<ロト < 団 > < 巨 > < 巨 >

Language Learning from a Computational Viewpoint

Karen Seidel Hasso-Plattner-Institute

Hiddensee, August 7th 2017

Gold's Model

IN

크

Gold's Model

イロト イ団ト イヨト イヨト

Gold's Model

イロト イ団ト イヨト イヨト

P

イロト イ団ト イヨト イヨト

< ロト < 団 > < 臣 > < 臣 >

Gold's Model

For every $t \in \mathbb{N}$:

$$\sigma_t := u_0 u_1 u_2 \dots u_{t-1}$$

イロト イ団ト イヨト イヨト

Criteria for Success

For every presentation $u_0, u_1, \ldots, u_t, \ldots$ of L we gain

 $\sigma_0, \sigma_1, \ldots, \sigma_t, \ldots$

 $h_0, h_1, \ldots, h_t, \ldots$

Definition

Let $b \in \mathbb{N}_{\geq 1} \cup \{*, \infty\}$. *M* **TxtFex**_{*b*}-*learns* a language *L* if for every presentation *T* of *L*, i.e., $T \in \mathbf{Txt}(L)$, there is t_0 such that for all $t \geq t_0$ the hypothesis $h_t = M(T[t])$ is correct and $|\{M(T[t]) \mid t \geq t_0\}| \leq b$. b = 1 is denoted by **TxtEx** (Gold) and $b = \infty$ by **TxtBc**.

We are interested in collections of languages \mathcal{L} such that there is a single M which \mathbf{TxtFex}_b -learns *every* language in \mathcal{L} .

Criteria for Success

For every presentation $u_0, u_1, \ldots, u_t, \ldots$ of L we gain

 $\sigma_0, \sigma_1, \ldots, \sigma_t, \ldots$

$$M \qquad \xrightarrow{\quad h_0, h_1, \dots, h_t, \dots}$$

Definition

Let $b \in \mathbb{N}_{\geq 1} \cup \{*, \infty\}$. *M* TxtFex_{*b*}-learns a language *L* if for every presentation *T* of *L*, i.e., $T \in \text{Txt}(L)$, there is t_0 such that for all $t \geq t_0$ the hypothesis $h_t = M(T[t])$ is correct and $|\{M(T[t]) \mid t \geq t_0\}| \leq b$. b = 1 is denoted by TxtEx (Gold) and $b = \infty$ by TxtBc. We are interested in collections of languages \mathcal{L} such that there is a single *M* which TxtFex_{*b*}-learns *every* language in \mathcal{L} .

Criteria for Success

For every presentation $u_0, u_1, \ldots, u_t, \ldots$ of L we gain

 $\sigma_0, \sigma_1, \ldots, \sigma_t, \ldots$

$$M \qquad \xrightarrow{h_0, h_1, \dots, h_t, \dots}$$

Definition

Let $b \in \mathbb{N}_{\geq 1} \cup \{*, \infty\}$. *M* **TxtFex**_{*b*}-*learns* a language *L* if for every presentation *T* of *L*, i.e., $T \in \mathbf{Txt}(L)$, there is t_0 such that for all $t \geq t_0$ the hypothesis $h_t = M(T[t])$ is correct and $|\{M(T[t]) \mid t \geq t_0\}| \leq b$. b = 1 is denoted by **TxtEx** (Gold) and $b = \infty$ by **TxtBc**.

We are interested in collections of languages \mathcal{L} such that there is a single M which \mathbf{TxtFex}_b -learns *every* language in \mathcal{L} .

