Projection Operators in Computable Analysis

Guido Gherardi Joint work with Alberto Marcone

Dipartimento FilCom, Università di Bologna

Hiddensee, 08 August 2017

Preliminaries

Weihrauch reducibility $f \leq_W g$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - 釣�?

Strong Weihrauch reducibility $f \leq_{sW} g$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Negative representation ψ_{-} for closed sets in computable metric spaces *X*

A list of rational open balls whose union gives the complement (here $X = \mathbb{R}^2$)

Negative representation κ_{-} for closed sets in computable metric spaces *X*

(日)

A list of all finite rational open coverings of the set

Positive representation ψ^+ for closed sets in complete computable metric spaces *X*

A dense sequence in the set (here $X = \mathbb{R}^2$)

Positive representation κ^+ for compact sets in \mathbb{R}^n

A dense sequence in the set and as a bound a closed rational sphere centered in the origin (here n = 2) For a computable metric space

$$\mathrm{C}^-_X :\subseteq \mathcal{A}_-(X) \rightrightarrows X, A \mapsto A)$$

is the (negative) closed choice operator.

For a computable metric space

$$\mathrm{K}^-_X :\subseteq \mathcal{K}_-(X) \rightrightarrows X, K \mapsto K)$$

is the (negative) compact choice operator.

Obviously the corresponding operators for positive and total information (in complete computable metric spaces) are trivial.

・ロト・日本・モト・モト ヨ

For a computable metric space

$$\mathrm{C}^-_X :\subseteq \mathcal{A}_-(X) \rightrightarrows X, A \mapsto A)$$

is the (negative) closed choice operator.

For a computable metric space

$$\mathrm{K}^-_X :\subseteq \mathcal{K}_-(X) \rightrightarrows X, K \mapsto K)$$

is the (negative) compact choice operator.

Obviously the corresponding operators for positive and total information (in complete computable metric spaces) are trivial.

(日) (日) (日) (日) (日) (日) (日)

For a computable metric space

$$\mathrm{C}^-_X :\subseteq \mathcal{A}_-(X) \rightrightarrows X, A \mapsto A)$$

is the (negative) closed choice operator.

For a computable metric space

$$\mathrm{K}^{-}_{X} :\subseteq \mathcal{K}_{-}(X)
ightarrow X, K \mapsto K)$$

is the (negative) compact choice operator.

Obviously the corresponding operators for positive and total information (in complete computable metric spaces) are trivial.

(日) (日) (日) (日) (日) (日) (日)

Important Weihrauch degress classes

- *id* computable
- LLPO constructive De Morgan
- $C_{\mathbb{N}}^{-}$ computable with finitely many mind changes
- WKL non deterministic/ weakly computable
- $C^-_{\mathbb{R}}$ non deterministic/weakly computable with finitely many mind changes

- lim limit computable
- $\mathsf{BWT}_{\mathbb{R}}$ non deterministic/weakly limit computable

Exact projection operators

Definition

For \mathbb{R}^n we define

ProjC[−]_{ℝⁿ} :⊆ ℝⁿ × A_−(ℝⁿ) ⇒ ℝⁿ be the (exact) negative closed projection operator such that

$$\operatorname{ProjC}_{\mathbb{R}^n}^{-}(x,A) = \{ y \in A : d(x,y) = d(x,A) \},\$$

for $x \in \mathbb{R}^n$ and $A \in \mathcal{A}_{-}(\mathbb{R}^n)$;

ProjK[−]_{ℝⁿ} :⊆ ℝⁿ × K_−(ℝⁿ) ⇒ ℝⁿ be the (exact) negative compact projection operator such that

 $\operatorname{ProjK}_{\mathbb{R}^n}^{-}(x,K) = \{ y \in A : d(x,y) = d(x,K) \},\$

for $x \in \mathbb{R}^n$ and $A \in \mathcal{K}_-(\mathbb{R}^n)$.

Exact projection operators

Definition

For \mathbb{R}^n we define

ProjC[−]_{ℝⁿ} :⊆ ℝⁿ × A_−(ℝⁿ) ⇒ ℝⁿ be the (exact) negative closed projection operator such that

$$\operatorname{ProjC}_{\mathbb{R}^n}^{-}(x,A) = \{y \in A : d(x,y) = d(x,A)\},\$$

for $x \in \mathbb{R}^n$ and $A \in \mathcal{A}_-(\mathbb{R}^n)$;

ProjK[−]_{ℝⁿ} :⊆ ℝⁿ × K_−(ℝⁿ) ⇒ ℝⁿ be the (exact) negative compact projection operator such that

 $\operatorname{ProjK}_{\mathbb{R}^n}^{-}(x,K) = \{y \in A : d(x,y) = d(x,K)\},\$

for $x \in \mathbb{R}^n$ and $A \in \mathcal{K}_-(\mathbb{R}^n)$.

Exact projection operators

Definition

For \mathbb{R}^n we define

ProjC[−]_{ℝⁿ} :⊆ ℝⁿ × A_−(ℝⁿ) ⇒ ℝⁿ be the (exact) negative closed projection operator such that

$$\operatorname{ProjC}_{\mathbb{R}^n}^{-}(x,A) = \{ y \in A : d(x,y) = d(x,A) \},\$$

for $x \in \mathbb{R}^n$ and $A \in \mathcal{A}_-(\mathbb{R}^n)$;

ProjK⁻_{ℝⁿ} :⊆ ℝⁿ × K₋(ℝⁿ) ⇒ ℝⁿ be the (exact) negative compact projection operator such that

$$\operatorname{ProjK}_{\mathbb{R}^n}^{-}(x, \mathcal{K}) = \{ y \in \mathcal{A} : d(x, y) = d(x, \mathcal{K}) \},\$$

for $x \in \mathbb{R}^n$ and $A \in \mathcal{K}_-(\mathbb{R}^n)$.

