
Projection Operators in Computable Analysis

Guido Gherardi
Joint work with Alberto Marcone

Dipartimento FilCom,
Università di Bologna

Hiddensee, 08 August 2017

Preliminaries

Weihrauch reducibility f ≤W g

�� ��� �

�� � �� �
�� ��� � �� �

�� �

�� �

�� �

qq
q

q

q
q q

q
q

q�� ��? ?

? ?
X Y

NN

NN

NN NN

NN

NN

Z W

�� ��

- - -

--

GH K

g

f

ρZ

ρX ρY

ρW

id -
pp

p

--

Strong Weihrauch reducibility f ≤sW g

�� ��� � �� �
�� ��� � �� �

�� �
�� �

qq q

q
q q

q

q�� ��? ?

? ?
X Y

NN NN NN NN

Z W

�� ��

- - -

--

GH K

g

ρZ

ρX ρY

ρW

f --

Negative representation ψ− for closed sets in computable
metric spaces X

��� ��
��

������
��
��
��

"!

��
��
&%
'$&%
'$

#
#
#
#

#
#

A list of rational open balls whose union gives the complement (here X = R2)

Negative representation κ− for closed sets in computable
metric spaces X

A list of all finite rational open coverings of the set

Positive representation ψ+ for closed sets in complete
computable metric spaces X

A dense sequence in the set (here X = R2)

Positive representation κ+ for compact sets in Rn

A dense sequence in the set and as a bound
a closed rational sphere centered in the origin

(here n = 2)

For a computable metric space

C−X :⊆ A−(X) ⇒ X ,A 7→ A)

is the (negative) closed choice operator.

For a computable metric space

K−X :⊆ K−(X) ⇒ X ,K 7→ K)

is the (negative) compact choice operator.

Obviously the corresponding operators for positive and total
information (in complete computable metric spaces) are trivial.

For a computable metric space

C−X :⊆ A−(X) ⇒ X ,A 7→ A)

is the (negative) closed choice operator.

For a computable metric space

K−X :⊆ K−(X) ⇒ X ,K 7→ K)

is the (negative) compact choice operator.

Obviously the corresponding operators for positive and total
information (in complete computable metric spaces) are trivial.

For a computable metric space

C−X :⊆ A−(X) ⇒ X ,A 7→ A)

is the (negative) closed choice operator.

For a computable metric space

K−X :⊆ K−(X) ⇒ X ,K 7→ K)

is the (negative) compact choice operator.

Obviously the corresponding operators for positive and total
information (in complete computable metric spaces) are trivial.

Important Weihrauch degress classes

id computable

LLPO constructive De Morgan

C−N computable with finitely many mind changes

WKL non deterministic/ weakly computable

C−R non deterministic/weakly computable with finitely many
mind changes

lim limit computable

BWTR non deterministic/weakly limit computable

Exact projection operators

Definition
For Rn we define

ProjC−Rn :⊆ Rn ×A−(Rn) ⇒ Rn be the (exact) negative
closed projection operator such that

ProjC−Rn(x ,A) = {y ∈ A : d(x , y) = d(x ,A)},

for x ∈ Rn and A ∈ A−(Rn);
ProjK−Rn :⊆ Rn ×K−(Rn) ⇒ Rn be the (exact) negative
compact projection operator such that

ProjK−Rn(x ,K) = {y ∈ A : d(x , y) = d(x ,K)},

for x ∈ Rn and A ∈ K−(Rn).

Exact projection operators

Definition
For Rn we define

ProjC−Rn :⊆ Rn ×A−(Rn) ⇒ Rn be the (exact) negative
closed projection operator such that

ProjC−Rn(x ,A) = {y ∈ A : d(x , y) = d(x ,A)},

for x ∈ Rn and A ∈ A−(Rn);
ProjK−Rn :⊆ Rn ×K−(Rn) ⇒ Rn be the (exact) negative
compact projection operator such that

ProjK−Rn(x ,K) = {y ∈ A : d(x , y) = d(x ,K)},

for x ∈ Rn and A ∈ K−(Rn).

