# Projection Operators in Computable Analysis 

Guido Gherardi<br>Joint work with Alberto Marcone

Dipartimento FilCom, Università di Bologna

Hiddensee, 08 August 2017

## Preliminaries

Weihrauch reducibility $f \leq_{w} g$


## Strong Weihrauch reducibility $f \leq_{s w} g$



Negative representation $\psi_{-}$for closed sets in computable metric spaces $X$


A list of rational open balls whose union gives the complement (here $X=\mathbb{R}^{2}$ )

Negative representation $\kappa_{-}$for closed sets in computable metric spaces $X$

A list of all finite rational open coverings of the set

Positive representation $\psi^{+}$for closed sets in complete computable metric spaces $X$


A dense sequence in the set (here $X=\mathbb{R}^{2}$ )

Positive representation $\kappa^{+}$for compact sets in $\mathbb{R}^{n}$


A dense sequence in the set and as a bound a closed rational sphere centered in the origin (here $n=2$ )

For a computable metric space

$$
\left.\mathrm{C}_{X}^{-}: \subseteq \mathcal{A}_{-}(X) \rightrightarrows X, A \mapsto A\right)
$$

is the (negative) closed choice operator.
is the (negative) compact choice operator.
Obviously the corresponding operators for positive and total information (in complete computable metric spaces) are trivial.

For a computable metric space

$$
\left.\mathrm{C}_{X}^{-}: \subseteq \mathcal{A}_{-}(X) \rightrightarrows X, A \mapsto A\right)
$$

is the (negative) closed choice operator.

For a computable metric space

$$
\left.\mathrm{K}_{X}^{-}: \subseteq \mathcal{K}_{-}(X) \rightrightarrows X, K \mapsto K\right)
$$

is the (negative) compact choice operator.

Obviously the corresponding operators for positive and total information (in complete computable metric spaces) are trivial.

For a computable metric space

$$
\left.\mathrm{C}_{X}^{-}: \subseteq \mathcal{A}_{-}(X) \rightrightarrows X, A_{\mapsto} \mapsto A\right)
$$

is the (negative) closed choice operator.

For a computable metric space

$$
\left.\mathrm{K}_{X}^{-}: \subseteq \mathcal{K}_{-}(X) \rightrightarrows X, K \mapsto K\right)
$$

is the (negative) compact choice operator.

Obviously the corresponding operators for positive and total information (in complete computable metric spaces) are trivial.

## Important Weihrauch degress classes

id computable
LLPO constructive De Morgan
$\mathrm{C}_{\mathbb{N}}^{-} \quad$ computable with finitely many mind changes
WKL non deterministic/ weakly computable
$\mathrm{C}_{\mathbb{R}}^{-} \quad$ non deterministic/weakly computable with finitely many mind changes
lim limit computable
$B W T_{\mathbb{R}} \quad$ non deterministic/weakly limit computable

## Exact projection operators

## Definition

For $\mathbb{R}^{n}$ we define

## Exact projection operators

## Definition

For $\mathbb{R}^{n}$ we define

- $\operatorname{Proj} \mathrm{C}_{\mathbb{R}^{n}}^{-}: \subseteq \mathbb{R}^{n} \times \mathcal{A}_{-}\left(\mathbb{R}^{n}\right) \rightrightarrows \mathbb{R}^{n}$ be the (exact) negative closed projection operator such that

$$
\operatorname{ProjC}_{\mathbb{R}^{n}}^{-}(x, A)=\{y \in A: d(x, y)=d(x, A)\}
$$

for $x \in \mathbb{R}^{n}$ and $A \in \mathcal{A}_{-}\left(\mathbb{R}^{n}\right)$;

## Exact projection operators

## Definition

For $\mathbb{R}^{n}$ we define

- $\operatorname{ProjC} \mathbb{R}_{\mathbb{R}^{n}}^{-}: \subseteq \mathbb{R}^{n} \times \mathcal{A}_{-}\left(\mathbb{R}^{n}\right) \rightrightarrows \mathbb{R}^{n}$ be the (exact) negative closed projection operator such that

$$
\operatorname{ProjC}_{\mathbb{R}^{n}}^{-}(x, A)=\{y \in A: d(x, y)=d(x, A)\}
$$

for $x \in \mathbb{R}^{n}$ and $A \in \mathcal{A}_{-}\left(\mathbb{R}^{n}\right)$;

- $\operatorname{ProjK}_{\mathbb{R}^{n}}^{-}: \subseteq \mathbb{R}^{n} \times \mathcal{K}_{-}\left(\mathbb{R}^{n}\right) \rightrightarrows \mathbb{R}^{n}$ be the (exact) negative compact projection operator such that

$$
\operatorname{ProjK}_{\mathbb{R}^{n}}^{-}(x, K)=\{y \in A: d(x, y)=d(x, K)\}
$$

for $x \in \mathbb{R}^{n}$ and $A \in \mathcal{K}_{-}\left(\mathbb{R}^{n}\right)$.

