Hybrid representations as a tool for Complexity Theory

Matthias Schröder

TU Darmstadt

Computability and Reducibility

Kloster / Hiddensee August 2017

Survey

Survey

- Basics of Type-2 Complexity Theory
- Simple Complexity and CoPolish spaces
- Hybrid representations
- Admissibility for hybrid representations

Basics of Type 2 Complexity Theory

Remember

- A *representation* of *X* is a partial surjection $\delta \colon \mathbb{N}^{\mathbb{N}} \dashrightarrow X$.
- Let $\delta \colon \mathbb{N}^{\mathbb{N}} \dashrightarrow X$ and $\gamma \colon \mathbb{N}^{\mathbb{N}} \dashrightarrow Y$ be representations.

 $f: X \to Y$ is called (δ, γ) -computable, if there is a computable function $g: \mathbb{N}^{\mathbb{N}} \dashrightarrow \mathbb{N}^{\mathbb{N}}$ s.t.

commutes.

g: N^N → N^N is computable, if there is an oracle Turing machine *M* that computes *g*.

Definition

Let *M* be an oracle machine that (δ, γ) -realizes $f: X \to Y$.

Define the computation time of M by

 $\underline{Time}_{M}(p, n) := \begin{cases} \text{the number of steps carried out by } M \\ \text{on input } (p, n) \in \mathbb{N}^{\mathbb{N}} \times \mathbb{N} \end{cases}$

► Define the *relative computation time* on $A \subseteq X$ by $\underline{Time}^{\delta}_{M}(A, n) := \sup \{ Time_{M}(p, n) \mid \delta(p) \in A \}$

Problem

- The sup may be equal to ∞ , even if $A = \{x\}$.
- So *M* may not even have a time bound on singletons.

How can we ensure the existence of time bounds?

Lemma

- ► The computation time Time_M: dom(g_M) × N → N is continuous.
- For compact $L \subseteq \text{dom}(g_M)$,

 $Time_M(L, n) := \sup \{ Time_M(p, n) \mid p \in L \}$

exists (whenever *M* realizes a total function w.r.t. δ).

Summary

We can measure time on *compact* sets of *names*.

Observation

If δ is a continuous representation of a space X, then

```
\delta^{-1}[A] compact \implies A compact.
```

Definition

A continuous representation δ of X is called *proper*,

if $\delta^{-1}[K]$ is compact for every compact $K \subseteq X$.

Lemma

For a proper δ , time complexity can be measured by a function

 $T: \{K \subseteq \mathsf{X} \mid K \text{ compact}\} \times \mathbb{N} \to \mathbb{N}$

Example

The signed-digit representation ρ_{sd} for $\mathbb R$ defined by

$$\varrho_{\mathrm{sd}}(p) := p(0) + \sum_{i=1}^{\infty} p(i) \cdot 2^{-i} \quad \text{for } p \in \mathbb{Z} \times \{-1, 0, 1\}^{\mathbb{N}}$$

is proper.

Theorem

A sequential space X has a proper admissible representation iff X is separable metrisable.

Simple Complexity

Aim

Measurement of time complexity in terms of

- a discrete parameter on the input &
- the output precision.

Idea

- Equip δ with a "size function" $S: \operatorname{dom}(\delta) \to \mathbb{N}$.
- Measure time complexity by $T_M : \mathbb{N} \times \mathbb{N} \dashrightarrow \mathbb{N}$,

 $T_{M}(a,n) := \sup \big\{ \operatorname{Time}_{M}(p,n) \, \big| \, S(p) = a \big\},$

where M is a realizing machine.

Definition

We call $S: \operatorname{dom}(\delta) \to \mathbb{N}$ a *size function* for δ , if

- S is continuous,
- $S^{-1}{a}$ is compact for all $a \in \mathbb{N}$.

Example

Natural size functions for the signed-digit representation for \mathbb{R} :

- $S_1(p) = |p(0)|$
- $S_2(p) = \log_2(|p(0)| + 1)$

Proposition

 δ has a size function iff $\operatorname{dom}(\delta)$ is locally-compact.

Lemma Let δ be a representation with size function *S*. Then $T_M(a, n) = \sup \{ Time_M(p, n) \mid S(p) = a \}$

exists for all $a, n \in \mathbb{N}$ (whenever *M* realizes a total function on X).

