Randomness for computable measures, and complexity

Rupert Hölzl
Universität der Bundeswehr München
Joint work with Christopher P. Porter
Drake Drake University, Des Moines

Motivation

Motivation

1 Theorem (Levin, Schnorr). $X \in 2^{\omega}$ is Martin-Löf random iff

$$
\forall n \mathrm{~K}(X \mid n) \geq n-O(1)
$$

2 This is the special case for Lebesgue measure λ of this general statement for arbitrary computable measures μ : Theorem (Levin, Schnorr). $X \in 2^{\omega}$ is μ-Martin-Löf random iff

$$
\forall n \mathrm{~K}(X \upharpoonright n) \geq-\log (\mu(\llbracket X \upharpoonright n \rrbracket))-O(1)
$$

3 Therefore: The possible growth rates of K for μ-random sequences are related to the structure of μ.

Goals

1 Study how properties of μ are reflected in the growth rates of K for μ-random sequences.
2 Study the growth rates of K for proper sequences, i.e., sequences random for some computable measure μ.
3 Use the techniques and results to study computable measures whose set of randoms is "small."
(in a sense to be explained)

Preliminaries

Measures and atoms

$\boxed{1}$ Definition. μ is computable if $\sigma \mapsto \mu(\llbracket \sigma \rrbracket)$ is a computable real-valued function.
2. Definition. μ is atomic if there is $X \in 2^{\omega}$ with $\mu(\{X\})>0$.

- Then X is called an atom of μ.
- Atoms ${ }_{\mu}$ is the set of all atoms of μ.

3 Fact. Atoms of a computable measure μ are trivially μ-random and computable.
4 Definition. If μ is not atomic, then it is continuous.

Properness, atoms, complexity

Complex sequences

1 Definition. X is complex if there is a computable order $b: \omega \rightarrow \omega$ such that

$$
\forall n \mathrm{~K}(X \upharpoonright n) \geq b(n)
$$

2 Intuition. For complex sequences a certain Kolmogorov complexity growth rate is guaranteed everywhere.

From continuity to complexity

1 Theorem (essentially Bienvenu, Porter). If $X \in 2^{\omega}$ is μ-Martin-Löf random for μ computable and continuous, then X is complex.
2 The converse is false, as there are complex non-proper sequences.

- Miller showed that there is a sequence of effective Hausdorff dimension $1 / 2$ that does not compute a sequence of higher effective Hausdorff dimension.
- Such a sequence is clearly complex.
- If it computed any (non-computable) proper sequence, then it would compute an MLR sequence (Zvonkin, Levin; Kautz), contradiction.

3 Question. For given computable and continuous μ, is there a single computable order function witnessing complexity of μ-random sequences?

From complexity to continuity

1 There is a restricted converse of the Theorem.
2 Theorem (Hölzl, Porter). Let $X \in 2^{\omega}$ be proper. If X is complex, then $X \in \mathrm{MLR}_{\mu}$ for some computable, continuous measure μ.
3 Proof idea.

- Let ν be a computable non-continuous measure witnessing X 's properness.
- The complexity of X allows "patching" ν to remove the (non-complex) atoms without affecting X 's randomness.
4 Question. Can we remove the atoms, while protecting the randomness of all non-atom random sequences?

Granularity

1 Definition (Reimann, Slaman). For μ continuous, the granularity of μ is defined as

$$
g_{\mu}: n \mapsto \min \left\{\ell: \forall \sigma \in 2^{\ell}: \mu(\llbracket \sigma \rrbracket)<2^{-n}\right\}
$$

2 Lemma (Hölzl, Porter). If μ is continuous and computable, there is a computable order h such that $\left|b(n)-g_{\mu}^{-1}(n)\right| \leq O(1)$ and for every $X \in \operatorname{MLR}_{\mu}, \mathrm{K}(X \upharpoonright n) \geq b(n)$.
3 Intuition.

- g_{μ}^{-1} provides a global lower bound for the initial segment complexity of every μ-random sequence.
- g_{μ} itself is in general not computable, but g_{μ}^{-1} can be replaced by the computable h above.