In an analoguous way we define the (exact) positive and the (exact) total projection operators for

$$
\mathcal{A}^{+}\left(\mathbb{R}^{n}\right), \mathcal{K}^{+}\left(\mathbb{R}^{n}\right), \mathcal{A}\left(\mathbb{R}^{n}\right), \mathcal{K}\left(\mathbb{R}^{n}\right)
$$

## Theorem

$\operatorname{ProjK}_{\mathbb{R}^{n}}^{-} \equiv_{\mathrm{sW}} \operatorname{ProjC}_{\mathbb{R}^{n}}^{-}, \operatorname{ProjK} \mathbb{R}_{\mathbb{R}^{n}}^{+} \equiv_{\mathrm{sW}} \operatorname{ProjC}_{\mathbb{R}^{n}}^{+}, \operatorname{ProjK}_{\mathbb{R}^{n}} \equiv_{\mathrm{sW}} \operatorname{Proj} \mathrm{C}_{\mathbb{R}^{n}}$.

## Theorem

(1) $\operatorname{ProjC}_{\mathbb{R}^{n}}^{-}$and $\operatorname{ProjC}_{\mathbb{R}^{n}}^{+}$are weakly limit computable, that is $\operatorname{ProjC} \mathbb{R}_{\mathbb{R}^{n}}^{-}, \operatorname{ProjC}_{\mathbb{R}^{n}}^{+} \leq_{\mathrm{sW}} B W T_{\mathbb{R}}$.
(2) ProjC $\mathbb{R}_{\mathbb{R}^{n}}$ is weakly computable, that is $\operatorname{ProjC}_{\mathbb{R}^{n}} \leq_{s W} W K L$.

PROOF:


## Theorem

(1) $\operatorname{ProjC}_{\mathbb{R}^{n}}^{-}$and ProjC $\mathbb{R}_{\mathbb{R}^{n}}^{+}$are weakly limit computable, that is $\operatorname{ProjC}_{\mathbb{R}^{n}}^{-}, \operatorname{ProjC}_{\mathbb{R}^{n}}^{+} \leq_{\mathrm{sw}} \mathrm{BWT}_{\mathbb{R}^{2}}$.
(2) $\operatorname{ProjC}_{\mathbb{R}^{n}}$ is weakly computable, that is $\operatorname{ProjC}_{\mathbb{R}^{n}} \leq_{s W} W K L$.

## PROOF:

- Total information: Given $x \in \mathbb{R}^{n}$ and $A \in \mathcal{A}\left(\mathbb{R}^{n}\right)$ compute $d(x, A) \in \mathbb{R}$.
- compute $A \cap \partial \bar{B}(x, d(x, A)) \in \mathcal{A}_{-}\left(\mathbb{R}^{n}\right)$
- take an $N>\|x\|+d(x, A)$. This bound is used to translate $A \cap \partial \bar{B}(x, d(x, A))$ into a computable element of $\mathcal{K}_{-}\left(\mathbb{R}^{n}\right)$
- select a point from this compact set by WKL


## Theorem

(1) $\operatorname{ProjC}_{\mathbb{R}^{n}}^{-}$and $\operatorname{ProjC} \mathbb{C}_{\mathbb{R}^{n}}^{+}$are weakly limit computable, that is $\operatorname{ProjC}_{\mathbb{R}^{n}}^{-}, \operatorname{ProjC}_{\mathbb{R}^{n}}^{+} \leq_{\mathrm{sw}} \mathrm{BWT}_{\mathbb{R}}$.
(2) $\operatorname{ProjC}_{\mathbb{R}^{n}}$ is weakly computable, that is $\operatorname{ProjC}_{\mathbb{R}^{n}} \leq_{s W} W K L$.

## PROOF:

- Total information: Given $x \in \mathbb{R}^{n}$ and $A \in \mathcal{A}\left(\mathbb{R}^{n}\right)$ compute $d(x, A) \in \mathbb{R}$.
- compute $A \cap \partial \bar{B}(x, d(x, A)) \in \mathcal{A}_{-}\left(\mathbb{R}^{n}\right)$
- take an $N>\|x\|+d(x, A)$. This bound is used to translate $A \cap \partial \bar{B}(x, d(x, A))$ into a computable element of $\mathcal{K}_{-}\left(\mathbb{R}^{n}\right)$
- select a point from this compact set by WKL
- Partial informations: use $\lim \times \lim \equiv_{\mathrm{w}} \lim$ to have $A \in \mathcal{A}(x)$ and $d(x, A) \in \mathbb{R}$.
- Proceed as above with respect to total information
- In conclusion, we compose a limit computable and a weakly computable function $\left(\operatorname{ProjC}_{\mathbb{R}^{n}}^{-}, \operatorname{ProjC}_{\mathbb{R}^{n}}^{+} \leq \mathrm{sw} \mathrm{BWT}_{\mathbb{R}}\right)$


Open problem: Does $\operatorname{ProjC}_{\mathbb{R}^{n}}^{-} \equiv \mathrm{W} \mathrm{BWT}_{\mathbb{R}}$ hold?

Open problem: Does $\operatorname{Proj}_{\mathbb{R}^{n}}^{-{ }^{n}}{ }_{\mathrm{W}} \mathrm{BWT}_{\mathbb{R}}$ hold?

