Recognizability strength of infinite time Turing machines

Philipp Schlicht, Universität Bonn joint work with Merlin Carl, Universität Konstanz

August 8, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Recognizability strength of infinite time Turing machines 1/25

Infinite time Turing machines

An infinite-time Turing machine (ITTM) is a Turing machine with three tapes – each has one cell for each natural number.

- Input tape
- Working tape
- Output tape

It behaves like a standard Turing machine at successor steps of computation.

At limit steps of computation

- The head goes back to the first cell
- The machine goes into a designated limit state
- The contents of each cell is set to the lim inf of the contents at previous stages of computation

▲御▶ ▲理▶ ▲理▶ -

2

The snapshot at a fixed time consists of the tape contents, head position and state.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 めんぐ

time	state	head	0	1	2	3	4	5	
0	0	0	-	-	-	-	-	-	
1	1	1	1	-	-	-	-	-	
2	0	2	1	-	-	-	-	-	
3	1	3	1	-	1	-	-	-	
4	0	4	1	-	1	-	-	-	
5	1	5	1	-	1	-	1	-	
6	0	6	1	-	1	-	1	-	
:	:	:	:	:	:	:	:	:	:
ω	0	0	1	-	1	-	1	-	
$\omega + 1$	1	1	0	-	1	-	1	-	
$\omega + 1$	0	2	0	-	1	-	1	-	
:	:	:	:	:	:	:	:	:	:
$\omega \cdot 2$	0	0	0	-	0	-	0	-	
$\omega \cdot 2 + 1$	1	1	1	-	0	-	0	-	
$\omega \cdot 2 + 2$	0	2	1	-	0	-	0	-	

Example

Does the letter 0 appear infinitely often in the input word?

Example

Compute the halting problem for standard Turing machines by simulating all standard Turing machines.

Recognizability strength of infinite time Turing machines 5/2

Theorem (Hamkins-Lewis)

An ITTM can check whether a relation X on the integers - given as a set of codes for pairs (m, n) - is a well-order

▲ロト ▲母ト ▲国ト ▲国ト 三国 - のんの

Proof sketch.

- Check whether the relation is a linear order
- Search for the least element
- ▶ If this fails, the relation is not a well-order
- If this succeeds, delete the least element from the domain
- If the domain is empty, the relation is an ordinal

A set X of reals is decided by an *ITTM* P if P^x halts with state 1 for all $x \in X$ and P^x halts with state 0 for all $x \notin X$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

Theorem (Hamkins-Lewis)

All Π_1^1 sets of reals are ITTM-decidable.

A real x is *ITTM*-writable if there is an *ITTM* P such that on empty input, P halts with output x.

Theorem (Hamkins-Lewis)

All Π_1^1 reals are ITTM-writable.

Theorem

The Δ_1^1 reals are exactly those reals that are writable by an ITTM with bounded memory.

• An ordinal is *ITTM*-writable if it is coded as a well-order by some *ITTM*-writable real.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

2 Let λ denote the supremum of the writable ordinals.

Example

 $\omega_1^{\rm ck}, \, \omega_2^{\rm ck}, \, \dots$ are writable.

Eventually writable ordinals

 λ is not writable, but it is eventually writable.

Definition

- A real x is eventually writable if there is an ITTM whose output stabilizes at x.
- An ordinal is eventually writable if it is coded as a well-order by some eventually writable real.
- **3** Let ζ denote the supremum of the eventually writable ordinals.

Lemma

 λ is eventually writable.

Proof sketch.

- There is a universal *ITTM U* that simulates all *ITTMs*.
- In each step, calculate the sum of all ordinals that are coded by outputs of machines that have halted.
- ${\scriptstyle \bullet}\,$ This real will stabilize at a code for λ

Accidentally writable ordinals

 ζ is not eventually writable, but it is accidentally writable.

Definition

- A real x is accidentally writable if there is an *ITTM* that has x on its output tape at some time of the computation
- An ordinal is accidentally writable if it is coded as a well-order by some accidentally writable real
- **③** Let Σ denote the supremum of the eventually writable ordinals

Lemma

 ζ is accidentally writable.

Proof sketch.

- \blacktriangleright Consider a universal $ITTM\,U$ that simulates all ITTMs
- In each step, calculate the sum of all ordinals that are coded by outputs of machines
- \blacktriangleright After codes for all eventually writable ordinals appeared, a code for some ordinal $\alpha \geqslant \zeta$ appears
- The accidentally writable ordinals are downwards closed

An ordinal is clockable if it is the halting time of an *ITTM*-computation.

Lemma

Any contents that appears at time ω_1 appears at some countable limit time.

Proof.

- Choose a countable α_0 such that for every cell whose contents converges, it does so before α_0 .
- Choose α_{n+1} such that the contents of all other cells changed at least once in $[\alpha_n, \alpha_{n+1})$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

• The contents at the time α is equal to the contents at the time ω_1 .

Theorem (Welch)

Any computation runs into a loop between ζ and Σ .

Theorem (Welch)

The supremum of the clockable ordinals is equal to λ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○ □ ○ ○○○

Assume that X is a class of ordinals.

- ▶ An X-ITTM works like an ITTM...
- ...with a special reserved state at running times in X

```
We write \alpha-ITTM for X = \{\alpha\}.
```

When X is the class of cardinals, these are the *cardinal-recognizing ITTMs* of Habic.

Theorem (Habic)

Cardinal-ITTMs can write the same reals as ITTMs with the strong halting problem $0^{\bullet} = \{(n, x) | \varphi_n(x) \downarrow\}$ for ITTMs as an oracle.

Proposition

An ω_1 -ITTM can write a code for Σ .