Summary

Time complexity of a function *f* on (X, δ, S) can be measured in two *discrete* parameters:

- the size S(p) of the input name p &
- the desired output precision.

Example

Let $\ensuremath{\mathcal{P}}$ be the vector space of polynomials.

- Suitable representation *QP*:
 - Store the coefficients & an upper bound of the degree
- Size $S(q) \in \mathbb{N} \times \mathbb{N}$ of a name q:
 - the upper bound of the degree & the maximum of the integer parts of the coefficients
- Evaluation is (*ρ*_P, *ρ*_{sd}, *ρ*_{sd})-computable in polynomial time w.r.t. the size functions of *ρ*_P and *ρ*_{sd}.
- ► The final topology of *p* does not have a countable base,
- but it is CoPolish.

CoPolish Spaces

Definition

We call a Hausdorff QCB-space X *CoPolish*, if \mathbb{S}^X has a countable base.

Remark

- S denotes the Sierpiński space
- QCB-space = a quotient of a countably based top. space.
- QCB = class of top. spaces which can be handled by TTE.

Proposition

Let X be a Hausdorff space with a countable base. Then:

• X is CoPolish \iff X is locally compact.

Theorem (Characterisation)

Let X be a Hausdorff QCB-space. TFAE:

- X is CoPolish.
- S^X is quasi-Polish.
- X is the direct limit of an increasing sequence of compact metrisable spaces.
- X has an admissible TTE-representation δ with a size function S: dom(δ) → N.
- X has an admissible TTE-representation with a locally-compact domain.

Proposition

- The category of CoPolish Hausdorff spaces
 - has finite products and equalisers (inherited from QCB),
 - but is not closed under forming QCB-exponentials.
- For any Y with a countable base and any CoPolish space X, Y^X has a countable base.
- [de Brecht & Sch.] For any (quasi-)Polish space Y and any CoPolish space X, Y^X is (quasi-)Polish.
- Hausdorff quotients of CoPolish Hausdorff spaces are CoPolish.

Locally convex vector spaces and CoPolishness

Theorem

Let \mathfrak{X} be a locally convex vector space.

- \mathfrak{X} is sep. metrisable $\iff \mathfrak{X}^*$ is CoPolish
- \mathfrak{X} is CoPolish $\iff \mathfrak{X}^*$ is sep. metrisable $\iff \mathfrak{X}^*$ is Polish

Remark

 \mathfrak{X}^* denotes the dual of \mathfrak{X} formed in QCB.

Example (CoPolish spaces)

- The Euclidean space \mathbb{R} .
- ► The space *P* of polynomials (equipped with the final topology of the aforementioned representation).
- The space Lip[0; 1] of Lipschitz-continuous fcts on [0; 1].
- The space A of analytic functions on the unit interval.
- The space \mathcal{E}^* of distributions over \mathbb{R} with compact support.
- The space S^* of tempered distributions.
- ▶ The space *G*[0; 1] of Gevrey functions on [0; 1].

Generalised size functions (parameter functions)

Definition

We call μ : dom $(\delta) \to \mathbb{N}^{\mathbb{N}}$ a *size function* for δ , if

- µ is continuous,
- ► the set $\{p \in \operatorname{dom}(\delta) \mid \mu(p) \leq_{\operatorname{pw}} \ell\}$ is compact for all $\ell \in \mathbb{N}^{\mathbb{N}}$.

Lemma

Let μ : dom $(\delta) \to \mathbb{N}^{\mathbb{N}}$ be continuous. TFAE:

- ► $\{ p \in \operatorname{dom}(\delta) \mid \mu(p) \leq_{pw} \ell \}$ is compact for every $\ell \in \mathbb{N}^{\mathbb{N}}$.
- $\mu^{-1}[K]$ is compact for any compact $K \subseteq \mathbb{N}^{\mathbb{N}}$ (i.e. μ is proper).

Lemma

Let δ be a representation with size function $\mu \colon \operatorname{dom}(\delta) \to \mathbb{N}^{\mathbb{N}}$. Then

$$\mathcal{T}_{M}(\ell, n) := \sup \left\{ \operatorname{Time}_{M}(p, n) \, \big| \, \mu(p) \leq_{\mathrm{pw}} \ell \right\}$$

exists for all $\ell \in \mathbb{N}^{\mathbb{N}}$, $n \in \mathbb{N}$ (whenever *M* realizes a total function on X).

