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A Limit Diagram X

We use the on Baire space

> lim € NN — NN7 <PO:P17P2~, > = ||ml~>oo Pi

lim lim

G

How is continuity/computability of F and G related in this
commutative diagram?



A Limit Diagram X

F
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G

If G : N — N is total and continuous/computable, then

F: NN - NN? <P0,P1,P2«, > = <G(p0), G(p1)7 G(pz), >

is continuous/computable and satisfies the diagram.



A Limit Diagram X

F
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NY NN
G

If G” . NN — NN is computable in the halting problem /', then
F:NY = NV (po, p1, p2, ) = (G O(po), 6" M(p1), 6" Pl(p), ...)

is computable and satisfies the diagram.
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Let F:C NV — N" is computable (and potentially extensional).
Is there a suitable computable G :C N — NN?
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Let F:C NV — N" is computable (and potentially extensional).
Is there a suitable computable G :C N — NN?

Not in general!



A Galois Connection Between Limits and Jumps ;!

We use the on Baire space
1 ifpeU

NN N / 1(n) n

» J:NY — NV p s p/ where p/(n) := { 0 otherwise

Here (U,)nen is a standard enumeration of all c.e. open sets.
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Theorem (B. 2007)

For F :C NN — NN the following are equivalent:
1. F is limit computable,
2. F =limoG for some computable G :C NN — NN,
3. F = HoJ for some computable H :C NN — NN,
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One cannot replace computability by continuity!

Corollary

lim =gw J.
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Let F:C NV — NY is computable (and potentially extensional).
One can hope for a right inverse | of lim such that limoF o/ has
some good properties.



G

Let F:C NV — NY is computable (and potentially extensional).
One can hope for a right inverse | of lim such that Ho Jo [ has
some good properties, where H is computable with Ho J = limoF.
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Proposition (B., de Brecht and Pauly 2012)

The points of continuity of J are exactly the 1-generic points.

There exists | : NN — NV that is computable in () such that

1. Jo I is computable in (/,
2. limol =id.



Inverting Limits

Proposition (B., de Brecht and Pauly 2012)

The points of continuity of J are exactly the 1-generic points.

Proposition

There exists | : NN — NV that is computable in () such that
1. Jo I is computable in (/,
2. limol =id.

Proof. The proof is remniscient of the proof of the Friedberg
Jump Inversion Theorem. Given p, we have to find a sequence
I(p) so that limol(p) = p and I(p) is 1-generic (i.e., a point of
continuity of J). For this purpose /(p) is constructed inductively
such that longer and longer prefixes are chosen so that U, is
avoided for all n € N. While p € U, can be recognized, ensuring
that p & U, requires the halting problem ()'. O



A Limit Control Theorem ;"

Theorem (B., Hendtlass and Kreuzer 2017)

For all computable F :C NN — NN there exists G :C NN — NN
computable in () so that G(p) € limoF o lim~!(p).

F
NN Nl\
lim lim
NY N™
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A Limit Control Theorem '1
Theorem (B., Hendtlass and Kreuzer 2017)

For all computable F :C NN — NN there exists G :C NN — NN
computable in () so that G(p) € limoF o lim~!(p).

F

NN Nl\
lim lim
NY N
G

Corollary

G is continuous iff it has a continuous (lim, lim)-realizer F.




A Limit Control Theorem A.‘

Theorem (B., Hendtlass and Kreuzer 2017)

For all computable F :C NN — NN there exists G :C NN — NN
computable in () so that G(p) € limoF o lim~!(p).

F

NN NN
lim lim
N N
G

Corollary (written up somewhere?)

G is computable in (/' iff it has a computable (lim, lim)-realizer F.
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2. F is (0x, 0\ )—computable,
3. Fis ([ dx,0dy)-computable.



A Galois Connection Between Limits and Jumps

We use the on of a representation ¢ :C NV — X
» &' :C NN = X with ¢ := §olim
and the

» [§:CNY — X with [6:=d0J1,

Corollary

For F :C (X,dx) — (Y,0y) the following are equivalent:

1. F is limit computable,
2. F is (0x, 0\ )—computable,
3. Fis ([ dx,0dy)-computable.

Corollary

For representations 1,9 :C NN — X we obtain
> (51§5/2 <~ f(51§52.




Application 1: The naive Cauchy Representation

Theorem (B. and Hertling 2002)

A function f :C R — R is continuous with respect to the naive
Cauchy representation if and only if it is continuous.

NN ;)NN

lim lim




Application 1: The naive Cauchy Representation

Theorem (B. and Hertling 2002)

A function f :C R — R is continuous with respect to the naive
Cauchy representation if and only if it is continuous.

