Computation over Algebraic Structures and the Turing Reduction

Christine Gaßner

University Greifswald

CCC 2012 Trier

< □ > < @ > < 注 > < 注 > ... 注

990

• Subject: BSS RAM model over any structure – a framework for study of

- the abstract computability by machines over several structures.
- the reducibility of problems
- on a high abstraction level
- Meaning:
 - allow to analyze the complexity of algorithms
 - better understanding the principles of object-oriented programming such as the encapsulation and the concept of virtual machines
 - improve the quality and the design of algorithms for computers

Including:

- several types of register machines
- the Turing machine
- the uniform BSS model of computation over the reals

Subject:

BSS RAM model over any structure - a framework for study of

- the abstract computability by machines over several structures
- the uniform decidability over algebraic structures
- the reducibility of problems

on a high abstraction level

- Meaning:
 - allow to analyze the complexity of algorithms
 - better understanding the principles of object-oriented programming such as the encapsulation and the concept of virtual machines

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• improve the quality and the design of algorithms for computers

Including:

- several types of register machines
- the Turing machine
- the uniform BSS model of computation over the reals

• Subject:

BSS RAM model over any structure - a framework for study of

- the abstract computability by machines over several structures
- the uniform decidability over algebraic structures
- the reducibility of problems

on a high abstraction level

- Meaning:
 - allow to analyze the complexity of algorithms
 - better understanding the principles of object-oriented programming such as the encapsulation and the concept of virtual machines

• improve the quality and the design of algorithms for computers

Including:

- several types of register machines
- the Turing machine
- the uniform BSS model of computation over the reals

• Subject:

BSS RAM model over any structure - a framework for study of

- the abstract computability by machines over several structures
- the uniform decidability over algebraic structures
- the reducibility of problems

on a high abstraction level

- Meaning:
 - allow to analyze the complexity of algorithms
 - better understanding the principles of object-oriented programming such as the encapsulation and the concept of virtual machines

- improve the quality and the design of algorithms for computers
- Including:
 - several types of register machines
 - the Turing machine
 - the uniform BSS model of computation over the reals

Outline

• The model

- machines over algebraic structures
- Turing reductions
 - computed by machines over algebraic structures
- A hierarchy
 - derived from the arithmetical hierarchy
- A first characterization of the class Δ_2^0
 - the Limit Lemma
- The transfer of a further theorem from the Recursion Theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• a generalization of the Friedberg-Muchnik Theorem

Outline

- The model
 - machines over algebraic structures
- Turing reductions
 - computed by machines over algebraic structures
- A hierarchy
 - derived from the arithmetical hierarchy
- A first characterization of the class Δ_2^0
 - the Limit Lemma
- The transfer of a further theorem from the Recursion Theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• a generalization of the Friedberg-Muchnik Theorem

Computation over $\mathcal{A} = (U; (d_j)_{j \in J_0}; (f_j)_{j \in J_1}; (R_j)_{j \in J_2}, =).$

Branching instructions: • Copy instructions: Index instructions: $l: I_i := I_i + 1,$ *l*: if $I_i = I_k$ then goto l_1 else goto l_2 .

Computation over $\mathcal{A} = (U; (d_j)_{j \in J_0}; (f_j)_{j \in J_1}; (R_j)_{j \in J_2}, =).$

• Computation instructions:

 $l: Z_j := f_k(Z_{j_1}, \dots, Z_{j_{m_k}}) \quad (\text{e.g. } l: Z_j := Z_{j_1} + Z_{j_2}), \\ l: Z_j := d_k,$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Branching instructions:

l: if $Z_i = Z_j$ then go o l_1 else go o l_2 ,

l: if $R_k(Z_{j_1}, \ldots, Z_{j_{n_k}})$ then goto l_1 else goto l_2 .

• Copy instructions:

$$l\colon Z_{I_j}:=Z_{I_k},$$

Index instructions:

$$l: I_j := 1,$$

$$l: I_j := I_j + 1,$$

$$l: \text{ if } I_j = I_k \text{ then goto } l_1 \text{ else goto } l_1$$

Computation over $\mathcal{A} = (U; (d_j)_{j \in J_0}; (f_j)_{j \in J_1}; (R_j)_{j \in J_2}, =).$

• Computation instructions:

$$l: Z_j := f_k(Z_{j_1}, \dots, Z_{j_{m_k}}) \quad (\text{e.g. } l: Z_j := Z_{j_1} + Z_{j_2}), \\ l: Z_j := d_k,$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ </p>

Branching instructions:

l: if $Z_i = Z_j$ then goto l_1 else goto l_2 ,

l: if $R_k(Z_{j_1}, \ldots, Z_{j_{n_k}})$ then goto l_1 else goto l_2 ,

• Copy instructions:

 $l\colon Z_{I_j}:=Z_{I_k},$

Index instructions:

 $l: I_j := 1,$ $l: I_j := I_j + 1,$ $l: \text{ if } I_j = I_k \text{ then goto } l_1 \text{ else goto } l_1$

Computation over $\mathcal{A} = (U; (d_j)_{j \in J_0}; (f_j)_{j \in J_1}; (R_j)_{j \in J_2}, =).$

• Computation instructions:

$$\begin{array}{ll} l: \ Z_j := f_k(Z_{j_1}, \ldots, Z_{j_{m_k}}) & (\text{e.g. } l: \ Z_j := Z_{j_1} + Z_{j_2}), \\ l: \ Z_j := d_k, \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Branching instructions:

l: if $Z_i = Z_j$ then goto l_1 else goto l_2 ,

l: if $R_k(Z_{j_1}, \ldots, Z_{j_{n_k}})$ then goto l_1 else goto l_2 ,

Copy instructions:

$$l\colon Z_{I_j}:=Z_{I_k},$$

Index instructions:

$$l: I_j := 1,$$

$$l: I_j := I_j + 1,$$

$$l: \text{ if } I_j = I_k \text{ then goto } l_1 \text{ else goto } l_2.$$

- Input and output space: $U^{\infty} =_{df} \bigcup_{i \ge 1} U^i$
- Input of $\vec{x} = (x_1, \ldots, x_n) \in U^{\infty}$:

$$Z_1 := x_1; Z_2 := x_2; \dots; Z_n := x_n; Z_{n+1} := x_n; Z_{n+2} := x_n; \dots$$
$$I_1 := n;$$

- Output of Z_1, \ldots, Z_{I_1} .
- $M_{\mathcal{A}}$ machines over \mathcal{A}
- $\mathsf{M}_{\mathcal{A}}(\mathcal{O})$ machines using $\mathcal{O} \subseteq U^{\infty}$ as oracle

Dracle instructions: $l: \text{ if } (Z_1, \dots, Z_{l_1}) \in \mathcal{O} \text{ then goto } l_1 \text{ else goto } l_2.$

- Input and output space: $U^{\infty} =_{df} \bigcup_{i>1} U^i$
- Input of $\vec{x} = (x_1, \dots, x_n) \in U^{\infty}$:

$$Z_1 := x_1; Z_2 := x_2; \dots; Z_n := x_n; Z_{n+1} := x_n; Z_{n+2} := x_n; \dots$$
$$I_1 := n;$$

- Output of Z_1, \ldots, Z_{I_1} .
- $M_{\mathcal{A}}$ machines over \mathcal{A}
- $\mathsf{M}_{\mathcal{A}}(\mathcal{O})$ machines using $\mathcal{O} \subseteq U^{\infty}$ as oracle

Dracle instructions: $l: \text{ if } (Z_1, \dots, Z_{l_1}) \in \mathcal{O} \text{ then goto } l_1 \text{ else goto } l_2$

- Input and output space: $U^{\infty} =_{df} \bigcup_{i \ge 1} U^i$
- Input of $\vec{x} = (x_1, \ldots, x_n) \in U^{\infty}$:

$$Z_1 := x_1; Z_2 := x_2; \dots; Z_n := x_n; Z_{n+1} := x_n; Z_{n+2} := x_n; \dots$$

$$I_1 := n:$$

- Output of Z_1, \ldots, Z_{I_1} .
- $M_{\mathcal{A}}$ machines over \mathcal{A}
- $\mathsf{M}_{\mathcal{A}}(\mathcal{O})$ machines using $\mathcal{O} \subseteq U^{\infty}$ as oracle

Dracle instructions: $l: \text{ if } (Z_1, \dots, Z_{l_1}) \in \mathcal{O} \text{ then goto } l_1 \text{ else goto } l_2$

- Input and output space: $U^{\infty} =_{df} \bigcup_{i \ge 1} U^i$
- Input of $\vec{x} = (x_1, \ldots, x_n) \in U^{\infty}$:

$$Z_1 := x_1; Z_2 := x_2; \dots; Z_n := x_n$$
$$Z_{n+1} := x_n; Z_{n+2} := x_n; \dots$$
$$I_1 := n;$$

- Output of Z_1, \ldots, Z_{I_1} .
- $M_{\mathcal{A}}$ machines over \mathcal{A}
- $\mathsf{M}_{\mathcal{A}}(\mathcal{O})$ machines using $\mathcal{O} \subseteq U^{\infty}$ as oracle

Dracle instructions: $l: \text{ if } (Z_1, \dots, Z_{I_1}) \in \mathcal{O} \text{ then goto } l_1 \text{ else goto } l_2.$

- Input and output space: $U^{\infty} =_{df} \bigcup_{i \ge 1} U^i$
- Input of $\vec{x} = (x_1, \ldots, x_n) \in U^{\infty}$:

$$Z_1 := x_1; Z_2 := x_2; \dots; Z_n := x_n$$
$$Z_{n+1} := x_n; Z_{n+2} := x_n; \dots$$
$$I_1 := n;$$

- Output of Z_1, \ldots, Z_{I_1} .
- $M_{\mathcal{A}}$ machines over \mathcal{A}
- $\mathsf{M}_{\mathcal{A}}(\mathcal{O})$ machines using $\mathcal{O} \subseteq U^{\infty}$ as oracle

Oracle instructions:

l: if $(Z_1, \ldots, Z_{I_1}) \in \mathcal{O}$ then goto l_1 else goto l_2 .