Exact projection operators

Definition
For Rn we define

ProjC−Rn :⊆ Rn ×A−(Rn) ⇒ Rn be the (exact) negative
closed projection operator such that

ProjC−Rn(x ,A) = {y ∈ A : d(x , y) = d(x ,A)},

for x ∈ Rn and A ∈ A−(Rn);
ProjK−Rn :⊆ Rn ×K−(Rn) ⇒ Rn be the (exact) negative
compact projection operator such that

ProjK−Rn(x ,K) = {y ∈ A : d(x , y) = d(x ,K)},

for x ∈ Rn and A ∈ K−(Rn).

In an analoguous way we define the (exact) positive and the
(exact) total projection operators for

A+(Rn), K+(Rn), A(Rn), K(Rn)

Theorem

ProjK−Rn ≡sW ProjC−Rn , ProjK+
Rn ≡sW ProjC+

Rn , ProjKRn ≡sW ProjCRn .

Theorem
1 ProjC−Rn and ProjC+

Rn are weakly limit computable, that is
ProjC−Rn ,ProjC+

Rn ≤sW BWTR.
2 ProjCRn is weakly computable, that is ProjCRn ≤sW WKL.

PROOF:
Total information: Given x ∈ Rn and A ∈ A(Rn) compute
d(x ,A) ∈ R.
compute A ∩ ∂B(x ,d(x ,A)) ∈ A−(Rn)
take an N > ||x ||+ d(x ,A). This bound is used to translate
A ∩ ∂B(x ,d(x ,A)) into a computable element of K−(Rn)
select a point from this compact set by WKL
Partial informations: use lim× lim≡W lim to have A ∈ A(x)
and d(x ,A) ∈ R.
Proceed as above with respect to total information
In conclusion, we compose a limit computable and a
weakly computable function (ProjC−Rn ,ProjC+

Rn ≤sW BWTR)

Theorem
1 ProjC−Rn and ProjC+

Rn are weakly limit computable, that is
ProjC−Rn ,ProjC+

Rn ≤sW BWTR.
2 ProjCRn is weakly computable, that is ProjCRn ≤sW WKL.

PROOF:
Total information: Given x ∈ Rn and A ∈ A(Rn) compute
d(x ,A) ∈ R.
compute A ∩ ∂B(x ,d(x ,A)) ∈ A−(Rn)
take an N > ||x ||+ d(x ,A). This bound is used to translate
A ∩ ∂B(x ,d(x ,A)) into a computable element of K−(Rn)
select a point from this compact set by WKL
Partial informations: use lim× lim≡W lim to have A ∈ A(x)
and d(x ,A) ∈ R.
Proceed as above with respect to total information
In conclusion, we compose a limit computable and a
weakly computable function (ProjC−Rn ,ProjC+

Rn ≤sW BWTR)

Theorem
1 ProjC−Rn and ProjC+

Rn are weakly limit computable, that is
ProjC−Rn ,ProjC+

Rn ≤sW BWTR.
2 ProjCRn is weakly computable, that is ProjCRn ≤sW WKL.

PROOF:
Total information: Given x ∈ Rn and A ∈ A(Rn) compute
d(x ,A) ∈ R.
compute A ∩ ∂B(x ,d(x ,A)) ∈ A−(Rn)
take an N > ||x ||+ d(x ,A). This bound is used to translate
A ∩ ∂B(x ,d(x ,A)) into a computable element of K−(Rn)
select a point from this compact set by WKL
Partial informations: use lim× lim≡W lim to have A ∈ A(x)
and d(x ,A) ∈ R.
Proceed as above with respect to total information
In conclusion, we compose a limit computable and a
weakly computable function (ProjC−Rn ,ProjC+

Rn ≤sW BWTR)

A

A

x

(0,0)

Open problem: Does ProjC−Rn ≡W BWTR hold?

Partial results:

Theorem

BWT2, lim<W ProjK−Rn ≡sW ProjC−Rn ≤W BWTR.

Theorem

ProjC−R <W BWT.

Open problem: Does ProjC−Rn ≡W BWTR hold?

Partial results:

Theorem

BWT2, lim<W ProjK−Rn ≡sW ProjC−Rn ≤W BWTR.

Theorem

ProjC−R <W BWT.

