
Computation over Algebraic Structures and the
Turing Reduction

Christine Gaßner

University Greifswald

CCC 2012 Trier



Computation over Algebraic Structures
Introduction

Subject:
BSS RAM model over any structure – a framework for study of

the abstract computability by machines over several structures
the uniform decidability over algebraic structures
the reducibility of problems

on a high abstraction level
Meaning:

allow to analyze the complexity of algorithms
better understanding the principles of object-oriented programming
such as the encapsulation and the concept of virtual machines
improve the quality and the design of algorithms for computers

Including:
several types of register machines
the Turing machine
the uniform BSS model of computation over the reals



Computation over Algebraic Structures
Introduction

Subject:
BSS RAM model over any structure – a framework for study of

the abstract computability by machines over several structures
the uniform decidability over algebraic structures
the reducibility of problems

on a high abstraction level
Meaning:

allow to analyze the complexity of algorithms
better understanding the principles of object-oriented programming
such as the encapsulation and the concept of virtual machines
improve the quality and the design of algorithms for computers

Including:
several types of register machines
the Turing machine
the uniform BSS model of computation over the reals



Computation over Algebraic Structures
Introduction

Subject:
BSS RAM model over any structure – a framework for study of

the abstract computability by machines over several structures
the uniform decidability over algebraic structures
the reducibility of problems

on a high abstraction level
Meaning:

allow to analyze the complexity of algorithms
better understanding the principles of object-oriented programming
such as the encapsulation and the concept of virtual machines
improve the quality and the design of algorithms for computers

Including:
several types of register machines
the Turing machine
the uniform BSS model of computation over the reals



Computation over Algebraic Structures
Introduction

Subject:
BSS RAM model over any structure – a framework for study of

the abstract computability by machines over several structures
the uniform decidability over algebraic structures
the reducibility of problems

on a high abstraction level
Meaning:

allow to analyze the complexity of algorithms
better understanding the principles of object-oriented programming
such as the encapsulation and the concept of virtual machines
improve the quality and the design of algorithms for computers

Including:
several types of register machines
the Turing machine
the uniform BSS model of computation over the reals



Outline

The model

machines over algebraic structures

Turing reductions

computed by machines over algebraic structures

A hierarchy

derived from the arithmetical hierarchy

A first characterization of the class ∆0
2

the Limit Lemma

The transfer of a further theorem from the Recursion Theory

a generalization of the Friedberg-Muchnik Theorem



Outline

The model

machines over algebraic structures

Turing reductions

computed by machines over algebraic structures

A hierarchy

derived from the arithmetical hierarchy

A first characterization of the class ∆0
2

the Limit Lemma

The transfer of a further theorem from the Recursion Theory

a generalization of the Friedberg-Muchnik Theorem



Computation over Algebraic Structures
The Allowed Instructions

Computation over A= (U; (dj)j∈J0 ; (fj)j∈J1 ; (Rj)j∈J2 ,=).

Computation instructions:
l : Zj := fk(Zj1 , . . . ,Zjmk

) (e.g. l : Zj := Zj1 + Zj2),
l : Zj := dk,

Branching instructions:
l : if Zi = Zj then goto l1 else goto l2,
l : if Rk(Zj1 , . . . ,Zjnk

) then goto l1 else goto l2,

Copy instructions:
l : ZIj := ZIk ,

Index instructions:
l : Ij := 1,
l : Ij := Ij + 1,
l : if Ij = Ik then goto l1 else goto l2.



Computation over Algebraic Structures
The Allowed Instructions

Computation over A= (U; (dj)j∈J0 ; (fj)j∈J1 ; (Rj)j∈J2 ,=).

Computation instructions:
l : Zj := fk(Zj1 , . . . ,Zjmk

) (e.g. l : Zj := Zj1 + Zj2),
l : Zj := dk,

Branching instructions:
l : if Zi = Zj then goto l1 else goto l2,
l : if Rk(Zj1 , . . . ,Zjnk

) then goto l1 else goto l2,

Copy instructions:
l : ZIj := ZIk ,

Index instructions:
l : Ij := 1,
l : Ij := Ij + 1,
l : if Ij = Ik then goto l1 else goto l2.



Computation over Algebraic Structures
The Allowed Instructions

Computation over A= (U; (dj)j∈J0 ; (fj)j∈J1 ; (Rj)j∈J2 ,=).

Computation instructions:
l : Zj := fk(Zj1 , . . . ,Zjmk

) (e.g. l : Zj := Zj1 + Zj2),
l : Zj := dk,

Branching instructions:
l : if Zi = Zj then goto l1 else goto l2,
l : if Rk(Zj1 , . . . ,Zjnk

) then goto l1 else goto l2,

Copy instructions:
l : ZIj := ZIk ,

Index instructions:
l : Ij := 1,
l : Ij := Ij + 1,
l : if Ij = Ik then goto l1 else goto l2.



Computation over Algebraic Structures
The Allowed Instructions

Computation over A= (U; (dj)j∈J0 ; (fj)j∈J1 ; (Rj)j∈J2 ,=).

Computation instructions:
l : Zj := fk(Zj1 , . . . ,Zjmk

) (e.g. l : Zj := Zj1 + Zj2),
l : Zj := dk,

Branching instructions:
l : if Zi = Zj then goto l1 else goto l2,
l : if Rk(Zj1 , . . . ,Zjnk

) then goto l1 else goto l2,

Copy instructions:
l : ZIj := ZIk ,

Index instructions:
l : Ij := 1,
l : Ij := Ij + 1,
l : if Ij = Ik then goto l1 else goto l2.



Computation over Algebraic Structures
The Machines

Input and output space: U∞ =df
⋃

i≥1 Ui

Input of ~x = (x1, . . . , xn) ∈ U∞:

Z1 := x1; Z2 := x2; . . . ; Zn := xn;

Zn+1 := xn; Zn+2 := xn; . . .

I1 := n;

Output of Z1, . . . ,ZI1 .

MA – machines over A
MA(O) – machines using O ⊆ U∞ as oracle

Oracle instructions:
l : if (Z1, . . . ,ZI1) ∈ O then goto l1 else goto l2.



Computation over Algebraic Structures
The Machines

Input and output space: U∞ =df
⋃

i≥1 Ui

Input of ~x = (x1, . . . , xn) ∈ U∞:

Z1 := x1; Z2 := x2; . . . ; Zn := xn;

Zn+1 := xn; Zn+2 := xn; . . .

I1 := n;

Output of Z1, . . . ,ZI1 .

MA – machines over A
MA(O) – machines using O ⊆ U∞ as oracle

Oracle instructions:
l : if (Z1, . . . ,ZI1) ∈ O then goto l1 else goto l2.