In an analoguous way we define the (exact) positive and the (exact) total projection operators for

 $\mathcal{A}^+(\mathbb{R}^n), \ \mathcal{K}^+(\mathbb{R}^n), \ \mathcal{A}(\mathbb{R}^n), \ \mathcal{K}(\mathbb{R}^n)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\operatorname{ProjK}_{\mathbb{R}^n}^- \equiv_{\mathrm{sW}} \operatorname{ProjC}_{\mathbb{R}^n}^-, \operatorname{ProjK}_{\mathbb{R}^n}^+ \equiv_{\mathrm{sW}} \operatorname{ProjC}_{\mathbb{R}^n}^+, \operatorname{ProjK}_{\mathbb{R}^n}^- \equiv_{\mathrm{sW}} \operatorname{ProjC}_{\mathbb{R}^n}^-.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

- $\operatorname{ProjC}_{\mathbb{R}^n}^-$ and $\operatorname{ProjC}_{\mathbb{R}^n}^+$ are weakly limit computable, that is $\operatorname{ProjC}_{\mathbb{R}^n}^-$, $\operatorname{ProjC}_{\mathbb{R}^n}^+ \leq_{\mathrm{sW}} \mathsf{BWT}_{\mathbb{R}}$.
- 2 Proj $C_{\mathbb{R}^n}$ is weakly computable, that is $\operatorname{Proj}C_{\mathbb{R}^n} \leq_{sW} WKL$.

PROOF:

- Total information: Given $x \in \mathbb{R}^n$ and $A \in \mathcal{A}(\mathbb{R}^n)$ compute $d(x, A) \in \mathbb{R}$.
- compute $A \cap \partial \overline{B}(x, d(x, A)) \in \mathcal{A}_{-}(\mathbb{R}^{n})$
- take an N > ||x|| + d(x, A). This bound is used to translate $A \cap \partial \overline{B}(x, d(x, A))$ into a computable element of $\mathcal{K}_{-}(\mathbb{R}^{n})$
- select a point from this compact set by WKL
- Partial informations: use lim × lim ≡_W lim to have A ∈ A(x) and d(x, A) ∈ ℝ.
- Proceed as above with respect to total information

- ProjC⁻_{\mathbb{R}^n} and ProjC⁺_{\mathbb{R}^n} are weakly limit computable, that is ProjC⁻_{\mathbb{R}^n}, ProjC⁺_{\mathbb{R}^n} $\leq_{sW} BWT_{\mathbb{R}}$.
- 2 Proj $C_{\mathbb{R}^n}$ is weakly computable, that is $\operatorname{Proj}C_{\mathbb{R}^n} \leq_{sW} WKL$.

PROOF:

- Total information: Given $x \in \mathbb{R}^n$ and $A \in \mathcal{A}(\mathbb{R}^n)$ compute $d(x, A) \in \mathbb{R}$.
- compute $A \cap \partial \overline{B}(x, d(x, A)) \in \mathcal{A}_{-}(\mathbb{R}^{n})$
- take an N > ||x|| + d(x, A). This bound is used to translate $A \cap \partial \overline{B}(x, d(x, A))$ into a computable element of $\mathcal{K}_{-}(\mathbb{R}^{n})$
- select a point from this compact set by WKL
- Partial informations: use lim × lim ≡_W lim to have A ∈ A(x) and d(x, A) ∈ ℝ.
- Proceed as above with respect to total information
- In conclusion, we compose a limit computable and a weakly computable function (ProjC⁺_ℝⁿ, ProjC⁺_ℝ ≤ M BW_I_ℝ) = ∞

- ProjC⁻_{\mathbb{R}^n} and ProjC⁺_{\mathbb{R}^n} are weakly limit computable, that is ProjC⁻_{\mathbb{R}^n}, ProjC⁺_{\mathbb{R}^n} $\leq_{sW} BWT_{\mathbb{R}}$.
- 2 Proj $C_{\mathbb{R}^n}$ is weakly computable, that is $\operatorname{Proj}C_{\mathbb{R}^n} \leq_{sW} WKL$.

PROOF:

- Total information: Given $x \in \mathbb{R}^n$ and $A \in \mathcal{A}(\mathbb{R}^n)$ compute $d(x, A) \in \mathbb{R}$.
- compute $A \cap \partial \overline{B}(x, d(x, A)) \in \mathcal{A}_{-}(\mathbb{R}^{n})$
- take an N > ||x|| + d(x, A). This bound is used to translate $A \cap \partial \overline{B}(x, d(x, A))$ into a computable element of $\mathcal{K}_{-}(\mathbb{R}^{n})$
- select a point from this compact set by WKL
- Proceed as above with respect to total information
- In conclusion, we compose a limit computable and a weakly computable function (ProjC[−]_{ℝⁿ}, ProjC⁺_{ℝⁿ}≤_{sW}BWT_ℝ)

(ロ) (型) (主) (主) (三) のへで

Open problem: Does $\operatorname{ProjC}_{\mathbb{R}^n}^- \equiv_W \mathsf{BWT}_{\mathbb{R}}$ hold?

Partial results:

Theorem

 BWT_2 , $\mathsf{lim} <_{\mathsf{W}} \mathsf{ProjK}_{\mathbb{R}^n}^- \equiv_{\mathsf{sW}} \mathsf{ProjC}_{\mathbb{R}^n}^- \leq_{\mathsf{W}} \mathsf{BWT}_{\mathbb{R}}$.

・ロト・4回ト・4回ト・4回ト・4回ト

Theorem

 $\operatorname{Proj} C_{\mathbb{R}}^{-} <_{\mathrm{W}} \mathsf{BWT}.$

Open problem: Does $\operatorname{ProjC}_{\mathbb{R}^n} \equiv_{W} \mathsf{BWT}_{\mathbb{R}}$ hold?