Computation over Algebraic Structures The Halting Problem

• $\mathbb{H}_{\mathcal{A}} = \{ (\vec{x} \cdot c_{\mathcal{M}}) \mid \vec{x} \in U^{\infty} \& \mathcal{M} \in \mathsf{M}_{\mathcal{A}} \& \mathcal{M}(\vec{x}) \downarrow \}$ • where

$$\vec{x} = (x_1, \dots, x_n)$$

$$c_{\mathcal{M}} = \operatorname{code}(\mathcal{M}) = (s_1, \dots, s_m)$$

$$(\vec{x} \cdot c_{\mathcal{M}}) = (x_1, \dots, x_n, s_1, \dots, s_m)$$

 $\mathcal{M}(\vec{x}) \downarrow \hat{=} \mathcal{M}$ halts on \vec{x}

 $\operatorname{REC}_{\mathcal{A}}$ – recognizable (semi-decidable) problems $\operatorname{DEC}_{\mathcal{A}}$ – decidable problems

- $\mathbb{H}^{\mathcal{O}}_{\mathcal{A}} = \{ (\vec{x} \cdot c_{\mathcal{M}}) \mid \vec{x} \in U^{\infty} \& \mathcal{M} \in \mathsf{M}_{\mathcal{A}}(\mathcal{O}) \& \mathcal{M}(\vec{x}) \downarrow \}$
- $\mathbb{H}_{\mathcal{A}}^{\mathcal{O}} \notin \text{DEC}_{\mathcal{A}}^{\mathcal{O}}$

• $\mathbb{H}_{\mathcal{A}} = \{ (\vec{x} \cdot c_{\mathcal{M}}) \mid \vec{x} \in U^{\infty} \& \mathcal{M} \in \mathsf{M}_{\mathcal{A}} \& \mathcal{M}(\vec{x}) \downarrow \}$

• where

$$\vec{x} = (x_1, \dots, x_n) c_{\mathcal{M}} = \operatorname{code}(\mathcal{M}) = (s_1, \dots, s_m) (\vec{x} \cdot c_{\mathcal{M}}) = (x_1, \dots, x_n, s_1, \dots, s_m)$$

 $\mathcal{M}(\vec{x}) \downarrow \quad \hat{=} \quad \mathcal{M} \text{ halts on } \vec{x}$

 $\operatorname{REC}_{\mathcal{A}}$ – recognizable (semi-decidable) problems $\operatorname{DEC}_{\mathcal{A}}$ – decidable problems

- $\mathbb{H}^{\mathcal{O}}_{\mathcal{A}} = \{ (\vec{x} \cdot c_{\mathcal{M}}) \mid \vec{x} \in U^{\infty} \& \mathcal{M} \in \mathsf{M}_{\mathcal{A}}(\mathcal{O}) \& \mathcal{M}(\vec{x}) \downarrow \}$
- $\bullet \ \mathbb{H}^{\mathcal{O}}_{\mathcal{A}} \not\in \text{DEC}^{\mathcal{O}}_{\mathcal{A}}$

Computation over Algebraic Structures The Halting Problem

• $\mathbb{H}_{\mathcal{A}} = \{ (\vec{x} \cdot c_{\mathcal{M}}) \mid \vec{x} \in U^{\infty} \& \mathcal{M} \in \mathsf{M}_{\mathcal{A}} \& \mathcal{M}(\vec{x}) \downarrow \}$

• where

$$\vec{x} = (x_1, \dots, x_n) c_{\mathcal{M}} = \operatorname{code}(\mathcal{M}) = (s_1, \dots, s_m) (\vec{x} \cdot c_{\mathcal{M}}) = (x_1, \dots, x_n, s_1, \dots, s_m)$$

$$\mathcal{M}(\vec{x}) \downarrow \quad \hat{=} \quad \mathcal{M} \text{ halts on } \vec{x}$$

• $\mathbb{H}_{\mathcal{A}} \in \operatorname{REC}_{\mathcal{A}}$ if \mathcal{A} is a structure of finite signature $\mathbb{H}_{\mathcal{A}} \notin \operatorname{DEC}_{\mathcal{A}}$

 $\operatorname{REC}_{\mathcal{A}}$ – recognizable (semi-decidable) problems $\operatorname{DEC}_{\mathcal{A}}$ – decidable problems

- $\mathbb{H}^{\mathcal{O}}_{\mathcal{A}} = \{ (\vec{x} \cdot c_{\mathcal{M}}) \mid \vec{x} \in U^{\infty} \& \mathcal{M} \in \mathsf{M}_{\mathcal{A}}(\mathcal{O}) \& \mathcal{M}(\vec{x}) \downarrow \}$
- $\bullet \ \mathbb{H}_{\mathcal{A}}^{\mathcal{O}} \not\in \text{DEC}_{\mathcal{A}}^{\mathcal{O}}$

Computation over Algebraic Structures The Halting Problem

• $\mathbb{H}_{\mathcal{A}} = \{ (\vec{x} \cdot c_{\mathcal{M}}) \mid \vec{x} \in U^{\infty} \& \mathcal{M} \in \mathsf{M}_{\mathcal{A}} \& \mathcal{M}(\vec{x}) \downarrow \}$

• where

$$\vec{x} = (x_1, \dots, x_n) c_{\mathcal{M}} = \operatorname{code}(\mathcal{M}) = (s_1, \dots, s_m) (\vec{x} \cdot c_{\mathcal{M}}) = (x_1, \dots, x_n, s_1, \dots, s_m)$$

$$\mathcal{M}(\vec{x}) \downarrow \hat{=} \mathcal{M}$$
 halts on \vec{x}

• $\mathbb{H}_{\mathcal{A}} \in \operatorname{REC}_{\mathcal{A}}$ if \mathcal{A} is a structure of finite signature $\mathbb{H}_{\mathcal{A}} \notin \operatorname{DEC}_{\mathcal{A}}$

 $\operatorname{REC}_{\mathcal{A}}$ – recognizable (semi-decidable) problems DEC_{\mathcal{A}} – decidable problems

- $\mathbb{H}^{\mathcal{O}}_{\mathcal{A}} = \{ (\vec{x} . c_{\mathcal{M}}) \mid \vec{x} \in U^{\infty} \& \mathcal{M} \in \mathsf{M}_{\mathcal{A}}(\mathcal{O}) \& \mathcal{M}(\vec{x}) \downarrow \}$
- $\bullet \ \mathbb{H}^{\mathcal{O}}_{\mathcal{A}} \not\in DEC^{\mathcal{O}}_{\mathcal{A}}$

The Turing Reduction over Structures \mathcal{A}

• $P, Q \subseteq \bigcup_{i \ge 1} U^i$

- $P \preceq_T Q$ P is easier than Q, P is decidable by a machine in $M_{\mathcal{A}}(Q)$.
- $P \not\preceq_T Q \quad P \text{ is strictly easier than } Q,$ $Q \text{ cannot be decided by a machine in } M_{\mathcal{A}}(P).$

• \Rightarrow For the Halting Problem:

 $P \in \operatorname{REC}_{\mathcal{A}} \Rightarrow P \preceq_1 \mathbb{H}_{\mathcal{A}} \text{ (one-one reduction over } \mathcal{A})$ $\Rightarrow P \preceq_T \mathbb{H}_{\mathcal{A}}$

The Turing Reduction over Structures \mathcal{A}

• $P, Q \subseteq \bigcup_{i \ge 1} U^i$

- $P \preceq_T Q$ P is easier than Q, P is decidable by a machine in $M_{\mathcal{A}}(Q)$.
- $P \not\preceq_T Q \qquad P \text{ is strictly easier than } Q,$ Q cannot be decided by a machine in $M_{\mathcal{A}}(P)$.

• \Rightarrow For the Halting Problem:

 $P \in \operatorname{REC}_{\mathcal{A}} \Rightarrow P \preceq_1 \mathbb{H}_{\mathcal{A}} \text{ (one-one reduction over } \mathcal{A})$ $\Rightarrow P \preceq_T \mathbb{H}_{\mathcal{A}}$

The Turing Reduction over Structures \mathcal{A}

• $P, Q \subseteq \bigcup_{i \ge 1} U^i$

- $P \preceq_T Q$ P is easier than Q, P is decidable by a machine in $M_{\mathcal{A}}(Q)$.
- $P \not\preceq_T Q \qquad P \text{ is strictly easier than } Q,$ Q cannot be decided by a machine in $M_{\mathcal{A}}(P)$.

