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TU Darmstadt

Computability and Reducibility

Kloster / Hiddensee
August 2017



Survey

Survey
I Basics of Type-2 Complexity Theory
I Simple Complexity and CoPolish spaces
I Hybrid representations
I Admissibility for hybrid representations



Basics of Type 2 Complexity Theory



Basics of Type-2 Complexity Theory Computability in TTE

Remember
I A representation of X is a partial surjection δ : NN 99K X .
I Let δ : NN 99K X and γ : NN 99K Y be representations.

f : X → Y is called (δ, γ)-computable, if there is a
computable function g : NN 99K NN s.t.

X f //

			

Y

NN
g

//

δ

OOOO

NN

γ
OOOO

commutes.
I g : NN 99K NN is computable, if there is an oracle Turing

machine M that computes g.



Basics of Type-2 Complexity Theory Computation Time

Definition
Let M be an oracle machine that (δ, γ)-realizes f : X → Y .
I Define the computation time of M by

TimeM(p,n) :=
{

the number of steps carried out by M
on input (p,n) ∈ NN × N

I Define the relative computation time on A ⊆ X by

TimeδM(A,n) := sup
{
TimeM(p,n)

∣∣ δ(p) ∈ A
}

Problem
I The sup may be equal to∞, even if A = {x}.
I So M may not even have a time bound on singletons.



Basics of Type-2 Complexity Theory Existence of time bounds

How can we ensure the existence of time bounds?

Lemma
I The computation time TimeM : dom(gM)× N→ N is

continuous.
I For compact L ⊆ dom(gM),

TimeM(L,n) := sup
{

TimeM(p,n)
∣∣p ∈ L}

exists (whenever M realizes a total function w.r.t. δ).

Summary
We can measure time on compact sets of names.



Basics of Type-2 Complexity Theory Proper representations

Observation
If δ is a continuous representation of a space X, then

δ−1[A] compact =⇒ A compact.

Definition
A continuous representation δ of X is called proper,
if δ−1[K ] is compact for every compact K ⊆ X.

Lemma
For a proper δ, time complexity can be measured by a function

T : {K ⊆ X |K compact} × N→ N



Basics of Type-2 Complexity Theory Proper representations

Example
The signed-digit representation %sd for R defined by

%sd(p) := p(0) +
∞∑

i=1

p(i) · 2−i for p ∈ Z× {−1,0,1}N

is proper.

Theorem
A sequential space X has a proper admissible representation
iff X is separable metrisable.



Simple Complexity



Simple Complexity Motivation

Aim
Measurement of time complexity in terms of
I a discrete parameter on the input &
I the output precision.

Idea
I Equip δ with a “size function” S : dom(δ)→ N.
I Measure time complexity by TM : N× N 99K N,

TM(a,n) := sup
{
TimeM(p,n)

∣∣S(p) = a
}

,

where M is a realizing machine.



Simple Complexity Size functions

Definition
We call S : dom(δ)→ N a size function for δ, if
I S is continuous,
I S−1{a} is compact for all a ∈ N.

Example
Natural size functions for the signed-digit representation for R:
I S1(p) = |p(0)|
I S2(p) = log2(|p(0)|+ 1)

Proposition
δ has a size function iff dom(δ) is locally-compact.



Simple Complexity Size functions

Lemma
Let δ be a representation with size function S. Then

TM(a,n) = sup
{
TimeM(p,n)

∣∣S(p) = a
}

exists for all a,n ∈ N (whenever M realizes a total function on X).

Summary
Time complexity of a function f on (X, δ,S) can be measured in
two discrete parameters:
I the size S(p) of the input name p &
I the desired output precision.



Simple Complexity Example

Example
Let P be the vector space of polynomials.
I Suitable representation %P :

I Store the coefficients & an upper bound of the degree
I Size S(q) ∈ N× N of a name q:

I the upper bound of the degree & the maximum of the
integer parts of the coefficients

I Evaluation is (%P , %sd, %sd)-computable in polynomial time
w.r.t. the size functions of %P and %sd.

I The final topology of %P does not have a countable base,
I but it is CoPolish.



CoPolish Spaces



CoPolish spaces Definition

Definition
We call a Hausdorff QCB-space X CoPolish, if SX has a
countable base.

Remark
I S denotes the Sierpiński space
I QCB-space = a quotient of a countably based top. space.
I QCB = class of top. spaces which can be handled by TTE.



CoPolish spaces Characterisation

Proposition
Let X be a Hausdorff space with a countable base. Then:
I X is CoPolish⇐⇒ X is locally compact.

Theorem (Characterisation)
Let X be a Hausdorff QCB-space. TFAE:
I X is CoPolish.
I SX is quasi-Polish.
I X is the direct limit of an increasing sequence of compact

metrisable spaces.
I X has an admissible TTE-representation δ with a size

function S : dom(δ)→ N.
I X has an admissible TTE-representation with a

locally-compact domain.