Partial results:

Theorem

 BWT_2 , $\mathsf{lim} <_W \mathsf{ProjK}_{\mathbb{R}^n}^- \equiv_{sW} \mathsf{ProjC}_{\mathbb{R}^n}^- \leq_W \mathsf{BWT}_{\mathbb{R}}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

 $\operatorname{Proj} C_{\mathbb{R}}^{-} <_{\mathrm{W}} \mathsf{BWT}.$

 $\mathsf{BWT}_{\mathbb{R}} \equiv_{\mathrm{W}} \operatorname{ProjC}^+_{\mathbb{R}^n}$ for $n \geq 2$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

 $\operatorname{ProjC}_{\mathbb{R}} \equiv_{\mathrm{W}} \mathsf{LLPO}.$

 $\operatorname{ProjC}_{\mathbb{R}^n} \equiv_{\mathrm{sW}} \mathsf{WKL} \text{ for } n \geq 2.$

Approximated projection operators

Definition

Let $\operatorname{Proj}_{\varepsilon} C^{-}_{\mathbb{R}^{n}} : \mathbb{R}^{n} \times \mathcal{A}_{-}(\mathbb{R}^{n}) \rightrightarrows \mathbb{R}^{n}$ be the ε -approximated negative closed projection operator on X such that

 $\operatorname{Proj}_{\varepsilon} C^{-}_{\mathbb{R}^{n}}(x, A) = \{ y \in A : d(x, y) \leq (1 + \varepsilon)d(x, A) \},\$

for $x \in \mathbb{R}^n$, $A \in \mathcal{A}_{-}(\mathbb{R}^n)$ and for rational $0 < \varepsilon < 1$.

The (approximated) positive and total projections operators for closed sets are defined analoguously for $\mathcal{A}^+(\mathbb{R}^n)$ and $\mathcal{A}(\mathbb{R}^n)$ respectively. The (approximated) negative, positive and total projections operators for compact sets can also be defined by replacing $\mathcal{A}_-(\mathbb{R}^n), \mathcal{A}_+(\mathbb{R}^n), \mathcal{A}(\mathbb{R}^n)$ through $\mathcal{K}_-(\mathbb{R}^n), \mathcal{K}_+(\mathbb{R}^n), \mathcal{K}(\mathbb{R}^n)$ correspondingly.

Approximated projection operators

Definition

Let $\operatorname{Proj}_{\varepsilon} C^{-}_{\mathbb{R}^{n}} : \mathbb{R}^{n} \times \mathcal{A}_{-}(\mathbb{R}^{n}) \rightrightarrows \mathbb{R}^{n}$ be the ε -approximated negative closed projection operator on X such that

$$\operatorname{Proj}_{\varepsilon} C^{-}_{\mathbb{R}^{n}}(x, A) = \{ y \in A : d(x, y) \leq (1 + \varepsilon)d(x, A) \},\$$

for $x \in \mathbb{R}^n$, $A \in \mathcal{A}_{-}(\mathbb{R}^n)$ and for rational $0 < \varepsilon < 1$.

The (approximated) positive and total projections operators for closed sets are defined analoguously for $\mathcal{A}^+(\mathbb{R}^n)$ and $\mathcal{A}(\mathbb{R}^n)$ respectively.

The (approximated) negative, positive and total projections operators for compact sets can also be defined by replacing $\mathcal{A}_{-}(\mathbb{R}^{n}), \mathcal{A}_{+}(\mathbb{R}^{n}), \mathcal{A}(\mathbb{R}^{n})$ through $\mathcal{K}_{-}(\mathbb{R}^{n}), \mathcal{K}_{+}(\mathbb{R}^{n}), \mathcal{K}(\mathbb{R}^{n})$ correspondingly.

Approximated projection operators

Definition

Let $\operatorname{Proj}_{\varepsilon} C^{-}_{\mathbb{R}^{n}} : \mathbb{R}^{n} \times \mathcal{A}_{-}(\mathbb{R}^{n}) \rightrightarrows \mathbb{R}^{n}$ be the ε -approximated negative closed projection operator on X such that

$$\operatorname{Proj}_{\varepsilon} C^{-}_{\mathbb{R}^{n}}(x, A) = \{ y \in A : d(x, y) \leq (1 + \varepsilon)d(x, A) \},\$$

for $x \in \mathbb{R}^n$, $A \in \mathcal{A}_{-}(\mathbb{R}^n)$ and for rational $0 < \varepsilon < 1$.

The (approximated) positive and total projections operators for closed sets are defined analoguously for $\mathcal{A}^+(\mathbb{R}^n)$ and $\mathcal{A}(\mathbb{R}^n)$ respectively.

The (approximated) negative, positive and total projections operators for compact sets can also be defined by replacing $\mathcal{A}_{-}(\mathbb{R}^{n}), \mathcal{A}_{+}(\mathbb{R}^{n}), \mathcal{A}(\mathbb{R}^{n})$ through $\mathcal{K}_{-}(\mathbb{R}^{n}), \mathcal{K}_{+}(\mathbb{R}^{n}), \mathcal{K}(\mathbb{R}^{n})$ correspondingly.

