Computation over Algebraic Structures and the Turing Reduction

Christine Gaßner
University Greifswald
CCC 2012 Trier

Computation over Algebraic Structures
Introduction
on a high abstraction level

- Meaning:
- Including:

Computation over Algebraic Structures

- Subject:

BSS RAM model over any structure - a framework for study of

- the abstract computability by machines over several structures
- the uniform decidability over algebraic structures
- the reducibility of problems
on a high abstraction level
- Meaning:
- Including:
- the Turing machine
- the uniform BSS model of computation over the real

Computation over Algebraic Structures

- Subject:

BSS RAM model over any structure - a framework for study of

- the abstract computability by machines over several structures
- the uniform decidability over algebraic structures
- the reducibility of problems
on a high abstraction level
- Meaning:
- allow to analyze the complexity of algorithms
- better understanding the principles of object-oriented programming such as the encapsulation and the concept of virtual machines
- improve the quality and the design of algorithms for computers
- Including:
\qquad
- the uniform BSS model of computation over the reals

Computation over Algebraic Structures

- Subject:

BSS RAM model over any structure - a framework for study of

- the abstract computability by machines over several structures
- the uniform decidability over algebraic structures
- the reducibility of problems
on a high abstraction level
- Meaning:
- allow to analyze the complexity of algorithms
- better understanding the principles of object-oriented programming such as the encapsulation and the concept of virtual machines
- improve the quality and the design of algorithms for computers
- Including:
- several types of register machines
- the Turing machine
- the uniform BSS model of computation over the reals

Outline

- The model
- machines o ver algebraic structures
- Turing reductions
- computed by machines over algebraic structures
- A hierarchy
- derived from the arithmetical hierarchy
- A first characterization of the class Δ_{2}^{0}
- the Limit Lemma
- The transfer of a further theorem from the Recursion Theory
- a generalization of the Friedberg-Muchnik Theorem

Outline

- The model
- machines over algebraic structures
- Turing reductions
- computed by machines over algebraic structures
- A hierarchy
- derived from the arithmetical hierarchy
- A first characterization of the class Δ_{2}^{0}
- the Limit Lemma
- The transfer of a further theorem from the Recursion Theory
- a generalization of the Friedberg-Muchnik Theorem

Computation over Algebraic Structures

The Allowed Instructions

Computation over $\mathcal{A}=\left(U ;\left(d_{j}\right)_{j \in J_{0}} ;\left(f_{j}\right)_{j \in J_{1}} ;\left(R_{j}\right)_{j \in J_{2}},=\right)$.

- Computation instructions:
- Branching instructions:

```
l: if Z}\mp@subsup{Z}{i}{}=\mp@subsup{Z}{i}{}\mathrm{ then goto }l\mathrm{ else goto l}\mp@subsup{l}{2}{}
l: if }\mp@subsup{R}{k}{}(\mp@subsup{Z}{\mp@subsup{j}{1}{}}{},\ldots,\mp@subsup{Z}{\mp@subsup{j}{\mp@subsup{n}{k}{}}{}}{})\mathrm{ then goto }\mp@subsup{l}{1}{}\mathrm{ else goto }\mp@subsup{l}{2}{}
```

- Copy instructions:

$$
l: Z_{I_{i}}:=Z_{I_{k}},
$$

- Index instructions:

```
    l: Ij:=1,
    l:I}\mp@subsup{I}{j}{\prime}:=\mp@subsup{I}{j}{}+1
    l: if }\mp@subsup{I}{j}{}=\mp@subsup{I}{k}{}\mathrm{ then goto l}\mp@subsup{l}{1}{}\mathrm{ else goto }\mp@subsup{l}{2}{}\mathrm{ .
```


Computation over Algebraic Structures

The Allowed Instructions

Computation over $\mathcal{A}=\left(U ;\left(d_{j}\right)_{j \in J_{0}} ;\left(f_{j}\right)_{j \in J_{1}} ;\left(R_{j}\right)_{j \in J_{2}},=\right)$.

- Computation instructions:

$$
\begin{aligned}
& \left.l: Z_{j}:=f_{k}\left(Z_{j_{1}}, \ldots, Z_{j_{m_{k}}}\right) \quad \text { (e.g. } l: Z_{j}:=Z_{j_{1}}+Z_{j_{2}}\right), \\
& l: Z_{j}:=d_{k},
\end{aligned}
$$

- Branching instructions:
l : if $Z_{i}=Z_{j}$ then goto l_{1} else goto l_{2},
l : if $R_{k}\left(Z_{j_{1}}, \ldots, Z_{j_{n_{k}}}\right)$ then goto l_{1} else goto l_{2},
- Copy instructions:
$l: Z_{I_{j}}:=Z_{I_{k}}$,
- Index instructions:

```
    l: I; := 1,
    l: I I := I I + 1,
    l: if }\mp@subsup{I}{j}{}=\mp@subsup{I}{k}{}\mathrm{ then goto }\mp@subsup{l}{1}{}\mathrm{ else goto }\mp@subsup{l}{2}{}\mathrm{ .
```


Computation over Algebraic Structures

The Allowed Instructions

Computation over $\mathcal{A}=\left(U ;\left(d_{j}\right)_{j \in J_{0}} ;\left(f_{j}\right)_{j \in J_{1}} ;\left(R_{j}\right)_{j \in J_{2}},=\right)$.

- Computation instructions:

$$
\begin{aligned}
& \left.l: Z_{j}:=f_{k}\left(Z_{j_{1}}, \ldots, Z_{j_{m_{k}}}\right) \quad \text { (e.g. } l: Z_{j}:=Z_{j_{1}}+Z_{j_{2}}\right), \\
& l: Z_{j}:=d_{k},
\end{aligned}
$$

- Branching instructions:
l : if $Z_{i}=Z_{j}$ then goto l_{1} else goto l_{2},
l : if $R_{k}\left(Z_{j_{1}}, \ldots, Z_{j_{n_{k}}}\right)$ then goto l_{1} else goto l_{2},
- Copy instructions:
$l: Z_{I_{j}}:=Z_{I_{k}}$,
- Index instructions:
$l: I_{j}:=1$,
$l: I_{j}:=I_{j}+1$,
l : if $I_{j}=I_{k}$ then goto l_{1} else goto l_{2}.

Computation over Algebraic Structures

The Allowed Instructions

Computation over $\mathcal{A}=\left(U ;\left(d_{j}\right)_{j \in J_{0}} ;\left(f_{j}\right)_{j \in J_{1}} ;\left(R_{j}\right)_{j \in J_{2}},=\right)$.

- Computation instructions:

$$
\begin{aligned}
& \left.l: Z_{j}:=f_{k}\left(Z_{j_{1}}, \ldots, Z_{j_{m_{k}}}\right) \quad \text { (e.g. } l: Z_{j}:=Z_{j_{1}}+Z_{j_{2}}\right), \\
& l: Z_{j}:=d_{k},
\end{aligned}
$$

- Branching instructions:
l : if $Z_{i}=Z_{j}$ then goto l_{1} else goto l_{2},
l : if $R_{k}\left(Z_{j_{1}}, \ldots, Z_{j_{n_{k}}}\right)$ then goto l_{1} else goto l_{2},
- Copy instructions:

$$
l: Z_{I_{j}}:=Z_{I_{k}},
$$

- Index instructions:
$l: I_{j}:=1$,
$l: I_{j}:=I_{j}+1$,
$l:$ if $I_{j}=I_{k}$ then goto l_{1} else goto l_{2}.

Computation over Algebraic Structures
The Machines

- Input and output space: $U^{\infty}={ }_{\mathrm{df}} \bigcup_{i>1} U^{i}$

$$
\begin{aligned}
& Z_{1}:=x_{1} ; Z_{2}:=x_{2} ; \ldots ; Z_{n}:=x_{n} \\
& Z_{n+1}:=x_{n} ; Z_{n+2}:=x_{n} ; \ldots \\
& I_{1}:=n
\end{aligned}
$$

- Output of $Z_{1}, \ldots, Z_{I_{1}}$.
- $\mathrm{M}_{\mathcal{A}} \quad-$ machines over \mathcal{A}
- $M_{A}(\mathcal{O})$ - machines using $\mathcal{O} \subseteq U^{\infty}$ as oracle

Oracle instructions:

$$
l: \text { if }\left(Z_{1}, \ldots, Z_{I_{1}}\right) \in O \text { then goto } l_{1} \text { else goto } l_{2} \text {. }
$$

Computation over Algebraic Structures

The Machines

- Input and output space: $U^{\infty}={ }_{\mathrm{df}} \bigcup_{i \geq 1} U^{i}$
- Output of $Z_{1}, \ldots, Z_{I_{1}}$.
- $\mathrm{M}_{\mathcal{A}}$ - machines over \mathcal{A}
- $\mathrm{M}_{\mathcal{A}}(\mathcal{O})$ - machines using $\mathcal{O} \subseteq U^{\infty}$ as oracle

Oracle instructions:

$$
l: \text { if }\left(Z_{1}, \ldots, Z_{I_{1}}\right) \in \mathcal{O} \text { then goto } l_{1} \text { else goto } l_{2} \text {. }
$$

Computation over Algebraic Structures

The Machines

- Input and output space: $U^{\infty}={ }_{\mathrm{df}} \bigcup_{i \geq 1} U^{i}$
- Input of $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in U^{\infty}$:

$$
\begin{aligned}
& Z_{1}:=x_{1} ; Z_{2}:=x_{2} ; \ldots ; Z_{n}:=x_{n} ; \\
& Z_{n+1}:=x_{n} ; Z_{n+2}:=x_{n} ; \ldots \\
& I_{1}:=n ;
\end{aligned}
$$

- Output of $Z_{1}, \ldots, Z_{I_{1}}$.
- $\mathrm{M}_{\mathcal{A}}$ - machines over \mathcal{A}
- $\mathrm{M}_{1}(\mathcal{O})$ - machines using $\mathcal{O} \subseteq U^{\infty}$ as oracle

Oracle instructions:

$$
l: \text { if }\left(Z_{1}, \ldots, Z_{I_{1}}\right) \in \mathcal{O} \text { then goto } l_{1} \text { else goto } l_{2} \text {. }
$$

Computation over Algebraic Structures

The Machines

- Input and output space: $U^{\infty}={ }_{\mathrm{df}} \bigcup_{i \geq 1} U^{i}$
- Input of $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in U^{\infty}$:

$$
\begin{aligned}
& Z_{1}:=x_{1} ; Z_{2}:=x_{2} ; \ldots ; Z_{n}:=x_{n} \\
& Z_{n+1}:=x_{n} ; Z_{n+2}:=x_{n} ; \ldots \\
& I_{1}:=n
\end{aligned}
$$

- Output of $Z_{1}, \ldots, Z_{I_{1}}$.
- $\mathrm{M}_{\mathcal{A}}$ - machines over \mathcal{A}
- $\mathrm{M}_{\mathcal{A}}(\mathcal{O})$ - machines using $\mathcal{O} \subseteq U^{\infty}$ as oracle

Oracle instructions:

$$
l: \text { if }\left(Z_{1}, \ldots, Z_{I_{1}}\right) \in \mathcal{O} \text { then goto } l_{1} \text { else goto } l_{2} \text {. }
$$

Computation over Algebraic Structures

The Machines

- Input and output space: $U^{\infty}={ }_{\mathrm{df}} \bigcup_{i \geq 1} U^{i}$
- Input of $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in U^{\infty}$:

$$
\begin{aligned}
& Z_{1}:=x_{1} ; Z_{2}:=x_{2} ; \ldots ; Z_{n}:=x_{n} ; \\
& Z_{n+1}:=x_{n} ; Z_{n+2}:=x_{n} ; \ldots \\
& I_{1}:=n ;
\end{aligned}
$$

- Output of $Z_{1}, \ldots, Z_{I_{1}}$.
- $\mathrm{M}_{\mathcal{A}}$ - machines over \mathcal{A}
- $\mathrm{M}_{\mathcal{A}}(\mathcal{O})$ - machines using $\mathcal{O} \subseteq U^{\infty}$ as oracle

Oracle instructions:
l : if $\left(Z_{1}, \ldots, Z_{I_{1}}\right) \in \mathcal{O}$ then goto l_{1} else goto l_{2}.

