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Motivation

1 Theorem (Levin, Schnorr). X ∈ 2ω is Martin-Löf random iff

∀nK(X �n)≥ n−O(1).

2 This is the special case for Lebesgue measure λ of this general
statement for arbitrary computable measures µ:

Theorem (Levin, Schnorr). X ∈ 2ω is µ-Martin-Löf random iff

∀nK(X �n)≥− log(µ(¹X �nº))−O(1).

3 Therefore: The possible growth rates of K for µ-random
sequences are related to the structure of µ.
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Goals

1 Study how properties of µ are reflected in the growth rates of K
for µ-random sequences.

2 Study the growth rates of K for proper sequences, i.e., sequences
random for some computable measure µ.

3 Use the techniques and results to study computable measures
whose set of randoms is “small.”
(in a sense to be explained)
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Preliminaries2
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Measures and atoms

1 Definition. µ is computable if σ 7→µ(¹σº) is a computable
real-valued function.

2 Definition. µ is atomic if there is X ∈ 2ω with µ({X})> 0.
Then X is called an atom of µ.
Atomsµ is the set of all atoms of µ.

3 Fact. Atoms of a computable measure µ are trivially µ-random
and computable.

4 Definition. If µ is not atomic, then it is continuous.
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Properness, atoms, complexity3
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Complex sequences

1 Definition. X is complex if there is a computable order
h :ω→ω such that

∀nK(X �n)≥ h(n).

2 Intuition. For complex sequences a certain Kolmogorov
complexity growth rate is guaranteed everywhere.
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From continuity to complexity

1 Theorem (essentially Bienvenu, Porter).
If X ∈ 2ω is µ-Martin-Löf random for µ computable and
continuous, then X is complex.

2 The converse is false, as there are complex non-proper sequences.
Miller showed that there is a sequence of effective Hausdorff
dimension 1/2 that does not compute a sequence of higher
effective Hausdorff dimension.
Such a sequence is clearly complex.
If it computed any (non-computable) proper sequence, then it
would compute an MLR sequence (Zvonkin, Levin; Kautz),
contradiction.

3 Question. For given computable and continuous µ, is there a
single computable order function witnessing complexity of
µ-random sequences?
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From complexity to continuity

1 There is a restricted converse of the Theorem.
2 Theorem (Hölzl, Porter). Let X ∈ 2ω be proper. If X is

complex, then X ∈MLRµ for some computable, continuous
measure µ.

3 Proof idea.
Let ν be a computable non-continuous measure witnessing
X’s properness.
The complexity of X allows “patching” ν to remove the
(non-complex) atoms without affecting X’s randomness.

4 Question. Can we remove the atoms, while protecting the
randomness of all non-atom random sequences?
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Granularity

1 Definition (Reimann, Slaman). For µ continuous, the
granularity of µ is defined as

gµ : n 7→min{` : ∀σ ∈ 2` : µ(¹σº)< 2−n}.

2 Lemma (Hölzl, Porter). If µ is continuous and computable,
there is a computable order h such that |h(n)− g−1

µ (n)| ≤O(1)
and for every X ∈MLRµ, K(X �n)≥ h(n).

3 Intuition.
g−1
µ provides a global lower bound for the initial segment

complexity of every µ-random sequence.
gµ itself is in general not computable, but g−1

µ can be replaced by
the computable h above.
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Nonremovability of atoms

1 Question, restated. For a computable, atomic measure µ with

∀X ∈ 2ω (X ∈MLRµ \Atomsµ ⇒ X is complex),

is there a computable, continuous measure ν such that

MLRµ \Atomsµ ⊆MLRν?

2 Theorem (Hölzl, Porter). No. For some µ, there is no such ν.
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Nonremovability of atoms

Proof sketch.

1 Atomic measures obviously have no granularity function.
2 Definition. But we can define a local granularity function

gXµ (n) =min{` : µ(¹X �`º)< 2−n}.

3 Suppose there is a computable, continuous measure ν such that
MLRµ \Atomsµ ⊆MLRν .

4 By the Lemma there is a common computable order h
witnessing the complexity of all X ∈MLRν ⊇MLRµ \Atomsµ.

5 One can show that then gXµ (n) for all such X is dominated by
(a slight modification of) this single h.

6 So to obtain a contradiction, we need to build a µ such that for
every computable order h there is an X ∈MLRµ \Atomsµ for
which gXµ dominates h.
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Nonremovability of atoms

ε

0e1

0e+11

0e+21 2ω

Cone ¹0e1º is used to defeat ϕe, if it is a computable order.
If ϕe is partial we ensure that all randoms in ¹0e1º are atoms.
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Nonremovability of atoms

ϕi total

ϕj partial

0i1

ϕi(1)

ϕi(2)ϕi(1)↑ϕi(1)↓ϕi(2)↑ϕi(2)↓ϕi(3)ϕi(3)↑ϕi(3)↓ϕi(4)

0 j1

ϕj(1)ϕj(2)ϕj(1)↑ϕj(1)↓ϕj(2)↑

sparse, infinite splitting finitely many splits
⇓ ⇓

gXµ dominates ϕi for

all randoms are atoms in ¹0 j1º

X ∈MLRµ ∩ ¹0 i1º
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Trivial and diminutive measures4
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Trivial and diminutive measures

1 Definition. µ is trivial if µ(Atomsµ) = 1.
2 Definition.

(Binns) C ⊆ 2ω is diminutive if it does not contain a
computably perfect subclass.
(Porter) Let µ be a computable measure, and let (Ui)i∈ω be the
universal µ-Martin-Löf test. Then µ is diminutive ifU c

i is
diminutive for every i.