Fact

$\begin{array}{l} \operatorname{Proj}_{\varepsilon} \mathrm{K}_{\mathbb{R}^{n}}^{-} \leq_{\mathrm{sW}} \operatorname{Proj}_{\varepsilon} \mathrm{C}_{\mathbb{R}^{n}}^{-}, \operatorname{Proj}_{\varepsilon} \mathrm{K}_{\mathbb{R}^{n}}^{+} \leq_{\mathrm{sW}} \operatorname{Proj}_{\varepsilon} \mathrm{C}_{\mathbb{R}^{n}}^{+}, \\ \operatorname{Proj}_{\varepsilon} \mathrm{K}_{\mathbb{R}^{n}}^{n} \leq_{\mathrm{sW}} \operatorname{Proj}_{\varepsilon} \mathrm{C}_{\mathbb{R}^{n}}^{-}. \end{array}$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

$$\operatorname{Proj}_{\varepsilon} \operatorname{C}_{\mathbb{R}^n}^- \equiv_{\mathrm{sW}} \operatorname{C}_{\mathbb{R}}^-$$

We use the space $\omega + 1$ with domain $\{-2^{-n}\}_{n \in \mathbb{N}} \cup \{0\}$ with topology and metric induced by \mathbb{R} , and representation

$$\mathrm{dom}(
ho_{\omega+1})=\{oldsymbol{p}\in\mathbb{N}^{\mathbb{N}}\ :\ (\exists^{\leq 1}i)oldsymbol{p}(i)
eq0\}$$
 $ho_{\omega+1}(oldsymbol{p})=egin{cases} -2^{-n} & \mathrm{if}\ p(n)
eq0\ 0 & \mathrm{if}\ (orall i)oldsymbol{p}(i)=0\ . \end{cases}$

We consider the function:

 $min_{\omega+1}^{-} :\subseteq \mathcal{A}^{-}(\omega+1) \rightarrow \omega+1, A \mapsto min(A)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Theorem

 $C_{\mathbb{N}}^{-} <_{W} \min_{\omega+1}^{-}$.

We use the space $\omega + 1$ with domain $\{-2^{-n}\}_{n \in \mathbb{N}} \cup \{0\}$ with topology and metric induced by \mathbb{R} , and representation

$$egin{aligned} &\mathrm{dom}(
ho_{\omega+1}) = \{oldsymbol{p} \in \mathbb{N}^{\mathbb{N}} \ : \ (\exists^{\leq 1}i) oldsymbol{p}(i)
eq 0\} \ &
ho_{\omega+1}(oldsymbol{p}) = egin{cases} -2^{-n} &\mathrm{if}\ oldsymbol{p}(n)
eq 0\ &\mathrm{if}\ (orall i) oldsymbol{p}(i) = 0 \end{cases}. \end{aligned}$$

We consider the function:

$$\textit{min}_{\omega+1}^{-} :\subseteq \mathcal{A}^{-}(\omega+1)
ightarrow \omega+1, \textit{A} \mapsto \min(\textit{A})$$

(日) (日) (日) (日) (日) (日) (日)

Theorem

 $C_{\mathbb{N}}^{-} <_{W} \min_{\omega+1}^{-}$.

We use the space $\omega + 1$ with domain $\{-2^{-n}\}_{n \in \mathbb{N}} \cup \{0\}$ with topology and metric induced by \mathbb{R} , and representation

$$egin{aligned} &\mathrm{dom}(
ho_{\omega+1}) = \{oldsymbol{p} \in \mathbb{N}^{\mathbb{N}} \ : \ (\exists^{\leq 1}i) oldsymbol{p}(i)
eq 0\} \ &
ho_{\omega+1}(oldsymbol{p}) = egin{cases} -2^{-n} &\mathrm{if}\ oldsymbol{p}(n)
eq 0\ &\mathrm{if}\ (orall i) oldsymbol{p}(i) = 0 \end{cases}. \end{aligned}$$

We consider the function:

$$\textit{min}_{\omega+1}^- :\subseteq \mathcal{A}^-(\omega+1)
ightarrow \omega+1, \textit{A} \mapsto \min(\textit{A})$$

(日)

Theorem

 $C^-_{\mathbb{N}}\mathop{<_{\mathrm{W}}}\min^-_{\omega+1}.$

 $\operatorname{Proj}_{\varepsilon} C^+_{\mathbb{R}^n} \equiv_{\mathrm{W}} \min_{\omega+1}^-.$

(ロ)、(型)、(E)、(E)、 E、のQの

 $\operatorname{Proj}_{\varepsilon} C_{\mathbb{R}^n}$ is computable.

Precision	Information	Euclidean	Weihrauch degree
		dimension	
Exact	negative	$n \ge 1$	Bolzano-Weierstraß Theorem (?)
	positive	$n \ge 2$	Bolzano-Weierstraß Theorem
	total	n = 1	lesser limited principle of omniscience
		$n \ge 2$	Weak König's Lemma
Approx.	negative	$n \ge 1$	choice for real closed sets
	positive	$n \ge 1$	minimum for closed sets in $\omega + 1$
	total	$n \ge 1$	computable

Applications: Whitney Extension Theorems

Theorem (First Whitney's Extension Theorem)

Given any (nonempty and non total) closed set $A \subseteq \mathbb{R}^n$ there is a linear operator $\mathcal{E}_0^A : C(A) \to C(\mathbb{R}^n)$ mapping each continuous function $f \in C(A)$ to a total continuous extension $\mathcal{E}_0^A(f)$ such that $\mathcal{E}_0^A(f)_{|\mathbb{R}^n \setminus A} \in C^{\infty}(\mathbb{R}^n \setminus A)$.

Improvements with respect to Urysohn-Tietze Lemma:

- the operators \mathcal{E}_0^A are linear (over C(A))
- $\mathcal{E}^{\mathcal{A}}_0(f)_{|\mathbb{R}^n\setminus\mathcal{A}}\in C^\infty(\mathbb{R}^n\setminus\mathcal{A})$

Applications: Whitney Extension Theorems

Theorem (First Whitney's Extension Theorem)

Given any (nonempty and non total) closed set $A \subseteq \mathbb{R}^n$ there is a linear operator $\mathcal{E}_0^A : C(A) \to C(\mathbb{R}^n)$ mapping each continuous function $f \in C(A)$ to a total continuous extension $\mathcal{E}_0^A(f)$ such that $\mathcal{E}_0^A(f)_{|\mathbb{R}^n \setminus A} \in C^{\infty}(\mathbb{R}^n \setminus A)$.

