program.)
We can list MA: N1,N2, . . ..
N̄i enumerating all positive integers ni,1, ni,2, . . . ∈ HNi .
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A Generalization of the Friedberg-Muchnik Theorem

Let A =
⋃

s≥0 As be defined in stages. A0 = ∅, s ≥ 0.

Is = {i ≤ s | Wi,s∩As = ∅ & (∃x ∈ Wi,s)(2i < x & (∀j ≤ i)(a(j, s) < x))}

where, for any j ≤ s,

a(j, s)


greatest integer used in a query by
MAs

j on j within s steps ifMAs
j (j) ↓s,

0 ifMAs
j (j) ↑s.

Wi,s is the set of integers computed by N̄i on s within s steps.
If Is 6= ∅, then let

is = min Is,
xis = min{x ∈ Wis,s | 2is < x & (∀j ≤ is)(a(j, s) < x)},

As+1 =

{
As if Is = ∅
As ∪ {xis} otherwise.
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A Generalization of the Friedberg-Muchnik Theorem

The properties of A, for instance, for A = (R; 0, 1; +,−, · · · ;≤):

A is effectively enumerable by an machine in MA.

⇒ A �1 HA.

A and N \ A are infinite.

Conditions for lowness for all n > 0:
(Nn) IfMAt

n (n) ↓t for infinitely many t, thenMA
n (n) ↓.

⇒ Conditions for simplicity for all n > 0:
(Pn) If Wn =

⋃
i≥1 Wn,i is infinite, then A ∩Wn 6= ∅.

⇒ AC 6�1 HA.

KA �T K∅ where KO = {kM | M ∈ M1
A(O) & M(kM) ↓}.

⇒ A �T6 HA.
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A Generalization of the Friedberg-Muchnik Theorem

Let A = (R; 0, 1; +,−, ·;≤) or A = (C; 0, 1; +,−, ·; =) and
P = AAlg,
P =

⋃
n≥1{~x ∈ Rn | (∃~q ∈ Qn)(q1 +

∑n−1
i=1 qi−1xi = xn)},

Z ⊆ P or Z ∩ P = ∅.

Lemma
A 6�T P.

Corollary
HA 6�T P.

Remark
Similar constructions are also possible, if all problems which are
semi-decidable by Turing machines are decidable over A.

P �T6 HA holds for A = (R; 0, 1; +,−, χHTM , φ;≤) with φ(x) = π
and πZ ⊆ P (where A ⊆ πZ) and so on.
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A Generalization of the Friedberg-Muchnik Theorem

Lemma
A 6�T P for A = (R; 0, 1; +,−, ·;≤) and Z ⊆ P ⊆ U.

Proof: Let us assume that A is decidable by a machine in MA(P).

⇒ (R \ A) ∩ N is semi-decidable by anM∈ MA(P).
M can be modified:

The integers are enumerated and compared with the input.
If the input is a positive integer,
thenM can be simulated by a machine in MA
since

all queries of M are answered in the positive,
each order test can be simulated by means of equality tests.

⇒ (R \ A) ∩ N is semi-decidable by a machine in MA.
⇒ (R \ A) ∩ N = Wj for some j.
⇒ By definition of A the assumption is wrong.
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⇒ (R \ A) ∩ N = Wj for some j.
⇒ By definition of A the assumption is wrong.
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A Generalization of the Friedberg-Muchnik Theorem

Theorem
Let A be a structure containing only a finite number of constants
and relations, the operations f1, . . . , fm of arities µ1, . . . , µm, and an
effectively enumerable set N ⊆ U.

Let F0 = E0 = N, Fi =
⋃

j≤i Ej where

Ei+1 =

m⋃
k=1

{fk(n1, . . . , nµk) | (n1, . . . , nµk) ∈ Fµk
i },

and let N be decidable on E =df
⋃

i≥0 Ei.

Moreover, let (a) or (b) be given.
(a) P =

⋃
i≤n Pi,1 × · · · × Pi,ji with E ⊆ Pi,k ⊆ U for all i ≤ n, k ≤ ji.

(b) P ∩ E∞ is decidable for all inputs in E∞.

Then, there is a semi-decidable A ⊂ N with A 6�T P and thus
HA 6�T P.



Summary

The examples show that extensive knowledge of classical
recursion theory is a fundamental condition for a closer

examination of algebraic computation models.

Thank you very much for your attention!