Partial results:

## Theorem

$B W T_{2}, \lim <_{W} \operatorname{ProjK}_{\mathbb{R}^{n}}^{-} \equiv_{\mathrm{sW}} \operatorname{ProjC}_{\mathbb{R}^{n}}^{-} \leq_{\mathrm{W}} \mathrm{BWT}_{\mathbb{R}}$.

## Theorem

$\operatorname{ProjC}_{\mathbb{R}}^{-}<{ }_{\mathrm{W}}$ BWT.
$B W T_{\mathbb{R}} \equiv{ }_{W} \operatorname{ProjC}_{\mathbb{R}^{n}}^{+}$for $n \geq 2$.

## Theorem

ProjC $_{\mathbb{R}} \equiv_{\mathrm{w}}$ LLPO.

## Theorem

$\operatorname{ProjC}_{\mathbb{R}^{n}} \equiv_{\mathrm{sw}}$ WKL for $n \geq 2$.

## Approximated projection operators

## Definition

Let $\operatorname{Proj}_{\varepsilon} \mathrm{C}_{\mathbb{R}^{n}}^{-}: \mathbb{R}^{n} \times \mathcal{A}_{-}\left(\mathbb{R}^{n}\right) \rightrightarrows \mathbb{R}^{n}$ be the $\varepsilon$-approximated negative closed projection operator on $X$ such that

$$
\operatorname{Proj}_{\varepsilon} \mathrm{C}_{\mathbb{R}^{n}}^{-}(x, A)=\{y \in A: d(x, y) \leq(1+\varepsilon) d(x, A)\},
$$

for $x \in \mathbb{R}^{n}, A \in \mathcal{A}_{-}\left(\mathbb{R}^{n}\right)$ and for rational $0<\varepsilon<1$.
$\qquad$

## Approximated projection operators

## Definition

Let $\operatorname{Proj}_{\varepsilon} \mathrm{C}_{\mathbb{R}^{n}}^{-}: \mathbb{R}^{n} \times \mathcal{A}_{-}\left(\mathbb{R}^{n}\right) \rightrightarrows \mathbb{R}^{n}$ be the $\varepsilon$-approximated negative closed projection operator on $X$ such that

$$
\operatorname{Proj}_{\varepsilon} \mathrm{C}_{\mathbb{R}^{n}}^{-}(x, A)=\{y \in A: d(x, y) \leq(1+\varepsilon) d(x, A)\},
$$

for $x \in \mathbb{R}^{n}, A \in \mathcal{A}_{-}\left(\mathbb{R}^{n}\right)$ and for rational $0<\varepsilon<1$.
The (approximated) positive and total projections operators for closed sets are defined analoguously for $\mathcal{A}^{+}\left(\mathbb{R}^{n}\right)$ and $\mathcal{A}\left(\mathbb{R}^{n}\right)$ respectively.

## Approximated projection operators

## Definition

Let $\operatorname{Proj}_{\varepsilon} \mathrm{C}_{\mathbb{R}^{n}}^{-}: \mathbb{R}^{n} \times \mathcal{A}_{-}\left(\mathbb{R}^{n}\right) \rightrightarrows \mathbb{R}^{n}$ be the $\varepsilon$-approximated negative closed projection operator on $X$ such that

$$
\operatorname{Proj}_{\varepsilon} \mathrm{C}_{\mathbb{R}^{n}}^{-}(x, A)=\{y \in A: d(x, y) \leq(1+\varepsilon) d(x, A)\}
$$

for $x \in \mathbb{R}^{n}, A \in \mathcal{A}_{-}\left(\mathbb{R}^{n}\right)$ and for rational $0<\varepsilon<1$.
The (approximated) positive and total projections operators for closed sets are defined analoguously for $\mathcal{A}^{+}\left(\mathbb{R}^{n}\right)$ and $\mathcal{A}\left(\mathbb{R}^{n}\right)$ respectively.
The (approximated) negative, positive and total projections operators for compact sets can also be defined by replacing $\mathcal{A}_{-}\left(\mathbb{R}^{n}\right), \mathcal{A}_{+}\left(\mathbb{R}^{n}\right), \mathcal{A}\left(\mathbb{R}^{n}\right)$ through $\mathcal{K}_{-}\left(\mathbb{R}^{n}\right), \mathcal{K}_{+}\left(\mathbb{R}^{n}\right), \mathcal{K}\left(\mathbb{R}^{n}\right)$ correspondingly.

## Fact

$\operatorname{Proj}_{\varepsilon} \mathrm{K}_{\mathbb{R}^{n}}^{-} \leq_{\mathrm{sW}} \operatorname{Proj}_{\varepsilon} \mathrm{C}_{\mathbb{R}^{n}}^{-}, \operatorname{Proj}_{\varepsilon} \mathrm{K}_{\mathbb{R}^{n}}^{+} \leq_{\mathrm{sW}} \operatorname{Proj}_{\varepsilon} \mathrm{C}_{\mathbb{R}^{n}}^{+}$, $\operatorname{Proj}_{\varepsilon} \mathrm{K}_{\mathbb{R}^{n}} \leq_{\mathrm{sW}} \operatorname{Proj}_{\varepsilon} \mathrm{C}_{\mathbb{R}^{n}}$.