(日) (日) (日) (日) (日) (日) (日)

Improvements with respect to Urysohn-Tietze Lemma:

- the operators \mathcal{E}_0^A are linear (over C(A))
- $\mathcal{E}_0^A(f)_{|\mathbb{R}^n\setminus A} \in C^\infty(\mathbb{R}^n\setminus A)$

Theorem (Second Whitney's Extension Theorem)

Given any (nonempty and nontotal) closed set $A \subseteq \mathbb{R}^n$, there is a linear operator \mathcal{E}_k^A that maps each sequence $(f^{\alpha})_{|\alpha| \leq k}$ of continuous functions $f^{\alpha} \in C(A)$ (for $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$) satisfying

$$f^{lpha}(x) = \sum_{|lpha+eta| \le k} rac{f^{lpha+eta}(y)}{lpha!} (x-y)^{eta} + R_{lpha}(x,y) \le M$$

with

$$|R_{\alpha}(x,y)| \leq M d(x,y)^{k+1-|\alpha|}$$

to total extensions $\widehat{f^{\alpha}} : C(\mathbb{R}^n) \to C(\mathbb{R}^n)$ such that $\widehat{f^{\alpha}} = (\widehat{f^0})^{\alpha} = \widehat{f}^{\alpha}$
(here $|\alpha| = \alpha_1 + ... + \alpha_n$).

Intuitively, \mathcal{E}_k^A extends a sequence made of a continuous function f over A and its *potential* partial derivatives until the k-th degree to a total continuous extension $\hat{f} \in C^k(\mathbb{R}^n)$ of f and to its partial derivatives \hat{f}^{α} coinciding with f^{α} over A.

< □ > < □ > < Ξ > < Ξ > < Ξ > < □ > < □ > <

Theorem (Second Whitney's Extension Theorem)

Given any (nonempty and nontotal) closed set $A \subseteq \mathbb{R}^n$, there is a linear operator \mathcal{E}_k^A that maps each sequence $(f^{\alpha})_{|\alpha| \leq k}$ of continuous functions $f^{\alpha} \in C(A)$ (for $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$) satisfying

$$f^{lpha}(x) = \sum_{|lpha+eta| \leq k} rac{f^{lpha+eta}(y)}{lpha!} (x-y)^{eta} + R_{lpha}(x,y) \leq M_{lpha}(x,y)$$

with

$$|R_{\alpha}(x,y)| \leq M d(x,y)^{k+1-|\alpha|}$$

o total extensions $\widehat{f^{\alpha}} : C(\mathbb{R}^n) \to C(\mathbb{R}^n)$ such that $\widehat{f^{\alpha}} = (\widehat{f^0})^{\alpha} = \widehat{f^{\alpha}}$
here $|\alpha| = \alpha_1 + ... + \alpha_n$.

Intuitively, \mathcal{E}_k^A extends a sequence made of a continuous function f over A and its *potential* partial derivatives until the k-th degree to a total continuous extension $\hat{f} \in C^k(\mathbb{R}^n)$ of f and to its partial derivatives \hat{f}^α coinciding with f^α over A.

Classical proofs define \mathcal{E}_0 for instance following way [Ste70]:

$$\mathcal{E}_0(f)(x) := \begin{cases} f(x) & \text{if } x \in A \\ \sum_{Q \in \mathcal{Q}} f(P_Q) \varphi_Q^*(x) & \text{else.} \end{cases}$$

Here:

Q is a family of cubes that constitutes a tiling of the whole complement of ℝⁿ \ A,

(日) (日) (日) (日) (日) (日) (日)

- $\sum_{Q \in Q} \varphi_Q^* = 1$ (partition of the unity)
- the points P_Q are projection points of cubes Q over A.

▲□ → ▲圖 → ▲ 国 → ▲ 国 → 今へで

Analogously, classical proofs define \mathcal{E}_k for instance in the following way [Ste70]:

$$\pi_{\alpha}(\mathcal{E}_{k}((f^{\alpha}(x))_{|\alpha| \leq k})(x) := \begin{cases} f^{\alpha}(x) & \text{for } x \in A, \\ \sum_{Q \in \mathcal{Q}} \frac{\partial^{\alpha}}{\partial x^{\alpha}} \sum_{|\alpha| \leq k} \frac{f^{\alpha}(x, \mathcal{P}_{Q})}{\alpha!} (x - \mathcal{P}_{Q})^{\alpha} \varphi_{Q}^{*}(x) & \text{else.} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Approximations are useful!

Let $C_c(\mathbb{R}^n) \subseteq C_p(\mathbb{R}^n) \times \mathcal{A}(x)$ be the space of all partial continuous functions with closed domain.

More precisely, $(f, A) \in C_c(\mathbb{R}^n)$ iff f is a partial function over \mathbb{R}^n and A = dom(f).

 $C_c(\mathbb{R}^n)$ is represented in the following way:

 $\delta_{\mathcal{C}_{\mathcal{C}}(\mathbb{R}^n)}(\langle \boldsymbol{\rho}, \boldsymbol{q} \rangle) = (f, \operatorname{dom}(f)) \Leftrightarrow \delta^{\rightarrow}(\boldsymbol{\rho}) = f \wedge \psi(\boldsymbol{q}) = \operatorname{dom}(f).$

Theorem (First computable Whitney Extension Theorem)

There exists a computable operator $WET_0 : C_c(\mathbb{R}^n) \Rightarrow C(\mathbb{R}^n)$ that

- maps every input (f, A) ∈ C_c(ℝⁿ) to continuous total extensions f̂ ∈ C(ℝⁿ) of f
- is linear over C(A) with respect to any given ψ -name of A.