Computation over Algebraic Structures
The Machines

Input and output space: U∞ =df
⋃

i≥1 Ui

Input of ~x = (x1, . . . , xn) ∈ U∞:

Z1 := x1; Z2 := x2; . . . ; Zn := xn;

Zn+1 := xn; Zn+2 := xn; . . .

I1 := n;

Output of Z1, . . . ,ZI1 .

MA – machines over A
MA(O) – machines using O ⊆ U∞ as oracle

Oracle instructions:
l : if (Z1, . . . ,ZI1) ∈ O then goto l1 else goto l2.



Computation over Algebraic Structures
The Machines

Input and output space: U∞ =df
⋃

i≥1 Ui

Input of ~x = (x1, . . . , xn) ∈ U∞:

Z1 := x1; Z2 := x2; . . . ; Zn := xn;

Zn+1 := xn; Zn+2 := xn; . . .

I1 := n;

Output of Z1, . . . ,ZI1 .

MA – machines over A
MA(O) – machines using O ⊆ U∞ as oracle

Oracle instructions:
l : if (Z1, . . . ,ZI1) ∈ O then goto l1 else goto l2.



Computation over Algebraic Structures
The Machines

Input and output space: U∞ =df
⋃

i≥1 Ui

Input of ~x = (x1, . . . , xn) ∈ U∞:

Z1 := x1; Z2 := x2; . . . ; Zn := xn;

Zn+1 := xn; Zn+2 := xn; . . .

I1 := n;

Output of Z1, . . . ,ZI1 .

MA – machines over A
MA(O) – machines using O ⊆ U∞ as oracle

Oracle instructions:
l : if (Z1, . . . ,ZI1) ∈ O then goto l1 else goto l2.



Computation over Algebraic Structures
The Halting Problem

HA= {(~x . cM) | ~x ∈ U∞ & M∈ MA & M(~x) ↓}
where

~x = (x1, . . . , xn)
cM = code(M) = (s1, . . . , sm)

(~x . cM) = (x1, . . . , xn, s1, . . . , sm)

M(~x) ↓ =̂ M halts on~x

HA ∈ RECA if A is a structure of finite signature
HA 6∈ DECA

RECA – recognizable (semi-decidable) problems
DECA – decidable problems

HOA = {(~x . cM) | ~x ∈ U∞ & M∈ MA(O) & M(~x) ↓}

HOA 6∈ DECOA



Computation over Algebraic Structures
The Halting Problem

HA= {(~x . cM) | ~x ∈ U∞ & M∈ MA & M(~x) ↓}
where

~x = (x1, . . . , xn)
cM = code(M) = (s1, . . . , sm)

(~x . cM) = (x1, . . . , xn, s1, . . . , sm)

M(~x) ↓ =̂ M halts on~x

HA ∈ RECA if A is a structure of finite signature
HA 6∈ DECA

RECA – recognizable (semi-decidable) problems
DECA – decidable problems

HOA = {(~x . cM) | ~x ∈ U∞ & M∈ MA(O) & M(~x) ↓}

HOA 6∈ DECOA



Computation over Algebraic Structures
The Halting Problem

HA= {(~x . cM) | ~x ∈ U∞ & M∈ MA & M(~x) ↓}
where

~x = (x1, . . . , xn)
cM = code(M) = (s1, . . . , sm)

(~x . cM) = (x1, . . . , xn, s1, . . . , sm)

M(~x) ↓ =̂ M halts on~x

HA ∈ RECA if A is a structure of finite signature
HA 6∈ DECA

RECA – recognizable (semi-decidable) problems
DECA – decidable problems

HOA = {(~x . cM) | ~x ∈ U∞ & M∈ MA(O) & M(~x) ↓}

HOA 6∈ DECOA



Computation over Algebraic Structures
The Halting Problem

HA= {(~x . cM) | ~x ∈ U∞ & M∈ MA & M(~x) ↓}
where

~x = (x1, . . . , xn)
cM = code(M) = (s1, . . . , sm)

(~x . cM) = (x1, . . . , xn, s1, . . . , sm)

M(~x) ↓ =̂ M halts on~x

HA ∈ RECA if A is a structure of finite signature
HA 6∈ DECA

RECA – recognizable (semi-decidable) problems
DECA – decidable problems

HOA = {(~x . cM) | ~x ∈ U∞ & M∈ MA(O) & M(~x) ↓}

HOA 6∈ DECOA



The Turing Reduction
over Structures A

P,Q ⊆
⋃

i≥1 Ui

P �T Q P is easier than Q,
P is decidable by a machine in MA(Q).

P �T6 Q P is strictly easier than Q,
Q cannot be decided by a machine in MA(P).

⇒ For the Halting Problem:

P ∈ RECA ⇒ P �1 HA (one-one reduction over A)
⇒ P �T HA



The Turing Reduction
over Structures A

P,Q ⊆
⋃

i≥1 Ui

P �T Q P is easier than Q,
P is decidable by a machine in MA(Q).

P �T6 Q P is strictly easier than Q,
Q cannot be decided by a machine in MA(P).

⇒ For the Halting Problem:

P ∈ RECA ⇒ P �1 HA (one-one reduction over A)
⇒ P �T HA



The Turing Reduction
over Structures A

P,Q ⊆
⋃

i≥1 Ui

P �T Q P is easier than Q,
P is decidable by a machine in MA(Q).

P �T6 Q P is strictly easier than Q,
Q cannot be decided by a machine in MA(P).

⇒ For the Halting Problem:

P ∈ RECA ⇒ P �1 HA (one-one reduction over A)
⇒ P �T HA



A Hierarchy
(Analogously to the Arithmetical Hierarchy)

Definition (semantically by deterministic machines):
A is fixed.

Σ0
0 = DECA,

Π0
n = {U∞ \ P | P ∈ Σ0

n},
∆0

n = Σ0
n ∩ Π0

n,

Σ0
n+1 = {P ⊆ U∞ | (∃Q ∈ Σ0

n)(P �1 HQ
A)}.

The first level:

Σ0
1 = RECA = {P ⊆ U∞ | P �1 HA},

Π0
1 = {P ⊆ U∞ | P �1 U∞ \HA},

∆0
1 = DECA = {P ⊆ U∞ | P �T ∅},



A Hierarchy
(Analogously to the Arithmetical Hierarchy)

Definition (semantically by deterministic machines):
A is fixed.

Σ0
0 = DECA,

Π0
n = {U∞ \ P | P ∈ Σ0

n},
∆0

n = Σ0
n ∩ Π0

n,

Σ0
n+1 = {P ⊆ U∞ | (∃Q ∈ Σ0

n)(P �1 HQ
A)}.