Theorem

BWTR≡W ProjC+
Rn for n ≥ 2.

Theorem
ProjCR≡W LLPO.

Theorem
ProjCRn ≡sW WKL for n ≥ 2.

Approximated projection operators

Definition

Let ProjεC
−
Rn : Rn ×A−(Rn) ⇒ Rn be the ε-approximated

negative closed projection operator on X such that

ProjεC
−
Rn(x ,A) = {y ∈ A : d(x , y) ≤ (1 + ε)d(x ,A)},

for x ∈ Rn, A ∈ A−(Rn) and for rational 0 < ε < 1.

The (approximated) positive and total projections operators for
closed sets are defined analoguously for A+(Rn) and A(Rn)
respectively.
The (approximated) negative, positive and total projections
operators for compact sets can also be defined by replacing
A−(Rn),A+(Rn),A(Rn) through K−(Rn),K+(Rn),K(Rn)
correspondingly.

Approximated projection operators

Definition

Let ProjεC
−
Rn : Rn ×A−(Rn) ⇒ Rn be the ε-approximated

negative closed projection operator on X such that

ProjεC
−
Rn(x ,A) = {y ∈ A : d(x , y) ≤ (1 + ε)d(x ,A)},

for x ∈ Rn, A ∈ A−(Rn) and for rational 0 < ε < 1.

The (approximated) positive and total projections operators for
closed sets are defined analoguously for A+(Rn) and A(Rn)
respectively.
The (approximated) negative, positive and total projections
operators for compact sets can also be defined by replacing
A−(Rn),A+(Rn),A(Rn) through K−(Rn),K+(Rn),K(Rn)
correspondingly.

Approximated projection operators

Definition

Let ProjεC
−
Rn : Rn ×A−(Rn) ⇒ Rn be the ε-approximated

negative closed projection operator on X such that

ProjεC
−
Rn(x ,A) = {y ∈ A : d(x , y) ≤ (1 + ε)d(x ,A)},

for x ∈ Rn, A ∈ A−(Rn) and for rational 0 < ε < 1.

The (approximated) positive and total projections operators for
closed sets are defined analoguously for A+(Rn) and A(Rn)
respectively.
The (approximated) negative, positive and total projections
operators for compact sets can also be defined by replacing
A−(Rn),A+(Rn),A(Rn) through K−(Rn),K+(Rn),K(Rn)
correspondingly.

Fact

ProjεK
−
Rn ≤sW ProjεC

−
Rn , ProjεK

+
Rn ≤sW ProjεC

+
Rn ,

ProjεKRn ≤sW ProjεCRn .

Theorem

ProjεC
−
Rn ≡sW C−R

We use the space ω + 1 with domain {−2−n}n∈N ∪ {0} with
topology and metric induced by R, and representation

dom(ρω+1) = {p ∈ NN : (∃≤1i)p(i) 6= 0}

ρω+1(p) =

{
−2−n if p(n) 6= 0
0 if (∀i)p(i) = 0

.

We consider the function:

min−ω+1 :⊆ A−(ω + 1)→ ω + 1,A 7→ min(A)

Theorem

C−N <W min−ω+1.

We use the space ω + 1 with domain {−2−n}n∈N ∪ {0} with
topology and metric induced by R, and representation

dom(ρω+1) = {p ∈ NN : (∃≤1i)p(i) 6= 0}

ρω+1(p) =

{
−2−n if p(n) 6= 0
0 if (∀i)p(i) = 0

.

We consider the function:

min−ω+1 :⊆ A−(ω + 1)→ ω + 1,A 7→ min(A)

Theorem

C−N <W min−ω+1.

We use the space ω + 1 with domain {−2−n}n∈N ∪ {0} with
topology and metric induced by R, and representation

dom(ρω+1) = {p ∈ NN : (∃≤1i)p(i) 6= 0}

ρω+1(p) =

{
−2−n if p(n) 6= 0
0 if (∀i)p(i) = 0

.

We consider the function:

min−ω+1 :⊆ A−(ω + 1)→ ω + 1,A 7→ min(A)

Theorem

C−N <W min−ω+1.

Theorem

ProjεC
+
Rn ≡W min−ω+1.

Theorem
ProjεCRn is computable.

