A Limit Control Theorem with Applications

Vasco Brattka

UniBw München, Germany University of Cape Town, South Africa

Arbeitstreffen Computability and Reducibility, Hiddensee, August 2017

A Limit Diagram

-

We use the limit map on Baire space

 $\blacktriangleright \ \lim:\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, \langle p_0, p_1, p_2, ... \rangle \mapsto \lim_{i \to \infty} p_i$

How is continuity/computability of F and G related in this commutative diagram?

A Limit Diagram

If $G : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is total and continuous/computable, then $F : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, \langle p_0, p_1, p_2, ... \rangle \mapsto \langle G(p_0), G(p_1), G(p_2), ... \rangle$

is continuous/computable and satisfies the diagram.

If $G^{\emptyset'} : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is computable in the halting problem \emptyset' , then $F : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, \langle p_0, p_1, p_2, ... \rangle \mapsto \langle G^{\emptyset'[0]}(p_0), G^{\emptyset'[1]}(p_1), G^{\emptyset'[2]}(p_2), ... \rangle$ is computable and satisfies the diagram.

Let $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is computable (and potentially extensional). Is there a suitable computable $G :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$?

Not in general!

Let $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is computable (and potentially extensional). Is there a suitable computable $G :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$? Not in general!

We use the Turing jump operator on Baire space

► J :
$$\mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, p \mapsto p'$$
 where $p'(n) := \begin{cases} 1 & \text{if } p \in U_n \\ 0 & \text{otherwise} \end{cases}$

Here $(U_n)_{n \in \mathbb{N}}$ is a standard enumeration of all c.e. open sets.

Theorem (B. 2007)

For $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ the following are equivalent:

1. F is limit computable,

2. $F = \lim \circ G$ for some computable $G :\subseteq \mathbb{N}^{\mathbb{N}} o \mathbb{N}^{\mathbb{N}}$,

3. $F = H \circ J$ for some computable $H :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$.

Caution (B., de Brecht, Pauly 2012): One cannot replace computability by continuity!

Corollary

-

We use the Turing jump operator on Baire space

► J :
$$\mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, p \mapsto p'$$
 where $p'(n) := \begin{cases} 1 & \text{if } p \in U_n \\ 0 & \text{otherwise} \end{cases}$

Here $(U_n)_{n \in \mathbb{N}}$ is a standard enumeration of all c.e. open sets.

Theorem (B. 2007)

For $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ the following are equivalent:

1. F is limit computable,

2. $F = \lim \circ G$ for some computable $G :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$,

3. $F = H \circ J$ for some computable $H :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$.

Caution (B., de Brecht, Pauly 2012): One cannot replace computability by continuity!

Corollary

-

We use the Turing jump operator on Baire space

► J :
$$\mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, p \mapsto p'$$
 where $p'(n) := \begin{cases} 1 & \text{if } p \in U_n \\ 0 & \text{otherwise} \end{cases}$

Here $(U_n)_{n \in \mathbb{N}}$ is a standard enumeration of all c.e. open sets.

Theorem (B. 2007)

For $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ the following are equivalent:

1. F is limit computable,

2. $F = \lim \circ G$ for some computable $G :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$,

3. $F = H \circ J$ for some computable $H :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$.

Caution (B., de Brecht, Pauly 2012): One cannot replace computability by continuity!

Corollary

- X

We use the Turing jump operator on Baire space

► J :
$$\mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, p \mapsto p'$$
 where $p'(n) := \begin{cases} 1 & \text{if } p \in U_n \\ 0 & \text{otherwise} \end{cases}$

Here $(U_n)_{n \in \mathbb{N}}$ is a standard enumeration of all c.e. open sets.

Theorem (B. 2007)

For $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ the following are equivalent:

1. F is limit computable,

2. $F = \lim \circ G$ for some computable $G :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$,

3. $F = H \circ J$ for some computable $H :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$.

Caution (B., de Brecht, Pauly 2012): One cannot replace computability by continuity!

Corollary

Let $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is computable (and potentially extensional). One can hope for a right inverse I of lim such that $\lim \circ F \circ I$ has some good properties.