## Theorem

$\operatorname{Proj}_{\varepsilon} \mathrm{C}_{\mathbb{R}^{n}}^{-} \equiv_{\mathrm{sW}} \mathrm{C}_{\mathbb{R}}^{-}$

We use the space $\omega+1$ with domain $\left\{-2^{-n}\right\}_{n \in \mathbb{N}} \cup\{0\}$ with topology and metric induced by $\mathbb{R}$, and representation

$$
\begin{aligned}
\operatorname{dom}\left(\rho_{\omega+1}\right) & =\left\{p \in \mathbb{N}^{\mathbb{N}}:(\exists \leq 1 i) p(i) \neq 0\right\} \\
\rho_{\omega+1}(p) & = \begin{cases}-2^{-n} & \text { if } p(n) \neq 0 \\
0 & \text { if }(\forall i) p(i)=0\end{cases}
\end{aligned}
$$

We use the space $\omega+1$ with domain $\left\{-2^{-n}\right\}_{n \in \mathbb{N}} \cup\{0\}$ with topology and metric induced by $\mathbb{R}$, and representation

$$
\begin{aligned}
\operatorname{dom}\left(\rho_{\omega+1}\right) & =\left\{p \in \mathbb{N}^{\mathbb{N}}:(\exists \leq 1 i) p(i) \neq 0\right\} \\
\rho_{\omega+1}(p) & = \begin{cases}-2^{-n} & \text { if } p(n) \neq 0 \\
0 & \text { if }(\forall i) p(i)=0\end{cases}
\end{aligned}
$$

We consider the function:

$$
\min _{\omega+1}^{-}: \subseteq \mathcal{A}^{-}(\omega+1) \rightarrow \omega+1, A \mapsto \min (A)
$$

We use the space $\omega+1$ with domain $\left\{-2^{-n}\right\}_{n \in \mathbb{N}} \cup\{0\}$ with topology and metric induced by $\mathbb{R}$, and representation

$$
\begin{aligned}
\operatorname{dom}\left(\rho_{\omega+1}\right) & =\left\{p \in \mathbb{N}^{\mathbb{N}}:(\exists \leq 1 i) p(i) \neq 0\right\} \\
\rho_{\omega+1}(p) & = \begin{cases}-2^{-n} & \text { if } p(n) \neq 0 \\
0 & \text { if }(\forall i) p(i)=0\end{cases}
\end{aligned}
$$

We consider the function:

$$
\min _{\omega+1}^{-}: \subseteq \mathcal{A}^{-}(\omega+1) \rightarrow \omega+1, A \mapsto \min (A)
$$

## Theorem

$\mathrm{C}_{\mathbb{N}}^{-}<{ }_{\mathrm{W}} \min _{\omega+1}^{-}$.

## Theorem

$\operatorname{Proj}_{\varepsilon} \mathrm{C}_{\mathbb{R}^{n}}^{+} \equiv \mathrm{W} \min _{\omega+1}^{-}$.

Theorem
$\operatorname{Proj}_{\varepsilon} \mathrm{C}_{\mathbb{R}^{n}}$ is computable.

| Precision | Information | Euclidean <br> dimension | Weihrauch degree |
| :--- | :--- | :--- | :--- |
| Exact | negative | $n \geq 1$ | Bolzano-Weierstraß Theorem (?) |
|  | positive | $n \geq 2$ | Bolzano-Weierstraß Theorem |
|  | total | $n=1$ | lesser limited principle of omniscience |
|  |  | Weak König's Lemma |  |
| Approx. | negative | $n \geq 1$ | choice for real closed sets |
|  | positive | $n \geq 1$ | minimum for closed sets in $\omega+1$ |
|  | total | $n \geq 1$ | computable |

## Applications: Whitney Extension Theorems

## Theorem (First Whitney's Extension Theorem)

Given any (nonempty and non total) closed set $A \subseteq \mathbb{R}^{n}$ there is a linear operator $\mathcal{E}_{0}^{A}: C(A) \rightarrow C\left(\mathbb{R}^{n}\right)$ mapping each continuous function $f \in C(A)$ to a total continuous extension $\mathcal{E}_{0}^{A}(f)$ such that $\mathcal{E}_{0}^{A}(f)_{\mid \mathbb{R}^{n} \backslash A} \in C^{\infty}\left(\mathbb{R}^{n} \backslash A\right)$.

Improvements with respect to Urysohn-Tietze Lemma

## Applications: Whitney Extension Theorems

## Theorem (First Whitney's Extension Theorem)

Given any (nonempty and non total) closed set $A \subseteq \mathbb{R}^{n}$ there is a linear operator $\mathcal{E}_{0}^{A}: C(A) \rightarrow C\left(\mathbb{R}^{n}\right)$ mapping each continuous function $f \in C(A)$ to a total continuous extension $\mathcal{E}_{0}^{A}(f)$ such that $\mathcal{E}_{0}^{A}(f)_{\mid \mathbb{R}^{n} \backslash A} \in C^{\infty}\left(\mathbb{R}^{n} \backslash A\right)$.