Criteria for Success

For every presentation $u_0, u_1, \ldots, u_t, \ldots$ of L we gain

 $\sigma_0, \sigma_1, \ldots, \sigma_t, \ldots$

$$M \xrightarrow{h_0, h_1, \dots, h_t, \dots}$$

イロト イポト イヨト イヨト

Definition

Let $b \in \mathbb{N}_{\geq 1} \cup \{*, \infty\}$. *M* **TxtFex**_{*b*}-*learns* a language *L* if for every presentation *T* of *L*, i.e., $T \in \mathbf{Txt}(L)$, there is t_0 such that for all $t \geq t_0$ the hypothesis $h_t = M(T[t])$ is correct and $|\{M(T[t]) \mid t \geq t_0\}| \leq b$. b = 1 is denoted by **TxtEx** (Gold) and $b = \infty$ by **TxtBc**.

We are interested in collections of languages \mathcal{L} such that there is a single M which \mathbf{TxtFex}_b -learns *every* language in \mathcal{L} .

Introduction to Computational Learning Theory Variations and Open Questions

Criteria for Success

For every presentation $u_0, u_1, \ldots, u_t, \ldots$ of L we gain

 $\sigma_0, \sigma_1, \ldots, \sigma_t, \ldots$

 $h_0, h_1, \ldots, h_t, \ldots$

Definition

Let $b \in \mathbb{N} \cup \{*, \infty\}$. [**TxtFex**_{*b*}] denotes the set of all \mathcal{L} for which there exists M which \mathbf{TxtFex}_b -learns every language in \mathcal{L} .

Criteria for Success

For every presentation $u_0, u_1, \ldots, u_t, \ldots$ of L we gain

 $\sigma_0, \sigma_1, \ldots, \sigma_t, \ldots$

$$h_0, h_1, \ldots, h_t, \ldots$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition

Let $b \in \mathbb{N} \cup \{*, \infty\}$. $[\mathbf{TxtFex}_b]$ denotes the set of all \mathcal{L} for which there exists M which \mathbf{TxtFex}_b -learns *every* language in \mathcal{L} .

Theorem (Case99)

For all $b \in \mathbb{N}_{\geq 1}$ holds $[\mathbf{TxtFex}_b] \subsetneq [\mathbf{TxtFex}_{b+1}]$ and moreover $\bigcup_{b \geq 1} [\mathbf{TxtFex}_b] \subsetneq [\mathbf{TxtFex}_*].$

Constraints on Learnability and Characterizations

Theorem (Subset Principle)

Let $b \in \mathbb{N}_{\geq 1} \cup \{*, \infty\}$ and M TxtFex_b-learning the language L. Then there exists $D \subseteq L$ finite such that no proper subset L' of L with $D \subseteq L'$ is TxtFex_b-learned by M.

Corollary

The set of all regular languages is not TxtBc-learnable.

Remark

Angluin's Tell-Tale-Condition is an important generalized version of the theorem for uniformly decidable collections of languages.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Constraints on Learnability and Characterizations

Theorem (Subset Principle)

Let $b \in \mathbb{N}_{\geq 1} \cup \{*, \infty\}$ and M TxtFex_b-learning the language L. Then there exists $D \subseteq L$ finite such that no proper subset L' of L with $D \subseteq L'$ is TxtFex_b-learned by M.

Corollary

The set of all regular languages is not TxtBc-learnable.

Remark

Angluin's Tell-Tale-Condition is an important generalized version of the theorem for uniformly decidable collections of languages.

< ロ ト < 同 ト < 三 ト < 三 ト

Insensitivity to Presentation Order

Definition

M is *set-driven* (Sd) if for any two finite sequences with the same content it yields the same hypothesis.

Definition

 $[SdTxtFex_b]$ denotes the set of all \mathcal{L} for which there exists a set-driven M TxtFex_b-learning every language in \mathcal{L} .

The following result positively answers the question whether $[\mathbf{SdTxtEx}] \subsetneq [\mathbf{TxtEx}]$ carries over to b > 1.

Theorem (KSS17)

For all $b \in \mathbb{N}_{\geq 1} \cup \{*, \infty\}$ holds $[\mathbf{SdTxtFex}_b] \subsetneq [\mathbf{TxtFex}_b]$.