CoPolish spaces Properties

Proposition
I The category of CoPolish Hausdorff spaces

I has finite products and equalisers (inherited from QCB),
I but is not closed under forming QCB-exponentials.

I For any Y with a countable base and any CoPolish space X,
YX has a countable base.

I [de Brecht & Sch.] For any (quasi-)Polish space Y and any
CoPolish space X, YX is (quasi-)Polish.

I Hausdorff quotients of CoPolish Hausdorff spaces are
CoPolish.



CoPolish spaces A duality result

Locally convex vector spaces and CoPolishness

Theorem
Let X be a locally convex vector space.
I X is sep. metrisable⇐⇒ X> is CoPolish
I X is CoPolish⇐⇒ X> is sep. metrisable⇐⇒ X> is Polish

Remark
X> denotes the dual of X formed in QCB.



CoPolish spaces Application

Example (CoPolish spaces)
I The Euclidean space R.
I The space P of polynomials (equipped with the final topology of

the aforementioned representation).
I The space Lip[0;1] of Lipschitz-continuous fcts on [0;1].
I The space A of analytic functions on the unit interval.
I The space E> of distributions over R with compact support.
I The space S> of tempered distributions.
I The space G[0;1] of Gevrey functions on [0;1].



Basics of Type-2 Complexity Theory Generalised size functions

Generalised size functions (parameter functions)

Definition
We call µ : dom(δ)→ NN a size function for δ, if
I µ is continuous,
I the set

{
p ∈ dom(δ)

∣∣µ(p) ≤pw `
}

is compact for all ` ∈ NN.

Lemma
Let µ : dom(δ)→ NN be continuous. TFAE:
I
{

p ∈ dom(δ)
∣∣µ(p) ≤pw `

}
is compact for every ` ∈ NN.

I µ−1[K ] is compact for any compact K ⊆ NN (i.e. µ is proper).



Basics of Type-2 Complexity Theory Generalised size functions

Lemma
Let δ be a representation with size function µ : dom(δ)→ NN.
Then

TM(`,n) := sup
{
TimeM(p,n)

∣∣µ(p) ≤pw `
}

exists for all ` ∈ NN, n ∈ N (whenever M realizes a total function on X).

Corollary
Time complexity of a function f on (X, δ, µ) can be measured in:
I the size µ(p) ∈ NN of the input name p &
I the desired output precision.



Hybrid Representations



Hybrid representations Idea

Observation
Representations for spaces in Functional Analysis are typically
constructed by encoding:
I a sequence of reals &

I a sequence of discrete information.



Hybrid representations Definition

Definition
I Let H := [−1;1]N × NN.
I A hybrid representation of X is a partial surjection ψ : H 99K X.
I f : X→ Y is (ψX, ψY)-computable, if there is a computable

h : H 99K H s.t.

X f //

			

Y

H h //

ψX

OOOO

H

ψY

OOOO



Hybrid representations Definition

Definition
I Let H := [−1;1]N × NN.
I A hybrid representation of X is a partial surjection ψ : H 99K X.
I f : X→ Y is (ψX, ψY)-computable, if there is a computable

h : H 99K H s.t.

X f //

			

Y

H h //

ψX

OOOO

H

ψY

OOOO

NN

			

g //

%H
OOOO

NN

%H
OOOO



Hybrid representations Example

Example (Hybrid representations)
I C[0;1]:

Choose a dense sequence (di)i in [0;1]. Let

ψ(r ,p) = f :⇐⇒


∀i ∈ N. f (di) = r(i) · p(0) &

k 7→ p(k + 1) is a modulus
of continuity for f

I The space of polynomials P:
Let H0 := [−1;1]N × N and

ψ(r , 〈c,d〉) = P :⇐⇒ P(x) =
d∑

k=0

c · r(k) · xk

I X Banach space with Schauder basis e:



Hybrid representations Example

Remember
I Schauder basis of a Banach space X: a sequence (ei)i of

unit vectors s.t. every x ∈ X can be written as

x =
∑∞

i=0 xi · ei for unique (xi)i ∈ RN.

I The coordinate functionals e∗i are linear & continuous.
I There is a constant C ∈ N with |e∗i (x)| ≤ C · ‖x‖ for all x , i

(provided that ‖ej‖ = 1 for all j).