Improvements with respect to Urysohn-Tietze Lemma:

- the operators $\mathcal{E}_{0}^{A}$ are linear (over $C(A)$ )
- $\mathcal{E}_{0}^{A}(f)_{\mid \mathbb{R}^{n} \backslash A} \in C^{\infty}\left(\mathbb{R}^{n} \backslash A\right)$


## Theorem (Second Whitney's Extension Theorem)

Given any (nonempty and nontotal) closed set $A \subseteq \mathbb{R}^{n}$, there is a linear operator $\mathcal{E}_{k}^{A}$ that maps each sequence $\left(f^{\alpha}\right)_{|\alpha| \leq k}$ of continuous functions $f^{\alpha} \in \mathcal{C}(A)$ (for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ ) satisfying

$$
f^{\alpha}(x)=\sum_{|\alpha+\beta| \leq k} \frac{f^{\alpha+\beta}(y)}{\alpha!}(x-y)^{\beta}+R_{\alpha}(x, y) \leq M
$$

with

$$
\left|R_{\alpha}(x, y)\right| \leq M d(x, y)^{k+1-|\alpha|}
$$

to total extensions $\widehat{f^{\alpha}}: C\left(\mathbb{R}^{n}\right) \rightarrow C\left(\mathbb{R}^{n}\right)$ such that $\widehat{f^{\alpha}}=\left(\widehat{f^{0}}\right)^{\alpha}=\hat{f}^{\alpha}$ (here $|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$ ).

Intuitively, $\mathcal{E}_{k}^{A}$ extends a sequence made of a continuous function $f$ over $A$ and its potential partial derivatives until the $k$-th degree to a total continuous extension $\hat{f} \in C^{k}\left(\mathbb{R}^{n}\right)$ of $f$ and to its partial derivatives $\hat{f}^{\alpha}$ coinciding with $f^{\alpha}$ over $A$.

## Theorem (Second Whitney's Extension Theorem)

Given any (nonempty and nontotal) closed set $A \subseteq \mathbb{R}^{n}$, there is a linear operator $\mathcal{E}_{k}^{A}$ that maps each sequence $\left(f^{\alpha}\right)_{|\alpha| \leq k}$ of continuous functions $f^{\alpha} \in C(A)$ (for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ ) satisfying

$$
f^{\alpha}(x)=\sum_{|\alpha+\beta| \leq k} \frac{f^{\alpha+\beta}(y)}{\alpha!}(x-y)^{\beta}+R_{\alpha}(x, y) \leq M
$$

with

$$
\left|R_{\alpha}(x, y)\right| \leq M d(x, y)^{k+1-|\alpha|}
$$

to total extensions $\widehat{f^{\alpha}}: C\left(\mathbb{R}^{n}\right) \rightarrow C\left(\mathbb{R}^{n}\right)$ such that $\widehat{f^{\alpha}}=\left(\widehat{f^{0}}\right)^{\alpha}=\hat{f}^{\alpha}$ (here $|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$ ).

Intuitively, $\mathcal{E}_{k}^{A}$ extends a sequence made of a continuous function $f$ over $A$ and its potential partial derivatives until the $k$-th degree to a total continuous extension $\hat{f} \in C^{k}\left(\mathbb{R}^{n}\right)$ of $f$ and to its partial derivatives $\hat{f}^{\alpha}$ coinciding with $f^{\alpha}$ over $A$.

Classical proofs define $\mathcal{E}_{0}$ for instance following way [Ste70]:

$$
\mathcal{E}_{0}(f)(x):= \begin{cases}f(x) & \text { if } x \in A \\ \sum_{Q \in \mathcal{Q}} f\left(P_{Q}\right) \varphi_{Q}^{*}(x) & \text { else. }\end{cases}
$$

Here:

- $\mathcal{Q}$ is a family of cubes that constitutes a tiling of the whole complement of $\mathbb{R}^{n} \backslash A$,
- $\sum_{Q \in \mathcal{Q}} \varphi_{Q}^{*}=1$ (partition of the unity)
- the points $P_{Q}$ are projection points of cubes $Q$ over $A$.



Analogously, classical proofs define $\mathcal{E}_{k}$ for instance in the following way [Ste70]:

$$
\pi_{\alpha}\left(\mathcal{E}_{k}\left(\left(f^{\alpha}(x)\right)_{|\alpha| \leq k}\right)(x):=\right.
$$

$$
\begin{cases}f^{\alpha}(x) & \text { for } x \in A, \\ \sum_{Q \in \mathcal{Q}} \frac{\partial^{\alpha}}{\partial x^{\alpha}} \sum_{|\alpha| \leq k} \frac{f^{\alpha}\left(x, P_{Q}\right)}{\alpha!}\left(x-P_{Q}\right)^{\alpha} \varphi_{Q}^{*}(x) & \text { else. }\end{cases}
$$