Computation over Algebraic Structures

The Halting Problem

```
- where
    M(\vec{x})\downarrow\hat{=}}\mathcal{M}\mathrm{ halts on }\vec{x
- }\mp@subsup{H}{\mathcal{A}}{}\in\mp@subsup{\textrm{REC}}{\mathcal{A}}{\prime}\mathrm{ if }\mathcal{\Lambda}\mathrm{ is a structure of finite signature
    H}\mp@subsup{\mathcal{A}}{\mathcal{A}}{&}\mp@subsup{\textrm{DEC}}{\mathcal{A}}{
                                    REC}\mp@subsup{\mathcal{A}}{\mathcal{A}}{}\mathrm{ - recognizable (semi-decidable) problems
DEC}\mathcal{A}\mathrm{ - decidable problems
- }\mp@subsup{\mathbb{H}}{\mathcal{A}}{\mathcal{O}}={(\vec{x}.\mp@subsup{c}{\mathcal{M}}{})|\vec{x}\in\mp@subsup{U}{}{\infty}&\mathcal{M}\in\mp@subsup{M}{\mathcal{A}}{(O) & \mathcal{M}(\vec{x})\downarrow}
- }\mp@subsup{\mathbb{H}}{\mathcal{A}}{\mathcal{O}}\not\in\mp@subsup{\textrm{DEC}}{\mathcal{A}}{\mathcal{O}
```


Computation over Algebraic Structures

The Halting Problem

- $\mathbb{H}_{\mathcal{A}}=\left\{\left(\vec{x} . c_{\mathcal{M}}\right) \mid \vec{x} \in U^{\infty} \& \mathcal{M} \in \mathrm{M}_{\mathcal{A}} \& \mathcal{M}(\vec{x}) \downarrow\right\}$
- where

$$
\begin{aligned}
\vec{x} & =\left(x_{1}, \ldots, x_{n}\right) \\
c_{\mathcal{M}} & =\operatorname{code}(\mathcal{M})=\left(s_{1}, \ldots, s_{m}\right) \\
\left(\vec{x} \cdot c_{\mathcal{M}}\right) & =\left(x_{1}, \ldots, x_{n}, s_{1}, \ldots, s_{m}\right) \\
\mathcal{M}(\vec{x}) \downarrow & \hat{=} \mathcal{M} \text { halts on } \vec{x}
\end{aligned}
$$

- $\mathbb{H}_{\mathcal{A}} \in \mathrm{REC}_{\mathcal{A}}$ if \mathcal{A} is a structure of finite signature $\mathbb{H}_{\mathcal{A}} \notin \mathrm{DEC}_{\mathcal{A}}$

REC $_{4}$ - recognizable (semi-decidable) problems $\mathrm{DEC}_{\mathcal{A}}$ - decidable problems

- $\mathbb{H}_{\mathcal{A}}^{\mathcal{O}}=\left\{\left(\vec{x} . c_{\mathcal{M}}\right) \mid \vec{x} \in U^{\infty} \& \mathcal{M} \in \mathrm{M}_{\mathcal{A}}(\mathcal{O}) \& \mathcal{M}(\vec{x}) \downarrow\right\}$
- $\mathbb{H H}_{\mathcal{A}} \notin \mathrm{DEC}_{\mathcal{A}}^{\mathcal{O}}$

Computation over Algebraic Structures

The Halting Problem

- $\mathbb{H}_{\mathcal{A}}=\left\{\left(\vec{x} . c_{\mathcal{M}}\right) \mid \vec{x} \in U^{\infty} \& \mathcal{M} \in \mathrm{M}_{\mathcal{A}} \& \mathcal{M}(\vec{x}) \downarrow\right\}$
- where

$$
\begin{aligned}
\vec{x} & =\left(x_{1}, \ldots, x_{n}\right) \\
c_{\mathcal{M}} & =\operatorname{code}(\mathcal{M})=\left(s_{1}, \ldots, s_{m}\right) \\
\left(\vec{x} \cdot c_{\mathcal{M}}\right) & =\left(x_{1}, \ldots, x_{n}, s_{1}, \ldots, s_{m}\right) \\
\mathcal{M}(\vec{x}) \downarrow & \hat{=} \mathcal{M} \text { halts on } \vec{x}
\end{aligned}
$$

- $\mathbb{H}_{\mathcal{A}} \in \mathrm{REC}_{\mathcal{A}}$ if \mathcal{A} is a structure of finite signature $\mathbb{H}_{\mathcal{A}} \notin \mathrm{DEC}_{\mathcal{A}}$
$\mathrm{REC}_{\mathcal{A}}$ - recognizable (semi-decidable) problems
$\mathrm{DEC}_{\mathcal{A}}$ - decidable problems
- $\mathbb{H}_{\mathcal{A}}^{\mathcal{O}}=\left\{\left(\vec{x} \cdot c_{\mathcal{M}}\right) \mid \vec{x} \in U^{\infty} \& \mathcal{M} \in \mathrm{M}_{\mathcal{A}}(\mathcal{O}) \& \mathcal{M}(\vec{x}) \downarrow\right\}$
- $\mathbb{H}_{\mathcal{A}}^{\mathcal{O}} \notin \mathrm{DEC}_{\mathcal{A}}^{\mathcal{O}}$

Computation over Algebraic Structures

The Halting Problem

- $\mathbb{H}_{\mathcal{A}}=\left\{\left(\vec{x} . c_{\mathcal{M}}\right) \mid \vec{x} \in U^{\infty} \& \mathcal{M} \in \mathrm{M}_{\mathcal{A}} \& \mathcal{M}(\vec{x}) \downarrow\right\}$
- where

$$
\begin{aligned}
\vec{x} & =\left(x_{1}, \ldots, x_{n}\right) \\
c_{\mathcal{M}} & =\operatorname{code}(\mathcal{M})=\left(s_{1}, \ldots, s_{m}\right) \\
\left(\vec{x} \cdot c_{\mathcal{M}}\right) & =\left(x_{1}, \ldots, x_{n}, s_{1}, \ldots, s_{m}\right) \\
\mathcal{M}(\vec{x}) \downarrow & \hat{=} \mathcal{M} \text { halts on } \vec{x}
\end{aligned}
$$

- $\mathbb{H}_{\mathcal{A}} \in \mathrm{REC}_{\mathcal{A}}$ if \mathcal{A} is a structure of finite signature $\mathbb{H}_{\mathcal{A}} \notin \mathrm{DEC}_{\mathcal{A}}$
$\mathrm{REC}_{\mathcal{A}}$ - recognizable (semi-decidable) problems
$\mathrm{DEC}_{\mathcal{A}}$ - decidable problems
- $\mathbb{H}_{\mathcal{A}}^{\mathcal{O}}=\left\{\left(\vec{x} . c_{\mathcal{M}}\right) \mid \vec{x} \in U^{\infty} \& \mathcal{M} \in \mathrm{M}_{\mathcal{A}}(\mathcal{O}) \& \mathcal{M}(\vec{x}) \downarrow\right\}$
- $\mathbb{H}_{\mathcal{A}}^{\mathcal{O}} \notin \mathrm{DEC}_{\mathcal{A}}^{\mathcal{O}}$

