Randomness for computable measures, and complexity

> Rupert Hölzl 👲 Universität der Bundeswehr München

Joint work with Christopher P. Porter Drake Drake University, Des Moines

I Theorem (Levin, Schnorr). $X \in 2^{\omega}$ is Martin-Löf random iff

 $\forall n \operatorname{K}(X \upharpoonright n) \ge n - O(1).$

2 This is the special case for Lebesgue measure λ of this general statement for arbitrary computable measures μ :

Theorem (Levin, Schnorr). $X \in 2^{\omega}$ is μ -Martin-Löf random iff

$$\forall n \operatorname{K}(X \upharpoonright n) \ge -\log(\mu(\llbracket X \upharpoonright n \rrbracket)) - O(1).$$

Solution Therefore: The possible growth rates of K for μ -random sequences are related to the structure of μ .

- Study how properties of μ are reflected in the growth rates of K for μ -random sequences.
- **2** Study the growth rates of K for *proper* sequences, i.e., sequences random for *some* computable measure μ .
- Use the techniques and results to study computable measures whose set of randoms is "small." (in a sense to be explained)

Preliminaries

- **Definition.** μ is *computable* if $\sigma \mapsto \mu(\llbracket \sigma \rrbracket)$ is a computable real-valued function.
- **2** Definition. μ is *atomic* if there is $X \in 2^{\omega}$ with $\mu(\{X\}) > 0$.
 - Then X is called an *atom* of μ .
 - Atoms_{μ} is the set of all atoms of μ .
- **5** Fact. Atoms of a computable measure μ are trivially μ -random and computable.
- **4** Definition. If μ is not atomic, then it is *continuous*.

Definition. X is *complex* if there is a computable order $h: \omega \to \omega$ such that

 $\forall n \operatorname{K}(X \upharpoonright n) \ge b(n).$

Intuition. For complex sequences a certain Kolmogorov complexity growth rate is guaranteed everywhere.

From continuity to complexity

- Theorem (essentially Bienvenu, Porter). If $X \in 2^{\omega}$ is μ -Martin-Löf random for μ computable and continuous, then X is complex.
- **2** The converse is false, as there are complex non-proper sequences.
 - Miller showed that there is a sequence of effective Hausdorff dimension ¹/₂ that does not compute a sequence of higher effective Hausdorff dimension.
 - Such a sequence is clearly complex.
 - If it computed any (non-computable) proper sequence, then it would compute an MLR sequence (Zvonkin, Levin; Kautz), contradiction.
- Question. For given computable and continuous μ, is there a single computable order function witnessing complexity of μ-random sequences?

- **1** There is a restricted converse of the Theorem.
- **2** Theorem (Hölzl, Porter). Let $X \in 2^{\omega}$ be proper. If X is complex, then $X \in MLR_{\mu}$ for some computable, continuous measure μ .
- I Proof idea.
 - Let *v* be a computable non-continuous measure witnessing *X*'s properness.
 - The complexity of X allows "patching" v to remove the (non-complex) atoms without affecting X's randomness.
- Question. Can we remove the atoms, while protecting the randomness of *all* non-atom random sequences?

Definition (Reimann, Slaman). For μ continuous, the *granularity of* μ is defined as

$$g_{\mu} \colon n \mapsto \min\{\ell \colon \forall \sigma \in 2^{\ell} \colon \mu(\llbracket \sigma \rrbracket) < 2^{-n}\}.$$

- **2** Lemma (Hölzl, Porter). If μ is continuous and computable, there is a computable order *b* such that $|b(n) g_{\mu}^{-1}(n)| \le O(1)$ and for every $X \in MLR_{\mu}$, $K(X \upharpoonright n) \ge b(n)$.
- **3** Intuition.
 - g_{μ}^{-1} provides a global lower bound for the initial segment complexity of *every* μ -random sequence.
 - g_{μ} itself is in general not computable, but g_{μ}^{-1} can be replaced by the computable *h* above.

■ Question, restated. For a computable, atomic measure μ with $\forall X \in 2^{\omega} (X \in MLR_{\mu} \setminus Atoms_{\mu} \Rightarrow X \text{ is complex}),$ is there a computable, continuous measure ν such that

 $MLR_{\mu} \setminus Atoms_{\mu} \subseteq MLR_{\nu}$?

2 Theorem (Hölzl, Porter). No. For some μ , there is no such ν .

Proof sketch.