Nonremovability of atoms

1 Question, restated. For a computable, atomic measure μ with

$$
\forall X \in 2^{\omega}\left(X \in \operatorname{MLR}_{\mu} \backslash \text { Atoms }_{\mu} \Rightarrow X \text { is complex }\right)
$$

is there a computable, continuous measure v such that

$$
\operatorname{MLR}_{\mu} \backslash \text { Atoms }_{\mu} \subseteq \text { MLR }_{\nu} ?
$$

2 Theorem (Hölzl, Porter). No. For some μ, there is no such ν.

Nonremovability of atoms

Proof sketch.

1 Atomic measures obviously have no granularity function.
2 Definition. But we can define a local granularity function

$$
g_{\mu}^{X}(n)=\min \left\{\ell: \mu\left(\llbracket X\lceil\ell \rrbracket)<2^{-n}\right\}\right.
$$

3 Suppose there is a computable, continuous measure ν such that $\operatorname{MLR}_{\mu} \backslash$ Atoms $_{\mu} \subseteq$ MLR $_{\nu}$.
4 By the Lemma there is a common computable order b witnessing the complexity of all $X \in \operatorname{MLR}_{\nu} \supseteq \operatorname{MLR}_{\mu} \backslash$ Atoms $_{\mu}$.
5 One can show that then $g_{\mu}^{X}(n)$ for all such X is dominated by (a slight modification of) this single h.
6 So to obtain a contradiction, we need to build a μ such that for every computable order b there is an $X \in \operatorname{MLR}_{\mu} \backslash$ Atoms $_{\mu}$ for which g_{μ}^{X} dominates h.

Nonremovability of atoms

Cone $\llbracket O^{e} 1 \rrbracket$ is used to defeat φ_{e}, if it is a computable order.
If φ_{e} is partial we ensure that all randoms in $\llbracket O^{e} 1 \rrbracket$ are atoms.

Nonremovability of atoms

Nonremovability of atoms

sparse, infinite splitting
\Downarrow

$$
\begin{gathered}
g_{\mu}^{X} \text { dominates } \varphi_{i} \text { for } \\
X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket
\end{gathered}
$$

Nonremovability of atoms

sparse, infinite splitting
\Downarrow

$$
\begin{gathered}
g_{\mu}^{X} \text { dominates } \varphi_{i} \text { for } \\
X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket
\end{gathered}
$$

Nonremovability of atoms

φ_{j} partial
$\bullet 0^{j} 1$
sparse, infinite splitting
\Downarrow
g_{μ}^{X} dominates φ_{i} for $X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket$

Nonremovability of atoms

φ_{j} partial
$\bullet 0^{j} 1$
sparse, infinite splitting
\Downarrow
g_{μ}^{X} dominates φ_{i} for $X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket$

Nonremovability of atoms

φ_{j} partial

sparse, infinite splitting
\Downarrow
g_{μ}^{X} dominates φ_{i} for $X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket$

Nonremovability of atoms

φ_{j} partial

sparse, infinite splitting

g_{μ}^{X} dominates φ_{i} for $X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket$

Nonremovability of atoms

φ_{j} partial

sparse, infinite splitting
\Downarrow

$$
\begin{gathered}
g_{\mu}^{X} \text { dominates } \varphi_{i} \text { for } \\
X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket
\end{gathered}
$$

Nonremovability of atoms

φ_{j} partial

sparse, infinite splitting

g_{μ}^{X} dominates φ_{i} for $X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket$

Nonremovability of atoms

φ_{j} partial

sparse, infinite splitting

g_{μ}^{X} dominates φ_{i} for $X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket$

Nonremovability of atoms

φ_{j} partial

sparse, infinite splitting

g_{μ}^{X} dominates φ_{i} for $X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket$

Nonremovability of atoms

φ_{j} partial

sparse, infinite splitting

g_{μ}^{X} dominates φ_{i} for $X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket$

Nonremovability of atoms

φ_{j} partial

sparse, infinite splitting

g_{μ}^{X} dominates φ_{i} for $X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket$

Nonremovability of atoms

sparse, infinite splitting

g_{μ}^{X} dominates φ_{i} for $X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket$

Nonremovability of atoms

sparse, infinite splitting

g_{μ}^{X} dominates φ_{i} for $X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket$

Nonremovability of atoms

φ_{j} partial

sparse, infinite splitting

g_{μ}^{X} dominates φ_{i} for $X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket$

Nonremovability of atoms

sparse, infinite splitting

g_{μ}^{X} dominates φ_{i} for $X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket$