The Turing Reduction

 over Structures \mathcal{A}```
P,Q\subseteq}\mp@subsup{\bigcup}{i>1}{}\mp@subsup{U}{}{i
P\preceqT Q P is easier than Q,
P}\mathrm{ is decidable by a m
P is strictly easier than Q,
O}\mathrm{ cannot be decided by a machine in }\mp@subsup{M}{\mathcal{A}}{(P)}\mathrm{ .
- \(\Rightarrow\) For the Halting Problem:
\[
\begin{aligned}
P \in \mathrm{REC}_{\mathcal{A}} & \Rightarrow P \preceq_{1} \mathbb{H}_{\mathcal{A}}(\text { one-one reduction over } \mathcal{A}) \\
& \Rightarrow P \preceq_{T} \mathbb{H}_{\mathcal{A}}
\end{aligned}
\]
```


## The Turing Reduction

- $P, Q \subseteq \bigcup_{i \geq 1} U^{i}$
$P \preceq_{T} Q \quad P$ is easier than $Q$,
$P$ is decidable by a machine in $\mathrm{M}_{\mathcal{A}}(Q)$.
$P \npreccurlyeq_{T} Q \quad P$ is strictly easier than $Q$,
$Q$ cannot be decided by a machine in $\mathrm{M}_{\mathcal{A}}(P)$.
- $\Rightarrow$ For the Halting Problem:



## The Turing Reduction

- $P, Q \subseteq \bigcup_{i \geq 1} U^{i}$

$$
\begin{aligned}
P \preceq_{T} Q \quad & P \text { is easier than } Q, \\
& P \text { is decidable by a machine in } \mathrm{M}_{\mathcal{A}}(Q) .
\end{aligned}
$$

$P \npreccurlyeq_{T} Q \quad P$ is strictly easier than $Q$,
$Q$ cannot be decided by a machine in $\mathrm{M}_{\mathcal{A}}(P)$.

- $\Rightarrow$ For the Halting Problem:

$$
\begin{aligned}
P \in \operatorname{REC}_{\mathcal{A}} & \Rightarrow P \preceq_{1} \mathbb{H}_{\mathcal{A}}(\text { one-one reduction over } \mathcal{A}) \\
& \Rightarrow P \preceq_{T} \mathbb{H}_{\mathcal{A}}
\end{aligned}
$$

## - Definition (semantically by deterministic machines): $\mathcal{A}$ is fixed. <br> 

## A Hierarchy <br> (Analogously to the Arithmetical Hierarchy)

- Definition (semantically by deterministic machines): $\mathcal{A}$ is fixed.

$$
\begin{aligned}
\Sigma_{0}^{0} & =\mathrm{DEC}_{\mathcal{A}} \\
\Pi_{n}^{0} & =\left\{U^{\infty} \backslash P \mid P \in \Sigma_{n}^{0}\right\} \\
\Delta_{n}^{0} & =\Sigma_{n}^{0} \cap \Pi_{n}^{0} \\
\Sigma_{n+1}^{0} & =\left\{P \subseteq U^{\infty} \mid\left(\exists Q \in \Sigma_{n}^{0}\right)\left(P \preceq_{1} \mathbb{H}_{\mathcal{A}}^{Q}\right)\right\}
\end{aligned}
$$

- Definition (semantically by deterministic machines): $\mathcal{A}$ is fixed.

$$
\begin{aligned}
\Sigma_{0}^{0} & =\mathrm{DEC}_{\mathcal{A}} \\
\Pi_{n}^{0} & =\left\{U^{\infty} \backslash P \mid P \in \Sigma_{n}^{0}\right\} \\
\Delta_{n}^{0} & =\Sigma_{n}^{0} \cap \Pi_{n}^{0} \\
\Sigma_{n+1}^{0} & =\left\{P \subseteq U^{\infty} \mid\left(\exists Q \in \Sigma_{n}^{0}\right)\left(P \preceq_{1} \mathbb{H}_{\mathcal{A}}^{Q}\right)\right\}
\end{aligned}
$$

- The first level:

$$
\begin{aligned}
& \Sigma_{1}^{0}=\operatorname{REC}_{\mathcal{A}}=\left\{P \subseteq U^{\infty} \mid P \preceq_{1} \mathbb{H}_{\mathcal{A}}\right\} \\
&=\left\{P \subseteq U^{\infty} \mid P \preceq_{1} U^{\infty} \backslash \mathbb{H}_{\mathcal{A}}\right\} \\
& \Pi_{1}^{0} \\
& \Delta_{1}^{0}=\operatorname{DEC}_{\mathcal{A}}=\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \emptyset\right\}
\end{aligned}
$$

- Definition (semantically by deterministic machines): $\mathcal{A}$ is fixed.

$$
\begin{aligned}
\Sigma_{0}^{0} & =\mathrm{DEC}_{\mathcal{A}} \\
\Pi_{n}^{0} & =\left\{U^{\infty} \backslash P \mid P \in \Sigma_{n}^{0}\right\} \\
\Delta_{n}^{0} & =\Sigma_{n}^{0} \cap \Pi_{n}^{0} \\
\Sigma_{n+1}^{0} & =\left\{P \subseteq U^{\infty} \mid\left(\exists Q \in \Sigma_{n}^{0}\right)\left(P \preceq_{1} \mathbb{H}_{\mathcal{A}}^{Q}\right)\right\}
\end{aligned}
$$

- The second level:

$$
\begin{aligned}
\Sigma_{2}^{0}=\operatorname{REC}_{\mathcal{A}}^{\mathbb{H}} & =\left\{P \subseteq U^{\infty} \mid P \preceq_{1} \mathbb{H}_{\mathcal{A}}^{\mathbb{H}_{\mathcal{A}}}\right\}, \\
\Pi_{2}^{0} & =\left\{P \subseteq U^{\infty} \mid P \preceq_{1} U^{\infty} \backslash \mathbb{H}_{\mathcal{A}}^{\mathbb{H}_{\mathcal{A}}}\right\}, \\
\Delta_{2}^{0}=\operatorname{DEC}_{\mathcal{A}}^{\mathbb{H}} \mathcal{A} & =\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \mathbb{H}_{\mathcal{A}}\right\}
\end{aligned}
$$

## A Characterization of $\Delta_{2}^{0}=\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \mathbb{H}_{\mathcal{A}}\right\}$