• \Rightarrow For the Halting Problem:

$$P \in \operatorname{REC}_{\mathcal{A}} \Rightarrow P \preceq_{1} \mathbb{H}_{\mathcal{A}} \text{ (one-one reduction over } \mathcal{A})$$
$$\Rightarrow P \preceq_{T} \mathbb{H}_{\mathcal{A}}$$

$$\begin{split} \Sigma_0^0 &= \text{DEC}_{\mathcal{A}}, \\ \Pi_n^0 &= \{U^{\infty} \setminus P \mid P \in \Sigma_n^0\}, \\ \Delta_n^0 &= \Sigma_n^0 \cap \Pi_n^0, \\ \Sigma_{n+1}^0 &= \{P \subseteq U^{\infty} \mid (\exists Q \in \Sigma_n^0) (P \preceq_1 \mathbb{H}_{\mathcal{A}}^Q)\}. \end{split}$$

The first level:

 $\begin{aligned} \Sigma_1^0 &= \operatorname{REC}_{\mathcal{A}} &= \{ P \subseteq U^\infty \mid P \preceq_1 \mathbb{H}_{\mathcal{A}} \}, \\ \Pi_1^0 &= \{ P \subseteq U^\infty \mid P \preceq_1 U^\infty \setminus \mathbb{H}_{\mathcal{A}} \}, \\ \Delta_1^0 &= \operatorname{DEC}_{\mathcal{A}} &= \{ P \subseteq U^\infty \mid P \preceq_T \emptyset \}, \end{aligned}$

$$\begin{array}{lll} \Sigma_0^0 &=& \operatorname{DEC}_{\mathcal{A}},\\ \Pi_n^0 &=& \{U^{\infty} \setminus P \mid P \in \Sigma_n^0\},\\ \Delta_n^0 &=& \Sigma_n^0 \cap \Pi_n^0,\\ \Sigma_{n+1}^0 &=& \{P \subseteq U^{\infty} \mid (\exists Q \in \Sigma_n^0) (P \preceq_1 \mathbb{H}_{\mathcal{A}}^Q)\}. \end{array}$$

• The first level:

$$\begin{split} \Sigma_1^0 &= \operatorname{REC}_{\mathcal{A}} &= \{ P \subseteq U^{\infty} \mid P \preceq_1 \mathbb{H}_{\mathcal{A}} \}, \\ \Pi_1^0 &= \{ P \subseteq U^{\infty} \mid P \preceq_1 U^{\infty} \setminus \mathbb{H}_{\mathcal{A}} \}, \\ \Delta_1^0 &= \operatorname{DEC}_{\mathcal{A}} &= \{ P \subseteq U^{\infty} \mid P \preceq_T \emptyset \}, \end{split}$$

$$\begin{array}{lll} \Sigma_0^0 &=& \operatorname{DEC}_{\mathcal{A}},\\ \Pi_n^0 &=& \{U^{\infty} \setminus P \mid P \in \Sigma_n^0\},\\ \Delta_n^0 &=& \Sigma_n^0 \cap \Pi_n^0,\\ \Sigma_{n+1}^0 &=& \{P \subseteq U^{\infty} \mid (\exists Q \in \Sigma_n^0) (P \preceq_1 \mathbb{H}_{\mathcal{A}}^Q)\}. \end{array}$$

• The first level:

$$\begin{array}{rcl} \Sigma_1^0 &=& \operatorname{REC}_{\mathcal{A}} &=& \{P \subseteq U^\infty \mid P \preceq_1 \mathbb{H}_{\mathcal{A}}\},\\ \Pi_1^0 &=& \{P \subseteq U^\infty \mid P \preceq_1 U^\infty \setminus \mathbb{H}_{\mathcal{A}}\},\\ \Delta_1^0 &=& \operatorname{DEC}_{\mathcal{A}} &=& \{P \subseteq U^\infty \mid P \preceq_T \emptyset\}, \end{array}$$

$$\begin{array}{lll} \Sigma_0^0 &=& \operatorname{DEC}_{\mathcal{A}},\\ \Pi_n^0 &=& \{U^{\infty} \setminus P \mid P \in \Sigma_n^0\},\\ \Delta_n^0 &=& \Sigma_n^0 \cap \Pi_n^0,\\ \Sigma_{n+1}^0 &=& \{P \subseteq U^{\infty} \mid (\exists Q \in \Sigma_n^0) (P \preceq_1 \mathbb{H}_{\mathcal{A}}^Q)\}. \end{array}$$

• The second level:

$$\begin{split} \Sigma_2^0 &= \operatorname{REC}_{\mathcal{A}}^{\mathbb{H}_{\mathcal{A}}} &= \{P \subseteq U^{\infty} \mid P \preceq_1 \mathbb{H}_{\mathcal{A}}^{\mathbb{H}_{\mathcal{A}}}\},\\ \Pi_2^0 &= \{P \subseteq U^{\infty} \mid P \preceq_1 U^{\infty} \setminus \mathbb{H}_{\mathcal{A}}^{\mathbb{H}_{\mathcal{A}}}\},\\ \Delta_2^0 &= \operatorname{DEC}_{\mathcal{A}}^{\mathbb{H}_{\mathcal{A}}} &= \{P \subseteq U^{\infty} \mid P \preceq_T \mathbb{H}_{\mathcal{A}}\}. \end{split}$$

- Let \mathcal{A} contain an effectively enumerable set denoted by \mathbb{N} .
- χ_P the characteristic function of the problem *P*.
- Let P ⊆ U[∞].
 (1) P ∈ Δ₂⁰.
 (2) There is a computable function g : U[∞] → {0,1} defined on {(n.x) | n ∈ N & x ∈ U[∞]} such that χ_P(x) = lim_{s→∞} g(s.x).

イロト イポト イヨト イヨト

Lemma (First Part of Limit Lemma) If (1), then (2).

• Let \mathcal{A} contain an effectively enumerable set denoted by \mathbb{N} .

▲□▶▲□▶▲□▶▲□▶ □ のQで

- χ_P the characteristic function of the problem P.
- Let P ⊆ U[∞].
 (1) P ∈ Δ₂⁰.
 (2) There is a computable function g : U[∞] → {0,1} defined on {(n.x) | n ∈ N & x ∈ U[∞]} such that χ_P(x) = lim_{s→∞} g(s.x).

Lemma (First Part of Limit Lemma)

- Let \mathcal{A} contain an effectively enumerable set denoted by \mathbb{N} .
- χ_P the characteristic function of the problem *P*.
- Let P ⊆ U[∞].
 (1) P ∈ Δ₂⁰.
 (2) There is a computable function g : U[∞] → {0, 1} defined on {(n.x) | n ∈ N & x ∈ U[∞]} such that χ_P(x) = lim_{s→∞} g(s.x).

▲□▶▲□▶▲□▶▲□▶ □ のQで

Lemma (First Part of Limit Lemma)

- Let \mathcal{A} contain an effectively enumerable set denoted by \mathbb{N} .
- χ_P the characteristic function of the problem *P*.
- Let P ⊆ U[∞].
 (1) P ∈ Δ₂⁰.
 (2) There is a computable function g : U[∞] → {0,1} defined on {(n.x) | n ∈ N & x ∈ U[∞]} such that χ_P(x) = lim_{s→∞} g(s.x).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Lemma (First Part of Limit Lemma) If (1), then (2).

- Let \mathcal{A} contain an effectively enumerable set denoted by \mathbb{N} .
- χ_P the characteristic function of the problem *P*.
- Let P ⊆ U[∞].
 (1) P ∈ Δ₂⁰.
 (2) There is a computable function g : U[∞] → {0,1} defined on {(n.x) | n ∈ N & x ∈ U[∞]} such that χ_P(x) = lim_{s→∞} g(s.x).

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Lemma (First Part of Limit Lemma)

If (1), then (2).

- Let \mathcal{A} contain an effectively enumerable set denoted by \mathbb{N} .
- χ_P the characteristic function of the problem *P*.
- Let P ⊆ U[∞].
 (1) P ∈ Δ₂⁰.
 (2) There is a computable function g : U[∞] → {0,1} defined on {(n.x) | n ∈ N & x ∈ U[∞]} such that χ_P(x) = lim_{s→∞} g(s.x).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Lemma (First Part of Limit Lemma)

If (1), then (2).

Lemma (Second Part of Limit Lemma)

If (2), then (1).

Lemma (First Part of Limit Lemma)

If $P \subseteq U^{\infty}$ is in Δ_2^0 , then there is a computable function $g: U^{\infty} \to \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x})$.

Proof. Let $\mathcal{M} \in \mathsf{M}_{\mathcal{A}}(\mathbb{H}_{\mathcal{A}})$ decide the problem *P* and $\vec{x} \in U^{\infty}$.

• let $\beta_1, \beta_2, \ldots, \beta_k \in \mathbb{N}$ represent the answers of the queries $(\vec{y}^{(i)} \cdot c_{\mathcal{L}_i}) \in \mathbb{H}_{\mathcal{A}}$? executed by \mathcal{M} on input \vec{x} .

- $\bullet \Rightarrow$
- $\beta_i = 0$ iff $\mathcal{L}_i(\vec{y}^{(i)}) \uparrow$,
- $\beta_i = t > 0$ iff $\mathcal{L}_i(\vec{y}^{(i)}) \uparrow^{t-1}$ and $\mathcal{L}_i(\vec{y}^{(i)}) \downarrow^t$.

Lemma (First Part of Limit Lemma)

If $P \subseteq U^{\infty}$ is in Δ_2^0 , then there is a computable function $g: U^{\infty} \to \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x})$.

Proof. Let $\mathcal{M} \in \mathsf{M}_{\mathcal{A}}(\mathbb{H}_{\mathcal{A}})$ decide the problem *P* and $\vec{x} \in U^{\infty}$.

• let $\beta_1, \beta_2, \ldots, \beta_k \in \mathbb{N}$ represent the answers of the queries $(\vec{y}^{(i)} \cdot c_{\mathcal{L}_i}) \in \mathbb{H}_{\mathcal{A}}$? executed by \mathcal{M} on input \vec{x} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 $\bullet \Rightarrow$

• $\beta_i = 0$ iff $\mathcal{L}_i(\vec{y}^{(i)}) \uparrow$,

• $\beta_i = t > 0$ iff $\mathcal{L}_i(\vec{y}^{(i)}) \uparrow^{t-1}$ and $\mathcal{L}_i(\vec{y}^{(i)}) \downarrow^t$.