Nonremovability of atoms

sparse, infinite splitting

$$
\begin{gathered}
g_{\mu}^{X} \text { dominates } \varphi_{i} \text { for } \\
X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket
\end{gathered}
$$

Nonremovability of atoms

sparse, infinite splitting \Downarrow

finitely many splits

$$
\begin{gathered}
g_{\mu}^{X} \text { dominates } \varphi_{i} \text { for } \\
X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket
\end{gathered}
$$

Nonremovability of atoms

sparse, infinite splitting $X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket$

finitely many splits

all randoms are atoms in $\llbracket 0^{\circ} 1 \rrbracket$

Nonremovability of atoms

sparse, infinite splitting \Downarrow g_{μ}^{X} dominates φ_{i} for $X \in \operatorname{MLR}_{\mu} \cap \llbracket 0^{i} 1 \rrbracket$
φ_{j} partial

finitely many splits

all randoms are atoms in $\llbracket 0^{j} 1 \rrbracket$

Trivial and diminutive measures

Trivial and diminutive measures

11 Definition. μ is trivial if $\mu\left(\right.$ Atoms $\left._{\mu}\right)=1$.
20 Definition.
$■$ (Binns) $\mathscr{C} \subseteq 2^{\omega}$ is diminutive if it does not contain a computably perfect subclass.

- (Porter) Let μ be a computable measure, and let $\left(\mathscr{U}_{i}\right)_{i \in \omega}$ be the universal μ-Martin-Löf test. Then μ is diminutive if \mathscr{U}_{i}^{c} is diminutive for every i.
3 Intuition. The collection of randoms is "small" for both types of measures.
- (Higuchi, Kihara) The set of randoms for a diminutive measure has strong effective measure 0.
- The randoms for a trivial measure may be of two types: countably many atoms measure 0 many non-atoms

A non-trivial diminutive measure

11 Proposition (Hölzl, Porter). Every computable trivial measure is diminutive.
2 Proposition (Hölzl, Porter). A computable measure μ is diminutive if and only if there is no complex $X \in \mathrm{MLR}_{\mu}$.
3 Theorem (Hölzl, Porter). There is a computable diminutive measure μ that is not trivial.
4 Proof idea. Build a μ that is non-zero only on non-complex sequences, while maintaining $\mu\left(\right.$ Atoms $\left._{\mu}\right)<1$.

A non-trivial diminutive measure

11 (Kautz) There is a φ with $\lambda(\operatorname{dom}(\varphi))>0, \operatorname{dom}(\varphi) \in \Pi_{2}^{0}$, and for $X \in \operatorname{dom}(\varphi), \varphi^{X}$ is not dominated by a computable function.

A non-trivial diminutive measure

1 (Kautz) There is a φ with $\lambda(\operatorname{dom}(\varphi))>0, \operatorname{dom}(\varphi) \in \Pi_{2}^{0}$, and for $X \in \operatorname{dom}(\varphi), \varphi^{X}$ is not dominated by a computable function.

A non-trivial diminutive measure

1 (Kautz) There is a φ with $\lambda(\operatorname{dom}(\varphi))>0, \operatorname{dom}(\varphi) \in \Pi_{2}^{0}$, and for $X \in \operatorname{dom}(\varphi), \varphi^{X}$ is not dominated by a computable function.
2 (Kautz) There are j and $\operatorname{dom}(\varphi) \supseteq \mathscr{P} \in \Pi_{1}^{0, \emptyset^{\prime}}$ with $\mu(\mathscr{P})>2^{-j}$.

A non-trivial diminutive measure

1 (Kautz) There is a φ with $\lambda(\operatorname{dom}(\varphi))>0, \operatorname{dom}(\varphi) \in \Pi_{2}^{0}$, and for $X \in \operatorname{dom}(\varphi), \varphi^{X}$ is not dominated by a computable function.
च (Kautz) There are j and $\operatorname{dom}(\varphi) \supseteq \mathscr{P} \in \Pi_{1}^{0, \emptyset^{\prime}}$ with $\mu(\mathscr{P})>2^{-j}$.
3 Let $\left(\mathscr{U}_{i}^{\emptyset^{\prime}}\right)_{i \in \omega}$ be the universal \emptyset^{\prime}-Martin-Löf test.