The first level:

Σ0
1 = RECA = {P ⊆ U∞ | P �1 HA},

Π0
1 = {P ⊆ U∞ | P �1 U∞ \HA},

∆0
1 = DECA = {P ⊆ U∞ | P �T ∅},



A Hierarchy
(Analogously to the Arithmetical Hierarchy)

Definition (semantically by deterministic machines):
A is fixed.

Σ0
0 = DECA,

Π0
n = {U∞ \ P | P ∈ Σ0

n},
∆0

n = Σ0
n ∩ Π0

n,

Σ0
n+1 = {P ⊆ U∞ | (∃Q ∈ Σ0

n)(P �1 HQ
A)}.

The first level:

Σ0
1 = RECA = {P ⊆ U∞ | P �1 HA},

Π0
1 = {P ⊆ U∞ | P �1 U∞ \HA},

∆0
1 = DECA = {P ⊆ U∞ | P �T ∅},



A Hierarchy
(Analogously to the Arithmetical Hierarchy)

Definition (semantically by deterministic machines):
A is fixed.

Σ0
0 = DECA,

Π0
n = {U∞ \ P | P ∈ Σ0

n},
∆0

n = Σ0
n ∩ Π0

n,

Σ0
n+1 = {P ⊆ U∞ | (∃Q ∈ Σ0

n)(P �1 HQ
A)}.

The second level:

Σ0
2 = RECHA

A = {P ⊆ U∞ | P �1 HHA
A },

Π0
2 = {P ⊆ U∞ | P �1 U∞ \HHA

A },
∆0

2 = DECHA
A = {P ⊆ U∞ | P �T HA}.



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Let A contain an effectively enumerable set denoted by N.
χP – the characteristic function of the problem P.

Let P ⊆ U∞.
(1) P ∈ ∆0

2.
(2) There is a computable function g : U∞ → {0, 1}

defined on {(n .~x) | n ∈ N & ~x ∈ U∞}
such that χP(~x) = lims→∞ g(s .~x).

Lemma (First Part of Limit Lemma)
If (1), then (2).

Lemma (Second Part of Limit Lemma)
If (2), then (1).



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Let A contain an effectively enumerable set denoted by N.
χP – the characteristic function of the problem P.

Let P ⊆ U∞.
(1) P ∈ ∆0

2.
(2) There is a computable function g : U∞ → {0, 1}

defined on {(n .~x) | n ∈ N & ~x ∈ U∞}
such that χP(~x) = lims→∞ g(s .~x).

Lemma (First Part of Limit Lemma)
If (1), then (2).

Lemma (Second Part of Limit Lemma)
If (2), then (1).



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Let A contain an effectively enumerable set denoted by N.
χP – the characteristic function of the problem P.

Let P ⊆ U∞.
(1) P ∈ ∆0

2.
(2) There is a computable function g : U∞ → {0, 1}

defined on {(n .~x) | n ∈ N & ~x ∈ U∞}
such that χP(~x) = lims→∞ g(s .~x).

Lemma (First Part of Limit Lemma)
If (1), then (2).

Lemma (Second Part of Limit Lemma)
If (2), then (1).



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Let A contain an effectively enumerable set denoted by N.
χP – the characteristic function of the problem P.

Let P ⊆ U∞.
(1) P ∈ ∆0

2.
(2) There is a computable function g : U∞ → {0, 1}

defined on {(n .~x) | n ∈ N & ~x ∈ U∞}
such that χP(~x) = lims→∞ g(s .~x).

Lemma (First Part of Limit Lemma)
If (1), then (2).

Lemma (Second Part of Limit Lemma)
If (2), then (1).



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Let A contain an effectively enumerable set denoted by N.
χP – the characteristic function of the problem P.

Let P ⊆ U∞.
(1) P ∈ ∆0

2.
(2) There is a computable function g : U∞ → {0, 1}

defined on {(n .~x) | n ∈ N & ~x ∈ U∞}
such that χP(~x) = lims→∞ g(s .~x).

Lemma (First Part of Limit Lemma)
If (1), then (2).

Lemma (Second Part of Limit Lemma)
If (2), then (1).



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Let A contain an effectively enumerable set denoted by N.
χP – the characteristic function of the problem P.

Let P ⊆ U∞.
(1) P ∈ ∆0

2.
(2) There is a computable function g : U∞ → {0, 1}

defined on {(n .~x) | n ∈ N & ~x ∈ U∞}
such that χP(~x) = lims→∞ g(s .~x).

Lemma (First Part of Limit Lemma)
If (1), then (2).

Lemma (Second Part of Limit Lemma)
If (2), then (1).



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Lemma (First Part of Limit Lemma)

If P ⊆ U∞ is in ∆0
2, then there is a computable function

g : U∞ → {0, 1} defined on {(n .~x) | n ∈ N & ~x ∈ U∞} such that
χP(~x) = lims→∞ g(s .~x).

Proof. LetM∈ MA(HA) decide the problem P and~x ∈ U∞.

let β1, β2, . . . , βk ∈ N represent the answers of the queries
(~y(i) . cLi) ∈ HA? executed byM on input~x.

⇒
βi = 0 iff Li(~y(i)) ↑,
βi = t > 0 iff Li(~y(i)) ↑t−1 and Li(~y(i)) ↓t.



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Lemma (First Part of Limit Lemma)

If P ⊆ U∞ is in ∆0
2, then there is a computable function

g : U∞ → {0, 1} defined on {(n .~x) | n ∈ N & ~x ∈ U∞} such that
χP(~x) = lims→∞ g(s .~x).

Proof. LetM∈ MA(HA) decide the problem P and~x ∈ U∞.

let β1, β2, . . . , βk ∈ N represent the answers of the queries
(~y(i) . cLi) ∈ HA? executed byM on input~x.

⇒
βi = 0 iff Li(~y(i)) ↑,
βi = t > 0 iff Li(~y(i)) ↑t−1 and Li(~y(i)) ↓t.



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Lemma (First Part of Limit Lemma)

If P ⊆ U∞ is in ∆0
2, then there is a computable function

g : U∞ → {0, 1} defined on {(n .~x) | n ∈ N & ~x ∈ U∞} such that
χP(~x) = lims→∞ g(s .~x).

Proof. LetM∈ MA(HA) decide the problem P and~x ∈ U∞.

let β1, β2, . . . , βk ∈ N represent the answers of the queries
(~y(i) . cLi) ∈ HA? executed byM on input~x.