Approximations are useful!

Let $C_c(\mathbb{R}^n) \subseteq C_p(\mathbb{R}^n) \times \mathcal{A}(x)$ be the space of all partial continuous functions with closed domain.

More precisely, $(f, A) \in C_c(\mathbb{R}^n)$ iff f is a partial function over \mathbb{R}^n and A = dom(f).

 $C_c(\mathbb{R}^n)$ is represented in the following way:

$$\delta_{\mathcal{C}_{\mathcal{C}}(\mathbb{R}^n)}(\langle \boldsymbol{\rho}, \boldsymbol{q} \rangle) = (f, \operatorname{dom}(f)) \Leftrightarrow \delta^{\rightarrow}(\boldsymbol{\rho}) = f \wedge \psi(\boldsymbol{q}) = \operatorname{dom}(f).$$

Theorem (First computable Whitney Extension Theorem)

There exists a computable operator $WET_0 : C_c(\mathbb{R}^n) \rightrightarrows C(\mathbb{R}^n)$ that

- maps every input (f, A) ∈ C_c(ℝⁿ) to continuous total extensions f̂ ∈ C(ℝⁿ) of f
- is linear over C(A) with respect to any given ψ -name of A.

PROOF (scheme): Preparation:

Given $(f, A) \in C_c(\mathbb{R}^n)$:

- Effectivize the construction of the tiling of ℝⁿ \ A by constructing a decidable collection of closed rational cubes Q, such that (ℝⁿ \ A) = ∪ Q;
- select uniformly for each Q ∈ Q a computable (smooth) continuous function φ_Q such that φ_Q(z) = 1 for all z ∈ Q and φ_Q(z) = 0 for all z ∉ Q*;
- for each cube $Q \in Q$ select a point R_Q that constitutes a very rough (!) approximated projection of Q over A. More precisely, any point $z \in A$ satisfying $d(z, Q) < 5 \operatorname{diam}(Q)$ will work.

PROOF (scheme): Preparation:

Given $(f, A) \in C_c(\mathbb{R}^n)$:

- Effectivize the construction of the tiling of ℝⁿ \ A by constructing a decidable collection of closed rational cubes Q, such that (ℝⁿ \ A) = ∪ Q;
- select uniformly for each Q ∈ Q a computable (smooth) continuous function φ_Q such that φ_Q(z) = 1 for all z ∈ Q and φ_Q(z) = 0 for all z ∉ Q^{*};
- for each cube Q ∈ Q select a point R_Q that constitutes a very rough (!) approximated projection of Q over A.
 More precisely, any point z ∈ A satisfying d(z, Q) < 5 diam(Q) will work.

PROOF (scheme): Preparation:

Given $(f, A) \in C_c(\mathbb{R}^n)$:

- Effectivize the construction of the tiling of ℝⁿ \ A by constructing a decidable collection of closed rational cubes Q, such that (ℝⁿ \ A) = ∪ Q;
- select uniformly for each Q ∈ Q a computable (smooth) continuous function φ_Q such that φ_Q(z) = 1 for all z ∈ Q and φ_Q(z) = 0 for all z ∉ Q^{*};
- for each cube Q ∈ Q select a point R_Q that constitutes a very rough (!) approximated projection of Q over A. More precisely, any point z ∈ A satisfying d(z, Q) < 5 diam(Q) will work.

Define

$$\hat{f}(x) := \begin{cases} f(x) & \text{if } x \in A \\ \sum_{Q \in \mathcal{Q}} f(\mathbf{R}_Q) \varphi_Q^*(x) & \text{else.} \end{cases}$$

Computation of $\hat{f}(x)$ for every $x \in \mathbb{R}^n$:

- Until we do not know whether x ∈ A, at stage i search for a basic open ball B(y', δ) such that
 - $x, y \in B(y', \delta)$ for some $y \in A$
 - *R_Q* ∈ *B*(*y*', *c*δ) for a fixed suitable computable constant *c* (e.g.: *c* := ²⁸/_{1-ε} + 3)
 - $f(\overline{B}(y',\delta)) \subseteq f(\overline{B}(y',c\delta)) \subseteq B(y'',2^{-i})$

Then take y'' as the *i*-th rational approximation of $\hat{f}(x)$. If suddenly it turns out that $x \notin A$, then

• replace *effectively* Q by the *finite* cube collection $Q_x := \{Q \in Q : x \in Q^*\};$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• compute $\hat{f}(x) = \sum_{Q \in Q_x} f(R_Q) \varphi_Q^*(x)$.

Computation of $\hat{f}(x)$ for every $x \in \mathbb{R}^n$:

- Until we do not know whether x ∈ A, at stage i search for a basic open ball B(y', δ) such that
 - $x, y \in B(y', \delta)$ for some $y \in A$
 - *R_Q* ∈ *B*(*y*', *c*δ) for a fixed suitable computable constant *c* (e.g.: *c* := ²⁸/_{1-ε} + 3)
 - $f(\overline{B}(y',\delta)) \subseteq f(\overline{B}(y',c\delta)) \subseteq B(y'',2^{-i})$

Then take y'' as the *i*-th rational approximation of $\hat{f}(x)$. • If suddenly it turns out that $x \notin A$, then

• replace *effectively* Q by the *finite* cube collection $Q_x := \{ Q \in Q : x \in Q^* \};$

(ロ) (型) (目) (目) (目) (の)(C)

• compute $\hat{f}(x) = \sum_{Q \in Q_x} f(R_Q) \varphi_Q^*(x)$.