Lemma (First Part of Limit Lemma)

If $P \subseteq U^{\infty}$ is in Δ_2^0 , then there is a computable function $g: U^{\infty} \to \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x}).$

Proof. Let $\mathcal{M} \in \mathsf{M}_{\mathcal{A}}(\mathbb{H}_{\mathcal{A}})$ decide the problem *P* and $\vec{x} \in U^{\infty}$.

• let $\beta_1, \beta_2, \ldots, \beta_k \in \mathbb{N}$ represent the answers of the queries $(\vec{y}^{(i)} \cdot c_{\mathcal{L}_i}) \in \mathbb{H}_{\mathcal{A}}$? executed by \mathcal{M} on input \vec{x} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$\bullet \Rightarrow$

- $\beta_i = 0$ iff $\mathcal{L}_i(\vec{y}^{(i)}) \uparrow$,
- $\beta_i = t > 0$ iff $\mathcal{L}_i(\vec{y}^{(i)}) \uparrow^{t-1}$ and $\mathcal{L}_i(\vec{y}^{(i)}) \downarrow^t$.
Lemma (First Part of Limit Lemma)

If $P \subseteq U^{\infty}$ is in Δ_2^0 , then there is a computable function $g: U^{\infty} \to \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x}).$

Proof. Let $\mathcal{M} \in \mathsf{M}_{\mathcal{A}}(\mathbb{H}_{\mathcal{A}})$ decide the problem *P* and $\vec{x} \in U^{\infty}$.

• let $\beta_1, \beta_2, \ldots, \beta_k \in \mathbb{N}$ represent the answers of the queries $(\vec{y}^{(i)} \cdot c_{\mathcal{L}_i}) \in \mathbb{H}_{\mathcal{A}}$? executed by \mathcal{M} on input \vec{x} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 $\bullet \Rightarrow$

- $\beta_i = 0$ iff $\mathcal{L}_i(\vec{y}^{(i)}) \uparrow$,
- $\beta_i = t > 0$ iff $\mathcal{L}_i(\vec{y}^{(i)}) \uparrow^{t-1}$ and $\mathcal{L}_i(\vec{y}^{(i)}) \downarrow^t$.

Lemma (First Part of Limit Lemma)

If $P \subseteq U^{\infty}$ is in Δ_2^0 , then there is a computable function $g: U^{\infty} \to \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x}).$

Proof. Let $\mathcal{M} \in \mathsf{M}_{\mathcal{A}}(\mathbb{H}_{\mathcal{A}})$ decide the problem *P* and $\vec{x} \in U^{\infty}$.

• let $\beta_1, \beta_2, \ldots, \beta_k \in \mathbb{N}$ represent the answers of the queries $(\vec{y}^{(i)} \cdot c_{\mathcal{L}_i}) \in \mathbb{H}_{\mathcal{A}}$? executed by \mathcal{M} on input \vec{x} .

(日) (日) (日) (日) (日) (日) (日)

 $\bullet \Rightarrow$

• $\beta_i = 0$ iff $\mathcal{L}_i(\vec{y}^{(i)}) \uparrow$,

• $\beta_i = t > 0$ iff $\mathcal{L}_i(\vec{y}^{(i)}) \uparrow^{t-1}$ and $\mathcal{L}_i(\vec{y}^{(i)}) \downarrow^t$.

• Let g be computed by $\mathcal{N} \in M_{\mathcal{A}}$ executing:

- Input $(s \, . \, \vec{x}) \in U^{\infty}$;
- if $s \in \mathbb{N}$, then simulate *s* instructions of \mathcal{M} , but, instead of

if $(\vec{y}^{(s,i)} . c_{\mathcal{L}_{s,i}}) \in \mathbb{H}_{\mathcal{A}}$ *then goto to* l_1 *else goto* l_2 *,*

use

if $\mathcal{L}_{s,i}(\vec{y}^{(s,i)}) \downarrow^s$ then go to l_1 else go to l_2 .

If the output of M is not reached within s steps of M, then output 0.
s ∈ N, x ∈ U[∞] ⇒ let β₁^(s),..., β_{ms}^(s) ≤ s (m_s ≤ s) with

$$\beta_i^{(s)} \neq 0 \Rightarrow \mathcal{L}_{s,i}(\vec{y}^{(s,i)}) \uparrow^{\beta_i^{(s)}-1} \text{ and } \mathcal{L}_{s,i}(\vec{y}^{(s,i)}) \downarrow^{\beta_i^{(s)}}$$

• $s \in \mathbb{N}, \vec{x} \in U^{\infty} \Rightarrow$ there are $0 = s_0 < s_1 \le s_2 \le \cdots \le s_k$ such that

$$\begin{array}{lll} (\beta_1, \beta_2, \dots, \beta_i) &=& (\beta_1^{s_i}, \beta_2^{s_i}, \dots, \beta_i^{s_i}) & \quad \text{for } i \leq m_{s_i}, \\ (\beta_1, \beta_2, \dots, \beta_k) &=& (\beta_1^s, \beta_2^s, \dots, \beta_k^s) & \quad \text{for } s \geq s_k. \end{array}$$

- Let g be computed by $\mathcal{N} \in M_{\mathcal{A}}$ executing:
 - Input $(s \, . \, \vec{x}) \in U^{\infty}$;
 - if $s \in \mathbb{N}$, then simulate *s* instructions of \mathcal{M} , but, instead of

if $(\vec{y}^{(s,i)} . c_{\mathcal{L}_{s,i}}) \in \mathbb{H}_{\mathcal{A}}$ then goto to l_1 else goto l_2 ,

use

if $\mathcal{L}_{s,i}(\vec{y}^{(s,i)}) \downarrow^s$ then go to l_1 else go to l_2 .

If the output of M is not reached within s steps of M, then output 0.
s ∈ N, x ∈ U[∞] ⇒ let β₁^(s),..., β_{ms}^(s) ≤ s (ms ≤ s) with

 $\beta_i^{(s)} \neq 0 \Rightarrow \mathcal{L}_{s,i}(\vec{y}^{(s,i)}) \uparrow^{\beta_i^{(s)}-1} \text{ and } \mathcal{L}_{s,i}(\vec{y}^{(s,i)}) \downarrow^{\beta_i^{(s)}}$

• $s \in \mathbb{N}, \vec{x} \in U^{\infty} \Rightarrow$ there are $0 = s_0 < s_1 \le s_2 \le \cdots \le s_k$ such that

$$\begin{array}{lll} (\beta_1, \beta_2, \dots, \beta_i) &=& (\beta_1^{s_i}, \beta_2^{s_i}, \dots, \beta_i^{s_i}) & \quad \text{for } i \leq m_{s_i}, \\ (\beta_1, \beta_2, \dots, \beta_k) &=& (\beta_1^s, \beta_2^s, \dots, \beta_k^s) & \quad \text{for } s \geq s_k. \end{array}$$

- Let g be computed by $\mathcal{N} \in M_{\mathcal{A}}$ executing:
 - Input $(s \, . \, \vec{x}) \in U^{\infty}$;
 - if s ∈ N, then simulate s instructions of M, but, instead of

if $(\vec{y}^{(s,i)} . c_{\mathcal{L}_{s,i}}) \in \mathbb{H}_{\mathcal{A}}$ then goto to l_1 else goto l_2 ,

use

if $\mathcal{L}_{s,i}(\vec{y}^{(s,i)}) \downarrow^s$ then go to l_1 else go to l_2 .

If the output of M is not reached within s steps of M, then output 0.
s ∈ N, x ∈ U[∞] ⇒ let β₁^(s), ..., β_{ms}^(s) ≤ s (m_s ≤ s) with β_i^(s) ≠ 0 ⇒ L_{s,i}(y^(s,i)) ↑^{β_i^(s)-1} and L_{s,i}(y^(s,i)) ↓^{β_i^(s)}.
s ∈ N, x ∈ U[∞] ⇒ there are 0 = s₀ < s₁ ≤ s₂ ≤ ··· ≤ s_k such that (β₁, β₂,..., β_i) = (β₁^{s_i}, β₂^{s_i},..., β_i^{s_i}) for i ≤ m_{s_i}, (β₁, β₂,..., β_k) = (β₁^{s_i}, β₂^{s_i},..., β_k^{s_i}) for s ≥ s_k.

- Let g be computed by $\mathcal{N} \in M_{\mathcal{A}}$ executing:
 - Input $(s \, . \, \vec{x}) \in U^{\infty}$;
 - if s ∈ N, then simulate s instructions of M, but, instead of

if $(\vec{y}^{(s,i)} . c_{\mathcal{L}_{s,i}}) \in \mathbb{H}_{\mathcal{A}}$ *then goto to* l_1 *else goto* l_2 *,*

use

if $\mathcal{L}_{s,i}(\vec{y}^{(s,i)}) \downarrow^s$ then go to l_1 else go to l_2 .

If the output of M is not reached within s steps of M, then output 0.
s ∈ N, x ∈ U[∞] ⇒ let β₁^(s), ..., β_{ms}^(s) ≤ s (m_s ≤ s) with β_i^(s) ≠ 0 ⇒ L_{s,i}(y^(s,i)) ↑^{β_i^{(s)-1}} and L_{s,i}(y^(s,i)) ↓^{β_i^(s)}.
s ∈ N, x ∈ U[∞] ⇒ there are 0 = s₀ < s₁ ≤ s₂ ≤ ··· ≤ s_k such that (β₁, β₂, ..., β_i) = (β₁^{s_i}, β₂^{s_i}, ..., β_i^{s_i}) for i ≤ m_{si}, (β₁, β₂, ..., β_k) = (β₁^{s_i}, β₂^{s_i}, ..., β_k^{s_i}) for s ≥ s_k.