A non-trivial diminutive measure

$\operatorname{dom}(\varphi) \quad \mathscr{P} \quad\left(\mathscr{U}_{j}^{\varphi^{\prime}}\right)^{c}$

11 (Kautz) There is a φ with $\lambda(\operatorname{dom}(\varphi))>0, \operatorname{dom}(\varphi) \in \Pi_{2}^{0}$, and for $X \in \operatorname{dom}(\varphi), \varphi^{X}$ is not dominated by a computable function.
2 (Kautz) There are j and $\operatorname{dom}(\varphi) \supseteq \mathscr{P} \in \Pi_{1}^{0, \emptyset^{\prime}}$ with $\mu(\mathscr{P})>2^{-j}$.
3 Let $\left(\mathscr{U}_{i}^{\emptyset^{\prime}}\right)_{i \in \omega}$ be the universal \emptyset^{\prime}-Martin-Löf test.
4 So $\left(\mathscr{U}_{j}^{\emptyset^{\prime}}\right)^{c} \in \Pi_{1}^{0, \emptyset^{\prime \prime}}$ and $\lambda\left(\left(\mathscr{U}_{j}^{\emptyset^{\prime}}\right)^{c}\right)>1-2^{-j}$.

A non-trivial diminutive measure

$$
\begin{array}{l|l|l|l}
\operatorname{dom}(\varphi) & \mathscr{P} & \mathscr{R} & \left(\mathscr{U}_{j}^{\varphi^{\prime}}\right)^{c}
\end{array}
$$

11 (Kautz) There is a φ with $\lambda(\operatorname{dom}(\varphi))>0, \operatorname{dom}(\varphi) \in \Pi_{2}^{0}$, and for $X \in \operatorname{dom}(\varphi), \varphi^{X}$ is not dominated by a computable function.
2 (Kautz) There are j and $\operatorname{dom}(\varphi) \supseteq \mathscr{P} \in \Pi_{1}^{0, \emptyset^{\prime}}$ with $\mu(\mathscr{P})>2^{-j}$.
3 Let $\left(\mathscr{U}_{i}^{\emptyset^{\prime}}\right)_{i \in \omega}$ be the universal \emptyset^{\prime}-Martin-Löf test.
44 So $\left(\mathscr{U}_{j}^{\emptyset^{\prime}}\right)^{c} \in \Pi_{1}^{0, \emptyset^{\prime \prime}}$ and $\lambda\left(\left(\mathscr{U}_{j}^{\emptyset^{\prime}}\right)^{c}\right)>1-2^{-j}$.
5 Let $\mathscr{R}=\mathscr{P} \cap\left(\mathscr{U}_{j}^{\emptyset^{\prime}}\right)^{c}$.

A non-trivial diminutive measure

6 Then we have

A non-trivial diminutive measure

6 Then we have

- φ^{X} is total for all $X \in \mathscr{R}$,

A non-trivial diminutive measure

6 Then we have

- φ^{X} is total for all $X \in \mathscr{R}$,
- for all $X \in \mathscr{R}, \varphi^{X}$ is not dominated by a computable function,

A non-trivial diminutive measure

6 Then we have

- φ^{X} is total for all $X \in \mathscr{R}$,
- for all $X \in \mathscr{R}, \varphi^{X}$ is not dominated by a computable function,
- $\lambda(\mathscr{R})>0$,

A non-trivial diminutive measure

6 Then we have

- φ^{X} is total for all $X \in \mathscr{R}$,
- for all $X \in \mathscr{R}, \varphi^{X}$ is not dominated by a computable function,
- $\lambda(\mathscr{R})>0$,
- $\mathscr{R}=\llbracket T \rrbracket$ for some \emptyset^{\prime}-computable tree T,

A non-trivial diminutive measure

6 Then we have

- φ^{X} is total for all $X \in \mathscr{R}$,
- for all $X \in \mathscr{R}, \varphi^{X}$ is not dominated by a computable function,
- $\lambda(\mathscr{R})>0$,
- $\mathscr{R}=\llbracket T \rrbracket$ for some \emptyset^{\prime}-computable tree T,
- $\mathscr{R} \subseteq$ MLR $^{\emptyset^{\prime}}$.