Applications: Whitney Extension Theorems

Theorem (First Whitney’s Extension Theorem)

Given any (nonempty and non total) closed set A ⊆ Rn there is
a linear operator EA

0 : C(A)→ C(Rn) mapping each continuous
function f ∈ C(A) to a total continuous extension EA

0 (f) such
that EA

0 (f)|Rn\A ∈ C∞(Rn \ A).

Improvements with respect to Urysohn-Tietze Lemma:

the operators EA
0 are linear (over C(A))

EA
0 (f)|Rn\A ∈ C∞(Rn \ A)

Applications: Whitney Extension Theorems

Theorem (First Whitney’s Extension Theorem)

Given any (nonempty and non total) closed set A ⊆ Rn there is
a linear operator EA

0 : C(A)→ C(Rn) mapping each continuous
function f ∈ C(A) to a total continuous extension EA

0 (f) such
that EA

0 (f)|Rn\A ∈ C∞(Rn \ A).

Improvements with respect to Urysohn-Tietze Lemma:

the operators EA
0 are linear (over C(A))

EA
0 (f)|Rn\A ∈ C∞(Rn \ A)

Theorem (Second Whitney’s Extension Theorem)

Given any (nonempty and nontotal) closed set A ⊆ Rn, there is a
linear operator EA

k that maps each sequence (fα)|α|≤k of continuous
functions fα ∈ C(A) (for α = (α1, ..., αn) ∈ Nn) satisfying

fα(x) =
∑

|α+β|≤k

fα+β(y)
α!

(x − y)β + Rα(x , y) ≤ M

with
|Rα(x , y)| ≤ M d(x , y)k+1−|α|

to total extensions f̂α : C(Rn)→ C(Rn) such that f̂α = (f̂ 0)α = f̂α

(here |α| = α1 + ...+ αn).

Intuitively, EA
k extends a sequence made of a continuous function f

over A and its potential partial derivatives until the k -th degree to a
total continuous extension f̂ ∈ Ck (Rn) of f and to its partial
derivatives f̂α coinciding with fα over A.

Theorem (Second Whitney’s Extension Theorem)

Given any (nonempty and nontotal) closed set A ⊆ Rn, there is a
linear operator EA

k that maps each sequence (fα)|α|≤k of continuous
functions fα ∈ C(A) (for α = (α1, ..., αn) ∈ Nn) satisfying

fα(x) =
∑

|α+β|≤k

fα+β(y)
α!

(x − y)β + Rα(x , y) ≤ M

with
|Rα(x , y)| ≤ M d(x , y)k+1−|α|

to total extensions f̂α : C(Rn)→ C(Rn) such that f̂α = (f̂ 0)α = f̂α

(here |α| = α1 + ...+ αn).

Intuitively, EA
k extends a sequence made of a continuous function f

over A and its potential partial derivatives until the k -th degree to a
total continuous extension f̂ ∈ Ck (Rn) of f and to its partial
derivatives f̂α coinciding with fα over A.

Classical proofs define E0 for instance following way [Ste70]:

E0(f)(x) :=

{
f (x) if x ∈ A∑

Q∈Q f (PQ)ϕ
∗
Q(x) else.

Here:

Q is a family of cubes that constitutes a tiling of the whole
complement of Rn \ A,∑

Q∈Q ϕ
∗
Q = 1 (partition of the unity)

the points PQ are projection points of cubes Q over A.

A

Q
PQ

Q

Q

Q∗ := (1 + ε)(Q − c) + c

c

ϕQ

QQ∗ Q∗

ϕ∗Q(x) :=
ϕQ(x)∑

Q′∈Q ϕQ′ (x)

Analogously, classical proofs define Ek for instance in the
following way [Ste70]:

πα(Ek ((fα(x))|α|≤k)(x) :={
fα(x) for x ∈ A,∑

Q∈Q
∂α

∂xα
∑
|α|≤k

fα(x ,PQ)
α! (x − PQ)

αϕ∗Q(x) else.

Approximations are useful!