< ロ > < 同 > < 回 > < 回 >

Insensitivity to Presentation Order

Definition

M is *set-driven* (Sd) if for any two finite sequences with the same content it yields the same hypothesis.

Definition

 $[\mathbf{SdTxtFex}_b]$ denotes the set of all \mathcal{L} for which there exists a set-driven $M \mathbf{TxtFex}_b$ -learning every language in \mathcal{L} .

The following result positively answers the question whether $[\mathbf{SdTxtEx}] \subsetneq [\mathbf{TxtEx}]$ carries over to b > 1.

Theorem (KSS17)

For all $b \in \mathbb{N}_{\geq 1} \cup \{*, \infty\}$ holds $[\mathbf{SdTxtFex}_b] \subsetneq [\mathbf{TxtFex}_b]$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Insensitivity to Presentation Order

Definition

M is *set-driven* (Sd) if for any two finite sequences with the same content it yields the same hypothesis.

Definition

 $[SdTxtFex_b]$ denotes the set of all \mathcal{L} for which there exists a set-driven $M TxtFex_b$ -learning every language in \mathcal{L} .

The following result positively answers the question whether $[SdTxtEx] \subseteq [TxtEx]$ carries over to b > 1.

Theorem (KSS17)

For all $b \in \mathbb{N}_{\geq 1} \cup \{*, \infty\}$ holds $[\mathbf{SdTxtFex}_b] \subsetneq [\mathbf{TxtFex}_b]$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Empirical (Non-)U-Shaped Learning

• childrens understanding of conservation-principles (similar to Piaget) and verb regularization follow the pattern

learn		relearn
	unlearn	

• whether *U*-Shapes in learning are necessary is a major open question

< ロ > < 同 > < 回 > < 回 > < 回 > <

Empirical (Non-)U-Shaped Learning

• childrens understanding of conservation-principles (similar to Piaget) and verb regularization follow the pattern

learn		relearn
	unlearn	

• whether *U*-Shapes in learning are necessary is a major open question

Formal (Non-)U-Shaped Learning

Definition

M behaves non-U-shaped (NU) on a presentation of a language L if whenever h_t and h_{t+n} are correct descriptions of L, then for all $i \leq n$ the description h_{t+i} is also correct.

< ロ > < 同 > < 回 > < 回 >

< ロ > < 同 > < 回 > < 回 > < 回 > <

Formal (Non-)U-Shaped Learning

Definition

M behaves *non-U-shaped* (**NU**) on a presentation of a language *L* if whenever h_t and h_{t+n} are correct descriptions of *L*, then for all $i \leq n$ the description h_{t+i} is also correct.

Definition

 $M \operatorname{Txt} \operatorname{NUFex}_{b}$ -learns a language L if it $\operatorname{Txt} \operatorname{Fex}_{b}$ -learns L and additionally behaves non-U-shaped on every presentation of L.

 $[\mathbf{TxtNUFex}_b]$ denotes the set of all \mathcal{L} for which there exists M $\mathbf{TxtNUFex}_b$ -learning every language in \mathcal{L} .

< ロ > < 同 > < 回 > < 回 > < 回 > <

Results Regarding NU-Learning

Theorem (CCJS08)

For all $b \in \mathbb{N}_{\geq 1} \cup \{*\}$ holds $[\mathbf{TxtNUFex}_b] = [\mathbf{TxtEx}].$

Theorem (BCMSW05)

We have $[TxtEx] \subsetneq [TxtNUBc]$.

Theorem (FJO94)

We have $[TxtNUBc] \subseteq [TxtBc]$.