Corollary

Time complexity of a function *f* on (X, δ, μ) can be measured in:

- the size $\mu(p) \in \mathbb{N}^{\mathbb{N}}$ of the input name p &
- the desired output precision.

Hybrid Representations

Observation

Representations for spaces in Functional Analysis are typically constructed by encoding:

- a sequence of reals &
- a sequence of discrete information.

Definition

- Let $\mathbb{H} := [-1; 1]^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$.
- A hybrid representation of X is a partial surjection $\psi \colon \mathbb{H} \dashrightarrow X$.
- *f*: X → Y is (ψ_X, ψ_Y)-computable, if there is a computable
 h: ℍ --→ ℍ s.t.

Definition

- Let $\mathbb{H} := [-1; 1]^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$.
- A hybrid representation of X is a partial surjection $\psi \colon \mathbb{H} \dashrightarrow X$.
- f: X → Y is (ψ_X, ψ_Y)-computable, if there is a computable h: ℍ --→ ℍ s.t.

Example

Example (Hybrid representations)

► C[0; 1]:

Choose a dense sequence $(d_i)_i$ in [0; 1]. Let

$$\psi(r,p) = f \iff \begin{cases} \forall i \in \mathbb{N}. f(d_i) = r(i) \cdot p(0) & \& \\ k \mapsto p(k+1) \text{ is a modulus} \\ \text{ of continuity for } f \end{cases}$$

► The space of polynomials \mathcal{P} : Let $\mathbb{H}_0 := [-1; 1]^{\mathbb{N}} \times \mathbb{N}$ and $f'(r_1(r_2, d)) = P_1(r_1) = P_1(r_2) = \sum_{i=1}^d r_i r_i(r_i) = r_i^k$

$$\psi(\mathbf{r}, \langle \mathbf{c}, \mathbf{d} \rangle) = \mathbf{P} \iff \mathbf{P}(\mathbf{x}) = \sum_{k=0} \mathbf{c} \cdot \mathbf{r}(k) \cdot \mathbf{x}^k$$

► 𝔅 Banach space with Schauder basis *e*:

Remember

Schauder basis of a Banach space X: a sequence (e_i)_i of unit vectors s.t. every x ∈ X can be written as

 $x = \sum_{i=0}^{\infty} x_i \cdot e_i$ for unique $(x_i)_i \in \mathbb{R}^{\mathbb{N}}$.

- The coordinate functionals e^{*}_i are linear & continuous.
- ▶ There is a constant $C \in \mathbb{N}$ with $|e_i^*(x)| \leq C \cdot ||x||$ for all x, i (provided that $||e_i|| = 1$ for all j).

Example (contd.)

• \mathfrak{X} Banach space with Schauder basis *e* and constant *C*. Let

$$\psi(r, p) = x \iff \begin{cases} \forall i \in \mathbb{N}. e_i^*(x) = r(i) \cdot p(0) \cdot C, \\ \|x\| \le p(0), \\ \forall k \ge 1. \|x - \sum_{i=0}^{p(k)} e_i^*(x) \cdot e_i\| \le 2^{-k} \end{cases}$$

Example

Definition

Let *M* be an oracle machine realizing $f: (X, \psi_X) \to (Y, \psi_Y)$.

A function $t: \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^2 \to \mathbb{N}$ is a *time bound* for *M*, if

- ▶ for all $(r, p) \in \operatorname{dom}(\psi_X)$ and all $j, k \in \mathbb{N}$
- M produces q(j) and some 2^{-k}-approximation to s(j) (where (s, q) denotes the produced representative of the result)
- in $\leq t(p, j, k)$ steps.

Remark

- Hybrid representations ψ have as implicit size function pr₂: ℍ → ℕ^ℕ, (r, p) ↦ p.
- It turns out to be reasonable to consider other size functions μ: dom(ψ) → N^N.

Theorem

Any oracle Turing machine realising some function w.r.t. hybrid representations with closed domain has a continuous time bound $t \colon \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^2 \to \mathbb{N}$.

The proof is based on:

Lemma

A hybrid representation ψ has a closed domain iff

 $\{(r, p) \in \operatorname{dom}(\psi) \mid p \in K\}$ is compact

for every compact $K \subseteq \mathbb{N}^{\mathbb{N}}$.

Definition

A hybrid representation is *complete*, if its domain is closed.