Let Cc(Rn) ⊆ Cp(Rn)×A(x) be the space of all partial
continuous functions with closed domain.
More precisely, (f ,A) ∈ Cc(Rn) iff f is a partial function over Rn

and A = dom(f).
Cc(Rn) is represented in the following way:

δCc(Rn)(〈p,q〉) = (f , dom(f)) ⇔ δ→(p) = f ∧ ψ(q) = dom(f).

Theorem (First computable Whitney Extension Theorem)

There exists a computable operator WET0 : Cc(Rn) ⇒ C(Rn)
that

maps every input (f ,A) ∈ Cc(Rn) to continuous total
extensions f̂ ∈ C(Rn) of f
is linear over C(A) with respect to any given ψ-name of A.

Approximations are useful!

Let Cc(Rn) ⊆ Cp(Rn)×A(x) be the space of all partial
continuous functions with closed domain.
More precisely, (f ,A) ∈ Cc(Rn) iff f is a partial function over Rn

and A = dom(f).
Cc(Rn) is represented in the following way:

δCc(Rn)(〈p,q〉) = (f , dom(f)) ⇔ δ→(p) = f ∧ ψ(q) = dom(f).

Theorem (First computable Whitney Extension Theorem)

There exists a computable operator WET0 : Cc(Rn) ⇒ C(Rn)
that

maps every input (f ,A) ∈ Cc(Rn) to continuous total
extensions f̂ ∈ C(Rn) of f
is linear over C(A) with respect to any given ψ-name of A.

PROOF (scheme):
Preparation:

Given (f ,A) ∈ Cc(Rn):

Effectivize the construction of the tiling of Rn \ A by
constructing a decidable collection of closed rational cubes
Q, such that (Rn \ A) =

⋃
Q;

select uniformly for each Q ∈ Q a computable (smooth)
continuous function ϕQ such that ϕQ(z) = 1 for all z ∈ Q
and ϕQ(z) = 0 for all z /∈ Q∗;

for each cube Q ∈ Q select a point RQ that constitutes a
very rough (!) approximated projection of Q over A.
More precisely, any point z ∈ A satisfying
d(z,Q) < 5 diam(Q) will work.

PROOF (scheme):
Preparation:

Given (f ,A) ∈ Cc(Rn):

Effectivize the construction of the tiling of Rn \ A by
constructing a decidable collection of closed rational cubes
Q, such that (Rn \ A) =

⋃
Q;

select uniformly for each Q ∈ Q a computable (smooth)
continuous function ϕQ such that ϕQ(z) = 1 for all z ∈ Q
and ϕQ(z) = 0 for all z /∈ Q∗;

for each cube Q ∈ Q select a point RQ that constitutes a
very rough (!) approximated projection of Q over A.
More precisely, any point z ∈ A satisfying
d(z,Q) < 5 diam(Q) will work.

PROOF (scheme):
Preparation:

Given (f ,A) ∈ Cc(Rn):

Effectivize the construction of the tiling of Rn \ A by
constructing a decidable collection of closed rational cubes
Q, such that (Rn \ A) =

⋃
Q;

select uniformly for each Q ∈ Q a computable (smooth)
continuous function ϕQ such that ϕQ(z) = 1 for all z ∈ Q
and ϕQ(z) = 0 for all z /∈ Q∗;

for each cube Q ∈ Q select a point RQ that constitutes a
very rough (!) approximated projection of Q over A.
More precisely, any point z ∈ A satisfying
d(z,Q) < 5 diam(Q) will work.

Define

f̂ (x) :=

{
f (x) if x ∈ A∑

Q∈Q f (RQ)ϕ
∗
Q(x) else.

Computation of f̂ (x) for every x ∈ Rn:

Until we do not know whether x ∈ A, at stage i search for a
basic open ball B(y ′, δ) such that

x , y ∈ B(y ′, δ) for some y ∈ A

RQ ∈ B(y ′, cδ) for a fixed suitable computable constant c
(e.g.: c := 28

1−ε + 3)

f (B(y ′, δ)) ⊆ f (B(y ′, cδ)) ⊆ B(y ′′,2−i)

Then take y ′′ as the i-th rational approximation of f̂ (x).
If suddenly it turns out that x /∈ A, then

replace effectively Q by the finite cube collection
Qx := {Q ∈ Q : x ∈ Q∗};

compute f̂ (x) =
∑

Q∈Qx
f (RQ)ϕ

∗
Q(x).