- $[\mathbf{Txt}\mathbf{Fex}_2] \subseteq [\mathbf{Txt}\mathbf{NUBc}]$
- $[\mathbf{TxtFex}_3] \setminus [\mathbf{TxtNUBc}] \neq \emptyset$
- $[TxtNUBc] \setminus [TxtFex_*] \neq \emptyset$

イロト イポト イヨト

Results Regarding NU-Learning

Theorem (CCJS08)

For all $b \in \mathbb{N}_{\geq 1} \cup \{*\}$ holds $[\mathbf{TxtNUFex}_b] = [\mathbf{TxtEx}].$

Theorem (BCMSW05)

We have $[TxtEx] \subsetneq [TxtNUBc]$.

Theorem (FJO94)

We have $[TxtNUBc] \subseteq [TxtBc]$.

- $[\mathbf{Txt}\mathbf{Fex}_2] \subseteq [\mathbf{Txt}\mathbf{NUBc}]$
- $[\mathbf{TxtFex}_3] \setminus [\mathbf{TxtNUBc}] \neq \emptyset$
- $[TxtNUBc] \setminus [TxtFex_*] \neq \emptyset$

イロト イ団ト イヨト イヨトー

Results Regarding NU-Learning

Theorem (CCJS08)

For all $b \in \mathbb{N}_{\geq 1} \cup \{*\}$ holds $[\mathbf{TxtNUFex}_b] = [\mathbf{TxtEx}].$

Theorem (BCMSW05)

We have $[TxtEx] \subsetneq [TxtNUBc]$.

Theorem (FJO94)

We have $[TxtNUBc] \subsetneq [TxtBc]$.

- $[\mathbf{TxtFex}_2] \subseteq [\mathbf{TxtNUBc}]$
- $[\mathbf{TxtFex}_3] \setminus [\mathbf{TxtNUBc}] \neq \emptyset$
- $[TxtNUBc] \setminus [TxtFex_*] \neq \emptyset$

イロト イ団ト イヨト イヨトー

Results Regarding NU-Learning

Theorem (CCJS08)

For all $b \in \mathbb{N}_{\geq 1} \cup \{*\}$ holds $[\mathbf{TxtNUFex}_b] = [\mathbf{TxtEx}].$

Theorem (BCMSW05)

We have $[TxtEx] \subsetneq [TxtNUBc]$.

Theorem (FJO94)

We have $[TxtNUBc] \subsetneq [TxtBc]$.

- $[\mathbf{TxtFex}_2] \subseteq [\mathbf{TxtNUBc}]$
- $[\mathbf{TxtFex}_3] \setminus [\mathbf{TxtNUBc}] \neq \emptyset$
- $[TxtNUBc] \setminus [TxtFex_*] \neq \emptyset$

イロト イ団ト イヨト イヨトー

Results Regarding NU-Learning

Theorem (CCJS08)

For all $b \in \mathbb{N}_{\geq 1} \cup \{*\}$ holds $[\mathbf{TxtNUFex}_b] = [\mathbf{TxtEx}].$

Theorem (BCMSW05)

```
We have [TxtEx] \subsetneq [TxtNUBc].
```

Theorem (FJO94)

We have $[TxtNUBc] \subsetneq [TxtBc]$.

- $[\mathbf{TxtFex}_2] \subseteq [\mathbf{TxtNUBc}]$
- $[\mathbf{TxtFex}_3] \setminus [\mathbf{TxtNUBc}] \neq \emptyset$
- $[TxtNUBc] \setminus [TxtFex_*] \neq \emptyset$

Results Regarding NU-Learning

Theorem (CCJS08)

For all $b \in \mathbb{N}_{\geq 1} \cup \{*\}$ holds $[\mathbf{TxtNUFex}_b] = [\mathbf{TxtEx}].$

Theorem (BCMSW05)

```
We have [TxtEx] \subsetneq [TxtNUBc].
```

Theorem (FJO94)

We have $[TxtNUBc] \subsetneq [TxtBc]$.