Theorem

- A metrisable space has an admissible complete hybrid representation iff it is Polish.
- A Hausdorff QCB-space has an admissible complete hybrid representation over ℍ₀ = [-1; 1]^ℕ × ℕ iff it is CoPolish.
- A quasi-normal space has an admissible complete hybrid representation iff it has a total admissible TTE-representation.

Remark

- Quasi-normal space = QCB-space that arises as the sequentialisation of a normal space.
- Sep. metric spaces and CoPolish spaces are quasi-normal.
- Quasi-normal spaces have excellent closure properties:
 - cartesian closed
 - countable products and equalisers
 - countable co-products and co-equalisers

Theorem

The category of Hausdorff QCB-spaces having an admissible complete hybrid representation has

- countable products,
- countable co-products,
- equalisers.

But it is not closed under forming function spaces in QCB.

Admissibility for hybrid representations

Remember

Admissibility for TTE-representations guarantees:

(*) Any continuous $f: X \to Y$ has a continuous realizer g.

Problem

Admissibility for TTE-representations does not work adequately for hybrid representations.

Aim

Find a notion of admissibility for hybrid representations s.t.

- (*) holds,
- the $[-1; 1]^{\mathbb{N}}$ -part of \mathbb{H} is used,
- natural hybrid representations are admissible.

Observation

In many examples, the $\mathbb{N}^{\mathbb{N}}\text{-part}$ encodes a compact subset.

Example

►
$$C[0; 1]$$
:
 $K_p = \left\{ f \mid ||f||_{\infty} \le p(0) \&$
 $k \mapsto p(k+1) \text{ is a modulus of continuity for } f \right\}$

• \mathcal{P} , the space of polynomials:

$$\mathcal{K}_{\langle m{c},m{d}
angle} = \left\{ x\mapsto \sum\limits_{i=0}^{d}a_i\cdot x^i\,\Big|\,a_0,\ldots,a_{m{d}}\in [-m{c};m{c}]
ight\}$$

Banach space \mathfrak{X} with Schauder basis *e*:

$$\mathcal{K}_{p} = \left\{ x \ \Big| \ \|x\| \le p(0) \ \& \ \forall k \ge 1. \Big\| x - \sum_{i=0}^{p(k)} e_{i}^{*}(x) \cdot e_{i} \Big\| \le 2^{-k}
ight\}$$

Remember

The compact subsets of a Hausdorff QCB-space X have a canonical representation κ_X .

Definition Let X be a Hausdorff QCB-space.

- Let HR_X be the set of all hybrid representations ϕ of X s.t.
 - ϕ is continuous,
 - ▶ there is a continuous $g : \mathbb{N}^{\mathbb{N}} \dashrightarrow \operatorname{dom}(\kappa_{\mathsf{X}})$ with $\phi(r, p) \in \kappa_{\mathsf{X}}(g(p))$ for all $(r, p) \in \operatorname{dom}(\phi)$.
- A hybrid representation ψ for X is \mathbb{H} -admissible, if
 - ▶ $\psi \in HR_X$,
 - Any φ ∈ HR_X can be continuously translated into ψ, i.e. there is a continuous h s.t.

Proposition

Let ψ_X, ψ_Y be \mathbb{H} -admissible hybrid reps for X, Y. TFAE:

- $f : X \rightarrow Y$ is continuous.
- ► *f* has a continuous (ψ_X, ψ_Y) -realizer $h: \mathbb{H} \dashrightarrow \mathbb{H}$.
- *f* is (ψ_X, ψ_Y) -computable relative to an oracle.

Example

- The examples from before.
- ρ_{Float} : $[-1; 1] \times \mathbb{Z} \to \mathbb{R}$ with $\rho_{\text{Float}}(r, z) := 2^z \cdot r$.

Non-Example

Most admissible TTE-reps δ (viewed as maps $(r, p) \mapsto \delta(p)$).

Proposition

Any quasi-normal space has an $\mathbb H\text{-}admissible$ hybrid rep.

Summary

Summary

- Time bounds are guaranteed for compact sets of names.
- CoPolish Hausdorff spaces allow the measurement of complexity in discrete parameters.
- Important spaces are CoPolish, e.g. the duals of separable metrisable locally convex spaces.
- Hybrid representations yield a new approach to Complexity Theory for spaces in Functional Analysis.
- There exists a generalised notion of admissibility for hybrid representations.