Computation of f̂ (x) for every x ∈ Rn:

Until we do not know whether x ∈ A, at stage i search for a
basic open ball B(y ′, δ) such that

x , y ∈ B(y ′, δ) for some y ∈ A

RQ ∈ B(y ′, cδ) for a fixed suitable computable constant c
(e.g.: c := 28

1−ε + 3)

f (B(y ′, δ)) ⊆ f (B(y ′, cδ)) ⊆ B(y ′′,2−i)

Then take y ′′ as the i-th rational approximation of f̂ (x).
If suddenly it turns out that x /∈ A, then

replace effectively Q by the finite cube collection
Qx := {Q ∈ Q : x ∈ Q∗};

compute f̂ (x) =
∑

Q∈Qx
f (RQ)ϕ

∗
Q(x).

Theorem (Second computable Whitney Extension Theorem)
There is a computable multi-valued operator
WETk : Jk ⇒ C(Rn)k that maps every jet (M, (fα)|α|≤k)) to
sequences (f̂α)|α|≤k) ∈ C(Rn)k such that for all α with |α| ≤ k it
holds

f̂α is a total continuous extension of fα,

f̂α is the α-partial derivative of f̂ 0 = f̂ .

PROOF (sketch): We want to compute the extensions of each
fα so defined:

f̂α(x) :=

{
fα(x) for x ∈ A,∑

Q∈Q
∂α

∂xα
∑
|α|≤k

fα(x ,RQ)
α! (x − RQ)

αϕ∗(x) else

At stage s look for some point y ∈ A such that for every α
with |α| ≤ k :

1 Cα · d(x , y)k+1−|α| < 2−s−|α|, where Cα is a fixed suitable
computable constant depending on α

2 y ∈ Proj 1
2
C(x ,A), where

Proj 1
2
C(x ,A) = {y ∈ A|d(x , y) ≤ (1 + 1

2)d(x ,A)}
For the first suitable y that is found compute (an
approximation of) Pα(x , y) :=

∑
|α+β|≤k

fα+β(y)
β! (x − y)β for

|β| ≤ k
In case we realize that x /∈ A, then we compute fα(x) by
using the RQ ’s such that x ∈ Q∗

PROOF (sketch): We want to compute the extensions of each
fα so defined:

f̂α(x) :=

{
fα(x) for x ∈ A,∑

Q∈Q
∂α

∂xα
∑
|α|≤k

fα(x ,RQ)
α! (x − RQ)

αϕ∗(x) else

At stage s look for some point y ∈ A such that for every α
with |α| ≤ k :

1 Cα · d(x , y)k+1−|α| < 2−s−|α|, where Cα is a fixed suitable
computable constant depending on α

2 y ∈ Proj 1
2
C(x ,A), where

Proj 1
2
C(x ,A) = {y ∈ A|d(x , y) ≤ (1 + 1

2)d(x ,A)}
For the first suitable y that is found compute (an
approximation of) Pα(x , y) :=

∑
|α+β|≤k

fα+β(y)
β! (x − y)β for

|β| ≤ k
In case we realize that x /∈ A, then we compute fα(x) by
using the RQ ’s such that x ∈ Q∗

PROOF (sketch): We want to compute the extensions of each
fα so defined:

f̂α(x) :=

{
fα(x) for x ∈ A,∑

Q∈Q
∂α

∂xα
∑
|α|≤k

fα(x ,RQ)
α! (x − RQ)

αϕ∗(x) else

At stage s look for some point y ∈ A such that for every α
with |α| ≤ k :

1 Cα · d(x , y)k+1−|α| < 2−s−|α|, where Cα is a fixed suitable
computable constant depending on α

2 y ∈ Proj 1
2
C(x ,A), where

Proj 1
2
C(x ,A) = {y ∈ A|d(x , y) ≤ (1 + 1

2)d(x ,A)}
For the first suitable y that is found compute (an
approximation of) Pα(x , y) :=

∑
|α+β|≤k

fα+β(y)
β! (x − y)β for

|β| ≤ k
In case we realize that x /∈ A, then we compute fα(x) by
using the RQ ’s such that x ∈ Q∗

The algorithm works because:
If x ∈ A, then Proj 1

2
CRn (x ,F) = x , and then fα(x) = Pα(x , y), since

Rα(x , y) = Rα(x , x) = 0.
If x /∈ A then for suitable values of Cα it will hold

|̂fα(x)− Pα(x , y)| ≤ Cαd(x , y)k+1−|α|.