A non-trivial diminutive measure

1 We will apply two functionals to \mathscr{R}.

```
2}\mp@subsup{}{}{\omega}\\mathscr{R

\section*{A non-trivial diminutive measure}

1 We will apply two functionals to \(\mathscr{R}\).
2 The first functional \(\Xi\) (inspired by a construction of Ng , Stephan, Yang, Yu)

\section*{A non-trivial diminutive measure}

1 We will apply two functionals to \(\mathscr{R}\).
2 The first functional \(\Xi\)
(inspired by a construction of Ng , Stephan, Yang, Yu )
- uses a computable approximation to \(T\) to try to find longer and longer initial segments of the input in it;
- whenever progress is made, outputs one more bit of the input;
- while waiting for progress, outputs padding bits;
- thus, maps all \(X \in \mathscr{R}\) to Turingequivalent heavily padded versions;

\section*{A non-trivial diminutive measure}

11 We will apply two functionals to \(\mathscr{R}\).
2 The first functional \(\Xi\)
(inspired by a construction of Ng , Stephan, Yang, Yu )
- uses a computable approximation to \(T\) to try to find longer and longer initial segments of the input in it;
- whenever progress is made, outputs one more bit of the input;
- while waiting for progress, outputs padding bits;
- thus, maps all \(X \in \mathscr{R}\) to Turingequivalent heavily padded versions;
- maps everything else to an eventually constant sequence, as eventually no more progress will be made.

\section*{A non-trivial diminutive measure}

1 We will apply two functionals to \(\mathscr{R}\).
2 The first functional \(\Xi\)
(inspired by a construction of Ng , Stephan, Yang, Yu)
- uses a computable approximation to \(T\) to try to find longer and longer initial segments of the input in it;
- whenever progress is made, outputs one more bit of the input;
- while waiting for progress, outputs padding bits;
- thus, maps all \(X \in \mathscr{R}\) to Turingequivalent heavily padded versions;
- maps everything else to an eventually constant sequence, as eventually no more progress will be made.
3 This makes \(\Xi\) total.

\section*{A non-trivial diminutive measure}

1 The second functional \(\Lambda\)


\section*{A non-trivial diminutive measure}

1 The second functional \(\Lambda\)
- tries to find more and more coded bits in the padded sequences in \(\Xi(\mathscr{R})\);

\section*{A non-trivial diminutive measure}

1 The second functional \(\Lambda\)
- tries to find more and more coded bits in the padded sequences in \(\Xi(\mathscr{R})\);
- it then runs \(\varphi\) with these bits as oracle for more and more computation steps.
- If more oracle bits are needed, it keeps searching for them in the input.

\section*{A non-trivial diminutive measure}

1 The second functional \(\Lambda\)
- tries to find more and more coded bits in the padded sequences in \(\Xi(\mathscr{R})\);
- it then runs \(\varphi\) with these bits as oracle for more and more computation steps.
- If more oracle bits are needed, it keeps searching for them in the input.
- While it searches in this way for terminating computations, it keeps outputting blocks of identical bits.

\section*{A non-trivial diminutive measure}

1 The second functional \(\Lambda\)
- tries to find more and more coded bits in the padded sequences in \(\Xi(\mathscr{R})\);
- it then runs \(\varphi\) with these bits as oracle for more and more computation steps.
- If more oracle bits are needed, it keeps searching for them in the input.
- While it searches in this way for terminating computations, it keeps outputting blocks of identical bits.
2 For inputs in \(\Xi(\mathscr{R})\),

\section*{A non-trivial diminutive measure}

11 The second functional \(\Lambda\)
- tries to find more and more coded bits in the padded sequences in \(\Xi(\mathscr{R})\);
- it then runs \(\varphi\) with these bits as oracle for more and more computation steps.
- If more oracle bits are needed, it keeps searching for them in the input.
- While it searches in this way for terminating computations, it keeps outputting blocks of identical bits.
2 For inputs in \(\Xi(\mathscr{R})\),
- \(\varphi\) is run with a "good" oracle, and computes a fast growing function;

\section*{A non-trivial diminutive measure}