- Let g be computed by $\mathcal{N} \in M_{\mathcal{A}}$ executing:
 - Input $(s \, . \, \vec{x}) \in U^{\infty}$;
 - if s ∈ N, then simulate s instructions of M, but, instead of

if $(\vec{y}^{(s,i)} . c_{\mathcal{L}_{s,i}}) \in \mathbb{H}_{\mathcal{A}}$ then goto to l_1 else goto l_2 ,

use

if $\mathcal{L}_{s,i}(\vec{y}^{(s,i)}) \downarrow^s$ then go to l_1 else go to l_2 .

If the output of M is not reached within s steps of M, then output 0.
s ∈ N, x ∈ U[∞] ⇒ let β₁^(s), ..., β_{ms}^(s) ≤ s (m_s ≤ s) with β_i^(s) ≠ 0 ⇒ L_{s,i}(y^(s,i)) ↑^{β_i^(s)-1} and L_{s,i}(y^(s,i)) ↓^{β_i^(s)}.
s ∈ N, x ∈ U[∞] ⇒ there are 0 = s₀ < s₁ ≤ s₂ ≤ ··· ≤ s_k such that (β₁, β₂, ..., β_i) = (β_s^{s_i}, β₂^{s_i}, ..., β_i^{s_i}) for i ≤ m_{si},

$$(\beta_1, \beta_2, \dots, \beta_k) = (\beta_1^s, \beta_2^s, \dots, \beta_k^s)$$
 for $s \ge s_k$.

Lemma (Second Part of Limit Lemma)

If there is a computable function $g: U^{\infty} \to \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x})$, then $P \subseteq U^{\infty}$ is in Δ_2^0 .

Proof. Let *g* be computed by $\mathcal{N} \in M_{\mathcal{A}}$ and let $\mathcal{M} \in M_{\mathcal{A}}(\mathbb{H}_{\mathcal{A}})$ execute:

```
Input x ∈ U<sup>∞</sup>;
Let s = 1;
1:

Ask ((s.x).c<sub>L</sub>) ∈ 𝔄<sub>A</sub>? where
L: Input (s.x);
Halt if there is a k ≥ s such that g(s.x) ≠ g(k.x).
If L(s.x) ↓,
then s := s + 1 and goto 1
else compute g(s.x) by simulating N and output g(s.x).
```

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \mathcal{M} decides P.

Lemma (Second Part of Limit Lemma)

If there is a computable function $g: U^{\infty} \to \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x})$, then $P \subseteq U^{\infty}$ is in Δ_2^0 .

Proof. Let *g* be computed by $\mathcal{N} \in M_{\mathcal{A}}$ and let $\mathcal{M} \in M_{\mathcal{A}}(\mathbb{H}_{\mathcal{A}})$ execute:

```
• Input \vec{x} \in U^{\infty};
• Let s = 1;
• 1:
```

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \mathcal{M} decides P.

Lemma (Second Part of Limit Lemma)

If there is a computable function $g: U^{\infty} \to \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x})$, then $P \subseteq U^{\infty}$ is in Δ_2^0 .

Proof. Let *g* be computed by $\mathcal{N} \in M_{\mathcal{A}}$ and let $\mathcal{M} \in M_{\mathcal{A}}(\mathbb{H}_{\mathcal{A}})$ execute:

```
• Input \vec{x} \in U^{\infty};
• Let s = 1;
• 1:
```

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \mathcal{M} decides P.

Lemma (Second Part of Limit Lemma)

If there is a computable function $g: U^{\infty} \to \{0, 1\}$ defined on $\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s \cdot \vec{x})$, then $P \subseteq U^{\infty}$ is in Δ_2^0 .

Proof. Let *g* be computed by $\mathcal{N} \in M_{\mathcal{A}}$ and let $\mathcal{M} \in M_{\mathcal{A}}(\mathbb{H}_{\mathcal{A}})$ execute:

```
• Input \vec{x} \in U^{\infty};
          • Let s = 1;
         • 1:
                                    - Ask ((s, \vec{x}), c_{f}) \in \mathbb{H}_{A}? where
                                                         \mathcal{L}: Input (s \, . \, \vec{x});
                                                                      Halt if there is a k \ge s such that g(s \cdot \vec{x}) \ne g(k \cdot \vec{x}).
                                          If \mathcal{L}(s \cdot \vec{x}) \downarrow,
                                          then s := s + 1 and goto 1
                                          else compute g(s, \vec{x}) by simulating \mathcal{N} and output g(s, \vec{x}).
\mathcal{M} decides P.

    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
```

- Let \mathcal{A} contain an effectively enumerable set denoted by \mathbb{N} .
- χ_P the characteristic function of the problem *P*.

Lemma (Limit Lemma)

 $P \subseteq U^{\infty}$ is in Δ_2^0 if and only if there is a computable function $g: U^{\infty} \to \{0, 1\}$ defined on $\{(n . \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\}$ such that $\chi_P(\vec{x}) = \lim_{s \to \infty} g(s . \vec{x}).$

▲□▶▲□▶▲□▶▲□▶ □ のQで

• Let \mathcal{A} contain

only a finite number of operations and relations.

only two constants denoted by 0 and 1.

• $\Rightarrow \mathbb{H}_{\mathcal{A}} \in \operatorname{REC}_{\mathcal{A}}.$

• We construct an $\mathbb{A} \subset \mathbb{N}$ with

• $\mathbb{A} \neq_T \mathbb{H}_{\mathcal{A}}$, • $\mathbb{A} \not\preceq_T P$ for many $P \subseteq U^{\infty}$ • $\mathbb{A} \not\preceq_T P$ for many $P \in \Delta_2^0$. • $\Rightarrow \mathbb{H}_{\mathcal{A}} \not\preceq_T P$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Let A contain

- only a finite number of operations and relations,
- an effectively enumerable set denoted by N,
- only two constants denoted by 0 and 1.
- $\bullet \ \Rightarrow \mathbb{H}_{\mathcal{A}} \in \text{REC}_{\mathcal{A}}.$
- We construct an $\mathbb{A} \subset \mathbb{N}$ with
 - $\mathbb{A} \neq_T \mathbb{H}_{\mathcal{A}}$, • $\mathbb{A} \neq_T P$ for many $P \subseteq U^{\infty}$ • $\mathbb{A} \neq_T P$ for many $P \in \Delta_2^0$. • $\Rightarrow \mathbb{H}_{\mathcal{A}} \neq_T P$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Let A contain

- only a finite number of operations and relations,
- an effectively enumerable set denoted by N,
- only two constants denoted by 0 and 1.
- $\bullet \ \Rightarrow \mathbb{H}_{\mathcal{A}} \in REC_{\mathcal{A}}.$
- We construct an $\mathbb{A} \subset \mathbb{N}$ with

•
$$\mathbb{A} \not\supseteq_T \mathbb{H}_{\mathcal{A}}$$
,
• $\mathbb{A} \not\preceq_T P$ for many $P \subseteq U^{\infty}$
• $\mathbb{A} \not\preceq_T P$ for many $P \in \Delta_2^0$.

• $\Rightarrow \mathbb{H}_{\mathcal{A}} \not\preceq_T P.$

\mathcal{A} contains

- only a finite number of operations and relations,
- an effectively enumerable set denoted by \mathbb{N} ,
- only two constants denoted by 0 and 1.

We use:

- $H_{\mathcal{M}} \cap \mathbb{N}$ (for the halting set $H_{\mathcal{M}}$ of $\mathcal{M} \in M_{\mathcal{A}}$) is
 - effectively enumerable
 - $\bullet\,$ a halting set of a machine in $M_{\mathcal{A}}.$
- For any $\mathcal{O} \subseteq \mathbb{N}$, we can list $M_{\mathcal{A}}(\mathcal{O})$: $\mathcal{M}_{1}^{\mathcal{O}}, \mathcal{M}_{2}^{\mathcal{O}}, \dots$ (The index is the code of the corresponding program.)
- We can list $M_{\mathcal{A}}: \mathcal{N}_1, \mathcal{N}_2, \ldots$
- $\overline{\mathcal{N}}_i$ enumerating all positive integers $n_{i,1}, n_{i,2}, \ldots \in H_{\mathcal{N}_i}$.

$\mathcal A$ contains

- only a finite number of operations and relations,
- an effectively enumerable set denoted by \mathbb{N} ,
- only two constants denoted by 0 and 1.

We use:

- $H_{\mathcal{M}} \cap \mathbb{N}$ (for the halting set $H_{\mathcal{M}}$ of $\mathcal{M} \in M_{\mathcal{A}}$) is
 - effectively enumerable
 - a halting set of a machine in $M_{\mathcal{A}}$.
- For any $\mathcal{O} \subseteq \mathbb{N}$, we can list $M_{\mathcal{A}}(\mathcal{O})$: $\mathcal{M}_{1}^{\mathcal{O}}, \mathcal{M}_{2}^{\mathcal{O}}, \dots$ (The index is the code of the corresponding program.)
- We can list $M_{\mathcal{A}}: \mathcal{N}_1, \mathcal{N}_2, \ldots$
- $\overline{\mathcal{N}}_i$ enumerating all positive integers $n_{i,1}, n_{i,2}, \ldots \in H_{\mathcal{N}_i}$.

\mathcal{A} contains

- only a finite number of operations and relations,
- an effectively enumerable set denoted by \mathbb{N} ,
- only two constants denoted by 0 and 1.

We use:

- $H_{\mathcal{M}} \cap \mathbb{N}$ (for the halting set $H_{\mathcal{M}}$ of $\mathcal{M} \in M_{\mathcal{A}}$) is
 - effectively enumerable
 - a halting set of a machine in $M_{\mathcal{A}}$.
- For any $\mathcal{O} \subseteq \mathbb{N}$, we can list $M_{\mathcal{A}}(\mathcal{O})$: $\mathcal{M}_{1}^{\mathcal{O}}, \mathcal{M}_{2}^{\mathcal{O}}, \dots$ (The index is the code of the corresponding program.)
- We can list $M_{\mathcal{A}}: \mathcal{N}_1, \mathcal{N}_2, \ldots$
- $\bar{\mathcal{N}}_i$ enumerating all positive integers $n_{i,1}, n_{i,2}, \ldots \in H_{\mathcal{N}_i}$.