NN ;)NN

lim lim

f'
The result can be generalized from R to separable metric spaces X.
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The Limit Control Theorem Relativized 'q
Theorem (B., Hendtlass and Kreuzer 2017)

For all F9 :C NN — NN computable in g there is GY C NN 5 NN
computable in ' so that G9(p) € limoF9 o lim~%(p).

Fa
NN NI\
lim lim
N N*




Weihrauch Reducibility ;"

» For partial multi-valued functions 7, g one defines
f<wae:

f

L

f(x)

K, H are computable input and output adaptions, respectively.

» We define the

frg: = ngax{foogo cfo<wf,g0<wg}
>W

This captures the most complicated problem that one can
implement by first using g and then f (possibly after some

intermediate computation).
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same problem with a modified input representation).
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Application 2: Decomposition of Konig's Lemma

For f :C X = Y we define the f":C X" = Y (which is the
same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)
WKL’ =w lim *COH.

» WKL is the problem: given an infinite binary tree T, find an
infinite path p € [T].

» WKL’ is the problem: given a sequence (T;);cny of binary trees
that converges to an infinite binary tree T, find an infinite
path p € [T].

» COH is the problem: given a sequence (R;);cn of sets R; C N,
find an infinite set S C N such that S C* R or S C* N\ R;
for each i € N.
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Application 2: Decomposition of Konig's Lemma

For f :C X = Y we define the f":C X" = Y (which is the
same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)
WKL’ =y lim xCOH.

Proof.

» WKL =.w BWTRg (B., Gherardi, Marcone 2012).

» BWTy is the problem: given a sequence (x;);en whose range
has a compact closure, find a cluster point x of (x;)jcn.

» COH=w WBWTy (Kreuzer 2011)

» WBWTy is the problem: given a sequence (x;);en whose
range has a compact closure, find a sequence (y;);en that
converges to a cluster point x of (x;);en.

» Hence it suffices to show BWTRr =w lim *WBWTpg, where
>y follows from the Limit Control Theorem.
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Application 3: Classification of Ramsey’s Theorem

For f :C X = Y we define the f":C X" = Y (which is the
same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)
WKL =y lim xCOH.

» RT] denotes the problem: given a coloring ¢ : [N]” — k, find
an infinite homogenous set H for it.

» SRT] denotes the restriction to stable colorings.
» SRT{T <y RT} *lim,

| 4 RTZ SVV SRTZ * COH,

» RT}H <y RTJ + WKL

Theorem (B. and Rakotoniaina 2017)
RT? <w WKL and RT? =w WKL,




Application 4: Inverting Jumps ;"

W denotes Weihrauch reducibility relativized by an oracle
p € NV, i.e., the reduction function H, K can depend on p.

Theorem (B., Holzl and Kuyper 2017

|

7l g:>f<wg



- - - e
Application 4: Inverting Jumps A.‘

wa denotes Weihrauch reducibility relativized by an oracle
p € NV, i.e., the reduction function H, K can depend on p.

Theorem (B., Holzl and Kuyper 2017)

f’ggvg’:>f§€\l,g.

GA
NN NN
19 lim lim
N NY
Fe

Corollary

f'<y g =rFf<ygandf < g = <&
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A Glimpse of the Weihrauch Lattice ;"

CNN
1
UCNN ATRO
4
lim =gw 6;] =W LPO ACA
{
CR =sW CN X C2N WKLO

~
PCR =W CN X PC2N WWKLO
WKL =7 Con = Co == LLPO ///// WKL}
T~

WWKL =W PC2N WWKLS
‘ limy =sw Cn 129
—

!
C RCA;
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A Survey on Weihrauch Complexity

Weihrauch Complexity in Computable Analys

Vasco Brattka, Guido Gherardi and Arno Pauly

Abstract We provide a self-contained introduction into Weihrauch complexity and
its applications to computable analysis. This includes a survey on some classifica-
tion results and a discussion of the relation to other approaches.

1 The Algebra of Problems

The Weihrauch lattice offers a framework to classify the uniform computational
content of problems and theorems from analysis and other arcas of mathematics.
This framework can be seen as an attempt to create a calculus of mathematical
problems, very much in spirit of Kolmogorov’s of logic
[69]

We express mathematical problems with the help of partial multi-valued func-
tions f:C X = ¥. We consider dom(f) = {x € X : f(x) # 0} as the set of admissible
instances x of the problem £. and we consider the corresponding set of function val-
ues f(x) C ¥ as the set of possible results. Tn the case of single-valued f we identify
f(x) with the corresponding singleton. An example of a mathematical problem that
the reader can have in mind as a prototypical case is the zero problem. Obviously,
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