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Computable Analysis without Computability

Hannes Diener

Universität Siegen

FB 6: Mathematik, Mathematische Logik und Theoretische Informatik

Alan Turing introduced the idea of axiomatic computability into mathematics
when, in 1935, defining the – now canonical – notion of a computable (recursive)
function between natural numbers.

Finding a suitable notion of computability for other types, such as functions
between real numbers, has been less canonical. Many sensible, interesting,
but unfortunately non-equivalent notions have been studied. Turing himself
widened the applicability of his idea of computability (already in his seminal
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paper that introduced computability) to other types by calling a real num-
ber x computable, if the sequence of digits of one of its decimal expansions is
computable. There are some deficiencies to this definition, so nowadays in the
Turing-style approach one generally uses some version of the following defini-
tion instead: a real number x is computable if there exist two total, computable
(recursive) functions f, g : N→ N such that for all n ∈ N

(1)

∣∣∣∣x− f(n)− g(n)

2n

∣∣∣∣ < 2−n.

Similarly one can, for most other notions in analysis such as continuity of func-
tions or metrics, find computable counterparts by defining them in terms of
computable (recursive) functions between the natural numbers. Of course, not
all theorems of analysis stay valid if one switches to computable notions and
interprets them näıvely.

Notice, how one could have made all the “computable counterpart” defi-
nitions, not only for the class of computable (recursive) functions, but for an
arbitrary class of functions F ⊆ NN. The idea of the talk is to do just this. The
main question to answer is: Which assumptions do we need to impose on F in
order to prove certain theorems in analysis?

Comparison of models of computation over the reals

Christine Gaßner

Ernst-Moritz-Arndt-Universität Greifswald

Institut für Mathematik und Informatik

Models of computation over the real numbers were developed for several pur-
poses. The real RAM is a model for describing programs of computers in a
simple language of a higher level and for providing a first specification of al-
gorithms over the reals (see [Preparata Shamos ’85]). The classical real RAM
model is the most used model for analyzing the computational complexity of
problems. However, it is a non-uniform model of computation and, in general,
the program of a RAM works correctly only if the inputs are vectors of a finite
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dimensional vector space or other suitable vectors. L. Blum, M. Shub, and S.
Smale introduced real Turing machines by means of flow charts which are able
to process inputs of any length, and they created a uniform complexity the-
ory over the reals (see [Blum et al. ’89]). We know that many results of the
non-uniform theory could and can be transferred from the classical real RAM
model into their BSS model. In later years many similar so-called BSS models
are defined. Our BSS model is a special BSS-RAM model (see [Gaßner ’97]).
It was introduced in order to combine the advantages of both models. The ma-
chines of the BSS-RAM model are register machines that allow us to analyze
the complexity of uniform algorithms. However the uniform treatment of inputs
implies specific features which are typical for Turing machines and independent
of the properties of the objects to be processed. We will discuss some compu-
tational problems and compare the decidability results and the reducibility of
one problem to another problem in order to show that the classical real RAM’s
and the BSS model really lead to different classes of decidable problems.

[Blum et al. ’89] Blum, L., M. Shub, and S. Smale: “On a theory of computation
and complexity over the real numbers: NP-completeness, recursive functions and
universal machines”; Bulletin of the Amer. Math. Soc. 21 (1989), 1–46.

[Gaßner ’97] Gaßner, C.: “On NP-Completeness for Linear Machines”; Journal of
Complexity 13 (1997), 259–271.

[Preparata Shamos ’85] Preparata, F. P., and M. I. Shamos: ”Computational geom-
etry: An introduction”; Springer (1985).

On algebraic decision trees and the generic path method

Paul Grieger

Ernst-Moritz-Arndt-Universität Greifswald

Institut für Mathematik und Informatik

Algebraic decision trees and the generic path method are a graphical way of
proving and their use will be demonstrated on a solution for a P-DNP-Problem,
where the classes P and DNP are dedicated to a BSS-RAM, that only does allow
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linear operations and tests of equation. The solution is based on Meer [Meer
’92] and is transferred to the BSS-RAM-model based on [Gaßner ’01]. It will
be shown that the problem of whether a (real) system of linear equations has a
solution consisting of zeroes and ones only is the witness for the negative answer
to the P-DNP-Problem. The testing, whether the problem belongs to the class
DNP, is quite straight forward, but in proving the non-membership of P, the
generic path method will be explained.

[Meer ’92] Meer, K.: ”A note on a P 6= NP-result in a restricted class of real machines”;
Journal of Complexity 8 (1992), 451–453.

[Gaßner] Gaßner, C.: ”Das Berechnungsmodell http://stubber.math-inf.
uni-greifswald.de/biomathematik/gassner/forschung/forschung1.htm”.

[Gaßner ’01] Gaßner, C.: ”The P-DNP problem for infinite abelian groups”;
Journal of Complexity 17 (2001), 574–583.