\mathcal{A} contains

- only a finite number of operations and relations,
- an effectively enumerable set denoted by \mathbb{N} ,
- only two constants denoted by 0 and 1.

We use:

- $H_{\mathcal{M}} \cap \mathbb{N}$ (for the halting set $H_{\mathcal{M}}$ of $\mathcal{M} \in M_{\mathcal{A}}$) is
 - effectively enumerable
 - a halting set of a machine in $M_{\mathcal{A}}.$
- For any $\mathcal{O} \subseteq \mathbb{N}$, we can list $M_{\mathcal{A}}(\mathcal{O})$: $\mathcal{M}_{1}^{\mathcal{O}}, \mathcal{M}_{2}^{\mathcal{O}}, \dots$ (The index is the code of the corresponding program.)
- We can list $M_{\mathcal{A}}: \mathcal{N}_1, \mathcal{N}_2, \ldots$

• $\overline{\mathcal{N}}_i$ enumerating all positive integers $n_{i,1}, n_{i,2}, \ldots \in H_{\mathcal{N}_i}$.

\mathcal{A} contains

- only a finite number of operations and relations,
- an effectively enumerable set denoted by \mathbb{N} ,
- only two constants denoted by 0 and 1.

We use:

- $H_{\mathcal{M}} \cap \mathbb{N}$ (for the halting set $H_{\mathcal{M}}$ of $\mathcal{M} \in M_{\mathcal{A}}$) is
 - effectively enumerable
 - a halting set of a machine in $M_{\mathcal{A}}$.
- For any $\mathcal{O} \subseteq \mathbb{N}$, we can list $M_{\mathcal{A}}(\mathcal{O})$: $\mathcal{M}_{1}^{\mathcal{O}}, \mathcal{M}_{2}^{\mathcal{O}}, \dots$ (The index is the code of the corresponding program.)
- We can list $M_{\mathcal{A}}: \mathcal{N}_1, \mathcal{N}_2, \ldots$
- \overline{N}_i enumerating all positive integers $n_{i,1}, n_{i,2}, \ldots \in H_{N_i}$.

Let $\mathbb{A} = \bigcup_{s \ge 0} \mathbb{A}_s$ be defined in stages. $\mathbb{A}_0 = \emptyset$, $s \ge 0$.

 $I_{s} = \{ i \le s \mid W_{i,s} \cap \mathbb{A}_{s} = \emptyset \& \ (\exists x \in W_{i,s})(2i < x \& \ (\forall j \le i)(a(j,s) < x)) \}$

where, for any $j \leq s$,

If $I_s \neq \emptyset$, then let

$$\begin{array}{ll} i_s & = & \min I_s, \\ x_{i_s} & = & \min\{x \in W_{i_s,s} \mid 2i_s < x \ \& \ (\forall j \le i_s)(a(j,s) < x)\}, \\ \mathbb{A}_{s+1} & = & \begin{cases} \mathbb{A}_s & \text{if } I_s = \emptyset \\ \mathbb{A}_s \cup \{x_{i_s}\} & \text{otherwise.} \end{cases} \end{array}$$

Let
$$\mathbb{A} = \bigcup_{s>0} \mathbb{A}_s$$
 be defined in stages. $\mathbb{A}_0 = \emptyset$, $s \ge 0$.

$$I_{s} = \{ i \le s \mid W_{i,s} \cap \mathbb{A}_{s} = \emptyset \& (\exists x \in W_{i,s}) (2i < x \& (\forall j \le i) (a(j,s) < x)) \}$$

where, for any $j \leq s$,

•
$$a(j,s) \begin{cases} \text{greatest integer used in a query by} \\ \mathcal{M}_{j}^{\mathbb{A}_{s}} \text{ on } j \text{ within } s \text{ steps} & \text{if } \mathcal{M}_{j}^{\mathbb{A}_{s}}(j) \downarrow^{s}, \\ 0 & \text{if } \mathcal{M}_{j}^{\mathbb{A}_{s}}(j) \uparrow^{s}. \end{cases}$$

• $W_{i,s}$ is the set of integers computed by \overline{N}_i on *s* within *s* steps. If $I_s \neq \emptyset$, then let

$$\begin{array}{ll} i_s &=& \min I_s, \\ x_{i_s} &=& \min\{x \in W_{i_s,s} \mid 2i_s < x \ \& \ (\forall j \le i_s)(a(j,s) < x)\}, \\ \mathbb{A}_{s+1} &=& \begin{cases} \mathbb{A}_s & \text{if } I_s = \emptyset \\ \mathbb{A}_s \cup \{x_{i_s}\} & \text{otherwise.} \end{cases} \end{array}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - - - のへで

The properties of \mathbb{A} , for instance, for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdots; \leq)$:

- A is effectively enumerable by an machine in $M_{\mathcal{A}}.$
 - $\Rightarrow \mathbb{A} \preceq_1 \mathbb{H}_{\mathcal{A}}$
- \mathbb{A} and $\mathbb{N} \setminus \mathbb{A}$ are infinite.
- Conditions for lowness for all n > 0:
 (N_n) If M_n^{At}(n) ↓^t for infinitely many t, then M_n^A(n) ↓.
- \Rightarrow Conditions for simplicity for all n > 0: (P_n) If $W_n = \bigcup_{i \ge 1} W_{n,i}$ is infinite, then $\mathbb{A} \cap W_n \neq \emptyset$.

 $\Rightarrow \mathbb{A}^C \not\preceq_1 \mathbb{H}_{\mathcal{A}}.$

• $\mathbb{K}^{\mathbb{A}} \preceq_{T} \mathbb{K}^{\emptyset}$ where $\mathbb{K}^{\mathcal{O}} = \{k_{\mathcal{M}} \mid \mathcal{M} \in \mathsf{M}^{1}_{\mathcal{A}}(\mathcal{O}) \& \mathcal{M}(k_{\mathcal{M}}) \downarrow\}.$ $\Rightarrow \mathbb{A} \not\preccurlyeq_{T} \mathbb{H}_{\mathcal{A}}.$

The properties of \mathbb{A} , for instance, for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdots; \leq)$:

- $\bullet~\mathbb{A}$ is effectively enumerable by an machine in $M_{\mathcal{A}}.$
 - $\Rightarrow \mathbb{A} \preceq_1 \mathbb{H}_{\mathcal{A}}.$
- \mathbb{A} and $\mathbb{N} \setminus \mathbb{A}$ are infinite.
- Conditions for lowness for all n > 0: (N_n) If $\mathcal{M}_n^{\mathbb{A}_t}(n) \downarrow^t$ for infinitely many *t*, then $\mathcal{M}_n^{\mathbb{A}}(n) \downarrow$.
- \Rightarrow Conditions for simplicity for all n > 0: (P_n) If $W_n = \bigcup_{i \ge 1} W_{n,i}$ is infinite, then $\mathbb{A} \cap W_n \neq \emptyset$.

 $\Rightarrow \mathbb{A}^C \not\preceq_1 \mathbb{H}_{\mathcal{A}}.$

• $\mathbb{K}^{\mathbb{A}} \preceq_{T} \mathbb{K}^{\emptyset}$ where $\mathbb{K}^{\mathcal{O}} = \{k_{\mathcal{M}} \mid \mathcal{M} \in \mathsf{M}^{1}_{\mathcal{A}}(\mathcal{O}) \& \mathcal{M}(k_{\mathcal{M}}) \downarrow\}.$ $\Rightarrow \mathbb{A} \not\preceq_{T} \mathbb{H}_{\mathcal{A}}.$

The properties of \mathbb{A} , for instance, for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdots; \leq)$:

- $\bullet~\mathbb{A}$ is effectively enumerable by an machine in $M_{\mathcal{A}}.$
 - $\Rightarrow \mathbb{A} \preceq_1 \mathbb{H}_{\mathcal{A}}.$
- \mathbb{A} and $\mathbb{N} \setminus \mathbb{A}$ are infinite.
- Conditions for lowness for all n > 0: (N_n) If $\mathcal{M}_n^{\mathbb{A}_t}(n) \downarrow^t$ for infinitely many *t*, then $\mathcal{M}_n^{\mathbb{A}}(n) \downarrow$.
- \Rightarrow Conditions for simplicity for all n > 0: (P_n) If $W_n = \bigcup_{i \ge 1} W_{n,i}$ is infinite, then $\mathbb{A} \cap W_n \neq \emptyset$.