```
- Let A contain an effectively enumerable set denoted by }\mathbb{N}\mathrm{ .
- }\mp@subsup{\chi}{D}{}\mathrm{ - the characteristic function of the nroblem }P\mathrm{ .
 (1) }P\in\mp@subsup{\Delta}{2}{0}\mathrm{ .
 (2) There is a computable function g : U⿻⿱一冂人丨⿻一㇉
 defined on {(n,\vec{x})|n\in\mathbb{N}&\vec{x}\in\mp@subsup{U}{}{\infty}}
 such that }\mp@subsup{\chi}{P}{}(\vec{x})=\mp@subsup{\operatorname{lim}}{s->\infty}{}g(s.\vec{x})\mathrm{ .
```


## Lemma（First Part of Limit Lemma）

If（1），then（2）．

## Lemma（Second Part of Limit Lemma）

If（2），then（1）．

- Let $\mathcal{A}$ contain an effectively enumerable set denoted by $\mathbb{N}$.
(2) There is a computable function $g: U^{\infty} \rightarrow\{0,1\}$ defined on $\left\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\right\}$ such that $\chi_{P}(\vec{x})=\lim _{s \rightarrow \infty} g(s \cdot \vec{x})$.


## Lemma (First Part of Limit Lemma)

If (1), then (2).

Lemma (Second Part of Limit Lemma)
If (2), then (1).

- Let $\mathcal{A}$ contain an effectively enumerable set denoted by $\mathbb{N}$.
- $\chi_{P}$ - the characteristic function of the problem $P$.
(2) There is a computable function $g: U^{\infty} \rightarrow\{0,1\}$ defined on $\left\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\right\}$ such that $\chi_{P}(\vec{x})=\lim _{s \rightarrow \infty} g(s \cdot \vec{x})$.


## Lemma (First Part of Limit Lemma) <br> If (1), then (2).

Lemma (Second Part of Limit Lemma)
If (2), then (1).

## A Characterization of $\Delta_{2}^{0}=\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \mathbb{H}_{\mathcal{A}}\right\}$

- Let $\mathcal{A}$ contain an effectively enumerable set denoted by $\mathbb{N}$.
- $\chi_{P}$ - the characteristic function of the problem $P$.
- Let $P \subseteq U^{\infty}$.
(1) $P \in \Delta_{2}^{0}$.
(2) There is a computable function $g: U^{\infty} \rightarrow\{0,1\}$ defined on $\left\{(n . \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\right\}$ such that $\chi_{P}(\vec{x})=\lim _{s \rightarrow \infty} g(s . \vec{x})$.


## Lemma (First Part of Limit Lemma)

If (1), then (2).

Lemma (Second Part of Limit Lemma)
If (2), then (1).

## A Characterization of $\Delta_{2}^{0}=\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \mathbb{H}_{\mathcal{A}}\right\}$

- Let $\mathcal{A}$ contain an effectively enumerable set denoted by $\mathbb{N}$.
- $\chi_{P}$ - the characteristic function of the problem $P$.
- Let $P \subseteq U^{\infty}$.
(1) $P \in \Delta_{2}^{0}$.
(2) There is a computable function $g: U^{\infty} \rightarrow\{0,1\}$ defined on $\left\{(n . \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\right\}$ such that $\chi_{P}(\vec{x})=\lim _{s \rightarrow \infty} g(s . \vec{x})$.


## Lemma (First Part of Limit Lemma)

If (1), then (2).

Lemma (Second Part of Limit Lemma)
If (2), then (1)

## A Characterization of $\Delta_{2}^{0}=\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \mathbb{H}_{\mathcal{A}}\right\}$

- Let $\mathcal{A}$ contain an effectively enumerable set denoted by $\mathbb{N}$.
- $\chi_{P}$ - the characteristic function of the problem $P$.
- Let $P \subseteq U^{\infty}$.
(1) $P \in \Delta_{2}^{0}$.
(2) There is a computable function $g: U^{\infty} \rightarrow\{0,1\}$ defined on $\left\{(n . \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\right\}$ such that $\chi_{P}(\vec{x})=\lim _{s \rightarrow \infty} g(s . \vec{x})$.


## Lemma (First Part of Limit Lemma)

If (1), then (2).

## Lemma (Second Part of Limit Lemma)

If (2), then (1).

## Lemma (First Part of Limit Lemma)

If $P \subseteq U^{\infty}$ is in $\Delta_{2}^{0}$, then there is a computable function $g: U^{\infty} \rightarrow\{0,1\}$ defined on $\left\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\right\}$ such that $\chi_{P}(\vec{x})=\lim _{s \rightarrow \infty} g(s \cdot \vec{x})$.

Proof. Let $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}\left(\mathbb{H}_{\mathcal{A}}\right)$ decide the problem $P$ and $\vec{x} \in U^{\infty}$.

- let $\beta_{1}, \beta_{2}, \ldots, \beta_{k} \in \mathbb{N}$ represent the answers of the queries $\left(\vec{y}^{(i)} \cdot c_{\mathcal{L}_{i}}\right) \in \mathbb{H}_{\mathcal{A}}$ ? executed by $\mathcal{M}$ on input $\vec{x}$.
- $\beta_{i}=0 \quad$ iff $\mathcal{L}_{i}\left(\vec{y}^{(i)}\right) \uparrow$,
- $\beta_{i}=t>0$ iff $\mathcal{L}_{i}\left(\vec{y}^{(i)}\right) \uparrow^{t-1}$ and $\mathcal{L}_{i}\left(\vec{y}^{(i)}\right) \downarrow^{t}$.


## Lemma (First Part of Limit Lemma)

If $P \subseteq U^{\infty}$ is in $\Delta_{2}^{0}$, then there is a computable function
$g: U^{\infty} \rightarrow\{0,1\}$ defined on $\left\{(n . \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\right\}$ such that $\chi_{P}(\vec{x})=\lim _{s \rightarrow \infty} g(s \cdot \vec{x})$.

Proof. Let $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}\left(\mathbb{H}_{\mathcal{A}}\right)$ decide the problem $P$ and $\vec{x} \in U^{\infty}$.

- let $\beta_{1}, \beta_{2}, \ldots, \beta_{k} \in \mathbb{N}$ represent the answers of the queries $\left(\vec{y}^{(i)} \cdot c_{\mathcal{L}_{i}}\right) \in \mathbb{H}_{\mathcal{A}}$ ? executed by $\mathcal{M}$ on input $\vec{x}$.
- $\beta_{i}=0 \quad$ iff $\mathcal{L}_{i}\left(\vec{y}^{(i)}\right) \uparrow$,
- $\beta_{i}=t>0$ iff $\mathcal{L}_{i}\left(\vec{y}^{(i)}\right) \uparrow^{t-1}$ and $\mathcal{L}_{i}\left(\vec{y}^{(i)}\right) \downarrow^{t}$.


## Lemma (First Part of Limit Lemma)

If $P \subseteq U^{\infty}$ is in $\Delta_{2}^{0}$, then there is a computable function
$g: U^{\infty} \rightarrow\{0,1\}$ defined on $\left\{(n . \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\right\}$ such that $\chi_{P}(\vec{x})=\lim _{s \rightarrow \infty} g(s \cdot \vec{x})$.

Proof. Let $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}\left(\mathbb{H}_{\mathcal{A}}\right)$ decide the problem $P$ and $\vec{x} \in U^{\infty}$.

- let $\beta_{1}, \beta_{2}, \ldots, \beta_{k} \in \mathbb{N}$ represent the answers of the queries $\left(\vec{y}^{(i)} \cdot c_{\mathcal{L}_{i}}\right) \in \mathbb{H}_{\mathcal{A}}$ ? executed by $\mathcal{M}$ on input $\vec{x}$.
- $\Rightarrow$
- $\beta_{i}=0 \quad$ iff $\mathcal{L}_{i}\left(\vec{y}^{(i)}\right) \uparrow$,
- $\beta_{i}=t>0$ iff $\mathcal{L}_{i}\left(\vec{y}^{(i)}\right) \uparrow^{t-1}$ and $\mathcal{L}_{i}\left(\vec{y}^{(i)}\right) \downarrow^{t}$.


## Lemma (First Part of Limit Lemma)

If $P \subseteq U^{\infty}$ is in $\Delta_{2}^{0}$, then there is a computable function
$g: U^{\infty} \rightarrow\{0,1\}$ defined on $\left\{(n . \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\right\}$ such that $\chi_{P}(\vec{x})=\lim _{s \rightarrow \infty} g(s \cdot \vec{x})$.

Proof. Let $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}\left(\mathbb{H}_{\mathcal{A}}\right)$ decide the problem $P$ and $\vec{x} \in U^{\infty}$.

- let $\beta_{1}, \beta_{2}, \ldots, \beta_{k} \in \mathbb{N}$ represent the answers of the queries $\left(\vec{y}^{(i)} \cdot c_{\mathcal{L}_{i}}\right) \in \mathbb{H}_{\mathcal{A}}$ ? executed by $\mathcal{M}$ on input $\vec{x}$.
- $\Rightarrow$
- $\beta_{i}=0 \quad$ iff $\mathcal{L}_{i}\left(\vec{y}^{(i)}\right) \uparrow$,
- $\beta_{i}=t>0$ iff $\mathcal{L}_{i}\left(\vec{y}^{(i)}\right) \uparrow^{t-1}$ and $\mathcal{L}_{i}\left(\vec{y}^{(i)}\right) \downarrow^{t}$.


## A Characterization of $\Delta_{2}^{0}=\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \mathbb{H}_{\mathcal{A}}\right\}$

## Lemma (First Part of Limit Lemma)

If $P \subseteq U^{\infty}$ is in $\Delta_{2}^{0}$, then there is a computable function
$g: U^{\infty} \rightarrow\{0,1\}$ defined on $\left\{(n . \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\right\}$ such that $\chi_{P}(\vec{x})=\lim _{s \rightarrow \infty} g(s \cdot \vec{x})$.

Proof. Let $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}\left(\mathbb{H}_{\mathcal{A}}\right)$ decide the problem $P$ and $\vec{x} \in U^{\infty}$.

- let $\beta_{1}, \beta_{2}, \ldots, \beta_{k} \in \mathbb{N}$ represent the answers of the queries $\left(\vec{y}^{(i)} \cdot c_{\mathcal{L}_{i}}\right) \in \mathbb{H}_{\mathcal{A}}$ ? executed by $\mathcal{M}$ on input $\vec{x}$.
- $\Rightarrow$
- $\beta_{i}=0 \quad$ iff $\mathcal{L}_{i}\left(\vec{y}^{(i)}\right) \uparrow$,
- $\beta_{i}=t>0$ iff $\mathcal{L}_{i}\left(\vec{y}^{(i)}\right) \uparrow^{t-1}$ and $\mathcal{L}_{i}\left(\vec{y}^{(i)}\right) \downarrow^{t}$.


## A Characterization of $\Delta_{2}^{0}=\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \mathbb{H}_{\mathcal{A}}\right\}$

- Let $g$ be computed by $\mathcal{N} \in M_{\mathcal{A}}$ executing:
- if $s \in \mathbb{N}$, then simulate $s$ instructions of $\mathcal{M}$, but,
instead of

$$
\text { if }\left(\vec{y}^{(s, i)} \cdot c_{\mathcal{L}_{s, i}}\right) \in \mathbb{H}_{\mathcal{A}} \text { then goto to } l_{1} \text { else goto } l_{2},
$$

use

$$
\text { if } \mathcal{L}_{s, i}\left(\vec{y}^{(s, i)}\right) \downarrow^{s} \text { then goto to } l_{1} \text { else goto } l_{2} \text {. }
$$

- If the output of $\mathcal{M}$ is not reached within $s$ steps of $\mathcal{M}$, then output 0 .
$s \in \mathbb{N}, \vec{x} \in U^{\infty} \Rightarrow \operatorname{let} \beta_{1}^{(s)} \ldots \beta_{m}^{(s)} \leq s\left(m_{s} \leq s\right)$ with

$$
\beta_{i}^{(s)} \neq 0 \Rightarrow \mathcal{L}_{s, i}\left(\vec{y}^{(s, i)}\right) \uparrow \beta_{i}^{(s)}-1 \text { and } \mathcal{L}_{s, i}\left(\vec{y}^{(s, i)}\right) \downarrow^{\beta_{i}^{(s)}}
$$

- $s \in \mathbb{N}, \vec{x} \in U^{\infty} \Rightarrow$ there are $0=s_{0}<s_{1} \leq s_{2} \leq \cdots \leq s_{k}$ such that

$$
\begin{array}{ll}
\left(\beta_{1}, \beta_{2}, \ldots, \beta_{i}\right)=\left(\beta_{1}^{s_{i}}, \beta_{2}^{s_{i}}, \ldots, \beta_{i}^{s_{i}}\right) & \\
\text { for } i \leq m_{s_{i}} \\
\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right)=\left(\beta_{1}^{s}, \beta_{2}^{s}, \ldots, \beta_{k}^{s}\right) & \\
\text { for } s \geq s_{k}
\end{array}
$$

- $\vec{x} \in U^{\infty} \Rightarrow$ there is an $s_{\vec{x}}$


## A Characterization of $\Delta_{2}^{0}=\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \mathbb{H}_{\mathcal{A}}\right\}$

- Let $g$ be computed by $\mathcal{N} \in \mathrm{M}_{\mathcal{A}}$ executing:
- Input $(s . \vec{x}) \in U^{\infty}$;
- if $s \in \mathbb{N}$, then simulate $s$ instructions of $\mathcal{M}$, but, instead of

$$
\text { if }\left(\vec{y}^{(s, i)} \cdot c_{\mathcal{L}_{s, i}}\right) \in \mathbb{H}_{\mathcal{A}} \text { then goto to } l_{1} \text { else goto } l_{2},
$$

use

$$
\text { if } \mathcal{L}_{s, i}\left(\vec{y}^{(s, i)}\right) \downarrow^{s} \text { then goto to } l_{1} \text { else goto } l_{2} .
$$

- If the output of $\mathcal{M}$ is not reached within $s$ steps of $\mathcal{M}$, then output 0 .

- $s \in \mathbb{N}, \vec{x} \in U^{\infty} \Rightarrow$ there are $0=s_{0}<s_{1} \leq s_{2} \leq \cdots \leq s_{k}$ such that

- $\vec{x} \in U^{\infty} \Rightarrow$ there is an $s_{\vec{x}}$


## A Characterization of $\Delta_{2}^{0}=\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \mathbb{H}_{\mathcal{A}}\right\}$

- Let $g$ be computed by $\mathcal{N} \in \mathrm{M}_{\mathcal{A}}$ executing:
- Input $(s . \vec{x}) \in U^{\infty}$;
- if $s \in \mathbb{N}$, then simulate $s$ instructions of $\mathcal{M}$, but, instead of

$$
\text { if }\left(\vec{y}^{(s, i)} \cdot c_{\mathcal{L}_{s, i}}\right) \in \mathbb{H}_{\mathcal{A}} \text { then goto to } l_{1} \text { else goto } l_{2},
$$

use

$$
\text { if } \mathcal{L}_{s, i}\left(\vec{y}^{(s, i)}\right) \downarrow^{s} \text { then goto to } l_{1} \text { else goto } l_{2} .
$$

- If the output of $\mathcal{M}$ is not reached within $s$ steps of $\mathcal{M}$, then output 0 .
- $s \in \mathbb{N}, \vec{x} \in U^{\infty} \Rightarrow \operatorname{let} \beta_{1}^{(s)}, \ldots, \beta_{m_{s}}^{(s)} \leq s\left(m_{s} \leq s\right)$ with

$$
\beta_{i}^{(s)} \neq 0 \Rightarrow \mathcal{L}_{s, i}\left(\vec{y}^{(s, i)}\right) \uparrow_{i}^{\beta_{i}^{(s)}-1} \text { and } \mathcal{L}_{s, i}\left(\vec{y}^{(s, i)}\right) \downarrow^{\beta_{i}^{(s)}}
$$

- $s \in \mathbb{N}, \vec{x} \in U^{\infty} \Rightarrow$ there are $0=s_{0}<s_{1} \leq s_{2} \leq \cdots \leq s_{k}$ such that

- $\vec{x} \in U^{\infty} \Rightarrow$ there is an $s_{\vec{x}}$


## A Characterization of $\Delta_{2}^{0}=\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \mathbb{H}_{\mathcal{A}}\right\}$

- Let $g$ be computed by $\mathcal{N} \in \mathrm{M}_{\mathcal{A}}$ executing:
- Input $(s . \vec{x}) \in U^{\infty}$;
- if $s \in \mathbb{N}$, then simulate $s$ instructions of $\mathcal{M}$, but, instead of

$$
\text { if }\left(\vec{y}^{(s, i)} \cdot c_{\mathcal{L}_{s, i}}\right) \in \mathbb{H}_{\mathcal{A}} \text { then goto to } l_{1} \text { else goto } l_{2},
$$

use

$$
\text { if } \mathcal{L}_{s, i}\left(\vec{y}^{(s, i)}\right) \downarrow^{s} \text { then goto to } l_{1} \text { else goto } l_{2} .
$$

- If the output of $\mathcal{M}$ is not reached within $s$ steps of $\mathcal{M}$, then output 0 .
- $s \in \mathbb{N}, \vec{x} \in U^{\infty} \Rightarrow$ let $\beta_{1}^{(s)}, \ldots, \beta_{m_{s}}^{(s)} \leq s\left(m_{s} \leq s\right)$ with

$$
\beta_{i}^{(s)} \neq 0 \Rightarrow \mathcal{L}_{s, i}\left(\vec{y}^{(s, i)}\right) \uparrow \beta_{i}^{(s)}-1 \text { and } \mathcal{L}_{s, i}\left(\vec{y}^{(s, i)}\right) \downarrow^{\beta_{i}^{(s)}}
$$

- $s \in \mathbb{N}, \vec{x} \in U^{\infty} \Rightarrow$ there are $0=s_{0}<s_{1} \leq s_{2} \leq \cdots \leq s_{k}$ such that

$$
\begin{array}{lll}
\left(\beta_{1}, \beta_{2}, \ldots, \beta_{i}\right) & =\left(\beta_{1}^{s_{i}}, \beta_{2}^{s_{i}}, \ldots, \beta_{i}^{s_{i}}\right) & \text { for } i \leq m_{s_{i}} \\
\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right)=\left(\beta_{1}^{s}, \beta_{2}^{s}, \ldots, \beta_{k}^{s}\right) & \text { for } s \geq s_{k}
\end{array}
$$

- $\vec{x} \in U^{\infty} \Rightarrow$ there is an $S_{\vec{x}}$
such that $\mathcal{N}$ outputs the same value as $\mathcal{M}$ on $(s \cdot \vec{x})$ for all $s \geq s_{\vec{x}}$.


## A Characterization of $\Delta_{2}^{0}=\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \mathbb{H}_{\mathcal{A}}\right\}$

- Let $g$ be computed by $\mathcal{N} \in \mathrm{M}_{\mathcal{A}}$ executing:
- Input $(s . \vec{x}) \in U^{\infty}$;
- if $s \in \mathbb{N}$, then simulate $s$ instructions of $\mathcal{M}$, but, instead of

$$
\text { if }\left(\vec{y}^{(s, i)} \cdot c_{\mathcal{L}_{s, i}}\right) \in \mathbb{H}_{\mathcal{A}} \text { then goto to } l_{1} \text { else goto } l_{2},
$$

use

$$
\text { if } \mathcal{L}_{s, i}\left(\vec{y}^{(s, i)}\right) \downarrow^{s} \text { then goto to } l_{1} \text { else goto } l_{2} .
$$

- If the output of $\mathcal{M}$ is not reached within $s$ steps of $\mathcal{M}$, then output 0 .
- $s \in \mathbb{N}, \vec{x} \in U^{\infty} \Rightarrow$ let $\beta_{1}^{(s)}, \ldots, \beta_{m_{s}}^{(s)} \leq s\left(m_{s} \leq s\right)$ with

$$
\beta_{i}^{(s)} \neq 0 \Rightarrow \mathcal{L}_{s, i}\left(\vec{y}^{(s, i)}\right) \uparrow \beta_{i}^{(s)}-1 \text { and } \mathcal{L}_{s, i}\left(\vec{y}^{(s, i)}\right) \downarrow^{\beta_{i}^{(s)}}
$$

- $s \in \mathbb{N}, \vec{x} \in U^{\infty} \Rightarrow$ there are $0=s_{0}<s_{1} \leq s_{2} \leq \cdots \leq s_{k}$ such that

$$
\begin{array}{lll}
\left(\beta_{1}, \beta_{2}, \ldots, \beta_{i}\right) & =\left(\beta_{1}^{s_{i}}, \beta_{2}^{s_{i}}, \ldots, \beta_{i}^{s_{i}}\right) & \text { for } i \leq m_{s_{i}} \\
\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right)=\left(\beta_{1}^{s}, \beta_{2}^{s}, \ldots, \beta_{k}^{s}\right) & \text { for } s \geq s_{k}
\end{array}
$$

- $\vec{x} \in U^{\infty} \Rightarrow$ there is an $s_{\vec{x}}$ such that $\mathcal{N}$ outputs the same value as $\mathcal{M}$ on $(s . \vec{x})$ for all $s \geq s_{\vec{x}}$.


## A Characterization of $\Delta_{2}^{0}=\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \mathbb{H}_{\mathcal{A}}\right\}$

## Lemma (Second Part of Limit Lemma)

If there is a computable function $g: U^{\infty} \rightarrow\{0,1\}$ defined on $\left\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\right\}$ such that $\chi_{P}(\vec{x})=\lim _{s \rightarrow \infty} g(s . \vec{x})$, then $P \subseteq U^{\infty}$ is in $\Delta_{2}^{0}$.

Proof. Let $g$ be computed by $\mathcal{N} \in \mathrm{M}_{\mathcal{A}}$ and let $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}\left(\mathbb{H}_{\mathcal{A}}\right)$ execute:

$\mathcal{M}$ decides $P$.

## A Characterization of $\Delta_{2}^{0}=\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \mathbb{H}_{\mathcal{A}}\right\}$

## Lemma (Second Part of Limit Lemma)

If there is a computable function $g: U^{\infty} \rightarrow\{0,1\}$ defined on $\left\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\right\}$ such that $\chi_{P}(\vec{x})=\lim _{s \rightarrow \infty} g(s . \vec{x})$, then $P \subseteq U^{\infty}$ is in $\Delta_{2}^{0}$.

Proof. Let $g$ be computed by $\mathcal{N} \in \mathrm{M}_{\mathcal{A}}$ and let $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}\left(\mathbb{H}_{\mathcal{A}}\right)$ execute:

- Input $\vec{x} \in U^{\infty}$;
- Let $s=1$;