Let $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is computable (and potentially extensional). One can hope for a right inverse *I* of lim such that $H \circ J \circ I$ has some good properties, where *H* is computable with $H \circ J = \lim \circ F$.

Proposition (B., de Brecht and Pauly 2012)

The points of continuity of J are exactly the 1-generic points.

Proposition

There exists $I : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ that is computable in \emptyset' such that 1. $J \circ I$ is computable in \emptyset' ,

2. $\lim \circ I = \operatorname{id}$.

Proof. The proof is remniscient of the proof of the Friedberg Jump Inversion Theorem. Given p, we have to find a sequence l(p) so that $\lim \circ l(p) = p$ and l(p) is 1-generic (i.e., a point of continuity of J). For this purpose l(p) is constructed inductively such that longer and longer prefixes are chosen so that ∂U_n is avoided for all $n \in \mathbb{N}$. While $p \in U_n$ can be recognized, ensuring that $p \notin \overline{U_n}$ requires the halting problem \emptyset' .

Proposition (B., de Brecht and Pauly 2012)

The points of continuity of J are exactly the 1-generic points.

Proposition

There exists $I:\mathbb{N}^\mathbb{N}\to\mathbb{N}^\mathbb{N}$ that is computable in \emptyset' such that

- 1. $J \circ I$ is computable in \emptyset' ,
- 2. $\lim \circ I = \mathrm{id}$.

Proof. The proof is remniscient of the proof of the Friedberg Jump Inversion Theorem. Given p, we have to find a sequence l(p) so that $\lim \circ l(p) = p$ and l(p) is 1-generic (i.e., a point of continuity of J). For this purpose l(p) is constructed inductively such that longer and longer prefixes are chosen so that ∂U_n is avoided for all $n \in \mathbb{N}$. While $p \in U_n$ can be recognized, ensuring that $p \notin \overline{U_n}$ requires the halting problem \emptyset' .

Proposition (B., de Brecht and Pauly 2012)

The points of continuity of J are exactly the 1-generic points.

Proposition

There exists $I : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ that is computable in \emptyset' such that

- 1. $J \circ I$ is computable in \emptyset' ,
- 2. $\lim \circ I = \mathrm{id}$.

Proof. The proof is remniscient of the proof of the Friedberg Jump Inversion Theorem. Given p, we have to find a sequence l(p) so that $\lim \circ l(p) = p$ and l(p) is 1-generic (i.e., a point of continuity of J). For this purpose l(p) is constructed inductively such that longer and longer prefixes are chosen so that ∂U_n is avoided for all $n \in \mathbb{N}$. While $p \in U_n$ can be recognized, ensuring that $p \notin \overline{U_n}$ requires the halting problem \emptyset' .

For all computable $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ there exists $G :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ computable in \emptyset' so that $G(p) \in \lim \circ F \circ \lim^{-1}(p)$.

Corollary

G is continuous iff it has a continuous (\lim, \lim) -realizer F.

For all computable $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ there exists $G :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ computable in \emptyset' so that $G(p) \in \lim \circ F \circ \lim^{-1}(p)$.

Corollary

G is continuous iff it has a continuous (\lim, \lim) -realizer F.

For all computable $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ there exists $G :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ computable in \emptyset' so that $G(p) \in \lim \circ F \circ \lim^{-1}(p)$.

Corollary (written up somewhere?)

G is computable in \emptyset' iff it has a computable (lim, lim)-realizer F.

We use the jump on derivative of a representation $\delta :\subseteq \mathbb{N}^{\mathbb{N}} \to X$

• $\delta' :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ with $\delta' := \delta \circ \lim$

and the integral

•
$$\int \delta :\subseteq \mathbb{N}^{\mathbb{N}} \to X$$
 with $\int \delta := \delta \circ \mathsf{J}^{-1}$.

Corollary

For $F :\subseteq (X, \delta_X) \to (Y, \delta_Y)$ the following are equivalent:

- 1. F is limit computable,
- 2. F is (δ_X, δ'_Y) -computable,
- 3. F is $(\int \delta_X, \delta_Y)$ –computable.