⇒
βi = 0 iff Li(~y(i)) ↑,
βi = t > 0 iff Li(~y(i)) ↑t−1 and Li(~y(i)) ↓t.



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Lemma (First Part of Limit Lemma)

If P ⊆ U∞ is in ∆0
2, then there is a computable function

g : U∞ → {0, 1} defined on {(n .~x) | n ∈ N & ~x ∈ U∞} such that
χP(~x) = lims→∞ g(s .~x).

Proof. LetM∈ MA(HA) decide the problem P and~x ∈ U∞.

let β1, β2, . . . , βk ∈ N represent the answers of the queries
(~y(i) . cLi) ∈ HA? executed byM on input~x.

⇒
βi = 0 iff Li(~y(i)) ↑,
βi = t > 0 iff Li(~y(i)) ↑t−1 and Li(~y(i)) ↓t.



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Lemma (First Part of Limit Lemma)

If P ⊆ U∞ is in ∆0
2, then there is a computable function

g : U∞ → {0, 1} defined on {(n .~x) | n ∈ N & ~x ∈ U∞} such that
χP(~x) = lims→∞ g(s .~x).

Proof. LetM∈ MA(HA) decide the problem P and~x ∈ U∞.

let β1, β2, . . . , βk ∈ N represent the answers of the queries
(~y(i) . cLi) ∈ HA? executed byM on input~x.

⇒
βi = 0 iff Li(~y(i)) ↑,
βi = t > 0 iff Li(~y(i)) ↑t−1 and Li(~y(i)) ↓t.



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Let g be computed by N ∈ MA executing:
Input (s .~x) ∈ U∞;
if s ∈ N, then simulate s instructions ofM, but,
instead of

if (~y(s,i) . cLs,i) ∈ HA then goto to l1 else goto l2,

use
if Ls,i(~y(s,i)) ↓s then goto to l1 else goto l2.

If the output ofM is not reached within s steps ofM, then output 0.

s ∈ N,~x ∈ U∞⇒ let β(s)1 , . . . , β
(s)
ms ≤ s (ms ≤ s) with

β
(s)
i 6= 0⇒ Ls,i(~y(s,i)) ↑β

(s)
i −1 and Ls,i(~y(s,i)) ↓β

(s)
i .

s ∈ N,~x ∈ U∞⇒ there are 0 = s0 < s1 ≤ s2 ≤ · · · ≤ sk such that

(β1, β2, . . . , βi) = (βsi
1 , β

si
2 , . . . , β

si
i ) for i ≤ msi ,

(β1, β2, . . . , βk) = (βs
1, β

s
2, . . . , β

s
k) for s ≥ sk.

~x ∈ U∞⇒ there is an s~x
such that N outputs the same value asM on (s .~x) for all s ≥ s~x.



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Let g be computed by N ∈ MA executing:
Input (s .~x) ∈ U∞;
if s ∈ N, then simulate s instructions ofM, but,
instead of

if (~y(s,i) . cLs,i) ∈ HA then goto to l1 else goto l2,

use
if Ls,i(~y(s,i)) ↓s then goto to l1 else goto l2.

If the output ofM is not reached within s steps ofM, then output 0.

s ∈ N,~x ∈ U∞⇒ let β(s)1 , . . . , β
(s)
ms ≤ s (ms ≤ s) with

β
(s)
i 6= 0⇒ Ls,i(~y(s,i)) ↑β

(s)
i −1 and Ls,i(~y(s,i)) ↓β

(s)
i .

s ∈ N,~x ∈ U∞⇒ there are 0 = s0 < s1 ≤ s2 ≤ · · · ≤ sk such that

(β1, β2, . . . , βi) = (βsi
1 , β

si
2 , . . . , β

si
i ) for i ≤ msi ,

(β1, β2, . . . , βk) = (βs
1, β

s
2, . . . , β

s
k) for s ≥ sk.

~x ∈ U∞⇒ there is an s~x
such that N outputs the same value asM on (s .~x) for all s ≥ s~x.



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Let g be computed by N ∈ MA executing:
Input (s .~x) ∈ U∞;
if s ∈ N, then simulate s instructions ofM, but,
instead of

if (~y(s,i) . cLs,i) ∈ HA then goto to l1 else goto l2,

use
if Ls,i(~y(s,i)) ↓s then goto to l1 else goto l2.

If the output ofM is not reached within s steps ofM, then output 0.

s ∈ N,~x ∈ U∞⇒ let β(s)1 , . . . , β
(s)
ms ≤ s (ms ≤ s) with

β
(s)
i 6= 0⇒ Ls,i(~y(s,i)) ↑β

(s)
i −1 and Ls,i(~y(s,i)) ↓β

(s)
i .

s ∈ N,~x ∈ U∞⇒ there are 0 = s0 < s1 ≤ s2 ≤ · · · ≤ sk such that

(β1, β2, . . . , βi) = (βsi
1 , β

si
2 , . . . , β

si
i ) for i ≤ msi ,

(β1, β2, . . . , βk) = (βs
1, β

s
2, . . . , β

s
k) for s ≥ sk.

~x ∈ U∞⇒ there is an s~x
such that N outputs the same value asM on (s .~x) for all s ≥ s~x.



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Let g be computed by N ∈ MA executing:
Input (s .~x) ∈ U∞;
if s ∈ N, then simulate s instructions ofM, but,
instead of

if (~y(s,i) . cLs,i) ∈ HA then goto to l1 else goto l2,

use
if Ls,i(~y(s,i)) ↓s then goto to l1 else goto l2.

If the output ofM is not reached within s steps ofM, then output 0.

s ∈ N,~x ∈ U∞⇒ let β(s)1 , . . . , β
(s)
ms ≤ s (ms ≤ s) with

β
(s)
i 6= 0⇒ Ls,i(~y(s,i)) ↑β

(s)
i −1 and Ls,i(~y(s,i)) ↓β

(s)
i .

s ∈ N,~x ∈ U∞⇒ there are 0 = s0 < s1 ≤ s2 ≤ · · · ≤ sk such that

(β1, β2, . . . , βi) = (βsi
1 , β

si
2 , . . . , β

si
i ) for i ≤ msi ,

(β1, β2, . . . , βk) = (βs
1, β

s
2, . . . , β

s
k) for s ≥ sk.

~x ∈ U∞⇒ there is an s~x
such that N outputs the same value asM on (s .~x) for all s ≥ s~x.



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Let g be computed by N ∈ MA executing:
Input (s .~x) ∈ U∞;
if s ∈ N, then simulate s instructions ofM, but,
instead of

if (~y(s,i) . cLs,i) ∈ HA then goto to l1 else goto l2,

use
if Ls,i(~y(s,i)) ↓s then goto to l1 else goto l2.