1 The second functional \(\Lambda\)
- tries to find more and more coded bits in the padded sequences in \(\Xi(\mathscr{R})\);
- it then runs \(\varphi\) with these bits as oracle for more and more computation steps.
- If more oracle bits are needed, it keeps searching for them in the input.
- While it searches in this way for terminating computations, it keeps outputting blocks of identical bits.
2 For inputs in \(\Xi(\mathscr{R})\),
- \(\varphi\) is run with a "good" oracle, and computes a fast growing function;
- while waiting for \(\varphi\) to converge the bit blocks will become very long;

\section*{A non-trivial diminutive measure}

11 The second functional \(\Lambda\)
- tries to find more and more coded bits in the padded sequences in \(\Xi(\mathscr{R})\);
- it then runs \(\varphi\) with these bits as oracle for more and more computation steps.
- If more oracle bits are needed, it keeps searching for them in the input.
- While it searches in this way for terminating computations, it keeps outputting blocks of identical bits.
2 For inputs in \(\Xi(\mathscr{R})\),
- \(\varphi\) is run with a "good" oracle, and computes a fast growing function;
- while waiting for \(\varphi\) to converge the bit blocks will become very long;
- one can show that this implies that the output is not complex.

\section*{A non-trivial diminutive measure}


II If \(X \in \Xi\left(2^{\omega} \backslash \mathscr{R}\right)\), by construction, \(X\) is eventually constant.

\section*{A non-trivial diminutive measure}


II If \(X \in \Xi\left(2^{\omega} \backslash \mathscr{R}\right)\), by construction, \(X\) is eventually constant.
2 Then \(\Lambda\) will find only finitely many oracle bits, and output the same bit forever.

\section*{A non-trivial diminutive measure}


II If \(X \in \Xi\left(2^{\omega} \backslash \mathscr{R}\right)\), by construction, \(X\) is eventually constant.
2 Then \(\Lambda\) will find only finitely many oracle bits, and output the same bit forever.
3 The same can be forced for \(X \notin \Xi\left(2^{\omega}\right)\). (But this is of no relevance here.)

\section*{A non-trivial diminutive measure}

1 Now let \(\mu\) be the measure induced by \(\Lambda \circ \Xi\), that is,
\[
\mu(\mathscr{Y})=\lambda\{Z: \Lambda \circ \Xi(Z) \in \mathscr{Y}\}
\]
for all \(\mathscr{Y} \subseteq 2^{\omega}\).
2 By the previous arguments, no \(X \in \operatorname{MLR}_{\mu}\) is complex.
3 Then the Proposition implies that \(\mu\) is diminutive.
4 But every sequence in \(\Lambda \circ \Xi(\mathscr{R})\) computes a fast-growing function, so is not computable, so is not an atom.
5 Then since \(\mu(\Lambda \circ \Xi(\mathscr{R}))=\lambda(\mathscr{R})>0\), we have that \(\mu\left(\right.\) Atoms \(\left._{\mu}\right)<1\), thus \(\mu\) is not trivial.

\section*{A known result as an easy corollary}

1 Corollary (Kautz). There is a computable, non-trivial measure \(\mu\) such that no \(\Delta_{2}^{0}\), non-computable \(X \in \operatorname{MLR}_{\mu}\) exists.
2 Proof.
- Non-computable randoms for \(\mu\) are images of MLR \(^{\boxed{ }{ }^{\prime}}\) sequences under \(\Lambda \circ \Xi\). Then they are \(\operatorname{MLR}^{\natural^{\prime}}\) with respect to \(\mu\).
- Any \(\Delta_{2}^{0}\) is trivially covered by a \(\mu\)-Martin-Löf test relative to \(\emptyset^{\prime}\).
- So no non-computable random for \(\mu\) can be \(\Delta_{2}^{0}\).

3 This new proof is priority-free!

\section*{A known result as an easy corollary}

1 Corollary (Kautz). There is a computable, non-trivial measure \(\mu\) such that no \(\Delta_{2}^{0}\), non-computable \(X \in \operatorname{MLR}_{\mu}\) exists.
2 Proof.
- Non-computable randoms for \(\mu\) are images of MLR \(^{\emptyset^{\prime}}\) sequences under \(\Lambda \circ \Xi\). Then they are \(\operatorname{MLR}^{\circledR^{\prime}}\) with respect to \(\mu\).
- Any \(\Delta_{2}^{0}\) is trivially covered by a \(\mu\)-Martin-Löf test relative to \(\emptyset^{\prime}\).
- So no non-computable random for \(\mu\) can be \(\Delta_{2}^{0}\).

3 This new proof is priority-free!

Thank you for your attention. arXiv 1510.07202, 10/2015, 28 pages```