- I Atomic measures obviously have no granularity function.
- **2** Definition. But we can define a *local granularity function*

$$g^X_{\mu}(n) = \min\{\ell : \mu(\llbracket X \upharpoonright \ell \rrbracket) < 2^{-n}\}.$$

- Suppose there is a computable, continuous measure v such that $MLR_{\mu} \setminus Atoms_{\mu} \subseteq MLR_{\nu}$.
- By the Lemma there is a common computable order *h* witnessing the complexity of all $X \in MLR_{\nu} \supseteq MLR_{\mu} \setminus Atoms_{\mu}$.
- **5** One can show that then $g^X_{\mu}(n)$ for all such X is dominated by (a slight modification of) this single *h*.
- **5** So to obtain a contradiction, we need to build a μ such that for *every* computable order *h* there is an $X \in \text{MLR}_{\mu} \setminus \text{Atoms}_{\mu}$ for which g_{μ}^{X} dominates *h*.

Cone $[0^e1]$ is used to defeat φ_e , if it is a computable order. If φ_e is partial we ensure that all randoms in $[0^e1]$ are atoms.

sparse, infinite splitting

 φ_i partial

sparse, infinite splitting $\downarrow g_{\mu}^{X} \text{ dominates } \varphi_{i} \text{ for}$ $X \in \text{MLR}_{\mu} \cap \llbracket 0^{i}1 \rrbracket$

finitely many splits

finitely many splits ↓ all randoms are atoms in [[0^j1]]

 φ_j partial

• 0^j1

15/22

Trivial and diminutive measures

Trivial and diminutive measures

- **1** Definition. μ is *trivial* if $\mu(\text{Atoms}_{\mu}) = 1$.
- **Definition.**
 - (Binns) $\mathscr{C} \subseteq 2^{\omega}$ is *diminutive* if it does not contain a computably perfect subclass.
 - (Porter) Let μ be a computable measure, and let $(\mathcal{U}_i)_{i \in \omega}$ be the universal μ -Martin-Löf test. Then μ is *diminutive* if \mathcal{U}_i^c is diminutive for every *i*.
- **Intuition.** The collection of randoms is "small" for both types of measures.
 - (Higuchi, Kihara) The set of randoms for a diminutive measure has strong effective measure 0.
 - The randoms for a trivial measure may be of two types: countably many atoms measure 0 many non-atoms

- Proposition (Hölzl, Porter). Every computable trivial measure is diminutive.
- **Proposition (Hölzl, Porter).** A computable measure μ is diminutive if and only if there is no complex $X \in MLR_{\mu}$.
- **I** Theorem (Hölzl, Porter). There is a computable diminutive measure *μ* that is not trivial.
- **4 Proof idea.** Build a μ that is non-zero only on non-complex sequences, while maintaining $\mu(\text{Atoms}_{\mu}) < 1$.

(Kautz) There is a φ with $\lambda(\operatorname{dom}(\varphi)) > 0$, $\operatorname{dom}(\varphi) \in \Pi_2^0$, and for $X \in \operatorname{dom}(\varphi)$, φ^X is not dominated by a computable function.

(Kautz) There is a φ with $\lambda(\operatorname{dom}(\varphi)) > 0$, $\operatorname{dom}(\varphi) \in \Pi_2^0$, and for $X \in \operatorname{dom}(\varphi)$, φ^X is not dominated by a computable function.

- **(Kautz)** There is a φ with $\lambda(\operatorname{dom}(\varphi)) > 0$, $\operatorname{dom}(\varphi) \in \Pi_2^0$, and for $X \in \operatorname{dom}(\varphi)$, φ^X is not dominated by a computable function.
- **2** (Kautz) There are j and dom(φ) $\supseteq \mathscr{P} \in \Pi_1^{0, \emptyset'}$ with $\mu(\mathscr{P}) > 2^{-j}$.

- **(Kautz)** There is a φ with $\lambda(\operatorname{dom}(\varphi)) > 0$, $\operatorname{dom}(\varphi) \in \Pi_2^0$, and for $X \in \operatorname{dom}(\varphi)$, φ^X is not dominated by a computable function.
- **2** (Kautz) There are j and dom(φ) $\supseteq \mathscr{P} \in \Pi_1^{0, \emptyset'}$ with $\mu(\mathscr{P}) > 2^{-j}$.
- I Let $(\mathscr{U}_i^{\emptyset'})_{i \in \omega}$ be the universal \emptyset' -Martin-Löf test.