Corollary

For representations $\delta_1, \delta_2 :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ we obtain • $\delta_1 \leq \delta'_2 \iff \int \delta_1 \leq \delta_2.$

We use the jump on derivative of a representation $\delta :\subseteq \mathbb{N}^{\mathbb{N}} \to X$

• $\delta' :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ with $\delta' := \delta \circ \lim$

and the integral

•
$$\int \delta :\subseteq \mathbb{N}^{\mathbb{N}} \to X$$
 with $\int \delta := \delta \circ \mathsf{J}^{-1}$.

Corollary

For $F :\subseteq (X, \delta_X) \to (Y, \delta_Y)$ the following are equivalent:

1. F is limit computable,

2. F is
$$(\delta_X, \delta'_Y)$$
-computable,

3. F is $(\int \delta_X, \delta_Y)$ -computable.

Corollary

For representations $\delta_1, \delta_2 :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ we obtain

 $\blacktriangleright \ \delta_1 \leq \delta'_2 \iff \int \delta_1 \leq \delta_2.$

We use the jump on derivative of a representation $\delta :\subseteq \mathbb{N}^{\mathbb{N}} \to X$

• $\delta' :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ with $\delta' := \delta \circ \lim$

and the integral

•
$$\int \delta :\subseteq \mathbb{N}^{\mathbb{N}} \to X$$
 with $\int \delta := \delta \circ \mathsf{J}^{-1}$.

Corollary

For $F :\subseteq (X, \delta_X) \to (Y, \delta_Y)$ the following are equivalent:

1. F is limit computable,

2. F is
$$(\delta_X, \delta'_Y)$$
-computable,

3. F is $(\int \delta_X, \delta_Y)$ -computable.

Corollary

For representations $\delta_1, \delta_2 :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ we obtain

• $\delta_1 \leq \delta'_2 \iff \int \delta_1 \leq \delta_2.$

Theorem (B. and Hertling 2002)

A function $f :\subseteq \mathbb{R} \to \mathbb{R}$ is continuous with respect to the naive Cauchy representation if and only if it is continuous.

The result can be generalized from \mathbb{R} to separable metric spaces X.

Theorem (B. and Hertling 2002)

A function $f :\subseteq \mathbb{R} \to \mathbb{R}$ is continuous with respect to the naive Cauchy representation if and only if it is continuous.

The result can be generalized from \mathbb{R} to separable metric spaces X.

For all $F^q :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ computable in q there is $G^{q'} :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ computable in q' so that $G^{q'}(p) \in \lim \circ F^q \circ \lim^{-1}(p)$.

Weihrauch Reducibility

For partial multi-valued functions f, g one defines Weihrauch reducibility f ≤_W g:

K, *H* are computable input and output adaptions, respectively.We define the compositional product

$$f \ast g := \max_{\leq_{\mathrm{W}}} \{ f_0 \circ g_0 : f_0 \leq_{\mathrm{W}} f, g_0 \leq_{\mathrm{W}} g \}.$$

This captures the most complicated problem that one can implement by first using g and then f (possibly after some intermediate computation).

For $f :\subseteq X \rightrightarrows Y$ we define the jump $f' :\subseteq X' \rightrightarrows Y$ (which is the same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)

 $WKL' \equiv_W \lim *COH.$

- ► WKL is the problem: given an infinite binary tree *T*, find an infinite path *p* ∈ [*T*].
- WKL' is the problem: given a sequence (*T_i*)_{*i*∈ℕ} of binary trees that converges to an infinite binary tree *T*, find an infinite path *p* ∈ [*T*].
- COH is the problem: given a sequence (R_i)_{i∈N} of sets R_i ⊆ N, find an infinite set S ⊆ N such that S ⊆* R_i or S ⊆* N \ R_i for each i ∈ N.

For $f :\subseteq X \Rightarrow Y$ we define the jump $f' :\subseteq X' \Rightarrow Y$ (which is the same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)

- ► WKL is the problem: given an infinite binary tree *T*, find an infinite path *p* ∈ [*T*].
- WKL' is the problem: given a sequence (*T_i*)_{*i*∈ℕ} of binary trees that converges to an infinite binary tree *T*, find an infinite path *p* ∈ [*T*].
- COH is the problem: given a sequence (R_i)_{i∈N} of sets R_i ⊆ N, find an infinite set S ⊆ N such that S ⊆* R_i or S ⊆* N \ R_i for each i ∈ N.