```
Ask}((s,\vec{x})\cdot\mp@subsup{c}{\mathcal{L}}{})\in\mp@subsup{\mathbb{H}}{\mathcal{A}}{}\mathrm{ ? where
\mathcal { L } : ~ I n p u t ~ (s . \vec { x }) ;
Halt if there is a }k\geqs\mathrm{ such that }g(s\cdot\vec{x})\not=g(k\cdot\vec{x}
If \mathcal{L}(s.\vec{x})\downarrow,
then }s:=s+1\mathrm{ and goto 1
else compute g(S.\vec{x})\mathrm{ by simulating }\mathcal{N}\mathrm{ and output g(s. }\vec{x})\mathrm{ .}
```

$\mathcal{M}$ decides $P$.

## A Characterization of $\Delta_{2}^{0}=\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \mathbb{H}_{\mathcal{A}}\right\}$

## Lemma (Second Part of Limit Lemma)

If there is a computable function $g: U^{\infty} \rightarrow\{0,1\}$ defined on $\left\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\right\}$ such that $\chi_{P}(\vec{x})=\lim _{s \rightarrow \infty} g(s . \vec{x})$, then $P \subseteq U^{\infty}$ is in $\Delta_{2}^{0}$.

Proof. Let $g$ be computed by $\mathcal{N} \in \mathrm{M}_{\mathcal{A}}$ and let $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}\left(\mathbb{H}_{\mathcal{A}}\right)$ execute:

- Input $\vec{x} \in U^{\infty}$;
- Let $s=1$;

$\mathcal{M}$ decides $P$.


## A Characterization of $\Delta_{2}^{0}=\left\{P \subseteq U^{\infty} \mid P \preceq_{T} \mathbb{H}_{\mathcal{A}}\right\}$

## Lemma (Second Part of Limit Lemma)

If there is a computable function $g: U^{\infty} \rightarrow\{0,1\}$ defined on $\left\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\right\}$ such that $\chi_{P}(\vec{x})=\lim _{s \rightarrow \infty} g(s . \vec{x})$, then $P \subseteq U^{\infty}$ is in $\Delta_{2}^{0}$.

Proof. Let $g$ be computed by $\mathcal{N} \in \mathrm{M}_{\mathcal{A}}$ and let $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}\left(\mathbb{H}_{\mathcal{A}}\right)$ execute:

- Input $\vec{x} \in U^{\infty}$;
- Let $s=1$;
- 1 :
- Ask $\left((s \cdot \vec{x}) \cdot c_{\mathcal{L}}\right) \in \mathbb{H}_{\mathcal{A}}$ ? where
$\mathcal{L}:$ Input $(s . \vec{x})$;
Halt if there is a $k \geq s$ such that $g(s \cdot \vec{x}) \neq g(k \cdot \vec{x})$.
If $\mathcal{L}(s . \vec{x}) \downarrow$, then $s:=s+1$ and goto 1 else compute $g(s, \vec{x})$ by simulating $\mathcal{N}$ and output $g(s . \vec{x})$.
$\mathcal{M}$ decides $P$.
- Let $\mathcal{A}$ contain an effectively enumerable set denoted by $\mathbb{N}$.
- $\chi_{P}$ - the characteristic function of the problem $P$.


## Lemma (Limit Lemma)

$P \subseteq U^{\infty}$ is in $\Delta_{2}^{0}$ if and only if there is a computable function $g: U^{\infty} \rightarrow\{0,1\}$ defined on $\left\{(n \cdot \vec{x}) \mid n \in \mathbb{N} \& \vec{x} \in U^{\infty}\right\}$ such that $\chi_{P}(\vec{x})=\lim _{s \rightarrow \infty} g(s \cdot \vec{x})$.

## A Generalization of the Friedberg-Muchnik Theorem

## A Generalization of the Friedberg-Muchnik Theorem

- Let $\mathcal{A}$ contain
- only a finite number of operations and relations,
- an effectively enumerable set denoted by $\mathbb{N}$,
- only two constants denoted by 0 and 1.
$\bullet \Rightarrow \mathbb{H}_{\mathcal{A}} \in \operatorname{REC}_{\mathcal{A}}$.
- We construct an $\mathbb{A} \subset \mathbb{N}$ with


## A Generalization of the Friedberg-Muchnik Theorem

- Let $\mathcal{A}$ contain
- only a finite number of operations and relations,
- an effectively enumerable set denoted by $\mathbb{N}$,
- only two constants denoted by 0 and 1.
$\bullet \Rightarrow \mathbb{H}_{\mathcal{A}} \in \operatorname{REC}_{\mathcal{A}}$.
- We construct an $\mathbb{A} \subset \mathbb{N}$ with
- $\mathbb{A} \not \varliminf_{T} \mathbb{H}_{\mathcal{A}}$,
- $\mathbb{A} \not \nwarrow_{T} P$ for many $P \subseteq U^{\infty}$,
- $\mathbb{A} \preceq_{T} P$ for many $P \in \Delta_{2}^{0}$.
- $\Rightarrow \mathbb{H}_{\mathcal{A}} \nwarrow_{T} P$.


## A Generalization of the Friedberg-Muchnik Theorem

$\mathcal{A}$ contains

- only a finite number of operations and relations,
- an effectively enumerable set denoted by $\mathbb{N}$,
- only two constants denoted by 0 and 1 .

We use:

- $H_{\mathcal{M}} \cap \mathbb{N}$ (for the halting set $H_{\mathcal{M}}$ of $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}$ ) is
- effectively enumerable
- a halting set of a machine in $M_{\mathcal{A}}$
- For any $\mathcal{O} \subseteq \mathbb{N}$,
we can list $\mathrm{M}_{\mathcal{A}}(\mathcal{O}): \mathcal{M}_{1}^{\mathcal{O}}, \mathcal{M}_{2}^{\mathcal{O}}$
(The index is the code of the corresponding program.)
- We can list $\mathrm{M}_{\mathcal{A}}$
- $\overline{\mathcal{N}}_{i}$ enumerating all positive integers $n_{i, 1}, n_{i, 2}, \ldots \in H_{\mathcal{N}_{i}}$.


## A Generalization of the Friedberg-Muchnik Theorem

$\mathcal{A}$ contains

- only a finite number of operations and relations,
- an effectively enumerable set denoted by $\mathbb{N}$,
- only two constants denoted by 0 and 1 .

We use:

- $H_{\mathcal{M}} \cap \mathbb{N}$ (for the halting set $H_{\mathcal{M}}$ of $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}$ ) is
- effectively enumerable
- a halting set of a machine in $\mathrm{M}_{\mathcal{A}}$.
- For any $\mathcal{O} \subseteq \mathbb{N}$,
we can list $\mathrm{M}_{\mathcal{A}}(\mathcal{O}): \mathcal{M}_{1}^{\mathcal{O}}, \mathcal{M}_{2}^{\mathcal{O}}$
(The index is the code of the corresponding program.)
- We can list $\mathrm{M}_{\mathcal{A}}$
- $\overline{\mathcal{N}}_{i}$ enumerating all positive integers $n_{i, 1}, n_{i, 2}, \ldots \in H_{\mathcal{N}_{i}}$.


## A Generalization of the Friedberg-Muchnik Theorem

$\mathcal{A}$ contains

- only a finite number of operations and relations,
- an effectively enumerable set denoted by $\mathbb{N}$,
- only two constants denoted by 0 and 1 .

We use:

- $H_{\mathcal{M}} \cap \mathbb{N}$ (for the halting set $H_{\mathcal{M}}$ of $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}$ ) is
- effectively enumerable
- a halting set of a machine in $M_{\mathcal{A}}$.
- For any $\mathcal{O} \subseteq \mathbb{N}$, we can list $\mathrm{M}_{\mathcal{A}}(\mathcal{O}): \mathcal{M}_{1}^{\mathcal{O}}, \mathcal{M}_{2}^{\mathcal{O}}, \ldots$.
(The index is the code of the corresponding program.)
- We can list $\mathrm{M}_{\mathcal{A}}$
- $\mathcal{N}_{i}$ enumerating all positive integers $n_{i, 1}, n_{i, 2}, \ldots \in H_{\mathcal{N}_{i}}$.


## A Generalization of the Friedberg-Muchnik Theorem

$\mathcal{A}$ contains

- only a finite number of operations and relations,
- an effectively enumerable set denoted by $\mathbb{N}$,
- only two constants denoted by 0 and 1 .

We use:

- $H_{\mathcal{M}} \cap \mathbb{N}$ (for the halting set $H_{\mathcal{M}}$ of $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}$ ) is
- effectively enumerable
- a halting set of a machine in $\mathrm{M}_{\mathcal{A}}$.
- For any $\mathcal{O} \subseteq \mathbb{N}$, we can list $\mathrm{M}_{\mathcal{A}}(\mathcal{O}): \mathcal{M}_{1}^{\mathcal{O}}, \mathcal{M}_{2}^{\mathcal{O}}, \ldots$.
(The index is the code of the corresponding program.)
- We can list $\mathrm{M}_{\mathcal{A}}: \mathcal{N}_{1}, \mathcal{N}_{2}, \ldots$.
- $\mathcal{N}_{i}$ enumerating all positive integers $n_{i, 1}, n_{i, 2}, \ldots \in H_{\mathcal{N}_{i}}$.


## A Generalization of the Friedberg-Muchnik Theorem

$\mathcal{A}$ contains

- only a finite number of operations and relations,
- an effectively enumerable set denoted by $\mathbb{N}$,
- only two constants denoted by 0 and 1 .

We use:

- $H_{\mathcal{M}} \cap \mathbb{N}$ (for the halting set $H_{\mathcal{M}}$ of $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}$ ) is
- effectively enumerable
- a halting set of a machine in $M_{\mathcal{A}}$.
- For any $\mathcal{O} \subseteq \mathbb{N}$, we can list $\mathrm{M}_{\mathcal{A}}(\mathcal{O}): \mathcal{M}_{1}^{\mathcal{O}}, \mathcal{M}_{2}^{\mathcal{O}}, \ldots$.
(The index is the code of the corresponding program.)
- We can list $\mathrm{M}_{\mathcal{A}}: \mathcal{N}_{1}, \mathcal{N}_{2}, \ldots$.
- $\overline{\mathcal{N}}_{i}$ enumerating all positive integers $n_{i, 1}, n_{i, 2}, \ldots \in H_{\mathcal{N}_{i}}$.


## A Generalization of the Friedberg-Muchnik Theorem

Let $\mathbb{A}=\bigcup_{s \geq 0} \mathbb{A}_{s}$ be defined in stages. $\mathbb{A}_{0}=\emptyset, s \geq 0$.
$I_{s}=\left\{i \leq s \mid W_{i, s} \cap \mathbb{A}_{s}=\emptyset \&\left(\exists x \in W_{i, s}\right)(2 i<x \&(\forall j \leq i)(a(j, s)<x))\right\}$
where, for any $j \leq s$,


- $W_{i, s}$ is the set of integers computed by $\mathcal{N}_{i}$ on $s$ within $s$ steps.

If $I_{s} \neq \emptyset$, then let

$$
\begin{aligned}
i_{s} & =\min I_{s}, \\
x_{i_{s}} & =\min \left\{x \in W_{i_{s}, s} \mid\right. \\
\mathbb{A}_{s+1} & = \begin{cases}\mathbb{A}_{s} & \text { if } I_{s}=\emptyset \\
\mathbb{A}_{s} \cup\left\{x_{i_{s}}\right\} & \text { otherwise }\end{cases}
\end{aligned}
$$

## A Generalization of the Friedberg-Muchnik Theorem

Let $\mathbb{A}=\bigcup_{s \geq 0} \mathbb{A}_{s}$ be defined in stages. $\mathbb{A}_{0}=\emptyset, s \geq 0$.
$I_{s}=\left\{i \leq s \mid W_{i, s} \cap \mathbb{A}_{s}=\emptyset \&\left(\exists x \in W_{i, s}\right)(2 i<x \&(\forall j \leq i)(a(j, s)<x))\right\}$
where, for any $j \leq s$,

- $a(j, s) \begin{cases}\text { greatest integer used in a query by } & \\ \mathcal{M}_{j}^{\mathbb{A}_{s}} \text { on } j \text { within } s \text { steps } & \text { if } \mathcal{M}_{j}^{\mathbb{A}_{s}}(j) \downarrow^{s}, \\ 0 & \text { if } \mathcal{M}_{j}^{\mathbb{A}_{s}}(j) \uparrow^{s} .\end{cases}$
- $W_{i, s}$ is the set of integers computed by $\overline{\mathcal{N}}_{i}$ on $s$ within $s$ steps. If $I_{s} \neq \emptyset$, then let

$$
\begin{aligned}
i_{s} & =\min I_{s}, \\
x_{i_{s}} & =\min \left\{x \in W_{i_{s}, s} \mid\right. \\
\mathbb{A}_{s+1} & = \begin{cases}\mathbb{A}_{s} & \text { if } I_{s}=\emptyset \\
\mathbb{A}_{s} \cup\left\{x_{i_{s}}\right\} & \text { otherwise }\end{cases}
\end{aligned}
$$

## A Generalization of the Friedberg-Muchnik Theorem

The properties of $\mathbb{A}$, for instance, for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdots ; \leq)$ :