## Approximations are useful!

Let $C_{C}\left(\mathbb{R}^{n}\right) \subseteq C_{p}\left(\mathbb{R}^{n}\right) \times \mathcal{A}(x)$ be the space of all partial continuous functions with closed domain. More precisely, $(f, A) \in C_{C}\left(\mathbb{R}^{n}\right)$ iff $f$ is a partial function over $\mathbb{R}^{n}$ and $A=\operatorname{dom}(f)$.
$C_{C}\left(\mathbb{R}^{n}\right)$ is represented in the following way:

$$
\delta_{C_{c}\left(\mathbb{R}^{n}\right)}(\langle p, q\rangle)=(f, \operatorname{dom}(f)) \Leftrightarrow \delta^{\rightarrow}(p)=f \wedge \psi(q)=\operatorname{dom}(f) .
$$

## Approximations are useful!

Let $C_{C}\left(\mathbb{R}^{n}\right) \subseteq C_{p}\left(\mathbb{R}^{n}\right) \times \mathcal{A}(x)$ be the space of all partial continuous functions with closed domain. More precisely, $(f, A) \in C_{C}\left(\mathbb{R}^{n}\right)$ iff $f$ is a partial function over $\mathbb{R}^{n}$ and $A=\operatorname{dom}(f)$.
$C_{C}\left(\mathbb{R}^{n}\right)$ is represented in the following way:

$$
\delta_{C_{c}\left(\mathbb{R}^{n}\right)}(\langle p, q\rangle)=(f, \operatorname{dom}(f)) \Leftrightarrow \delta^{\rightarrow}(p)=f \wedge \psi(q)=\operatorname{dom}(f)
$$

## Theorem (First computable Whitney Extension Theorem)

There exists a computable operator $\mathrm{WET}_{0}: C_{c}\left(\mathbb{R}^{n}\right) \rightrightarrows C\left(\mathbb{R}^{n}\right)$ that

- maps every input $(f, A) \in C_{C}\left(\mathbb{R}^{n}\right)$ to continuous total extensions $\hat{f} \in C\left(\mathbb{R}^{n}\right)$ of $f$
- is linear over $C(A)$ with respect to any given $\psi$-name of $A$.

PROOF (scheme):
Preparation:
Given $(f, A) \in C_{c}\left(\mathbb{R}^{n}\right)$ :

- Effectivize the construction of the tiling of $\mathbb{R}^{n} \backslash A$ by constructing a decidable collection of closed rational cubes $\mathcal{Q}$, such that $\left(\mathbb{R}^{n} \backslash A\right)=\bigcup \mathcal{Q}$;
- select uniformly for each $Q \in \mathcal{Q}$ a computable (smooth) continuous function $\varphi_{Q}$ such that $\varphi_{Q}(z)=1$ for all $z \in Q$ and $\varphi_{Q}(z)=0$ for all $z \notin Q^{*}$;


## PROOF (scheme):

## Preparation:

Given $(f, A) \in C_{c}\left(\mathbb{R}^{n}\right)$ :

- Effectivize the construction of the tiling of $\mathbb{R}^{n} \backslash A$ by constructing a decidable collection of closed rational cubes $\mathcal{Q}$, such that $\left(\mathbb{R}^{n} \backslash A\right)=\bigcup \mathcal{Q}$;
- select uniformly for each $Q \in \mathcal{Q}$ a computable (smooth) continuous function $\varphi_{Q}$ such that $\varphi_{Q}(z)=1$ for all $z \in Q$ and $\varphi_{Q}(z)=0$ for all $z \notin Q^{*}$;
- for each cube $Q \in \mathcal{Q}$ select a point $R_{Q}$ that constitutes a very rough (!) approximated projection of $Q$ over $A$.


## PROOF (scheme):

## Preparation:

Given $(f, A) \in C_{c}\left(\mathbb{R}^{n}\right)$ :

- Effectivize the construction of the tiling of $\mathbb{R}^{n} \backslash A$ by constructing a decidable collection of closed rational cubes $\mathcal{Q}$, such that $\left(\mathbb{R}^{n} \backslash A\right)=\bigcup \mathcal{Q}$;
- select uniformly for each $Q \in \mathcal{Q}$ a computable (smooth) continuous function $\varphi_{Q}$ such that $\varphi_{Q}(z)=1$ for all $z \in Q$ and $\varphi_{Q}(z)=0$ for all $z \notin Q^{*}$;
- for each cube $Q \in \mathcal{Q}$ select a point $R_{Q}$ that constitutes a very rough (!) approximated projection of $Q$ over $A$. More precisely, any point $z \in A$ satisfying $d(z, Q)<5 \operatorname{diam}(Q)$ will work.