For $f :\subseteq X \rightrightarrows Y$ we define the jump $f' :\subseteq X' \rightrightarrows Y$ (which is the same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)

- ► WKL is the problem: given an infinite binary tree *T*, find an infinite path *p* ∈ [*T*].
- WKL' is the problem: given a sequence (*T_i*)_{*i*∈ℕ} of binary trees that converges to an infinite binary tree *T*, find an infinite path *p* ∈ [*T*].
- COH is the problem: given a sequence (R_i)_{i∈ℕ} of sets R_i ⊆ N, find an infinite set S ⊆ N such that S ⊆* R_i or S ⊆* N \ R_i for each i ∈ N.

For $f :\subseteq X \Rightarrow Y$ we define the jump $f' :\subseteq X' \Rightarrow Y$ (which is the same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)

- ► WKL is the problem: given an infinite binary tree *T*, find an infinite path *p* ∈ [*T*].
- WKL' is the problem: given a sequence (*T_i*)_{*i*∈ℕ} of binary trees that converges to an infinite binary tree *T*, find an infinite path *p* ∈ [*T*].
- ▶ COH is the problem: given a sequence $(R_i)_{i \in \mathbb{N}}$ of sets $R_i \subseteq \mathbb{N}$, find an infinite set $S \subseteq \mathbb{N}$ such that $S \subseteq^* R_i$ or $S \subseteq^* \mathbb{N} \setminus R_i$ for each $i \in \mathbb{N}$.

For $f :\subseteq X \rightrightarrows Y$ we define the jump $f' :\subseteq X' \rightrightarrows Y$ (which is the same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)

- ► WKL is the problem: given an infinite binary tree *T*, find an infinite path *p* ∈ [*T*].
- WKL' is the problem: given a sequence (*T_i*)_{*i*∈ℕ} of binary trees that converges to an infinite binary tree *T*, find an infinite path *p* ∈ [*T*].
- COH is the problem: given a sequence (R_i)_{i∈ℕ} of sets R_i ⊆ ℕ, find an infinite set S ⊆ ℕ such that S ⊆* R_i or S ⊆* ℕ \ R_i for each i ∈ ℕ.

For $f :\subseteq X \Rightarrow Y$ we define the jump $f' :\subseteq X' \Rightarrow Y$ (which is the same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)

 $\mathsf{WKL}' \equiv_{\mathrm{W}} \mathsf{lim} * \mathsf{COH}.$

- WKL' $\equiv_{sW} BWT_{\mathbb{R}}$ (B., Gherardi, Marcone 2012).
- BWT_ℝ is the problem: given a sequence (x_i)_{i∈ℕ} whose range has a compact closure, find a cluster point x of (x_i)_{i∈ℕ}.
- $COH \equiv_W WBWT_{\mathbb{R}}$ (Kreuzer 2011)
- WBWT_ℝ is the problem: given a sequence (x_i)_{i∈N} whose range has a compact closure, find a sequence (y_i)_{i∈N} that converges to a cluster point x of (x_i)_{i∈N}.
- ▶ Hence it suffices to show $BWT_{\mathbb{R}} \equiv_W \lim *WBWT_{\mathbb{R}}$, where \geq_W follows from the Limit Control Theorem.

For $f :\subseteq X \Rightarrow Y$ we define the jump $f' :\subseteq X' \Rightarrow Y$ (which is the same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)

 $WKL' \equiv_W \lim *COH.$

- WKL' $\equiv_{sW} BWT_{\mathbb{R}}$ (B., Gherardi, Marcone 2012).
- ► BWT_R is the problem: given a sequence (x_i)_{i∈N} whose range has a compact closure, find a cluster point x of (x_i)_{i∈N}.
- $COH \equiv_W WBWT_{\mathbb{R}}$ (Kreuzer 2011)
- ▶ WBWT_R is the problem: given a sequence (x_i)_{i∈N} whose range has a compact closure, find a sequence (y_i)_{i∈N} that converges to a cluster point x of (x_i)_{i∈N}.
- ▶ Hence it suffices to show $BWT_{\mathbb{R}} \equiv_{W} \lim *WBWT_{\mathbb{R}}$, where \geq_{W} follows from the Limit Control Theorem.