- **(Kautz)** There is a φ with $\lambda(\operatorname{dom}(\varphi)) > 0$, $\operatorname{dom}(\varphi) \in \Pi_2^0$, and for $X \in \operatorname{dom}(\varphi)$, φ^X is not dominated by a computable function.
- **2** (Kautz) There are *j* and dom(φ) $\supseteq \mathscr{P} \in \Pi_1^{0, \emptyset'}$ with $\mu(\mathscr{P}) > 2^{-j}$.
- I Let $(\mathscr{U}_i^{\emptyset'})_{i \in \omega}$ be the universal \emptyset' -Martin-Löf test.

- **(Kautz)** There is a φ with $\lambda(\operatorname{dom}(\varphi)) > 0$, $\operatorname{dom}(\varphi) \in \Pi_2^0$, and for $X \in \operatorname{dom}(\varphi)$, φ^X is not dominated by a computable function.
- **2** (Kautz) There are *j* and dom(φ) $\supseteq \mathscr{P} \in \Pi_1^{0,\emptyset}$ with $\mu(\mathscr{P}) > 2^{-j}$.
- I Let $(\mathscr{U}_i^{\emptyset'})_{i \in \omega}$ be the universal \emptyset' -Martin-Löf test.
- $\begin{array}{l} \blacksquare \quad \mathrm{So} \left(\mathscr{U}_{j}^{\emptyset'} \right)^{c} \in \Pi_{1}^{0, \emptyset'} \text{ and } \lambda \left(\left(\mathscr{U}_{j}^{\emptyset'} \right)^{c} \right) > 1 2^{-j}. \\ \blacksquare \quad \mathrm{Let} \ \mathscr{R} = \mathscr{P} \cap \left(\mathscr{U}_{j}^{\emptyset'} \right)^{c}. \end{array}$

6 Then we have

6 Then we have

• φ^X is total for all $X \in \mathcal{R}$,

for all $X \in \mathcal{R}$, φ^X is not dominated by a computable function,

6 Then we have

φ^X is total for all X ∈ ℛ,
for all X ∈ ℛ, φ^X is not dominated by a computable function,
λ(ℛ) > 0,

6 Then we have

- φ^X is total for all $X \in \mathcal{R}$,
- for all $X \in \mathcal{R}$, φ^X is not dominated by a computable function,
- $\lambda(\mathscr{R}) > 0,$
- $\mathscr{R} = \llbracket T \rrbracket$ for some \emptyset' -computable tree T,

6 Then we have

- φ^X is total for all $X \in \mathcal{R}$,
- for all $X \in \mathcal{R}$, φ^X is not dominated by a computable function,

- $\mathscr{R} = \llbracket T \rrbracket$ for some \emptyset' -computable tree T,
- $\blacksquare \ \mathscr{R} \subseteq \mathrm{MLR}^{\emptyset'}.$

1 We will apply two functionals to \mathcal{R} .

- **1** We will apply two functionals to \mathcal{R} .
- **2** The first functional Ξ

(inspired by a construction of Ng, Stephan, Yang, Yu)

1 We will apply two functionals to \mathcal{R} .

2 The first functional Ξ

(inspired by a construction of Ng, Stephan, Yang, Yu)

- uses a computable approximation to T to try to find longer and longer initial segments of the input in it;
- whenever progress is made, outputs one more bit of the input;
- while waiting for progress, outputs padding bits;
- thus, maps all $X \in \mathcal{R}$ to Turingequivalent heavily padded versions;

1 We will apply two functionals to \mathcal{R} .

2 The first functional Ξ

(inspired by a construction of Ng, Stephan, Yang, Yu)

- uses a computable approximation to T to try to find longer and longer initial segments of the input in it;
- whenever progress is made, outputs one more bit of the input;
- while waiting for progress, outputs padding bits;
- thus, maps all $X \in \mathcal{R}$ to Turingequivalent heavily padded versions;
- maps everything else to an eventually constant sequence, as eventually no more progress will be made.

1 We will apply two functionals to \mathcal{R} .

2 The first functional Ξ

(inspired by a construction of Ng, Stephan, Yang, Yu)

- uses a computable approximation to T to try to find longer and longer initial segments of the input in it;
- whenever progress is made, outputs one more bit of the input;
- while waiting for progress, outputs padding bits;
- thus, maps all $X \in \mathcal{R}$ to Turingequivalent heavily padded versions;
- maps everything else to an eventually constant sequence, as eventually no more progress will be made.
- 3 This makes Ξ total.

1 The second functional Λ

■ tries to find more and more coded bits in the padded sequences in Ξ(𝔅);

- tries to find more and more coded bits in the padded sequences in Ξ(𝔅);
- it then runs φ with these bits as oracle for more and more computation steps.
- If more oracle bits are needed, it keeps searching for them in the input.