Define

$$
\hat{f}(x):= \begin{cases}f(x) & \text { if } x \in A \\ \sum_{Q \in \mathcal{Q}} f\left(R_{Q}\right) \varphi_{Q}^{*}(x) & \text { else. }\end{cases}
$$

Computation of $\hat{f}(x)$ for every $x \in \mathbb{R}^{n}$ :

- Until we do not know whether $x \in A$, at stage $i$ search for a basic open ball $B\left(y^{\prime}, \delta\right)$ such that
- $x, y \in B\left(y^{\prime}, \delta\right)$ for some $y \in A$
- $R_{Q} \in B\left(y^{\prime}, c \delta\right)$ for a fixed suitable computable constant $c$ (e.g.: $c:=\frac{28}{1-\varepsilon}+3$ )
- $f\left(\bar{B}\left(y^{\prime}, \delta\right)\right) \subseteq f\left(\bar{B}\left(y^{\prime}, c \delta\right)\right) \subseteq B\left(y^{\prime \prime}, 2^{-i}\right)$

Then take $y^{\prime \prime}$ as the $i$-th rational approximation of $\hat{f}(x)$.

Computation of $\hat{f}(x)$ for every $x \in \mathbb{R}^{n}$ :

- Until we do not know whether $x \in A$, at stage $i$ search for a basic open ball $B\left(y^{\prime}, \delta\right)$ such that
- $x, y \in B\left(y^{\prime}, \delta\right)$ for some $y \in A$
- $R_{Q} \in B\left(y^{\prime}, c \delta\right)$ for a fixed suitable computable constant $c$ (e.g.: $c:=\frac{28}{1-\varepsilon}+3$ )
- $f\left(\bar{B}\left(y^{\prime}, \delta\right)\right) \subseteq f\left(\bar{B}\left(y^{\prime}, c \delta\right)\right) \subseteq B\left(y^{\prime \prime}, 2^{-i}\right)$

Then take $y^{\prime \prime}$ as the $i$-th rational approximation of $\hat{f}(x)$.

- If suddenly it turns out that $x \notin A$, then
- replace effectively $\mathcal{Q}$ by the finite cube collection

$$
\mathcal{Q}_{x}:=\left\{Q \in \mathcal{Q}: x \in Q^{*}\right\} ;
$$

- compute $\hat{f}(x)=\sum_{Q \in \mathcal{Q}_{x}} f\left(R_{Q}\right) \varphi_{Q}^{*}(x)$.


## Theorem (Second computable Whitney Extension Theorem)

There is a computable multi-valued operator
$\mathrm{WET}_{k}: \mathbb{J}^{k} \rightrightarrows C\left(\mathbb{R}^{n}\right)^{k}$ that maps every jet $\left.\left(M,\left(f^{\alpha}\right)_{|\alpha| \leq k}\right)\right)$ to sequences $\left.\left(\widehat{f^{\alpha}}\right)_{|\alpha| \leq k}\right) \in C\left(\mathbb{R}^{n}\right)^{k}$ such that for all $\alpha$ with $|\alpha| \leq k$ it holds

- $\widehat{f^{\alpha}}$ is a total continuous extension of $f^{\alpha}$,
- $\widehat{f^{\alpha}}$ is the $\alpha$-partial derivative of $\widehat{f^{0}}=\hat{f}$.

PROOF (sketch): We want to compute the extensions of each $f^{\alpha}$ so defined:

$$
\widehat{f^{\alpha}}(x):= \begin{cases}f^{\alpha}(x) & \text { for } x \in A, \\ \sum_{Q \in \mathcal{Q}} \frac{\partial^{\alpha}}{\partial x^{\alpha}} \sum_{|\alpha| \leq k} \frac{f^{\alpha}\left(x, R_{Q}\right)}{\alpha!}\left(x-R_{Q}\right)^{\alpha} \varphi^{*}(x) & \text { else }\end{cases}
$$

PROOF (sketch): We want to compute the extensions of each $f^{\alpha}$ so defined:
$\widehat{f^{\alpha}}(x):= \begin{cases}f^{\alpha}(x) & \text { for } x \in A, \\ \sum_{Q \in \mathcal{Q}} \frac{\partial^{\alpha}}{\partial x^{\alpha}} \sum_{|\alpha| \leq k} \frac{f^{\alpha}\left(x, R_{Q}\right)}{\alpha!}\left(x-R_{Q}\right)^{\alpha} \varphi^{*}(x) & \text { else }\end{cases}$

- At stage $s$ look for some point $y \in A$ such that for every $\alpha$ with $|\alpha| \leq k$ :
(1) $C_{\alpha} \cdot d(x, y)^{k+1-|\alpha|}<2^{-s-|\alpha|}$, where $C_{\alpha}$ is a fixed suitable computable constant depending on $\alpha$
(2) $y \in \operatorname{Proj}_{\frac{1}{2}} \mathrm{C}(x, A)$, where

$$
\operatorname{Proj}_{\frac{1}{2}} \mathrm{C}(x, A)=\left\{y \in A \left\lvert\, d(x, y) \leq\left(1+\frac{1}{2}\right) d(x, A)\right.\right\}
$$

- For the first suitable $y$ that is found compute (an approximation of) $P_{\alpha}(x, y):=\sum_{|\alpha+\beta| \leq k} \frac{f^{\alpha+\beta}(y)}{\beta!}(x-y)^{\beta}$ for $|\beta| \leq k$