For $f :\subseteq X \Rightarrow Y$ we define the jump $f' :\subseteq X' \Rightarrow Y$ (which is the same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)

 $\mathsf{WKL}' \equiv_{\mathrm{W}} \mathsf{lim} * \mathsf{COH}.$

- WKL' $\equiv_{sW} BWT_{\mathbb{R}}$ (B., Gherardi, Marcone 2012).
- ► BWT_R is the problem: given a sequence (x_i)_{i∈N} whose range has a compact closure, find a cluster point x of (x_i)_{i∈N}.
- $COH \equiv_W WBWT_{\mathbb{R}}$ (Kreuzer 2011)
- WBWT_ℝ is the problem: given a sequence (x_i)_{i∈ℕ} whose range has a compact closure, find a sequence (y_i)_{i∈ℕ} that converges to a cluster point x of (x_i)_{i∈ℕ}.
- ▶ Hence it suffices to show $BWT_{\mathbb{R}} \equiv_W \lim *WBWT_{\mathbb{R}}$, where \geq_W follows from the Limit Control Theorem.

For $f :\subseteq X \Rightarrow Y$ we define the jump $f' :\subseteq X' \Rightarrow Y$ (which is the same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)

 $WKL' \equiv_W \lim *COH.$

- WKL' $\equiv_{sW} BWT_{\mathbb{R}}$ (B., Gherardi, Marcone 2012).
- ► BWT_R is the problem: given a sequence (x_i)_{i∈N} whose range has a compact closure, find a cluster point x of (x_i)_{i∈N}.
- $COH \equiv_W WBWT_{\mathbb{R}}$ (Kreuzer 2011)
- WBWT_ℝ is the problem: given a sequence (x_i)_{i∈ℕ} whose range has a compact closure, find a sequence (y_i)_{i∈ℕ} that converges to a cluster point x of (x_i)_{i∈ℕ}.
- ▶ Hence it suffices to show $BWT_{\mathbb{R}} \equiv_{W} \lim *WBWT_{\mathbb{R}}$, where \geq_{W} follows from the Limit Control Theorem.

For $f :\subseteq X \Rightarrow Y$ we define the jump $f' :\subseteq X' \Rightarrow Y$ (which is the same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)

 $\mathsf{WKL}' \equiv_{\mathrm{W}} \mathsf{lim} * \mathsf{COH}.$

- WKL' $\equiv_{sW} BWT_{\mathbb{R}}$ (B., Gherardi, Marcone 2012).
- ► BWT_R is the problem: given a sequence (x_i)_{i∈N} whose range has a compact closure, find a cluster point x of (x_i)_{i∈N}.
- $COH \equiv_W WBWT_{\mathbb{R}}$ (Kreuzer 2011)
- ► WBWT_R is the problem: given a sequence (x_i)_{i∈N} whose range has a compact closure, find a sequence (y_i)_{i∈N} that converges to a cluster point x of (x_i)_{i∈N}.
- ▶ Hence it suffices to show $BWT_{\mathbb{R}} \equiv_{W} \lim *WBWT_{\mathbb{R}}$, where \geq_{W} follows from the Limit Control Theorem.