If the output ofM is not reached within s steps ofM, then output 0.

s ∈ N,~x ∈ U∞⇒ let β(s)1 , . . . , β
(s)
ms ≤ s (ms ≤ s) with

β
(s)
i 6= 0⇒ Ls,i(~y(s,i)) ↑β

(s)
i −1 and Ls,i(~y(s,i)) ↓β

(s)
i .

s ∈ N,~x ∈ U∞⇒ there are 0 = s0 < s1 ≤ s2 ≤ · · · ≤ sk such that

(β1, β2, . . . , βi) = (βsi
1 , β

si
2 , . . . , β

si
i ) for i ≤ msi ,

(β1, β2, . . . , βk) = (βs
1, β

s
2, . . . , β

s
k) for s ≥ sk.

~x ∈ U∞⇒ there is an s~x
such that N outputs the same value asM on (s .~x) for all s ≥ s~x.



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Lemma (Second Part of Limit Lemma)

If there is a computable function g : U∞ → {0, 1} defined on
{(n .~x) | n ∈ N & ~x ∈ U∞} such that χP(~x) = lims→∞ g(s .~x), then
P ⊆ U∞ is in ∆0

2.

Proof. Let g be computed by N ∈ MA and letM∈ MA(HA) execute:

Input~x ∈ U∞;

Let s = 1;

1:
- Ask ((s .~x) . cL) ∈ HA? where
L: Input (s .~x);

Halt if there is a k ≥ s such that g(s .~x) 6= g(k .~x).
If L(s .~x) ↓,
then s := s + 1 and goto 1
else compute g(s .~x) by simulating N and output g(s .~x).

M decides P.



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Lemma (Second Part of Limit Lemma)

If there is a computable function g : U∞ → {0, 1} defined on
{(n .~x) | n ∈ N & ~x ∈ U∞} such that χP(~x) = lims→∞ g(s .~x), then
P ⊆ U∞ is in ∆0

2.

Proof. Let g be computed by N ∈ MA and letM∈ MA(HA) execute:

Input~x ∈ U∞;

Let s = 1;

1:
- Ask ((s .~x) . cL) ∈ HA? where
L: Input (s .~x);

Halt if there is a k ≥ s such that g(s .~x) 6= g(k .~x).
If L(s .~x) ↓,
then s := s + 1 and goto 1
else compute g(s .~x) by simulating N and output g(s .~x).

M decides P.



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Lemma (Second Part of Limit Lemma)

If there is a computable function g : U∞ → {0, 1} defined on
{(n .~x) | n ∈ N & ~x ∈ U∞} such that χP(~x) = lims→∞ g(s .~x), then
P ⊆ U∞ is in ∆0

2.

Proof. Let g be computed by N ∈ MA and letM∈ MA(HA) execute:

Input~x ∈ U∞;

Let s = 1;

1:
- Ask ((s .~x) . cL) ∈ HA? where
L: Input (s .~x);

Halt if there is a k ≥ s such that g(s .~x) 6= g(k .~x).
If L(s .~x) ↓,
then s := s + 1 and goto 1
else compute g(s .~x) by simulating N and output g(s .~x).

M decides P.



A Characterization of ∆0
2 = {P ⊆ U∞ | P �T HA}

Lemma (Second Part of Limit Lemma)

If there is a computable function g : U∞ → {0, 1} defined on
{(n .~x) | n ∈ N & ~x ∈ U∞} such that χP(~x) = lims→∞ g(s .~x), then
P ⊆ U∞ is in ∆0

2.

Proof. Let g be computed by N ∈ MA and letM∈ MA(HA) execute:

Input~x ∈ U∞;

Let s = 1;

1:
- Ask ((s .~x) . cL) ∈ HA? where
L: Input (s .~x);

Halt if there is a k ≥ s such that g(s .~x) 6= g(k .~x).
If L(s .~x) ↓,
then s := s + 1 and goto 1
else compute g(s .~x) by simulating N and output g(s .~x).

M decides P.



Summary: ∆0
2 and the Limit Lemma

Let A contain an effectively enumerable set denoted by N.
χP – the characteristic function of the problem P.

Lemma (Limit Lemma)

P ⊆ U∞ is in ∆0
2 if and only if there is a computable function

g : U∞ → {0, 1} defined on {(n .~x) | n ∈ N & ~x ∈ U∞} such that
χP(~x) = lims→∞ g(s .~x).



A Generalization of the Friedberg-Muchnik Theorem

Let A contain

only a finite number of operations and relations,
an effectively enumerable set denoted by N,
only two constants denoted by 0 and 1.

⇒ HA ∈ RECA.

We construct an A ⊂ N with

A �T6 HA,
A 6�T P for many P ⊆ U∞,
A 6�T P for many P ∈ ∆0

2.
⇒ HA 6�T P.



A Generalization of the Friedberg-Muchnik Theorem

Let A contain

only a finite number of operations and relations,
an effectively enumerable set denoted by N,
only two constants denoted by 0 and 1.

⇒ HA ∈ RECA.

We construct an A ⊂ N with

A �T6 HA,
A 6�T P for many P ⊆ U∞,
A 6�T P for many P ∈ ∆0

2.
⇒ HA 6�T P.



A Generalization of the Friedberg-Muchnik Theorem

Let A contain

only a finite number of operations and relations,
an effectively enumerable set denoted by N,
only two constants denoted by 0 and 1.

⇒ HA ∈ RECA.

We construct an A ⊂ N with

A �T6 HA,
A 6�T P for many P ⊆ U∞,
A 6�T P for many P ∈ ∆0

2.
⇒ HA 6�T P.



A Generalization of the Friedberg-Muchnik Theorem

A contains

only a finite number of operations and relations,

an effectively enumerable set denoted by N,

only two constants denoted by 0 and 1.

We use:

HM ∩ N (for the halting set HM ofM∈ MA) is

effectively enumerable
a halting set of a machine in MA.

For any O ⊆ N,
we can list MA(O): MO1 ,MO2 , . . ..
(The index is the code of the corresponding program.)
We can list MA: N1,N2, . . ..
N̄i enumerating all positive integers ni,1, ni,2, . . . ∈ HNi .



A Generalization of the Friedberg-Muchnik Theorem

A contains

only a finite number of operations and relations,

an effectively enumerable set denoted by N,

only two constants denoted by 0 and 1.

We use:

HM ∩ N (for the halting set HM ofM∈ MA) is

effectively enumerable
a halting set of a machine in MA.

For any O ⊆ N,
we can list MA(O): MO1 ,MO2 , . . ..
(The index is the code of the corresponding program.)
We can list MA: N1,N2, . . ..
N̄i enumerating all positive integers ni,1, ni,2, . . . ∈ HNi .