PROOF (sketch): We want to compute the extensions of each $f^{\alpha}$ so defined:
$\widehat{f^{\alpha}}(x):= \begin{cases}f^{\alpha}(x) & \text { for } x \in A, \\ \sum_{Q \in \mathcal{Q}} \frac{\partial^{\alpha}}{\partial x^{\alpha}} \sum_{|\alpha| \leq k} \frac{f^{\alpha}\left(x, R_{Q}\right)}{\alpha!}\left(x-R_{Q}\right)^{\alpha} \varphi^{*}(x) & \text { else }\end{cases}$

- At stage $s$ look for some point $y \in A$ such that for every $\alpha$ with $|\alpha| \leq k$ :
(1) $C_{\alpha} \cdot d(x, y)^{k+1-|\alpha|}<2^{-s-|\alpha|}$, where $C_{\alpha}$ is a fixed suitable computable constant depending on $\alpha$
(2) $y \in \operatorname{Proj}_{\frac{1}{2}} \mathrm{C}(x, A)$, where

$$
\operatorname{Proj}_{\frac{1}{2}} \mathrm{C}(x, A)=\left\{y \in A \left\lvert\, d(x, y) \leq\left(1+\frac{1}{2}\right) d(x, A)\right.\right\}
$$

- For the first suitable $y$ that is found compute (an approximation of) $P_{\alpha}(x, y):=\sum_{|\alpha+\beta| \leq k} \frac{f^{\alpha+\beta}(y)}{\beta!}(x-y)^{\beta}$ for $|\beta| \leq k$
- In case we realize that $x \notin A$, then we compute $f^{\alpha}(x)$ by using the $R_{Q}$ 's such that $x \in Q^{*}$

The algorithm works because:
If $x \in A$, then $\operatorname{Proj}_{\frac{1}{\sigma}} \mathrm{C}_{\mathbb{R}^{n}}(x, F)=x$, and then $f^{\alpha}(x)=P_{\alpha}(x, y)$, since $R_{\alpha}(x, y)=R_{\alpha}(x, x)=0$
If $x \notin A$ then for suitable values of $C_{\alpha}$ it will hold
 a $y$ it holds indeed $d(x, y) \leq \frac{3}{2} d(x, A) \leq \frac{3}{2} d(x, z)$ for all $z \in A$. This is very useful, because during the calculations for the the term

will appear, and then we can express it merely in terms of $d(x, y)$ obtaining:

$M(7 e+1)^{k+1} d(x, y)^{k+}$


The algorithm works because:
If $x \in A$, then $\operatorname{Proj}_{\frac{1}{2}} \mathrm{C}_{\mathbb{R}^{n}}(x, F)=x$, and then $f^{\alpha}(x)=P_{\alpha}(x, y)$, since $R_{\alpha}(x, y)=R_{\alpha}(x, x)=0$.

The algorithm works because: If $x \in A$, then $\operatorname{Proj}_{\frac{1}{2}} \mathrm{C}_{\mathbb{R}^{n}}(x, F)=x$, and then $f^{\alpha}(x)=P_{\alpha}(x, y)$, since $R_{\alpha}(x, y)=R_{\alpha}(x, x)=0$.
If $x \notin A$ then for suitable values of $C_{\alpha}$ it will hold

$$
\left|\hat{f}^{\alpha}(x)-P_{\alpha}(x, y)\right| \leq C_{\alpha} d(x, y)^{k+1-|\alpha|}
$$

To evaluate $\left|\hat{f}^{\alpha}(x)-P_{\alpha}(x, y)\right|$ and $C_{\alpha}$ we need $y \in \operatorname{Proj}_{\frac{1}{2}} \mathrm{C}_{\mathbb{R}^{n}}(x, A)$. For such a $y$ it holds indeed $d(x, y) \leq \frac{3}{2} d(x, A) \leq \frac{3}{2} d(x, z)$ for all $z \in A$.
This is very useful, because during the calculations for the the term

$$
\sum_{Q \in \mathcal{Q}_{x}} \sum_{|\beta+\gamma| \leq k} M(7 e+1)^{k+1-|\beta+\gamma|} d(x, y)^{k+1-|\beta|} A_{\alpha-\beta} \cdot 7^{|\alpha-\beta|} \cdot d\left(x, R_{Q}\right)^{-|\alpha-\beta|}
$$

will appear, and then we can express it merely in terms of $d(x, y)$ obtaining:

$$
\begin{aligned}
& \sum_{Q \in \mathcal{Q}_{x}} \sum_{|\beta+\gamma| \leq k} M(7 e+1)^{k+1} d(x, y)^{k+1-|\beta|} A_{\alpha-\beta} \cdot 7^{|\alpha-\beta|} \cdot\left(\frac{2}{3} d(x, y)\right)^{-|\alpha-\beta|} \\
& =\sum_{Q \in \mathcal{Q}_{x}} \sum_{|\beta+\gamma| \leq k} M(7 e+1)^{k+1} d(x, y)^{k+1-|\alpha|} A_{\alpha-\beta} \cdot 7^{|\alpha-\beta|} \cdot\left(\frac{2}{3}\right)^{-|\alpha-\beta|}
\end{aligned}
$$