- $[\mathbf{TxtFex}_2] \subseteq [\mathbf{TxtNUBc}]$
- $[\mathbf{TxtFex}_3] \setminus [\mathbf{TxtNUBc}] \neq \emptyset$
- $[\mathbf{TxtNUBc}] \setminus [\mathbf{TxtFex}_*] \neq \emptyset$

Map for TxtNU-Learning

< ロ > < 同 > < 回 > < 回 >

Map for TxtNU-Learning

Theorem (KSS17)

For all $b \in \mathbb{N}_{\geq 1} \cup \{*, \infty\}$ holds $[\mathbf{SdTxtNUFex}_b] \subsetneq [\mathbf{TxtNUFex}_b]$.

< ロ > < 同 > < 回 > < 回 >

< ロ > < 同 > < 回 > < 回 >

- Presenting positive and negative examples for *L* to the learner is covered by investigations on informants.
- Abundance of information and limited memory have been modelled by iterative learners and other attempts.
- It has been shown that NU is not a restriction for iterative learners for b = 1. The behavior for b > 1 needs further investigation.
- Complexity considerations question whether the *TM*-based attempt is appropriate for modelling learning.

< ロ > < 同 > < 回 > < 回 >

- Presenting positive and negative examples for *L* to the learner is covered by investigations on informants.
- Abundance of information and limited memory have been modelled by iterative learners and other attempts.
- It has been shown that NU is not a restriction for iterative learners for b = 1. The behavior for b > 1 needs further investigation.
- Complexity considerations question whether the *TM*-based attempt is appropriate for modelling learning.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Presenting positive and negative examples for *L* to the learner is covered by investigations on informants.
- Abundance of information and limited memory have been modelled by iterative learners and other attempts.
- It has been shown that NU is not a restriction for iterative learners for b = 1. The behavior for b > 1 needs further investigation.
- Complexity considerations question whether the *TM*-based attempt is appropriate for modelling learning.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Presenting positive and negative examples for *L* to the learner is covered by investigations on informants.
- Abundance of information and limited memory have been modelled by iterative learners and other attempts.
- It has been shown that NU is not a restriction for iterative learners for b = 1. The behavior for b > 1 needs further investigation.
- Complexity considerations question whether the *TM*-based attempt is appropriate for modelling learning.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Learning with Automata

Definition

An automatic learner M uses two automatic functions hyp and mem which produce sequences h_0, \ldots, h_t, \ldots interpreted as its hypotheses and m_0, \ldots, m_t, \ldots standing for the information stored in M's memory via $h_{t+1} = \text{hyp}(u_t, m_t)$ and $m_{t+1} = \text{mem}(u_t, m_t)$.

< ロ > < 同 > < 回 > < 回 >

Learning with Automata

Definition

An automatic learner M uses two automatic functions hyp and mem which produce sequences h_0, \ldots, h_t, \ldots interpreted as its hypotheses and m_0, \ldots, m_t, \ldots standing for the information stored in M's memory via $h_{t+1} = \text{hyp}(u_t, m_t)$ and $m_{t+1} = \text{mem}(u_t, m_t)$.

References

- Ganesh Baliga, John Case, Wolfgang Merkle, Frank Stephan, and Rolf Wiehagen, When unlearning helps, Information and Computation 206 (2008), no. 5, 694–709.
- John Case, *The power of vacillation in language learning*, SIAM Journal on Computing **28** (1999), no. 6, 1941–1969.
- Gold-style learning theory, Topics in Grammatical Inference, Springer, 2016, pp. 1–23.

Lorenzo Carlucci, John Case, Sanjay Jain, and Frank Stephan, *Non-u-shaped vacillatory and team learning*, Journal of Computer and System Sciences **74** (2008), no. 4, 409–430.

- Mark Fulk, Sanjay Jain, and Daniel N Osherson, Open problems in "systems that learn", Journal of Computer and System Sciences 49 (1994), no. 3, 589–604.

Timo Kötzing, Martin Schirneck, and Karen Seidel, *Normal forms in semantic language identification*, unpublished, 2017.