Application 3: Classification of Ramsey's Theorem

For $f :\subseteq X \rightrightarrows Y$ we define the jump $f' :\subseteq X' \rightrightarrows Y$ (which is the same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)

 $WKL' \equiv_W \lim *COH.$

- ► RTⁿ_k denotes the problem: given a coloring c : [N]ⁿ → k, find an infinite homogenous set H for it.
- SRT_k^n denotes the restriction to stable colorings.
- ► $SRT_k^{n+1} \leq_W RT_k^n * \lim,$
- ► $\mathsf{RT}_k^n \leq_{\mathrm{W}} \mathsf{SRT}_k^n * \mathsf{COH}$,
- $\blacktriangleright \mathsf{RT}_k^{n+1} \leq_{\mathrm{W}} \mathsf{RT}_k^n * \mathsf{WKL}'.$

Theorem (B. and Rakotoniaina 2017)

 $\mathsf{RT}_k^n \leq_{\mathrm{W}} \mathsf{WKL}^{(n)}$ and $\widehat{\mathsf{RT}_k^n} \equiv_{\mathrm{W}} \mathsf{WKL}^{(n)}$.

Application 3: Classification of Ramsey's Theorem

For $f :\subseteq X \rightrightarrows Y$ we define the jump $f' :\subseteq X' \rightrightarrows Y$ (which is the same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)

 $WKL' \equiv_W \lim *COH.$

- ► RTⁿ_k denotes the problem: given a coloring c : [N]ⁿ → k, find an infinite homogenous set H for it.
- SRT_k^n denotes the restriction to stable colorings.
- ► $SRT_k^{n+1} \leq_W RT_k^n * \lim_{k \to \infty} RT_k^n = \lim_{k \to \infty} RT_k^n + \lim_{k \to \infty} RT_k^n = \lim_{k \to \infty} RT_k^n + \lim_{k \to \infty} RT_k^n = \lim_{k \to \infty} RT_k^n + \lim_{k \to \infty} RT_k^n + \lim_{k \to \infty} RT_k^n = \lim_{k \to \infty} RT_k^n + \lim_{k \to \infty} RT_k^n = \lim_{k \to \infty} RT_k^n + \lim_$
- $\operatorname{RT}_k^n \leq_{\operatorname{W}} \operatorname{SRT}_k^n * \operatorname{COH}$,
- $\operatorname{RT}_{k}^{n+1} \leq_{\mathrm{W}} \operatorname{RT}_{k}^{n} * \operatorname{WKL}'$.

Theorem (B. and Rakotoniaina 2017)

 $\mathsf{RT}_k^n \leq_{\mathrm{W}} \mathsf{WKL}^{(n)}$ and $\widehat{\mathsf{RT}_k^n} \equiv_{\mathrm{W}} \mathsf{WKL}^{(n)}$.

Application 3: Classification of Ramsey's Theorem

For $f :\subseteq X \rightrightarrows Y$ we define the jump $f' :\subseteq X' \rightrightarrows Y$ (which is the same problem with a modified input representation).

Theorem (B., Hendtlass and Kreuzer 2017)

 $WKL' \equiv_W \lim *COH.$

- ► RTⁿ_k denotes the problem: given a coloring c : [N]ⁿ → k, find an infinite homogenous set H for it.
- SRT_k^n denotes the restriction to stable colorings.
- ► $SRT_k^{n+1} \leq_W RT_k^n * \lim_{k \to \infty} RT_k^n = \lim_{k \to \infty} RT_k^n + \lim_{k \to \infty} RT_k^n = \lim_{k \to \infty} RT_k^n + \lim_{k \to \infty} RT_k^n = \lim_{k \to \infty} RT_k^n + \lim_{k \to \infty} RT_k^n + \lim_{k \to \infty} RT_k^n = \lim_{k \to \infty} RT_k^n + \lim_{k \to \infty} RT_k^n = \lim_{k \to \infty} RT_k^n + \lim_$
- $\operatorname{RT}_k^n \leq_{\operatorname{W}} \operatorname{SRT}_k^n * \operatorname{COH}$,
- $\operatorname{RT}_{k}^{n+1} \leq_{\mathrm{W}} \operatorname{RT}_{k}^{n} * \operatorname{WKL}'$.

Theorem (B. and Rakotoniaina 2017)

 $\mathsf{RT}_k^n \leq_{\mathrm{W}} \mathsf{WKL}^{(n)}$ and $\widehat{\mathsf{RT}_k^n} \equiv_{\mathrm{W}} \mathsf{WKL}^{(n)}$.