- tries to find more and more coded bits in the padded sequences in Ξ(𝔅);
- it then runs φ with these bits as oracle for more and more computation steps.
- If more oracle bits are needed, it keeps searching for them in the input.
- While it searches in this way for terminating computations, it keeps outputting blocks of identical bits.

1 The second functional Λ

- tries to find more and more coded bits in the padded sequences in Ξ(𝔅);
- it then runs φ with these bits as oracle for more and more computation steps.
- If more oracle bits are needed, it keeps searching for them in the input.
- While it searches in this way for terminating computations, it keeps outputting blocks of identical bits.

2 For inputs in $\Xi(\mathscr{R})$,

- tries to find more and more coded bits in the padded sequences in Ξ(𝔅);
- it then runs φ with these bits as oracle for more and more computation steps.
- If more oracle bits are needed, it keeps searching for them in the input.
- While it searches in this way for terminating computations, it keeps outputting blocks of identical bits.
- **2** For inputs in $\Xi(\mathscr{R})$,
 - φ is run with a "good" oracle, and computes a fast growing function;

- tries to find more and more coded bits in the padded sequences in Ξ(𝔅);
- it then runs φ with these bits as oracle for more and more computation steps.
- If more oracle bits are needed, it keeps searching for them in the input.
- While it searches in this way for terminating computations, it keeps outputting blocks of identical bits.
- **2** For inputs in $\Xi(\mathscr{R})$,
 - φ is run with a "good" oracle, and computes a fast growing function;
 - while waiting for φ to converge the bit blocks will become very long;

- tries to find more and more coded bits in the padded sequences in Ξ(𝔅);
- it then runs φ with these bits as oracle for more and more computation steps.
- If more oracle bits are needed, it keeps searching for them in the input.
- While it searches in this way for terminating computations, it keeps outputting blocks of identical bits.
- **2** For inputs in $\Xi(\mathscr{R})$,
 - φ is run with a "good" oracle, and computes a fast growing function;
 - while waiting for φ to converge the bit blocks will become very long;
 - one can show that this implies that the output is not complex.

If $X \in \Xi(2^{\omega} \setminus \mathscr{R})$, by construction, X is eventually constant.

- If $X \in \Xi(2^{\omega} \setminus \mathscr{R})$, by construction, X is eventually constant.
- **2** Then Λ will find only finitely many oracle bits, and output the same bit forever.

- If $X \in \Xi(2^{\omega} \setminus \mathscr{R})$, by construction, X is eventually constant.
- **2** Then Λ will find only finitely many oracle bits, and output the same bit forever.
- 3 The same can be forced for $X \notin \Xi(2^{\omega})$. (But this is of no relevance here.)

1 Now let μ be the measure induced by $\Lambda \circ \Xi$, that is,

$$\mu(\mathscr{Y}) = \lambda\{Z \colon \Lambda \circ \Xi(Z) \in \mathscr{Y}\}$$

for all $\mathscr{Y} \subseteq 2^{\omega}$.

- 2 By the previous arguments, no $X \in MLR_{\mu}$ is complex.
- **3** Then the Proposition implies that μ is diminutive.
- But every sequence in Λ ο Ξ(𝔅) computes a fast-growing function, so is not computable, so is not an atom.
- **5** Then since $\mu(\Lambda \circ \Xi(\mathcal{R})) = \lambda(\mathcal{R}) > 0$, we have that $\mu(\text{Atoms}_{\mu}) < 1$, thus μ is not trivial.

■ Corollary (Kautz). There is a computable, non-trivial measure μ such that no Δ_2^0 , non-computable $X \in MLR_{\mu}$ exists.

2 Proof.

- Non-computable randoms for μ are images of MLR^{\emptyset} sequences under $\Lambda \circ \Xi$. Then they are MLR^{\emptyset} with respect to μ .
- Any Δ_2^0 is trivially covered by a μ -Martin-Löf test relative to \emptyset' .
- So no non-computable random for μ can be Δ_2^0 .
- **3** This new proof is priority-free!

■ Corollary (Kautz). There is a computable, non-trivial measure μ such that no Δ_2^0 , non-computable $X \in MLR_{\mu}$ exists.

2 Proof.

- Non-computable randoms for μ are images of MLR^{\emptyset} sequences under $\Lambda \circ \Xi$. Then they are MLR^{\emptyset} with respect to μ .
- Any Δ_2^0 is trivially covered by a μ -Martin-Löf test relative to \emptyset' .
- So no non-computable random for μ can be Δ_2^0 .
- **3** This new proof is priority-free!

Thank you for your attention. arXiv 1510.07202, 10/2015, 28 pages