Theorem (Second computable Whitney Extension Theorem)

There is a computable multi-valued operator WET_k : $\mathbb{J}^k \Rightarrow C(\mathbb{R}^n)^k$ that maps every jet $(M, (f^\alpha)_{|\alpha| \le k})$) to sequences $(\widehat{f^\alpha})_{|\alpha| \le k}) \in C(\mathbb{R}^n)^k$ such that for all α with $|\alpha| \le k$ it holds

• \hat{f}^{α} is a total continuous extension of f^{α} ,

• \hat{f}^{α} is the α -partial derivative of $\hat{f}^0 = \hat{f}$.

PROOF (sketch): We want to compute the extensions of *each* f^{α} so defined:

$$\widehat{f^{\alpha}}(x) := \begin{cases} f^{\alpha}(x) & \text{for } x \in A, \\ \sum_{Q \in \mathcal{Q}} \frac{\partial^{\alpha}}{\partial x^{\alpha}} \sum_{|\alpha| \le k} \frac{f^{\alpha}(x, \mathbf{R}_{Q})}{\alpha!} (x - \mathbf{R}_{Q})^{\alpha} \varphi^{*}(x) & \text{else} \end{cases}$$

- At stage s look for some point y ∈ A such that for every α with |α| ≤ k:
 - (1) $C_{\alpha} \cdot d(x, y)^{k+1-|\alpha|} < 2^{-s-|\alpha|}$, where C_{α} is a fixed suitable computable constant depending on α
 - 2 $y \in \operatorname{Proj}_{\frac{1}{2}} C(x, A)$, where

 $\operatorname{Proj}_{\frac{1}{2}} C(x, A) = \{ y \in A | d(x, y) \le (1 + \frac{1}{2}) d(x, A) \}$

- For the first suitable *y* that is found compute (an approximation of) $P_{\alpha}(x, y) := \sum_{|\alpha+\beta| \le k} \frac{f^{\alpha+\beta}(y)}{\beta!} (x-y)^{\beta}$ for $|\beta| \le k$
- In case we realize that $x \notin A$, then we compute $f^{\alpha}(x)$ by using the R_{Q} 's such that $x \in Q^{*}$

PROOF (sketch): We want to compute the extensions of *each* f^{α} so defined:

$$\widehat{f^{\alpha}}(x) := \begin{cases} f^{\alpha}(x) & \text{for } x \in A, \\ \sum_{Q \in \mathcal{Q}} \frac{\partial^{\alpha}}{\partial x^{\alpha}} \sum_{|\alpha| \le k} \frac{f^{\alpha}(x, \mathcal{R}_Q)}{\alpha!} (x - \mathcal{R}_Q)^{\alpha} \varphi^*(x) & \text{else} \end{cases}$$

- At stage s look for some point y ∈ A such that for every α with |α| ≤ k:
 - **1** $C_{\alpha} \cdot d(x, y)^{k+1-|\alpha|} < 2^{-s-|\alpha|}$, where C_{α} is a fixed suitable computable constant depending on α
 - 2 $y \in \operatorname{Proj}_{\frac{1}{2}}C(x, A)$, where $\operatorname{Proj}_{\frac{1}{2}}C(x, A) = \{y \in A | d(x, y) \le (1 + \frac{1}{2})d(x, A)\}$
- For the first suitable *y* that is found compute (an approximation of) $P_{\alpha}(x, y) := \sum_{|\alpha+\beta| \le k} \frac{f^{\alpha+\beta}(y)}{\beta!} (x-y)^{\beta}$ for $|\beta| \le k$
- In case we realize that $x \notin A$, then we compute $f^{\alpha}(x)$ by using the R_{Q} 's such that $x \in Q^*$

PROOF (sketch): We want to compute the extensions of *each* f^{α} so defined:

$$\widehat{f^{\alpha}}(x) := \begin{cases} f^{\alpha}(x) & \text{for } x \in A, \\ \sum_{Q \in \mathcal{Q}} \frac{\partial^{\alpha}}{\partial x^{\alpha}} \sum_{|\alpha| \le k} \frac{f^{\alpha}(x, \mathcal{R}_Q)}{\alpha!} (x - \mathcal{R}_Q)^{\alpha} \varphi^*(x) & \text{else} \end{cases}$$

- At stage s look for some point y ∈ A such that for every α with |α| ≤ k:
 - 1 $C_{\alpha} \cdot d(x, y)^{k+1-|\alpha|} < 2^{-s-|\alpha|}$, where C_{α} is a fixed suitable computable constant depending on α
 - 2 $y \in \operatorname{Proj}_{\frac{1}{2}} C(x, A)$, where $\operatorname{Proj}_{\frac{1}{2}} C(x, A) = \{ y \in A | d(x, y) \le (1 + \frac{1}{2}) d(x, A) \}$
- For the first suitable *y* that is found compute (an approximation of) $P_{\alpha}(x, y) := \sum_{|\alpha+\beta| \le k} \frac{f^{\alpha+\beta}(y)}{\beta!} (x-y)^{\beta}$ for $|\beta| \le k$
- In case we realize that x ∉ A, then we compute f^α(x) by using the R_Q's such that x ∈ Q*

The algorithm works because:

If $x \in A$, then $\operatorname{Proj}_{\frac{1}{2}} C_{\mathbb{R}^n}(x, F) = x$, and then $f^{\alpha}(x) = P_{\alpha}(x, y)$, since $R_{\alpha}(x, y) = R_{\alpha}(x, x) = 0$. If $x \notin A$ then for suitable values of C_{α} it will hold

 $|\widehat{f}^{lpha}(x) - \mathcal{P}_{lpha}(x,y)| \leq C_{lpha} d(x,y)^{k+1-|lpha|}$