## A Generalization of the Friedberg-Muchnik Theorem

The properties of $\mathbb{A}$, for instance, for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdots ; \leq)$ :

- $\mathbb{A}$ is effectively enumerable by an machine in $M_{\mathcal{A}}$.
$\Rightarrow \mathbb{A} \preceq_{1} \mathbb{H}_{\mathcal{A}}$.
- Conditions for lowness for all $n>0$ :
$\left(N_{n}\right)$ If $\mathcal{M}_{n}^{\mathbb{A}_{t}}(n) \downarrow^{t}$ for infinitely many $t$, then $\mathcal{M}_{n}^{A}(n) \downarrow$
- $\Rightarrow$ Conditions for simplicity for all $n>0$ :

$\Rightarrow \mathbb{A}^{C} \preceq_{1} \mathbb{H}_{\mathcal{A}}$.
- $\mathbb{K}^{\mathcal{A}} \preceq_{T} \mathbb{K}^{(\emptyset}$ where $\mathbb{K}^{0}=\left\{k_{\mathcal{M}} \mid \mathcal{M} \in M_{\mathcal{A}}^{1}(O) \& \mathcal{M}\left(k_{\mathcal{M}}\right) \downarrow\right\}$.
$\Rightarrow \mathbb{A} \npreceq T \mathbb{H}_{\mathcal{A}}$.


## A Generalization of the Friedberg-Muchnik Theorem

The properties of $\mathbb{A}$, for instance, for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdots ; \leq)$ :

- $\mathbb{A}$ is effectively enumerable by an machine in $M_{\mathcal{A}}$.
$\Rightarrow \mathbb{A} \preceq_{1} \mathbb{H}_{\mathcal{A}}$.
- $\mathbb{A}$ and $\mathbb{N} \backslash \mathbb{A}$ are infinite.
- Conditions for lowness for all $n>0$ : $\left(N_{n}\right)$ If $\mathcal{M}_{n}^{\mathbb{A}_{t}}(n) \downarrow^{t}$ for infinitely many $t$, then $\mathcal{M}_{n}^{\mathbb{A}}(n) \downarrow$.
$0 \Rightarrow$ Conditions for simplicity for all $n>0$ :

$\Rightarrow \mathbb{A}^{C} \varliminf_{1} \mathbb{H}_{\mathcal{A}}$.
- $\mathbb{K}^{\mathcal{A}} \preceq_{T} \mathbb{K}^{\emptyset}$ where $\mathbb{K}^{0}=\left\{k_{\mathcal{M}} \mid \mathcal{M} \in M_{\mathcal{A}}^{1}(O) \& \mathcal{M}\left(k_{\mathcal{M}}\right) \downarrow\right\}$.
$\Rightarrow \mathbb{A} \npreceq T \mathbb{H}_{\mathcal{A}}$.


## A Generalization of the Friedberg-Muchnik Theorem

The properties of $\mathbb{A}$, for instance, for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdots ; \leq)$ :

- $\mathbb{A}$ is effectively enumerable by an machine in $M_{\mathcal{A}}$.
$\Rightarrow \mathbb{A} \preceq_{1} \mathbb{H}_{\mathcal{A}}$.
- $\mathbb{A}$ and $\mathbb{N} \backslash \mathbb{A}$ are infinite.
- Conditions for lowness for all $n>0$ :
$\left(N_{n}\right)$ If $\mathcal{M}_{n}^{\mathbb{A}_{t}}(n) \downarrow^{t}$ for infinitely many $t$, then $\mathcal{M}_{n}^{\mathbb{A}}(n) \downarrow$.
- $\Rightarrow$ Conditions for simplicity for all $n>0$ :
$\left(P_{n}\right)$ If $W_{n}=\bigcup_{i \geq 1} W_{n, i}$ is infinite, then $\mathbb{A} \cap W_{n} \neq \emptyset$.
$\Rightarrow \mathbb{A}^{C} \nVdash_{1} \mathbb{H}_{\mathcal{A}}$.
- $\mathbb{K}^{\mathbb{A}} \preceq_{T} \mathbb{K}^{\emptyset}$ where $\mathbb{K}^{\mathcal{O}}=\left\{k_{\mathcal{M}} \mid \mathcal{M} \in \mathrm{M}_{\mathcal{A}}^{1}(\mathcal{O}) \& \mathcal{M}\left(k_{\mathcal{M}}\right) \downarrow\right\}$.
$\Rightarrow \mathbb{A} \preceq_{T} \mathbb{H}_{\mathcal{A}}$.


## A Generalization of the Friedberg-Muchnik Theorem

The properties of $\mathbb{A}$, for instance, for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdots ; \leq)$ :

- $\mathbb{A}$ is effectively enumerable by an machine in $M_{\mathcal{A}}$.
$\Rightarrow \mathbb{A} \preceq_{1} \mathbb{H}_{\mathcal{A}}$.
- $\mathbb{A}$ and $\mathbb{N} \backslash \mathbb{A}$ are infinite.
- Conditions for lowness for all $n>0$ :
$\left(N_{n}\right)$ If $\mathcal{M}_{n}^{\mathbb{A}_{t}}(n) \downarrow^{t}$ for infinitely many $t$, then $\mathcal{M}_{n}^{\mathbb{A}}(n) \downarrow$.
- $\Rightarrow$ Conditions for simplicity for all $n>0$ :
$\left(P_{n}\right)$ If $W_{n}=\bigcup_{i \geq 1} W_{n, i}$ is infinite, then $\mathbb{A} \cap W_{n} \neq \emptyset$.
$\Rightarrow \mathbb{A}^{C} \preceq_{1} \mathbb{H}_{\mathcal{A}}$.
- $\mathbb{K}^{\mathbb{A}} \preceq_{T} \mathbb{K}^{\emptyset}$ where $\mathbb{K}^{\mathcal{O}}=\left\{k_{\mathcal{M}} \mid \mathcal{M} \in \mathrm{M}_{\mathcal{A}}^{1}(\mathcal{O}) \& \mathcal{M}\left(k_{\mathcal{M}}\right) \downarrow\right\}$.
$\Rightarrow \mathbb{A} \preceq_{T} \mathbb{H}_{\mathcal{A}}$.


## A Generalization of the Friedberg-Muchnik Theorem

The properties of $\mathbb{A}$, for instance, for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdots ; \leq)$ :

- $\mathbb{A}$ is effectively enumerable by an machine in $M_{\mathcal{A}}$.
$\Rightarrow \mathbb{A} \preceq_{1} \mathbb{H}_{\mathcal{A}}$.
- $\mathbb{A}$ and $\mathbb{N} \backslash \mathbb{A}$ are infinite.
- Conditions for lowness for all $n>0$ :
$\left(N_{n}\right)$ If $\mathcal{M}_{n}^{\mathbb{A}_{t}}(n) \downarrow^{t}$ for infinitely many $t$, then $\mathcal{M}_{n}^{\mathbb{A}}(n) \downarrow$.
- $\Rightarrow$ Conditions for simplicity for all $n>0$ :
$\left(P_{n}\right)$ If $W_{n}=\bigcup_{i \geq 1} W_{n, i}$ is infinite, then $\mathbb{A} \cap W_{n} \neq \emptyset$.
$\Rightarrow \mathbb{A}^{C} \preceq_{1} \mathbb{H}_{\mathcal{A}}$.
- $\mathbb{K}^{\mathbb{A}} \preceq_{T} \mathbb{K}^{\emptyset}$ where $\mathbb{K}^{\mathcal{O}}=\left\{k_{\mathcal{M}} \mid \mathcal{M} \in \mathrm{M}_{\mathcal{A}}^{1}(\mathcal{O}) \& \mathcal{M}\left(k_{\mathcal{M}}\right) \downarrow\right\}$.
$\Rightarrow \mathbb{A} \npreceq T \mathbb{H}_{\mathcal{A}}$.


## A Generalization of the Friedberg-Muchnik Theorem

- Let $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdot ; \leq)$ or $\mathcal{A}=(\mathbb{C} ; 0,1 ;+,-, \cdot ;=)$ and

$$
P=\mathbb{A}_{\mathrm{Alg}},
$$

$$
P=\bigcup_{n \geq 1}\left\{\vec{x} \in \mathbb{R}^{n} \mid\left(\exists \vec{q} \in \mathbb{Q}^{n}\right)\left(q_{1}+\sum_{i=1}^{n-1} q_{i-1} x_{i}=x_{n}\right)\right\}
$$

$$
\mathbb{Z} \subseteq P \text { or } \mathbb{Z} \cap P=\emptyset
$$

## Lemma

## Corollary

## Remark

Similar constructions are also possible, if all problems which are semi-decidable by Turing machines are decidable over $\mathcal{A}$.

- $P \npreceq_{T} \mathbb{H}_{\mathcal{A}}$ holds for $\mathcal{A}=\left(\mathbb{R} ; 0,1 ;+,-, \chi_{\mathbb{H}_{\mathrm{TM}}}, \phi ; \leq\right)$ with $\phi(x)=\pi$ and $\pi \mathbb{Z} \subseteq P($ where $\mathbb{A} \subseteq \pi \mathbb{Z})$ and so on.


## A Generalization of the Friedberg-Muchnik Theorem

- Let $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdot ; \leq)$ or $\mathcal{A}=(\mathbb{C} ; 0,1 ;+,-, \cdot ;=)$ and

$$
P=\mathbb{A}_{\mathrm{Alg}},
$$

$$
P=\bigcup_{n \geq 1}\left\{\vec{x} \in \mathbb{R}^{n} \mid\left(\exists \vec{q} \in \mathbb{Q}^{n}\right)\left(q_{1}+\sum_{i=1}^{n-1} q_{i-1} x_{i}=x_{n}\right)\right\}
$$

$$
\mathbb{Z} \subseteq P \text { or } \mathbb{Z} \cap P=\emptyset
$$

## Lemma

$\mathbb{A} \preceq_{T} P$.

## Corollary

## Remark

Similar cor structions are also possible, if all problems which are semi-decidable by Turing machines are decidable over $\mathcal{A}$.

- $P \nprec_{T} \mathbb{H}_{\mathcal{A}}$ holds for $\mathcal{A}=\left(\mathbb{R} ; 0,1 ;+,-, \chi_{\mathbb{H}_{\mathrm{TM}}}, \phi ; \leq\right)$ with $\phi(x)=\pi$ and $\pi \mathbb{Z} \subseteq P($ where $\mathbb{A} \subseteq \pi \mathbb{Z})$ and so on.


## A Generalization of the Friedberg-Muchnik Theorem

- Let $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdot ; \leq)$ or $\mathcal{A}=(\mathbb{C} ; 0,1 ;+,-, \cdot ;=)$ and

$$
P=\mathbb{A}_{\mathrm{Alg}},
$$

$$
P=\bigcup_{n \geq 1}\left\{\vec{x} \in \mathbb{R}^{n} \mid\left(\exists \vec{q} \in \mathbb{Q}^{n}\right)\left(q_{1}+\sum_{i=1}^{n-1} q_{i-1} x_{i}=x_{n}\right)\right\},
$$

$$
\mathbb{Z} \subseteq P \text { or } \mathbb{Z} \cap P=\emptyset
$$

## Lemma

$\mathbb{A} \preceq_{T} P$.
Corollary
$\mathbb{H}_{\mathcal{A}} \nwarrow_{T} P$.

## Remark

Similar constructions are also possible, if all problems which are semi-decidable by Turing machines are decidable over $\mathcal{A}$.

- $P \npreceq T \mathbb{H}_{\mathcal{A}}$ holds for $\mathcal{A}=\left(\mathbb{R} ; 0,1 ;+,-, \chi_{\mathbb{H}_{\mathrm{TM}}}, \phi ; \leq\right)$ with $\phi(x)=\pi$ and $\pi \mathbb{Z} \subseteq P($ where $\mathbb{A} \subseteq \pi \mathbb{Z})$ and so on.


## A Generalization of the Friedberg-Muchnik Theorem

- Let $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdot ; \leq)$ or $\mathcal{A}=(\mathbb{C} ; 0,1 ;+,-, \cdot ;=)$ and

$$
\begin{aligned}
& P=\mathbb{A}_{\text {Alg }} \\
& P=\bigcup_{n \geq 1}\left\{\vec{x} \in \mathbb{R}^{n} \mid\left(\exists \vec{q} \in \mathbb{Q}^{n}\right)\left(q_{1}+\sum_{i=1}^{n-1} q_{i-1} x_{i}=x_{n}\right)\right\}, \\
& \mathbb{Z} \subseteq P \text { or } \mathbb{Z} \cap P=\emptyset .
\end{aligned}
$$

## Lemma

$\mathbb{A} \nwarrow_{T} P$.
Corollary $\mathbb{H}_{\mathcal{A}} \not \varliminf_{T} P$.

## Remark

Similar constructions are also possible, if all problems which are semi-decidable by Turing machines are decidable over $\mathcal{A}$.

- $P \not \varliminf_{T} \mathbb{H}_{\mathcal{A}}$ holds for $\mathcal{A}=\left(\mathbb{R} ; 0,1 ;+,-, \chi_{\mathbb{H}_{\mathrm{TM}}}, \phi ; \leq\right)$ with $\phi(x)=\pi$ and $\pi \mathbb{Z} \subseteq P($ where $\mathbb{A} \subseteq \pi \mathbb{Z})$ and so on.


## A Generalization of the Friedberg-Muchnik Theorem

- Let $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdot ; \leq)$ or $\mathcal{A}=(\mathbb{C} ; 0,1 ;+,-, \cdot ;=)$ and

$$
\begin{aligned}
& P=\mathbb{A}_{\text {Alg }}, \\
& P=\bigcup_{n \geq 1}\left\{\vec{x} \in \mathbb{R}^{n} \mid\left(\exists \vec{q} \in \mathbb{Q}^{n}\right)\left(q_{1}+\sum_{i=1}^{n-1} q_{i-1} x_{i}=x_{n}\right)\right\}, \\
& \mathbb{Z} \subseteq P \text { or } \mathbb{Z} \cap P=\emptyset .
\end{aligned}
$$

## Lemma

$\mathbb{A} \nwarrow_{T} P$.
Corollary
$\mathbb{H}_{\mathcal{A}} \nwarrow_{T} P$.

## Remark

Similar constructions are also possible, if all problems which are semi-decidable by Turing machines are decidable over $\mathcal{A}$.

- $P \npreccurlyeq_{T} \mathbb{H}_{\mathcal{A}}$ holds for $\mathcal{A}=\left(\mathbb{R} ; 0,1 ;+,-, \chi_{\mathbb{H}_{\mathrm{TM}}}, \phi ; \leq\right)$ with $\phi(x)=\pi$ and $\pi \mathbb{Z} \subseteq P($ where $\mathbb{A} \subseteq \pi \mathbb{Z})$ and so on.