 $\Rightarrow \mathbb{A}^C \not\preceq_1 \mathbb{H}_{\mathcal{A}}.$

• $\mathbb{K}^{\mathbb{A}} \preceq_{T} \mathbb{K}^{\emptyset}$ where $\mathbb{K}^{\mathcal{O}} = \{k_{\mathcal{M}} \mid \mathcal{M} \in \mathsf{M}^{1}_{\mathcal{A}}(\mathcal{O}) \& \mathcal{M}(k_{\mathcal{M}}) \downarrow\}.$ $\Rightarrow \mathbb{A} \not\preceq_{T} \mathbb{H}_{\mathcal{A}}.$

The properties of \mathbb{A} , for instance, for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdots; \leq)$:

- $\bullet~\mathbb{A}$ is effectively enumerable by an machine in $M_{\mathcal{A}}.$
 - $\Rightarrow \mathbb{A} \preceq_1 \mathbb{H}_{\mathcal{A}}.$
- \mathbb{A} and $\mathbb{N} \setminus \mathbb{A}$ are infinite.
- Conditions for lowness for all n > 0:
 (N_n) If M_n^{A_t}(n) ↓^t for infinitely many t, then M_n^A(n) ↓.
- \Rightarrow Conditions for simplicity for all n > 0: (P_n) If $W_n = \bigcup_{i \ge 1} W_{n,i}$ is infinite, then $\mathbb{A} \cap W_n \neq \emptyset$.
- $\mathbb{K}^{\mathbb{A}} \preceq_{T} \mathbb{K}^{\emptyset}$ where $\mathbb{K}^{\mathcal{O}} = \{k_{\mathcal{M}} \mid \mathcal{M} \in \mathsf{M}^{1}_{\mathcal{A}}(\mathcal{O}) \& \mathcal{M}(k_{\mathcal{M}}) \downarrow\}.$ $\Rightarrow \mathbb{A} \not\preceq_{T} \mathbb{H}_{\mathcal{A}}.$

The properties of \mathbb{A} , for instance, for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdots; \leq)$:

- $\bullet~\mathbb{A}$ is effectively enumerable by an machine in $M_{\mathcal{A}}.$
 - $\Rightarrow \mathbb{A} \preceq_1 \mathbb{H}_{\mathcal{A}}.$
- \mathbb{A} and $\mathbb{N} \setminus \mathbb{A}$ are infinite.
- Conditions for lowness for all n > 0:
 (N_n) If M_n^{A_t}(n) ↓^t for infinitely many t, then M_n^A(n) ↓.
- \Rightarrow Conditions for simplicity for all n > 0: (P_n) If $W_n = \bigcup_{i \ge 1} W_{n,i}$ is infinite, then $\mathbb{A} \cap W_n \neq \emptyset$. $\Rightarrow \mathbb{A}^C \not\preceq_1 \mathbb{H}_{\mathcal{A}}$.
- $\mathbb{K}^{\mathbb{A}} \preceq_{T} \mathbb{K}^{\emptyset}$ where $\mathbb{K}^{\mathcal{O}} = \{k_{\mathcal{M}} \mid \mathcal{M} \in \mathsf{M}^{1}_{\mathcal{A}}(\mathcal{O}) \& \mathcal{M}(k_{\mathcal{M}}) \downarrow\}.$ $\Rightarrow \mathbb{A} \not\preceq_{T} \mathbb{H}_{\mathcal{A}}.$

The properties of \mathbb{A} , for instance, for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdots; \leq)$:

- $\bullet~\mathbb{A}$ is effectively enumerable by an machine in $M_{\mathcal{A}}.$
 - $\Rightarrow \mathbb{A} \preceq_1 \mathbb{H}_{\mathcal{A}}.$
- \mathbb{A} and $\mathbb{N} \setminus \mathbb{A}$ are infinite.
- Conditions for lowness for all n > 0:
 (N_n) If M_n^{A_t}(n) ↓^t for infinitely many t, then M_n^A(n) ↓.
- \Rightarrow Conditions for simplicity for all n > 0: (P_n) If $W_n = \bigcup_{i \ge 1} W_{n,i}$ is infinite, then $\mathbb{A} \cap W_n \neq \emptyset$. $\Rightarrow \mathbb{A}^C \not\preceq_1 \mathbb{H}_{\mathcal{A}}$.
- $\mathbb{K}^{\mathbb{A}} \preceq_{T} \mathbb{K}^{\emptyset}$ where $\mathbb{K}^{\mathcal{O}} = \{k_{\mathcal{M}} \mid \mathcal{M} \in \mathsf{M}^{1}_{\mathcal{A}}(\mathcal{O}) \& \mathcal{M}(k_{\mathcal{M}}) \downarrow\}.$ $\Rightarrow \mathbb{A} \not\preceq_{T} \mathbb{H}_{\mathcal{A}}.$

• Let
$$\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$$
 or $\mathcal{A} = (\mathbb{C}; 0, 1; +, -, \cdot; =)$ and
 $P = \mathbb{A}_{Alg},$
 $P = \bigcup_{n \geq 1} \{ \vec{x} \in \mathbb{R}^n \mid (\exists \vec{q} \in \mathbb{Q}^n) (q_1 + \sum_{i=1}^{n-1} q_{i-1} x_i = x_n) \},$
 $\mathbb{Z} \subseteq P$ or $\mathbb{Z} \cap P = \emptyset.$

Lemma

 $\mathbb{A} \not\preceq_T P.$

Corollary

 $\mathbb{H}_{\mathcal{A}} \not\preceq_T P.$

Remark

Similar constructions are also possible, if all problems which are semi-decidable by Turing machines are decidable over A.

• $P \neq_T \mathbb{H}_{\mathcal{A}}$ holds for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \chi_{\mathbb{H}_{TM}}, \phi; \leq)$ with $\phi(x) = \pi$ and $\pi \mathbb{Z} \subseteq P$ (where $\mathbb{A} \subseteq \pi \mathbb{Z}$) and so on.

• Let
$$\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$$
 or $\mathcal{A} = (\mathbb{C}; 0, 1; +, -, \cdot; =)$ and
 $P = \mathbb{A}_{Alg},$
 $P = \bigcup_{n \geq 1} \{ \vec{x} \in \mathbb{R}^n \mid (\exists \vec{q} \in \mathbb{Q}^n) (q_1 + \sum_{i=1}^{n-1} q_{i-1} x_i = x_n) \},$
 $\mathbb{Z} \subseteq P$ or $\mathbb{Z} \cap P = \emptyset.$

Lemma

 $\mathbb{A} \not\preceq_T P.$

Corollary

 $\mathbb{H}_{\mathcal{A}} \not\preceq_T P.$

Remark

Similar constructions are also possible, if all problems which are semi-decidable by Turing machines are decidable over A.

• $P \not\preceq_T \mathbb{H}_{\mathcal{A}}$ holds for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \chi_{\mathbb{H}_{TM}}, \phi; \leq)$ with $\phi(x) = \pi$ and $\pi \mathbb{Z} \subseteq P$ (where $\mathbb{A} \subseteq \pi \mathbb{Z}$) and so on.

▲□▶ ▲ 畳 ▶ ▲ 置 ▶ ▲ 置 ● 9 Q @

• Let
$$\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$$
 or $\mathcal{A} = (\mathbb{C}; 0, 1; +, -, \cdot; =)$ and
 $P = \mathbb{A}_{Alg},$
 $P = \bigcup_{n \geq 1} \{ \vec{x} \in \mathbb{R}^n \mid (\exists \vec{q} \in \mathbb{Q}^n) (q_1 + \sum_{i=1}^{n-1} q_{i-1} x_i = x_n) \},$
 $\mathbb{Z} \subseteq P$ or $\mathbb{Z} \cap P = \emptyset.$

Lemma

 $\mathbb{A} \not\preceq_T P.$

Corollary

 $\mathbb{H}_{\mathcal{A}} \not\preceq_T P.$

Remark

Similar constructions are also possible, if all problems which are semi-decidable by Turing machines are decidable over A.

• $P \not\preceq_T \mathbb{H}_{\mathcal{A}}$ holds for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \chi_{\mathbb{H}_{TM}}, \phi; \leq)$ with $\phi(x) = \pi$ and $\pi \mathbb{Z} \subseteq P$ (where $\mathbb{A} \subseteq \pi \mathbb{Z}$) and so on.

・ロ・・一部・・用・・用・ しょう

• Let
$$\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$$
 or $\mathcal{A} = (\mathbb{C}; 0, 1; +, -, \cdot; =)$ and
 $P = \mathbb{A}_{Alg},$
 $P = \bigcup_{n \geq 1} \{ \vec{x} \in \mathbb{R}^n \mid (\exists \vec{q} \in \mathbb{Q}^n) (q_1 + \sum_{i=1}^{n-1} q_{i-1} x_i = x_n) \},$
 $\mathbb{Z} \subseteq P$ or $\mathbb{Z} \cap P = \emptyset.$

Lemma

 $\mathbb{A} \not\preceq_T P.$

Corollary

 $\mathbb{H}_{\mathcal{A}} \not\preceq_T P.$

Remark

Similar constructions are also possible, if all problems which are semi-decidable by Turing machines are decidable over A.

• $P \not\preceq_T \mathbb{H}_{\mathcal{A}}$ holds for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \chi_{\mathbb{H}_{TM}}, \phi; \leq)$ with $\phi(x) = \pi$ and $\pi \mathbb{Z} \subseteq P$ (where $\mathbb{A} \subseteq \pi \mathbb{Z}$) and so on.

• Let
$$\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$$
 or $\mathcal{A} = (\mathbb{C}; 0, 1; +, -, \cdot; =)$ and
 $P = \mathbb{A}_{Alg},$
 $P = \bigcup_{n \geq 1} \{ \vec{x} \in \mathbb{R}^n \mid (\exists \vec{q} \in \mathbb{Q}^n) (q_1 + \sum_{i=1}^{n-1} q_{i-1} x_i = x_n) \},$
 $\mathbb{Z} \subseteq P$ or $\mathbb{Z} \cap P = \emptyset.$

Lemma

 $\mathbb{A} \not\preceq_T P.$

Corollary

 $\mathbb{H}_{\mathcal{A}} \not\preceq_T P.$

Remark

Similar constructions are also possible, if all problems which are semi-decidable by Turing machines are decidable over A.

• $P \not\preceq_T \mathbb{H}_{\mathcal{A}}$ holds for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \chi_{\mathbb{H}_{TM}}, \phi; \leq)$ with $\phi(x) = \pi$ and $\pi \mathbb{Z} \subseteq P$ (where $\mathbb{A} \subseteq \pi \mathbb{Z}$) and so on.

Lemma

$\mathbb{A} \not\preceq_T P$ for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.