To evaluate |̂fα(x)− Pα(x , y)| and Cα we need y ∈ Proj 1
2
CRn (x ,A). For such

a y it holds indeed d(x , y) ≤ 3
2 d(x ,A) ≤ 3

2 d(x , z) for all z ∈ A.
This is very useful, because during the calculations for the the term

∑
Q∈Qx

∑
|β+γ|≤k

M(7e + 1)k+1−|β+γ|d(x , y)k+1−|β|Aα−β · 7|α−β| · d(x ,RQ)
−|α−β|

will appear, and then we can express it merely in terms of d(x , y) obtaining:

∑
Q∈Qx

∑
|β+γ|≤k

M(7e + 1)k+1d(x , y)k+1−|β|Aα−β · 7|α−β| · (
2
3

d(x , y))−|α−β|

=
∑

Q∈Qx

∑
|β+γ|≤k

M(7e + 1)k+1d(x , y)k+1−|α|Aα−β · 7|α−β| · (
2
3
)−|α−β|.

The algorithm works because:
If x ∈ A, then Proj 1

2
CRn (x ,F) = x , and then fα(x) = Pα(x , y), since

Rα(x , y) = Rα(x , x) = 0.
If x /∈ A then for suitable values of Cα it will hold

|̂fα(x)− Pα(x , y)| ≤ Cαd(x , y)k+1−|α|.

To evaluate |̂fα(x)− Pα(x , y)| and Cα we need y ∈ Proj 1
2
CRn (x ,A). For such

a y it holds indeed d(x , y) ≤ 3
2 d(x ,A) ≤ 3

2 d(x , z) for all z ∈ A.
This is very useful, because during the calculations for the the term

∑
Q∈Qx

∑
|β+γ|≤k

M(7e + 1)k+1−|β+γ|d(x , y)k+1−|β|Aα−β · 7|α−β| · d(x ,RQ)
−|α−β|

will appear, and then we can express it merely in terms of d(x , y) obtaining:

∑
Q∈Qx

∑
|β+γ|≤k

M(7e + 1)k+1d(x , y)k+1−|β|Aα−β · 7|α−β| · (
2
3

d(x , y))−|α−β|

=
∑

Q∈Qx

∑
|β+γ|≤k

M(7e + 1)k+1d(x , y)k+1−|α|Aα−β · 7|α−β| · (
2
3
)−|α−β|.

The algorithm works because:
If x ∈ A, then Proj 1

2
CRn (x ,F) = x , and then fα(x) = Pα(x , y), since

Rα(x , y) = Rα(x , x) = 0.
If x /∈ A then for suitable values of Cα it will hold

|̂fα(x)− Pα(x , y)| ≤ Cαd(x , y)k+1−|α|.

To evaluate |̂fα(x)− Pα(x , y)| and Cα we need y ∈ Proj 1
2
CRn (x ,A). For such

a y it holds indeed d(x , y) ≤ 3
2 d(x ,A) ≤ 3

2 d(x , z) for all z ∈ A.
This is very useful, because during the calculations for the the term

∑
Q∈Qx

∑
|β+γ|≤k

M(7e + 1)k+1−|β+γ|d(x , y)k+1−|β|Aα−β · 7|α−β| · d(x ,RQ)
−|α−β|

will appear, and then we can express it merely in terms of d(x , y) obtaining:

∑
Q∈Qx

∑
|β+γ|≤k

M(7e + 1)k+1d(x , y)k+1−|β|Aα−β · 7|α−β| · (
2
3

d(x , y))−|α−β|

=
∑

Q∈Qx

∑
|β+γ|≤k

M(7e + 1)k+1d(x , y)k+1−|α|Aα−β · 7|α−β| · (
2
3
)−|α−β|.