A Generalization of the Friedberg-Muchnik Theorem

A contains

only a finite number of operations and relations,

an effectively enumerable set denoted by N,

only two constants denoted by 0 and 1.

We use:

HM ∩ N (for the halting set HM ofM∈ MA) is

effectively enumerable
a halting set of a machine in MA.

For any O ⊆ N,
we can list MA(O): MO1 ,MO2 , . . ..
(The index is the code of the corresponding program.)
We can list MA: N1,N2, . . ..
N̄i enumerating all positive integers ni,1, ni,2, . . . ∈ HNi .



A Generalization of the Friedberg-Muchnik Theorem

A contains

only a finite number of operations and relations,

an effectively enumerable set denoted by N,

only two constants denoted by 0 and 1.

We use:

HM ∩ N (for the halting set HM ofM∈ MA) is

effectively enumerable
a halting set of a machine in MA.

For any O ⊆ N,
we can list MA(O): MO1 ,MO2 , . . ..
(The index is the code of the corresponding program.)
We can list MA: N1,N2, . . ..
N̄i enumerating all positive integers ni,1, ni,2, . . . ∈ HNi .



A Generalization of the Friedberg-Muchnik Theorem

A contains

only a finite number of operations and relations,

an effectively enumerable set denoted by N,

only two constants denoted by 0 and 1.

We use:

HM ∩ N (for the halting set HM ofM∈ MA) is

effectively enumerable
a halting set of a machine in MA.

For any O ⊆ N,
we can list MA(O): MO1 ,MO2 , . . ..
(The index is the code of the corresponding program.)
We can list MA: N1,N2, . . ..
N̄i enumerating all positive integers ni,1, ni,2, . . . ∈ HNi .



A Generalization of the Friedberg-Muchnik Theorem

Let A =
⋃

s≥0 As be defined in stages. A0 = ∅, s ≥ 0.

Is = {i ≤ s | Wi,s∩As = ∅ & (∃x ∈ Wi,s)(2i < x & (∀j ≤ i)(a(j, s) < x))}

where, for any j ≤ s,

a(j, s)


greatest integer used in a query by
MAs

j on j within s steps ifMAs
j (j) ↓s,

0 ifMAs
j (j) ↑s.

Wi,s is the set of integers computed by N̄i on s within s steps.
If Is 6= ∅, then let

is = min Is,
xis = min{x ∈ Wis,s | 2is < x & (∀j ≤ is)(a(j, s) < x)},

As+1 =

{
As if Is = ∅
As ∪ {xis} otherwise.



A Generalization of the Friedberg-Muchnik Theorem

Let A =
⋃

s≥0 As be defined in stages. A0 = ∅, s ≥ 0.

Is = {i ≤ s | Wi,s∩As = ∅ & (∃x ∈ Wi,s)(2i < x & (∀j ≤ i)(a(j, s) < x))}

where, for any j ≤ s,

a(j, s)


greatest integer used in a query by
MAs

j on j within s steps ifMAs
j (j) ↓s,

0 ifMAs
j (j) ↑s.

Wi,s is the set of integers computed by N̄i on s within s steps.
If Is 6= ∅, then let

is = min Is,
xis = min{x ∈ Wis,s | 2is < x & (∀j ≤ is)(a(j, s) < x)},

As+1 =

{
As if Is = ∅
As ∪ {xis} otherwise.



A Generalization of the Friedberg-Muchnik Theorem

The properties of A, for instance, for A = (R; 0, 1; +,−, · · · ;≤):

A is effectively enumerable by an machine in MA.

⇒ A �1 HA.

A and N \ A are infinite.

Conditions for lowness for all n > 0:
(Nn) IfMAt

n (n) ↓t for infinitely many t, thenMA
n (n) ↓.

⇒ Conditions for simplicity for all n > 0:
(Pn) If Wn =

⋃
i≥1 Wn,i is infinite, then A ∩Wn 6= ∅.

⇒ AC 6�1 HA.

KA �T K∅ where KO = {kM | M ∈ M1
A(O) & M(kM) ↓}.

⇒ A �T6 HA.



A Generalization of the Friedberg-Muchnik Theorem

The properties of A, for instance, for A = (R; 0, 1; +,−, · · · ;≤):

A is effectively enumerable by an machine in MA.

⇒ A �1 HA.

A and N \ A are infinite.

Conditions for lowness for all n > 0:
(Nn) IfMAt

n (n) ↓t for infinitely many t, thenMA
n (n) ↓.

⇒ Conditions for simplicity for all n > 0:
(Pn) If Wn =

⋃
i≥1 Wn,i is infinite, then A ∩Wn 6= ∅.

⇒ AC 6�1 HA.

KA �T K∅ where KO = {kM | M ∈ M1
A(O) & M(kM) ↓}.

⇒ A �T6 HA.



A Generalization of the Friedberg-Muchnik Theorem

The properties of A, for instance, for A = (R; 0, 1; +,−, · · · ;≤):

A is effectively enumerable by an machine in MA.

⇒ A �1 HA.

A and N \ A are infinite.

Conditions for lowness for all n > 0:
(Nn) IfMAt

n (n) ↓t for infinitely many t, thenMA
n (n) ↓.

⇒ Conditions for simplicity for all n > 0:
(Pn) If Wn =

⋃
i≥1 Wn,i is infinite, then A ∩Wn 6= ∅.

⇒ AC 6�1 HA.

KA �T K∅ where KO = {kM | M ∈ M1
A(O) & M(kM) ↓}.

⇒ A �T6 HA.



A Generalization of the Friedberg-Muchnik Theorem

The properties of A, for instance, for A = (R; 0, 1; +,−, · · · ;≤):

A is effectively enumerable by an machine in MA.

⇒ A �1 HA.

A and N \ A are infinite.

Conditions for lowness for all n > 0:
(Nn) IfMAt

n (n) ↓t for infinitely many t, thenMA
n (n) ↓.

⇒ Conditions for simplicity for all n > 0:
(Pn) If Wn =

⋃
i≥1 Wn,i is infinite, then A ∩Wn 6= ∅.

⇒ AC 6�1 HA.

KA �T K∅ where KO = {kM | M ∈ M1
A(O) & M(kM) ↓}.

⇒ A �T6 HA.



A Generalization of the Friedberg-Muchnik Theorem

The properties of A, for instance, for A = (R; 0, 1; +,−, · · · ;≤):

A is effectively enumerable by an machine in MA.

⇒ A �1 HA.

A and N \ A are infinite.