3 Intuition. The collection of randoms is “small” for both types
of measures.

(Higuchi, Kihara) The set of randoms for a diminutive measure
has strong effective measure 0.
The randoms for a trivial measure may be of two types:

countably many atoms measure 0 many non-atoms
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A non-trivial diminutive measure

1 Proposition (Hölzl, Porter). Every computable trivial
measure is diminutive.

2 Proposition (Hölzl, Porter). A computable measure µ is
diminutive if and only if there is no complex X ∈MLRµ.

3 Theorem (Hölzl, Porter). There is a computable diminutive
measure µ that is not trivial.

4 Proof idea. Build a µ that is non-zero only on non-complex
sequences, while maintaining µ(Atomsµ)< 1.
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A non-trivial diminutive measure

dom(ϕ) P MLR;
′�

U ;′j
�c

R

1 (Kautz) There is a ϕ with λ(dom(ϕ))> 0, dom(ϕ) ∈Π0
2, and for

X ∈ dom(ϕ), ϕX is not dominated by a computable function.
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dom(ϕ) P MLR;
′�
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�c

R

6 Then we have
ϕX is total for all X ∈R ,
for all X ∈R , ϕX is not dominated by a computable function,
λ(R)> 0,
R = ¹Tº for some ;′-computable tree T ,
R ⊆MLR;

′
.
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A non-trivial diminutive measure

2ω \R
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yΞ

eventually
constant

non-complex
sequences

eventually
constant

R

paddedR

1 We will apply two functionals toR .

2 The first functional Ξ
(inspired by a construction of Ng, Stephan, Yang, Yu)

uses a computable approximation to T
to try to find longer and longer initial
segments of the input in it;
whenever progress is made, outputs
one more bit of the input;
while waiting for progress, outputs
padding bits;
thus, maps all X ∈R to Turing-
equivalent heavily padded versions;
maps everything else to an eventually
constant sequence, as eventually no
more progress will be made.

3 This makes Ξ total.
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1 The second functional Λ

tries to find more and more coded bits
in the padded sequences in Ξ(R);
it then runs ϕ with these bits as oracle
for more and more computation steps.
If more oracle bits are needed, it keeps
searching for them in the input.
While it searches in this way for
terminating computations, it keeps
outputting blocks of identical bits.

2 For inputs in Ξ(R),

ϕ is run with a “good” oracle, and
computes a fast growing function;
while waiting for ϕ to converge the bit
blocks will become very long;
one can show that this implies that the
output is not complex.
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1 If X ∈ Ξ(2ω \R), by construction, X is
eventually constant.

2 Then Λ will find only finitely many
oracle bits, and output the same bit
forever.

3 The same can be forced for X /∈ Ξ(2ω).
(But this is of no relevance here.)



20/22

A non-trivial diminutive measure

2ω \R









y

Λ









y

Λ









y

Λ





yΞ




yΞ




yΞ

eventually
constant

non-complex
sequences

eventually
constant

R

paddedR

1 If X ∈ Ξ(2ω \R), by construction, X is
eventually constant.

2 Then Λ will find only finitely many
oracle bits, and output the same bit
forever.

3 The same can be forced for X /∈ Ξ(2ω).
(But this is of no relevance here.)



20/22

A non-trivial diminutive measure

2ω \R









y

Λ









y

Λ









y

Λ





yΞ




yΞ




yΞ

eventually
constant

non-complex
sequences

eventually
constant

R

paddedR

1 If X ∈ Ξ(2ω \R), by construction, X is
eventually constant.

2 Then Λ will find only finitely many
oracle bits, and output the same bit
forever.

3 The same can be forced for X /∈ Ξ(2ω).
(But this is of no relevance here.)



21/22

A non-trivial diminutive measure

1 Now let µ be the measure induced by Λ ◦Ξ, that is,

µ(Y ) = λ{Z : Λ ◦Ξ(Z) ∈Y }

for all Y ⊆ 2ω.
2 By the previous arguments, no X ∈MLRµ is complex.
3 Then the Proposition implies that µ is diminutive.
4 But every sequence in Λ ◦Ξ(R) computes a fast-growing

function, so is not computable, so is not an atom.
5 Then since µ(Λ ◦Ξ(R)) = λ(R)> 0, we have that
µ(Atomsµ)< 1, thus µ is not trivial.
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A known result as an easy corollary

1 Corollary (Kautz). There is a computable, non-trivial
measure µ such that no ∆0

2, non-computable X ∈MLRµ exists.
2 Proof.

Non-computable randoms for µ are images of MLR;
′
sequences

under Λ ◦Ξ. Then they are MLR;
′
with respect to µ.

Any ∆0
2 is trivially covered by a µ-Martin-Löf test relative to ;′.

So no non-computable random for µ can be ∆0
2.

3 This new proof is priority-free!

Thank you for your attention.
arXiv 1510.07202, 10/2015, 28 pages
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