## A Generalization of the Friedberg-Muchnik Theorem

Lemma
$\mathbb{A} \preceq_{T} P$ for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdot ; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.
Proof: Let us assume that $\mathbb{A}$ is decidable by a machine in $\mathrm{M}_{\mathcal{A}}(P)$.
$0 \Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in M_{\mathcal{A}}(P)$.

- $\mathcal{M}$ can be modified:
- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by a machine in $M_{\mathcal{A}}$.
- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}=W_{j}$ for some $j$.
- $\Rightarrow$ By definition of $\mathbb{A}$ the assumption is wrong.


## A Generalization of the Friedberg-Muchnik Theorem

Lemma
$\mathbb{A} \preceq_{T} P$ for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdot ; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.
Proof: Let us assume that $\mathbb{A}$ is decidable by a machine in $\mathrm{M}_{\mathcal{A}}(P)$.

- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}(P)$.
- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by a machine in $\mathrm{M}_{\mathcal{A}}$.
- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}=W_{j}$ for some $j$.
- $\Rightarrow$ By definition of $\mathbb{A}$ the assumption is wrong.


## A Generalization of the Friedberg-Muchnik Theorem

## Lemma

$\mathbb{A} \not \varliminf_{T} P$ for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdot ; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.
Proof: Let us assume that $\mathbb{A}$ is decidable by a machine in $\mathrm{M}_{\mathcal{A}}(P)$.

- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}(P)$.
- $\mathcal{M}$ can be modified:
- The integers are enumerated and compared with the input.
- If the input is a positive integer,
then $\mathcal{M}$ can be simulated by a machine in $M_{\mathcal{A}}$
since
- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by a machine in $M_{\mathcal{A}}$.
- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}=W_{j}$ for some $j$
- $\Rightarrow$ By definition of $\mathbb{A}$ the assumption is wrong.


## A Generalization of the Friedberg-Muchnik Theorem

## Lemma

$\mathbb{A} \not \varliminf_{T} P$ for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdot ; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.
Proof: Let us assume that $\mathbb{A}$ is decidable by a machine in $\mathrm{M}_{\mathcal{A}}(P)$.

- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}(P)$.
- $\mathcal{M}$ can be modified:
- The integers are enumerated and compared with the input.

If the input is a positive integer then $\mathcal{M}$ can be simulated by a machine in $\mathrm{M}_{\mathcal{A}}$ since

- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by a machine in $M_{\mathcal{A}}$.
- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}=W$ for some $j$
- $\Rightarrow$ By definition of $\mathbb{A}$ the assumption is wrong.


## A Generalization of the Friedberg-Muchnik Theorem

## Lemma

$\mathbb{A} \not \varliminf_{T} P$ for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdot ; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.
Proof: Let us assume that $\mathbb{A}$ is decidable by a machine in $\mathrm{M}_{\mathcal{A}}(P)$.

- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}(P)$.
- $\mathcal{M}$ can be modified:
- The integers are enumerated and compared with the input.
- If the input is a positive integer, then $\mathcal{M}$ can be simulated by a machine in $\mathrm{M}_{\mathcal{A}}$ since
- all queries of $\mathcal{M}$ are answered in the positive,
- each order test can be simulated by means of equality tests.
$\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by a machine in $M_{A}$
- $\Rightarrow(\mathbb{R}$ A) $\cap \mathbb{N}=W_{j}$ for some $j$.
- $\Rightarrow$ By definition of $\mathbb{A}$ the assumption is wrong.


## A Generalization of the Friedberg-Muchnik Theorem

## Lemma

$\mathbb{A} \npreceq_{T} P$ for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdot ; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.
Proof: Let us assume that $\mathbb{A}$ is decidable by a machine in $\mathrm{M}_{\mathcal{A}}(P)$.

- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}(P)$.
- $\mathcal{M}$ can be modified:
- The integers are enumerated and compared with the input.
- If the input is a positive integer, then $\mathcal{M}$ can be simulated by a machine in $\mathrm{M}_{\mathcal{A}}$ since
- all queries of $\mathcal{M}$ are answered in the positive,
- each order test can be simulated by means of equality tests.

$\rightarrow$ ©A) $\cap \mathbb{N}$ is semi-decidable by a machine in $M_{\mathcal{A}}$.
$-\Rightarrow$ R A) $\cap \mathbb{N}=W_{j}$ for some $j$.

- $\Rightarrow$ By definition of $\mathbb{A}$ the assumption is wrong.


## A Generalization of the Friedberg-Muchnik Theorem

## Lemma

$\mathbb{A} \not \varliminf_{T} P$ for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdot ; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.
Proof: Let us assume that $\mathbb{A}$ is decidable by a machine in $\mathrm{M}_{\mathcal{A}}(P)$.

- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}(P)$.
- $\mathcal{M}$ can be modified:
- The integers are enumerated and compared with the input.
- If the input is a positive integer, then $\mathcal{M}$ can be simulated by a machine in $\mathrm{M}_{\mathcal{A}}$ since
- all queries of $\mathcal{M}$ are answered in the positive,
- each order test can be simulated by means of equality tests.
$0 \Rightarrow$ (R)
$\mathbb{A}) \cap \mathbb{N}$ is semi-decidable by a machine in $\mathrm{M}_{\mathcal{A}}$.
- $\Rightarrow(\mathbb{R}$
A) $\cap \mathbb{N}=W_{j}$ for some $j$.
- $\Rightarrow$ By definition of $\mathbb{A}$ the assumption is wrong.


## A Generalization of the Friedberg-Muchnik Theorem

## Lemma

$\mathbb{A} \not \varliminf_{T} P$ for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdot ; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.
Proof: Let us assume that $\mathbb{A}$ is decidable by a machine in $\mathrm{M}_{\mathcal{A}}(P)$.

- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}(P)$.
- $\mathcal{M}$ can be modified:
- The integers are enumerated and compared with the input.
- If the input is a positive integer, then $\mathcal{M}$ can be simulated by a machine in $\mathrm{M}_{\mathcal{A}}$ since
- all queries of $\mathcal{M}$ are answered in the positive,
- each order test can be simulated by means of equality tests.
- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by a machine in $\mathrm{M}_{\mathcal{A}}$.
$\bullet \Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}=W_{j}$ for some $j$.
- $\Rightarrow$ By definition of $\mathbb{A}$ the assumption is wrong.


## A Generalization of the Friedberg-Muchnik Theorem

## Lemma

$\mathbb{A} \preceq_{T} P$ for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdot ; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.
Proof: Let us assume that $\mathbb{A}$ is decidable by a machine in $\mathrm{M}_{\mathcal{A}}(P)$.

- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}(P)$.
- $\mathcal{M}$ can be modified:
- The integers are enumerated and compared with the input.
- If the input is a positive integer, then $\mathcal{M}$ can be simulated by a machine in $\mathrm{M}_{\mathcal{A}}$ since
- all queries of $\mathcal{M}$ are answered in the positive,
- each order test can be simulated by means of equality tests.
- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by a machine in $\mathrm{M}_{\mathcal{A}}$.
- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}=W_{j}$ for some $j$.
- $\Rightarrow$ By definition of $\mathbb{A}$ the assumption is wrong.


## A Generalization of the Friedberg-Muchnik Theorem

## Lemma

$\mathbb{A} \preceq_{T} P$ for $\mathcal{A}=(\mathbb{R} ; 0,1 ;+,-, \cdot ; \leq)$ and $\mathbb{Z} \subseteq P \subseteq U$.
Proof: Let us assume that $\mathbb{A}$ is decidable by a machine in $\mathrm{M}_{\mathcal{A}}(P)$.

- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by an $\mathcal{M} \in \mathrm{M}_{\mathcal{A}}(P)$.
- $\mathcal{M}$ can be modified:
- The integers are enumerated and compared with the input.
- If the input is a positive integer, then $\mathcal{M}$ can be simulated by a machine in $\mathrm{M}_{\mathcal{A}}$ since
- all queries of $\mathcal{M}$ are answered in the positive,
- each order test can be simulated by means of equality tests.
- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}$ is semi-decidable by a machine in $\mathrm{M}_{\mathcal{A}}$.
- $\Rightarrow(\mathbb{R} \backslash \mathbb{A}) \cap \mathbb{N}=W_{j}$ for some $j$.
- $\Rightarrow$ By definition of $\mathbb{A}$ the assumption is wrong.


## A Generalization of the Friedberg-Muchnik Theorem

## Theorem

Let $\mathcal{A}$ be a structure containing only a finite number of constants and relations, the operations $f_{1}, \ldots, f_{m}$ of arities $\mu_{1}, \ldots, \mu_{m}$, and an effectively enumerable set $N \subseteq U$.

Let $F_{0}=E_{0}=N, F_{i}=\bigcup_{j \leq i} E_{j}$ where

$$
E_{i+1}=\bigcup_{k=1}^{m}\left\{f_{k}\left(n_{1}, \ldots, n_{\mu_{k}}\right) \mid\left(n_{1}, \ldots, n_{\mu_{k}}\right) \in F_{i}^{\mu_{k}}\right\}
$$

and let $N$ be decidable on $E={ }_{\mathrm{df}} \bigcup_{i \geq 0} E_{i}$.
Moreover, let (a) or (b) be given.
(a) $P=\bigcup_{i \leq n} P_{i, 1} \times \cdots \times P_{i, j_{i}}$ with $E \subseteq P_{i, k} \subseteq U$ for all $i \leq n, k \leq j_{i}$.
(b) $P \cap E^{\infty}$ is decidable for all inputs in $E^{\infty}$.

Then, there is a semi-decidable $\mathbb{A} \subset N$ with $\mathbb{A} \preceq_{T} P$ and thus $\mathbb{H}_{\mathcal{A}} \not \varliminf_{T} P$.

The examples show that extensive knowledge of classical recursion theory is a fundamental condition for a closer examination of algebraic computation models.

Thank you very much for your attention!