Conditions for lowness for all n > 0:
(Nn) IfMAt

n (n) ↓t for infinitely many t, thenMA
n (n) ↓.

⇒ Conditions for simplicity for all n > 0:
(Pn) If Wn =

⋃
i≥1 Wn,i is infinite, then A ∩Wn 6= ∅.

⇒ AC 6�1 HA.

KA �T K∅ where KO = {kM | M ∈ M1
A(O) & M(kM) ↓}.

⇒ A �T6 HA.



A Generalization of the Friedberg-Muchnik Theorem

The properties of A, for instance, for A = (R; 0, 1; +,−, · · · ;≤):

A is effectively enumerable by an machine in MA.

⇒ A �1 HA.

A and N \ A are infinite.

Conditions for lowness for all n > 0:
(Nn) IfMAt

n (n) ↓t for infinitely many t, thenMA
n (n) ↓.

⇒ Conditions for simplicity for all n > 0:
(Pn) If Wn =

⋃
i≥1 Wn,i is infinite, then A ∩Wn 6= ∅.

⇒ AC 6�1 HA.

KA �T K∅ where KO = {kM | M ∈ M1
A(O) & M(kM) ↓}.

⇒ A �T6 HA.



A Generalization of the Friedberg-Muchnik Theorem

Let A = (R; 0, 1; +,−, ·;≤) or A = (C; 0, 1; +,−, ·; =) and
P = AAlg,
P =

⋃
n≥1{~x ∈ Rn | (∃~q ∈ Qn)(q1 +

∑n−1
i=1 qi−1xi = xn)},

Z ⊆ P or Z ∩ P = ∅.

Lemma
A 6�T P.

Corollary
HA 6�T P.

Remark
Similar constructions are also possible, if all problems which are
semi-decidable by Turing machines are decidable over A.

P �T6 HA holds for A = (R; 0, 1; +,−, χHTM , φ;≤) with φ(x) = π
and πZ ⊆ P (where A ⊆ πZ) and so on.



A Generalization of the Friedberg-Muchnik Theorem

Let A = (R; 0, 1; +,−, ·;≤) or A = (C; 0, 1; +,−, ·; =) and
P = AAlg,
P =

⋃
n≥1{~x ∈ Rn | (∃~q ∈ Qn)(q1 +

∑n−1
i=1 qi−1xi = xn)},

Z ⊆ P or Z ∩ P = ∅.

Lemma
A 6�T P.

Corollary
HA 6�T P.

Remark
Similar constructions are also possible, if all problems which are
semi-decidable by Turing machines are decidable over A.

P �T6 HA holds for A = (R; 0, 1; +,−, χHTM , φ;≤) with φ(x) = π
and πZ ⊆ P (where A ⊆ πZ) and so on.



A Generalization of the Friedberg-Muchnik Theorem

Let A = (R; 0, 1; +,−, ·;≤) or A = (C; 0, 1; +,−, ·; =) and
P = AAlg,
P =

⋃
n≥1{~x ∈ Rn | (∃~q ∈ Qn)(q1 +

∑n−1
i=1 qi−1xi = xn)},

Z ⊆ P or Z ∩ P = ∅.

Lemma
A 6�T P.

Corollary
HA 6�T P.

Remark
Similar constructions are also possible, if all problems which are
semi-decidable by Turing machines are decidable over A.

P �T6 HA holds for A = (R; 0, 1; +,−, χHTM , φ;≤) with φ(x) = π
and πZ ⊆ P (where A ⊆ πZ) and so on.



A Generalization of the Friedberg-Muchnik Theorem

Let A = (R; 0, 1; +,−, ·;≤) or A = (C; 0, 1; +,−, ·; =) and
P = AAlg,
P =

⋃
n≥1{~x ∈ Rn | (∃~q ∈ Qn)(q1 +

∑n−1
i=1 qi−1xi = xn)},

Z ⊆ P or Z ∩ P = ∅.

Lemma
A 6�T P.

Corollary
HA 6�T P.

Remark
Similar constructions are also possible, if all problems which are
semi-decidable by Turing machines are decidable over A.

P �T6 HA holds for A = (R; 0, 1; +,−, χHTM , φ;≤) with φ(x) = π
and πZ ⊆ P (where A ⊆ πZ) and so on.



A Generalization of the Friedberg-Muchnik Theorem

Let A = (R; 0, 1; +,−, ·;≤) or A = (C; 0, 1; +,−, ·; =) and
P = AAlg,
P =

⋃
n≥1{~x ∈ Rn | (∃~q ∈ Qn)(q1 +

∑n−1
i=1 qi−1xi = xn)},

Z ⊆ P or Z ∩ P = ∅.

Lemma
A 6�T P.

Corollary
HA 6�T P.

Remark
Similar constructions are also possible, if all problems which are
semi-decidable by Turing machines are decidable over A.

P �T6 HA holds for A = (R; 0, 1; +,−, χHTM , φ;≤) with φ(x) = π
and πZ ⊆ P (where A ⊆ πZ) and so on.



A Generalization of the Friedberg-Muchnik Theorem

Lemma
A 6�T P for A = (R; 0, 1; +,−, ·;≤) and Z ⊆ P ⊆ U.

Proof: Let us assume that A is decidable by a machine in MA(P).

⇒ (R \ A) ∩ N is semi-decidable by anM∈ MA(P).
M can be modified:

The integers are enumerated and compared with the input.
If the input is a positive integer,
thenM can be simulated by a machine in MA
since

all queries of M are answered in the positive,
each order test can be simulated by means of equality tests.

⇒ (R \ A) ∩ N is semi-decidable by a machine in MA.
⇒ (R \ A) ∩ N = Wj for some j.
⇒ By definition of A the assumption is wrong.



A Generalization of the Friedberg-Muchnik Theorem

Lemma
A 6�T P for A = (R; 0, 1; +,−, ·;≤) and Z ⊆ P ⊆ U.

Proof: Let us assume that A is decidable by a machine in MA(P).

⇒ (R \ A) ∩ N is semi-decidable by anM∈ MA(P).
M can be modified:

The integers are enumerated and compared with the input.
If the input is a positive integer,
thenM can be simulated by a machine in MA
since

all queries of M are answered in the positive,
each order test can be simulated by means of equality tests.

⇒ (R \ A) ∩ N is semi-decidable by a machine in MA.
⇒ (R \ A) ∩ N = Wj for some j.
⇒ By definition of A the assumption is wrong.



A Generalization of the Friedberg-Muchnik Theorem

Lemma
A 6�T P for A = (R; 0, 1; +,−, ·;≤) and Z ⊆ P ⊆ U.