Example (contd.)
I X Banach space with Schauder basis e and constant C. Let

ψ(r ,p) = x :⇐⇒


∀i ∈ N.e∗i (x) = r(i) · p(0) · C,
‖x‖ ≤ p(0),

∀k ≥ 1.
∥∥x −

∑p(k)
i=0 e∗i (x) · ei

∥∥ ≤ 2−k



Hybrid representations Time bound

Definition
Let M be an oracle machine realizing f : (X, ψX)→ (Y, ψY).
A function t : NN × N2 → N is a time bound for M, if
I for all (r ,p) ∈ dom(ψX) and all j , k ∈ N
I M produces q(j) and some 2−k -approximation to s(j)

(where (s, q) denotes the produced representative of the result)

I in ≤ t(p, j , k) steps.

Remark
I Hybrid representations ψ have as implicit size function

pr2 : H→ NN, (r ,p) 7→ p.
I It turns out to be reasonable to consider other size

functions µ : dom(ψ)→ NN.



Hybrid representations Completeness

Theorem
Any oracle Turing machine realising some function
w.r.t. hybrid representations with closed domain
has a continuous time bound t : NN × N2 → N.

The proof is based on:

Lemma
A hybrid representation ψ has a closed domain iff{

(r ,p) ∈ dom(ψ)
∣∣p ∈ K

}
is compact

for every compact K ⊆ NN.

Definition
A hybrid representation is complete, if its domain is closed.



Hybrid representations Spaces with hybrid representations

Theorem
I A metrisable space has an admissible complete hybrid

representation iff it is Polish.
I A Hausdorff QCB-space has an admissible complete hybrid

representation over H0 = [−1;1]N × N iff it is CoPolish.
I A quasi-normal space has an admissible complete hybrid

representation iff it has a total admissible TTE-representation.

Remark
I Quasi-normal space = QCB-space that arises as the

sequentialisation of a normal space.
I Sep. metric spaces and CoPolish spaces are quasi-normal.
I Quasi-normal spaces have excellent closure properties:

I cartesian closed
I countable products and equalisers
I countable co-products and co-equalisers



Hybrid representations Closure Properties

Theorem
The category of Hausdorff QCB-spaces having an admissible
complete hybrid representation has
I countable products,
I countable co-products,
I equalisers.

But it is not closed under forming function spaces in QCB.



Admissibility for hybrid representations



Admissibility Aim

Remember
Admissibility for TTE-representations guarantees:
(∗) Any continuous f : X→ Y has a continuous realizer g.

Problem
Admissibility for TTE-representations does not work adequately
for hybrid representations.

Aim
Find a notion of admissibility for hybrid representations s.t.
I (∗) holds,
I the [−1;1]N-part of H is used,
I natural hybrid representations are admissible.



Admissibility Idea

Observation
In many examples, the NN-part encodes a compact subset.

Example
I C[0;1]:

Kp =
{

f
∣∣∣ ‖f‖∞ ≤ p(0) &

k 7→ p(k + 1) is a modulus of continuity for f
}

I P, the space of polynomials:

K〈c,d〉 =
{

x 7→
d∑

i=0
ai · x i

∣∣∣a0, . . . ,ad ∈ [−c; c]
}

I Banach space X with Schauder basis e:

Kp =
{

x
∣∣∣ ‖x‖ ≤ p(0) & ∀k ≥ 1.

∥∥x −
p(k)∑
i=0

e∗i (x) ·ei
∥∥ ≤ 2−k

}



Admissibility Definition

Remember
The compact subsets of a Hausdorff QCB-space X have a
canonical representation κX.

Definition Let X be a Hausdorff QCB-space.
I Let HRX be the set of all hybrid representations φ of X s.t.

I φ is continuous,
I there is a continuous g : NN 99K dom(κX) with
φ(r ,p) ∈ κX(g(p)) for all (r ,p) ∈ dom(φ).

I A hybrid representation ψ for X is H-admissible, if
I ψ ∈ HRX,
I any φ ∈ HRX can be continuously translated into ψ,

i.e. there is a continuous h s.t.
X

H
h

//

φ

			

77 77

H

ψ

OOOO



Admissibility Properties

Proposition
Let ψX, ψY be H-admissible hybrid reps for X,Y. TFAE:
I f : X→ Y is continuous.
I f has a continuous (ψX, ψY)-realizer h : H 99K H.
I f is (ψX, ψY)-computable relative to an oracle.

Example
I The examples from before.
I ρFloat : [−1;1]× Z→ R with ρFloat(r , z) := 2z · r .

Non-Example
Most admissible TTE-reps δ (viewed as maps (r ,p) 7→ δ(p)).

Proposition
Any quasi-normal space has an H-admissible hybrid rep.



Summary

Summary
I Time bounds are guaranteed for compact sets of names.
I CoPolish Hausdorff spaces allow the measurement of

complexity in discrete parameters.
I Important spaces are CoPolish, e.g. the duals of separable

metrisable locally convex spaces.
I Hybrid representations yield a new approach to Complexity

Theory for spaces in Functional Analysis.
I There exists a generalised notion of admissibility for hybrid

representations.