Application 4: Inverting Jumps

 \leq_{W}^{p} denotes Weihrauch reducibility relativized by an oracle $p \in \mathbb{N}^{\mathbb{N}}$, i.e., the reduction function H, K can depend on p.

Theorem (B., Hölzl and Kuyper 2017)

$$f' \leq^p_{\mathrm{W}} g' \Longrightarrow f \leq^{p'}_{\mathrm{W}} g.$$

Corollary

 $f' \leq^{\mathrm{c}}_{\mathrm{W}} g' \Longrightarrow f \leq^{\mathrm{c}}_{\mathrm{W}} g \text{ and } f' \leq^{\mathrm{c}}_{\mathrm{sW}} g' \iff f \leq^{\mathrm{c}}_{\mathrm{sW}} g.$

Application 4: Inverting Jumps

 \leq_{W}^{p} denotes Weihrauch reducibility relativized by an oracle $p \in \mathbb{N}^{\mathbb{N}}$, i.e., the reduction function H, K can depend on p.

Theorem (B., Hölzl and Kuyper 2017)

$$f' \leq^p_{\mathrm{W}} g' \Longrightarrow f \leq^{p'}_{\mathrm{W}} g.$$

Corollary

 $f' \leq^{\mathrm{c}}_{\mathrm{W}} g' \Longrightarrow f \leq^{\mathrm{c}}_{\mathrm{W}} g \text{ and } f' \leq^{\mathrm{c}}_{\mathrm{sW}} g' \iff f \leq^{\mathrm{c}}_{\mathrm{sW}} g.$

A Glimpse of the Weihrauch Lattice

References

- V. Brattka, M. Hendtlass, A. P. Kreuzer, On the Uniform Computational Content of Computability Theory, *Theory of Computing Systems*, accepted for publication (2017)
- V. Brattka, P. Hertling, Topological properties of real number representations, *Theoretical Computer Science* 284 (2002) 241–257
- V. Brattka, M. de Brecht, A. Pauly, Closed Choice and a Uniform Low Basis Theorem, Ann. Pure Appl. Logic 163 (2012) 986–1008
- A. Kreuzer, The cohesive principle and the Bolzano-Weierstraß Principle, Mathematical Logic Quarterly 57 (2011) 292–298
- V. Brattka, T. Rakotoniaina, On the Uniform Computational Content of Ramsey's Theorem, J. Symbolic Logic, accepted for publication (2017)
- V. Brattka, R. Hölzl, R. Kuyper, Monte Carlo Computability, STACS 2017, vol. 66 of LIPIcs (2017) 17:1-17:14

A Survey on Weihrauch Complexity

Weihrauch Complexity in Computable Analysis

Vasco Brattka, Guido Gherardi and Arno Pauly

Abstract We provide a self-contained introduction into Weihrauch complexity and its applications to computable analysis. This includes a survey on some classification results and a discussion of the relation to other approaches.

1 The Algebra of Problems

The Weihrauch lattice offers a framework to classify the uniform computational content of problems and theorems from analysis and other areas of mathematics. This framework can be seen as an attempt to create a calculus of mathematical problems, very much in spirit of Kolmogorov's interpretation of intuitionistic logic (§9).

We express mathematical problems with the help of partial multi-valued functions $f: \subset X = Y$. We consider droub($f) = \{x \in X : (x) \neq \emptyset$ as the set of admissible instances x of the problem f, and we consider the corresponding set of function values $f(x) \subseteq Y$ as the set of possible results. In the case of or single-valued f we identify f(x) with the corresponding singleton. An example of a mathematical problem that he reader can have in mind as a prototypical case is the zero problem. Owinously,

Guido Gherardi Dipartimento di Filosofia e Comunicazione, Università di Bologna, Italy e-mail: <u>Guido.Gherardi@unibo.it</u>

Amo Pauly Départment d'Informatique, Université libre de Bruxelles, Belgium e-mail: <u>Arno.Pauly@cl.cam.ac.uk</u>

Vasco Brattka

Faculty of Computer Science, Universität der Bundeswehr München, Germany and Department of Mathematics & Applied Mathematics, University of Cape Town, South Africa e-mail:[Vasco.BrattExaBecca-net.de]