Proof.

- \blacktriangleright U simulates all ITTM-programs simultaneously
- Add all ordinals written on the tape
- At time ω_1 we obtain a code x for ζ
- We claim that Σ is x-clockable
- * To see this, we run U and count to ζ then wait until the configuration repeats at Σ

- Hence $\lambda^x > \Sigma$ and Σ is x-writable
- Combine the two programs

Proposition

The following statements are equivalent for a real x.

- **(**) x is α -ITTM-writable for some ordinal α .
- O x is ITTM-writable from some accidentally writable real number.
- **3** x is an element of L_{λ^z} , where z is the L-least code for ζ .

Proof.

 $1 \Rightarrow 2$

At time α , the tape contains some accidentally writable real number – the remaining computation is an ordinary *ITTM*-computation.

 $2 \Rightarrow 1$

If x is accidentally written at time α and P writes y from x, then y is $\alpha\text{-writable.}$

 $2 \Rightarrow 3$

Assume that x is writable from an accidentally writable real y. Since z codes ζ , we have $\lambda^z > \zeta$ and hence $\lambda^z > \Sigma$ – thus y is writable from z. $3 \Rightarrow 2$ Since $z \in L_{\Sigma}$, it is accidentally writable. This generalizes to finitely many ordinals.

Proposition

The following statements are equivalent for a real x.

- **1** x is ITTM-writable from n ordinals.
- **2** x is ITTM-writable from x_{n-1} , where x_0, \ldots, x_{n-1} are reals with x_j is accidentally writable from $\bigoplus_{i < j} x_i$ for all j < n.
- (a) x is an element of $L_{\lambda^{z_{n-1}}}$, where $z_0 = 0$ and z_{i+1} is the L-least code for ζ^{z_i} for all i < n-1.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

Question

Which reals are writable by cardinal-detecting ITTMs?

 A real x is ITTM-recognizable relative to a real y and an ordinal α if for some α-ITTM-program P

▲ロト ▲母 ト ▲ 国 ト ▲ 国 - 一 の Q @

- $P^{x \oplus y} = 1$
- $P^{x \bigoplus y} = 0$ for all $x' \neq x$
- **9** The ITTM-recognizable closure \mathcal{R} is the closure under relativized recognizability.

Clearly every writable real is recognizable.

Question

Which reals are ITTM-recognizable?

Lemma

No $x \in L_{\Sigma} \setminus L_{\lambda}$ is ITTM-recognizable.

Proof.

Assume that $x \in L_{\Sigma}$ is recognizable by an *ITTM*-program *P*.

 \blacktriangleright Consider an $\mathit{ITTM}\xspace$ program U that writes every accidentally writable real at some time

- \blacktriangleright We run U and for each tape contents, run P to check whether it is equal to x
- In this case stop and output x hence x is writable

Let σ be least with $L_{\sigma} \prec_{\Sigma_1} L$.

Proposition

There are unboundedly many ordinals α below σ such that the L-least code for L_{α} is ITTM-recognizable.

Proof.

Assume that φ is a Σ_1 -statement that is first true in L_{α} and x is its L-least code – this code is an element of $L_{\alpha+1}$.

- Check if the input y codes an ordinal γ
- Construct a code for $L_{\gamma+1}$
- Check if φ is first true in L_{γ} and if y is its L-least code in $L_{\gamma+1}$.

Theorem

Every ω_1 -recognizable real x is an element of L_{σ} .

Proof.

- Assume that P recognizes x and P^x halts with the final state s
- \blacktriangleright Assume that y is a subset of ω
- The configurations at ζ^y , Σ^y and ω_1 are identical
- Let $c_{y,\alpha}$ denote the L[y]-least code for any α that is countable in L[y]
- If P^y with the parameter Σ^y halts, then it does strictly before $\lambda^{y \oplus c_{y, \Sigma^y}}$

- Let $\varphi(y)$ be the statement that P^y with the parameter Σ^y halts in $L_{\lambda^y \oplus c_y, \Sigma^y}[y]$ with final state s
- This is a Σ_1 -statement and hence there is such a y in L_σ
- We have x = y

 A real x is ITTM-recognizable relative to a real y and an ordinal α if for some α-ITTM-program P

▲ロト ▲母 ト ▲ 国 ト ▲ 国 - 一 の Q @

- $P^{x \oplus y} = 1$
- $P^{x \bigoplus y} = 0$ for all $x' \neq x$
- **9** The ITTM-recognizable closure \mathcal{R} is the closure under relativized recognizability.

Clearly every writable real is recognizable.

Question

Which reals are ITTM-recognizable?

Proposition

There are unboundedly many countable ordinals α such that the L-least code for L_{α} is α -recognizable.

Theorem

 $\label{eq:constraint} Every \ ITTM\ recognizable \ real \ from \ finitely \ many \ ordinal \ parameters \ is \ an \ element \ of \ L.$

Steps of the proof.

- Assume that x is recognizable from n ordinal parameters
- Show that it is recognizable from parameters below $\omega_1(n+1)$
- \blacktriangleright Show that this implies $x \in L$ by a forcing argument

Hence the ITTM-recognizable closure with ordinal parameters is equal to the set of reals in L.

Theorem

For every n, there is a real x that is ITTM-recognizable from n + 1 ordinal parameters, but not n parameters.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○ □ ○ ○○○

Question

Assuming that X is a set of cardinals, is every X-recognizable real in L_{σ} ?

Question

Is every real that is ITTM-recognizable from some ordinal already ITTM-recognizable from some countable ordinal?

Question

What can we cay about semi-recognizable and co-semi-recognizable reals?