Proof: Let us assume that \mathbb{A} is decidable by a machine in $M_{\mathcal{A}}(P)$.

- $\Rightarrow (\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathsf{M}_{\mathcal{A}}(P)$.
- \mathcal{M} can be modified:
 - The integers are enumerated and compared with the input.
 - If the input is a positive integer, then *M* can be simulated by a machine in M_A since
 - all queries of *M* are answered in the positive,
 - each order test can be simulated by means of equality tests.
- $\bullet \ \Rightarrow (\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N} \text{ is semi-decidable by a machine in } M_{\mathcal{A}}.$
- \Rightarrow ($\mathbb{R} \setminus \mathbb{A}$) $\cap \mathbb{N} = W_j$ for some j.
- \Rightarrow By definition of \mathbb{A} the assumption is wrong.

Lemma

$\mathbb{A} \not\preceq_T P$ for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.

Proof: Let us assume that \mathbb{A} is decidable by a machine in $M_{\mathcal{A}}(P)$.

• \Rightarrow $(\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathsf{M}_{\mathcal{A}}(P)$.

M can be modified:

- The integers are enumerated and compared with the input
 If the input is a positive integer, then *M* can be simulated by a machine in M_A since
 - all queries of *M* are answered in the positive,
 - each order test can be simulated by means of equality tests.
- $\bullet \ \Rightarrow (\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N} \text{ is semi-decidable by a machine in } M_{\mathcal{A}}.$
- \Rightarrow ($\mathbb{R} \setminus \mathbb{A}$) $\cap \mathbb{N} = W_j$ for some j.
- \Rightarrow By definition of \mathbb{A} the assumption is wrong.

Lemma

$\mathbb{A} \not\preceq_T P$ for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.

Proof: Let us assume that \mathbb{A} is decidable by a machine in $M_{\mathcal{A}}(P)$.

- $\Rightarrow (\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathsf{M}_{\mathcal{A}}(P)$.
- *M* can be modified:
 - The integers are enumerated and compared with the input.
 - If the input is a positive integer, then *M* can be simulated by a machine in M_A since
 - all queries of *M* are answered in the positive,
 - each order test can be simulated by means of equality tests.
- $\bullet \ \Rightarrow (\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N} \text{ is semi-decidable by a machine in } M_{\mathcal{A}}.$
- \Rightarrow $(\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N} = W_j$ for some j.
- \Rightarrow By definition of \mathbb{A} the assumption is wrong.
Lemma

$$\mathbb{A} \not\preceq_T P$$
 for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.

- \Rightarrow $(\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathsf{M}_{\mathcal{A}}(P)$.
- \mathcal{M} can be modified:
 - The integers are enumerated and compared with the input.
 - If the input is a positive integer, then ${\cal M}$ can be simulated by a machine in $M_{{\cal A}}$ since
 - all queries of *M* are answered in the positive,
 - each order test can be simulated by means of equality tests.
- $\bullet \ \Rightarrow (\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N} \text{ is semi-decidable by a machine in } M_{\mathcal{A}}.$
- \Rightarrow ($\mathbb{R} \setminus \mathbb{A}$) $\cap \mathbb{N} = W_j$ for some j.
- \Rightarrow By definition of \mathbb{A} the assumption is wrong.

Lemma

$$\mathbb{A} \not\preceq_T P$$
 for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.

- \Rightarrow $(\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathsf{M}_{\mathcal{A}}(P)$.
- \mathcal{M} can be modified:
 - The integers are enumerated and compared with the input.
 - If the input is a positive integer, then ${\cal M}$ can be simulated by a machine in $M_{\cal A}$ since
 - all queries of \mathcal{M} are answered in the positive,
 - each order test can be simulated by means of equality tests.
- $\bullet \ \Rightarrow (\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N} \text{ is semi-decidable by a machine in } M_{\mathcal{A}}.$
- \Rightarrow ($\mathbb{R} \setminus \mathbb{A}$) $\cap \mathbb{N} = W_j$ for some j.
- \Rightarrow By definition of \mathbb{A} the assumption is wrong.

Lemma

$$\mathbb{A} \not\preceq_T P$$
 for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.

- \Rightarrow $(\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathsf{M}_{\mathcal{A}}(P)$.
- \mathcal{M} can be modified:
 - The integers are enumerated and compared with the input.
 - If the input is a positive integer, then ${\cal M}$ can be simulated by a machine in $M_{\cal A}$ since
 - $\bullet~$ all queries of ${\cal M}$ are answered in the positive,
 - each order test can be simulated by means of equality tests.
- $\bullet \ \Rightarrow (\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N} \text{ is semi-decidable by a machine in } M_{\mathcal{A}}.$
- \Rightarrow ($\mathbb{R} \setminus \mathbb{A}$) $\cap \mathbb{N} = W_j$ for some j.
- \Rightarrow By definition of \mathbb{A} the assumption is wrong.

Lemma

$$\mathbb{A} \not\preceq_T P$$
 for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.

- \Rightarrow $(\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathsf{M}_{\mathcal{A}}(P)$.
- \mathcal{M} can be modified:
 - The integers are enumerated and compared with the input.
 - If the input is a positive integer, then ${\cal M}$ can be simulated by a machine in $M_{\cal A}$ since
 - all queries of $\ensuremath{\mathcal{M}}$ are answered in the positive,
 - each order test can be simulated by means of equality tests.
- $\bullet \ \Rightarrow (\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N} \text{ is semi-decidable by a machine in } M_{\mathcal{A}}.$
- \Rightarrow ($\mathbb{R} \setminus \mathbb{A}$) $\cap \mathbb{N} = W_j$ for some j.
- \Rightarrow By definition of \mathbb{A} the assumption is wrong.

Lemma

$$\mathbb{A} \not\preceq_T P$$
 for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.

- $\Rightarrow (\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathsf{M}_{\mathcal{A}}(P)$.
- \mathcal{M} can be modified:
 - The integers are enumerated and compared with the input.
 - If the input is a positive integer, then ${\cal M}$ can be simulated by a machine in $M_{\cal A}$ since
 - all queries of $\ensuremath{\mathcal{M}}$ are answered in the positive,
 - each order test can be simulated by means of equality tests.
- $\bullet \ \Rightarrow (\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N} \text{ is semi-decidable by a machine in } M_{\mathcal{A}}.$
- \Rightarrow ($\mathbb{R} \setminus \mathbb{A}$) $\cap \mathbb{N} = W_j$ for some j.
- \Rightarrow By definition of \mathbb{A} the assumption is wrong.

Lemma

$$\mathbb{A} \not\preceq_T P$$
 for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.

Proof: Let us assume that \mathbb{A} is decidable by a machine in $M_{\mathcal{A}}(P)$.

- \Rightarrow $(\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathsf{M}_{\mathcal{A}}(P)$.
- \mathcal{M} can be modified:
 - The integers are enumerated and compared with the input.
 - If the input is a positive integer, then ${\cal M}$ can be simulated by a machine in $M_{\cal A}$ since
 - all queries of $\ensuremath{\mathcal{M}}$ are answered in the positive,
 - each order test can be simulated by means of equality tests.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- $\bullet \ \Rightarrow (\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N} \text{ is semi-decidable by a machine in } M_{\mathcal{A}}.$
- \Rightarrow ($\mathbb{R} \setminus \mathbb{A}$) $\cap \mathbb{N} = W_j$ for some j.
- \Rightarrow By definition of \mathbb{A} the assumption is wrong.

Lemma

$$\mathbb{A} \not\preceq_T P$$
 for $\mathcal{A} = (\mathbb{R}; 0, 1; +, -, \cdot; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.

- $\Rightarrow (\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathsf{M}_{\mathcal{A}}(P)$.
- \mathcal{M} can be modified:
 - The integers are enumerated and compared with the input.
 - If the input is a positive integer, then ${\cal M}$ can be simulated by a machine in $M_{\cal A}$ since
 - all queries of $\ensuremath{\mathcal{M}}$ are answered in the positive,
 - each order test can be simulated by means of equality tests.
- $\bullet \ \Rightarrow (\mathbb{R} \setminus \mathbb{A}) \cap \mathbb{N} \text{ is semi-decidable by a machine in } M_{\mathcal{A}}.$
- \Rightarrow ($\mathbb{R} \setminus \mathbb{A}$) $\cap \mathbb{N} = W_j$ for some j.
- \Rightarrow By definition of \mathbb{A} the assumption is wrong.

Theorem

Let \mathcal{A} be a structure containing only a finite number of constants and relations, the operations f_1, \ldots, f_m of arities μ_1, \ldots, μ_m , and an effectively enumerable set $N \subseteq U$.

Let
$$F_0 = E_0 = N$$
, $F_i = \bigcup_{j \le i} E_j$ where

$$E_{i+1} = \bigcup_{k=1}^{m} \{f_k(n_1, \ldots, n_{\mu_k}) \mid (n_1, \ldots, n_{\mu_k}) \in F_i^{\mu_k}\},\$$

and let *N* be decidable on $E =_{df} \bigcup_{i \ge 0} E_i$.

Moreover, let (a) or (b) be given.

(a) $P = \bigcup_{i \leq n} P_{i,1} \times \cdots \times P_{i,j_i}$ with $E \subseteq P_{i,k} \subseteq U$ for all $i \leq n, k \leq j_i$. (b) $P \cap E^{\infty}$ is decidable for all inputs in E^{∞} .

Then, there is a semi-decidable $\mathbb{A} \subset N$ with $\mathbb{A} \not\preceq_T P$ and thus $\mathbb{H}_{\mathcal{A}} \not\preceq_T P$.

The examples show that extensive knowledge of classical recursion theory is a fundamental condition for a closer examination of algebraic computation models.

Thank you very much for your attention!