Proof: Let us assume that A is decidable by a machine in MA(P).

⇒ (R \ A) ∩ N is semi-decidable by anM∈ MA(P).
M can be modified:

The integers are enumerated and compared with the input.
If the input is a positive integer,
thenM can be simulated by a machine in MA
since

all queries of M are answered in the positive,
each order test can be simulated by means of equality tests.

⇒ (R \ A) ∩ N is semi-decidable by a machine in MA.
⇒ (R \ A) ∩ N = Wj for some j.
⇒ By definition of A the assumption is wrong.



A Generalization of the Friedberg-Muchnik Theorem

Lemma
A 6�T P for A = (R; 0, 1; +,−, ·;≤) and Z ⊆ P ⊆ U.

Proof: Let us assume that A is decidable by a machine in MA(P).

⇒ (R \ A) ∩ N is semi-decidable by anM∈ MA(P).
M can be modified:

The integers are enumerated and compared with the input.
If the input is a positive integer,
thenM can be simulated by a machine in MA
since

all queries of M are answered in the positive,
each order test can be simulated by means of equality tests.

⇒ (R \ A) ∩ N is semi-decidable by a machine in MA.
⇒ (R \ A) ∩ N = Wj for some j.
⇒ By definition of A the assumption is wrong.



A Generalization of the Friedberg-Muchnik Theorem

Lemma
A 6�T P for A = (R; 0, 1; +,−, ·;≤) and Z ⊆ P ⊆ U.

Proof: Let us assume that A is decidable by a machine in MA(P).

⇒ (R \ A) ∩ N is semi-decidable by anM∈ MA(P).
M can be modified:

The integers are enumerated and compared with the input.
If the input is a positive integer,
thenM can be simulated by a machine in MA
since

all queries of M are answered in the positive,
each order test can be simulated by means of equality tests.

⇒ (R \ A) ∩ N is semi-decidable by a machine in MA.
⇒ (R \ A) ∩ N = Wj for some j.
⇒ By definition of A the assumption is wrong.



A Generalization of the Friedberg-Muchnik Theorem

Lemma
A 6�T P for A = (R; 0, 1; +,−, ·;≤) and Z ⊆ P ⊆ U.

Proof: Let us assume that A is decidable by a machine in MA(P).

⇒ (R \ A) ∩ N is semi-decidable by anM∈ MA(P).
M can be modified:

The integers are enumerated and compared with the input.
If the input is a positive integer,
thenM can be simulated by a machine in MA
since

all queries of M are answered in the positive,
each order test can be simulated by means of equality tests.

⇒ (R \ A) ∩ N is semi-decidable by a machine in MA.
⇒ (R \ A) ∩ N = Wj for some j.
⇒ By definition of A the assumption is wrong.



A Generalization of the Friedberg-Muchnik Theorem

Lemma
A 6�T P for A = (R; 0, 1; +,−, ·;≤) and Z ⊆ P ⊆ U.

Proof: Let us assume that A is decidable by a machine in MA(P).

⇒ (R \ A) ∩ N is semi-decidable by anM∈ MA(P).
M can be modified:

The integers are enumerated and compared with the input.
If the input is a positive integer,
thenM can be simulated by a machine in MA
since

all queries of M are answered in the positive,
each order test can be simulated by means of equality tests.

⇒ (R \ A) ∩ N is semi-decidable by a machine in MA.
⇒ (R \ A) ∩ N = Wj for some j.
⇒ By definition of A the assumption is wrong.



A Generalization of the Friedberg-Muchnik Theorem

Lemma
A 6�T P for A = (R; 0, 1; +,−, ·;≤) and Z ⊆ P ⊆ U.

Proof: Let us assume that A is decidable by a machine in MA(P).

⇒ (R \ A) ∩ N is semi-decidable by anM∈ MA(P).
M can be modified:

The integers are enumerated and compared with the input.
If the input is a positive integer,
thenM can be simulated by a machine in MA
since

all queries of M are answered in the positive,
each order test can be simulated by means of equality tests.

⇒ (R \ A) ∩ N is semi-decidable by a machine in MA.
⇒ (R \ A) ∩ N = Wj for some j.
⇒ By definition of A the assumption is wrong.



A Generalization of the Friedberg-Muchnik Theorem

Lemma
A 6�T P for A = (R; 0, 1; +,−, ·;≤) and Z ⊆ P ⊆ U.

Proof: Let us assume that A is decidable by a machine in MA(P).

⇒ (R \ A) ∩ N is semi-decidable by anM∈ MA(P).
M can be modified:

The integers are enumerated and compared with the input.
If the input is a positive integer,
thenM can be simulated by a machine in MA
since

all queries of M are answered in the positive,
each order test can be simulated by means of equality tests.

⇒ (R \ A) ∩ N is semi-decidable by a machine in MA.
⇒ (R \ A) ∩ N = Wj for some j.
⇒ By definition of A the assumption is wrong.



A Generalization of the Friedberg-Muchnik Theorem

Lemma
A 6�T P for A = (R; 0, 1; +,−, ·;≤) and Z ⊆ P ⊆ U.

Proof: Let us assume that A is decidable by a machine in MA(P).

⇒ (R \ A) ∩ N is semi-decidable by anM∈ MA(P).
M can be modified:

The integers are enumerated and compared with the input.
If the input is a positive integer,
thenM can be simulated by a machine in MA
since

all queries of M are answered in the positive,
each order test can be simulated by means of equality tests.

⇒ (R \ A) ∩ N is semi-decidable by a machine in MA.
⇒ (R \ A) ∩ N = Wj for some j.
⇒ By definition of A the assumption is wrong.



A Generalization of the Friedberg-Muchnik Theorem

Theorem
Let A be a structure containing only a finite number of constants
and relations, the operations f1, . . . , fm of arities µ1, . . . , µm, and an
effectively enumerable set N ⊆ U.

Let F0 = E0 = N, Fi =
⋃

j≤i Ej where

Ei+1 =

m⋃
k=1

{fk(n1, . . . , nµk) | (n1, . . . , nµk) ∈ Fµk
i },

and let N be decidable on E =df
⋃

i≥0 Ei.

Moreover, let (a) or (b) be given.
(a) P =

⋃
i≤n Pi,1 × · · · × Pi,ji with E ⊆ Pi,k ⊆ U for all i ≤ n, k ≤ ji.

(b) P ∩ E∞ is decidable for all inputs in E∞.

Then, there is a semi-decidable A ⊂ N with A 6�T P and thus
HA 6�T P.



Summary

The examples show that extensive knowledge of classical
recursion theory is a fundamental condition for a closer

examination of algebraic computation models.

Thank you very much for your attention!