To evaluate $|\hat{f}^{\alpha}(x) - P_{\alpha}(x, y)|$ and C_{α} we need $y \in \operatorname{Proj}_{\frac{1}{2}}C_{\mathbb{R}^{n}}(x, A)$. For such a *y* it holds indeed $d(x, y) \leq \frac{3}{2}d(x, A) \leq \frac{3}{2}d(x, z)$ for all $z \in A$. This is very useful, because during the calculations for the the term

 $\sum_{Q \in \mathcal{Q}_x} \sum_{|\beta+\gamma| \le k} M(7e+1)^{k+1-|\beta+\gamma|} d(x,y)^{k+1-|\beta|} A_{\alpha-\beta} \cdot 7^{|\alpha-\beta|} \cdot d(x,R_Q)^{-|\alpha-\beta|}$

will appear, and then we can express it merely in terms of d(x, y) obtaining:

$$\sum_{Q \in \mathcal{Q}_{X}} \sum_{|\beta+\gamma| \leq k} M(7e+1)^{k+1} d(x,y)^{k+1-|\beta|} A_{\alpha-\beta} \cdot 7^{|\alpha-\beta|} \cdot (\frac{2}{3}d(x,y))^{-|\alpha-\beta|}$$

$$=\sum_{Q\in\mathcal{Q}_{X}}\sum_{|\beta+\gamma|\leq k}M(7e+1)^{k+1}d(x,y)^{k+1-|\alpha|}A_{\alpha-\beta}\cdot 7^{|\alpha-\beta|}\cdot (\frac{2}{3})^{-|\alpha-\beta|}.$$

The algorithm works because:

If $x \in A$, then $\operatorname{Proj}_{\frac{1}{2}} C_{\mathbb{R}^n}(x, F) = x$, and then $f^{\alpha}(x) = P_{\alpha}(x, y)$, since $R_{\alpha}(x, y) = R_{\alpha}(x, x) = 0$.

If x
otin A then for suitable values of C_lpha it will hold

 $|\widehat{f}^lpha(x) - \mathcal{P}_lpha(x,y)| \leq C_lpha d(x,y)^{k+1-|lpha|}.$

To evaluate $|\hat{f}^{\alpha}(x) - P_{\alpha}(x, y)|$ and C_{α} we need $y \in \operatorname{Proj}_{\frac{1}{2}} C_{\mathbb{R}^n}(x, A)$. For such a y it holds indeed $d(x, y) \leq \frac{3}{2}d(x, A) \leq \frac{3}{2}d(x, z)$ for all $z \in A$. This is very useful, because during the calculations for the the term

 $\sum_{Q \in \mathcal{Q}_x} \sum_{|\beta+\gamma| \le k} M(7e+1)^{k+1-|\beta+\gamma|} d(x,y)^{k+1-|\beta|} A_{\alpha-\beta} \cdot 7^{|\alpha-\beta|} \cdot d(x,R_Q)^{-|\alpha-\beta|}$

will appear, and then we can express it merely in terms of d(x, y) obtaining:

$$\sum_{Q\in\mathcal{Q}_x}\sum_{|\beta+\gamma|\leq k}M(7e+1)^{k+1}d(x,y)^{k+1-|\beta|}A_{\alpha-\beta}\cdot 7^{|\alpha-\beta|}\cdot (\frac{2}{3}d(x,y))^{-|\alpha-\beta|}$$

$$=\sum_{Q\in\mathcal{Q}_{X}}\sum_{|\beta+\gamma|\leq k}M(7e+1)^{k+1}d(x,y)^{k+1-|\alpha|}A_{\alpha-\beta}\cdot 7^{|\alpha-\beta|}\cdot (\frac{2}{3})^{-|\alpha-\beta|}.$$

The algorithm works because:

If $x \in A$, then $\operatorname{Proj}_{\frac{1}{2}} C_{\mathbb{R}^n}(x, F) = x$, and then $f^{\alpha}(x) = P_{\alpha}(x, y)$, since $R_{\alpha}(x, y) = R_{\alpha}(x, x) = 0$. If $x \notin A$ then for suitable values of C_{α} it will hold

$$|\hat{f}^{lpha}(x) - \mathcal{P}_{lpha}(x,y)| \leq \mathcal{C}_{lpha} \mathcal{d}(x,y)^{k+1-|lpha|}$$

To evaluate $|\hat{f}^{\alpha}(x) - P_{\alpha}(x, y)|$ and C_{α} we need $y \in \operatorname{Proj}_{\frac{1}{2}} C_{\mathbb{R}^n}(x, A)$. For such a *y* it holds indeed $d(x, y) \leq \frac{3}{2}d(x, A) \leq \frac{3}{2}d(x, z)$ for all $z \in A$. This is very useful, because during the calculations for the the term

$$\sum_{Q \in \mathcal{Q}_x} \sum_{|\beta+\gamma| \le k} \mathcal{M}(7e+1)^{k+1-|\beta+\gamma|} d(x,y)^{k+1-|\beta|} A_{\alpha-\beta} \cdot 7^{|\alpha-\beta|} \cdot d(x,R_Q)^{-|\alpha-\beta|}$$

will appear, and then we can express it merely in terms of d(x, y) obtaining:

$$\sum_{Q \in \mathcal{Q}_x} \sum_{|\beta+\gamma| \le k} M(7e+1)^{k+1} d(x,y)^{k+1-|\beta|} A_{\alpha-\beta} \cdot 7^{|\alpha-\beta|} \cdot (\frac{2}{3}d(x,y))^{-|\alpha-\beta|}$$
$$= \sum_{Q \in \mathcal{Q}_x} \sum_{|\beta+\gamma| \le k} M(7e+1)^{k+1} d(x,y)^{k+1-|\alpha|} A_{\alpha-\beta} \cdot 7^{|\alpha-\beta|} \cdot (\frac{2}{3})^{-|\alpha-\beta|}.$$