Non-determinism in TTE

Arno Pauly

Computer Laboratory

University of Cambridge, United Kingdom

Non-deterministic Type-2 Machines as suggested by Ziegler [Ziegler ’07 B] and
studied in more detail by Brattka, de Brecht and P. [Brattka et al.], [Brattka
Pauly ’10] offer a versatile family of computation models. In addition to the
input, a non-deterministic Type-2 machine (NDTM) may guess an element
z ∈ Z for some represented space Z, and either continues to compute a correct
output from the input and an arbitrary name of z, or it eventually rejects the
guess z, with the condition that for valid input there has to be an acceptable
guess. The power of a NDTM significantly depends on the choice of the advice
space Z. The advice space also influences properties such as closure under
composition.

Typically it is rather easy to prove that a given multi-valued function is
computable by a NDTM - often it is even obvious that guessing and verifying
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the output works. Such a result provides both an upper bound for the degree of
incomputability as well as a recipe how to obtain results about computability.
The probably most useful one is the following: A multi-valued function between
computable metric spaces computable by a NDTM with a computably compact
computable metric space as advice space becomes computable when restricted
to the points where the values are unique, this follows from a result by Brattka
and Gherardi [Brattka Gherardi ’11]. This approach was used (not explicitly!)
by Galatolo, Hoyrup and Robas in the realm of computable measure theory
[Galatolo et al. ’11], and by Rettinger for computable differential geometry
[Rettinger ’11].

Non-determinism with advice space N is equivalent to revising computation,
and hence is related to BSS-machines [Ziegler ’07 A]. It is also possible to
conceive of non-deterministic machines as the algorithmic content of certain
extensions of intuitionistic logic, e.g. those obtained by including axioms such
as LPO and LLPO.

[Brattka et al.] Brattka, V., M. de Brecht & A. Pauly: ”Closed Choice and a Uniform
Low Basis Theorem”; Annals of Pure and Applied Logic. To appear, available at
arXiv:1002.2800.

[Brattka Gherardi ’11] Brattka, V. & G. Gherardi: ”Weihrauch Degrees, Omni-
science Principles and Weak Computability”, Bulletin of Symbolic Logic 17, 73 –
117. ArXiv:0905.4679.

[Brattka Pauly ’10] Brattka, V. & A. Pauly: ”Computation with Advice” (2011).
ArXiv:1006.0395.

[Galatolo et al. ’11] Galatolo, S., M. Hoyrup & C. Robas: ”Dynamics and abstract
computability: computing invariant measures”; Discrete and Continuous Dynamical
Systems 29 (2011) (1).

[Rettinger ’11] Rettinger, R.: ”Compactness and the Effectivity of Uniformization”.
Talk at CCA 2011.

[Ziegler ’07 A] Ziegler, M.: ”Real Computability and Hypercomputation” (Habilita-
tionsschrift); University of Paderborn (2007).

[Ziegler ’07 B] Ziegler, M.: ”Real Hypercomputation and Continuity”; Theory of

Computing Systems 41 (2007), 177 – 206.
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Complexity theory for operators in analysis

Carsten Rösnick

Technische Universität Darmstadt

Fachbereich Mathematik

The computability of numerical operators (functions of signature F : (R→ R)
→ (R→ R)) and numerical functionals (functions of signature F : (R→ R)→
R like Max[0,1] : f 7→ maxx∈[0,1] f(x)) can be formalized in models like/terms of
TTE (Weihrauch) and type-2 oracle machines (Ko/Friedman).

A TTE-machine transforms infinite sequences (of, e. g., rationals) into infi-
nite sequences on a single one-way ouput tape. The restriction for the ouput
tape to be one-way ensures that after the machine has performed T steps (for
any T ∈ N), the intermediate result (depending on T ) will not be altered in any
future iteration of the machine.

Given a natural n ∈ N, a type-2 oracle machine computing a functional F
can ask its oracle questions like “give me an approximation of f(q) for q ∈ Q
with precision m (=absolute error 2−m)” to eventually compute an approxima-
tion to F (f) of absolut error 2−n.

However, both models do not lead to a (satisfying) complexity notion for
such operators and functionals. In particular for the type-2 oracle approach,
the statements are not even effective (i. e., of form “operator O is in class C”).
It is the approach by Kawamura and Cook [Kawamura Cook ’10] that tries to
fill (in particular) this gap, thus giving a complexity notion for operators and
functionals. It relies on names of functions being regular functions : That is, on
functions for which there is a well-defined size function that only depends on the
length of the argument n. In contrast to TTE and type-2 oracle machines, this
allows defining the complexity of an operator not only in the input (precision
n), but also in the size of a name for the argument (here: a computable real
function).

This talk will range from the basic notions of computable real numbers and
computable real functions up to the definition of computable operators. We will
see how the definition of Kawamura/Cook complements those by Weihrauch
and Ko/Friedman, and see basic examples of proofs of effective statements for
numeric functionals, like Max and Int.
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[Kawamura Cook ’10] Kawamura, A. and S. Cook: ”Complexity theory for operators

in analysis”; In Proceedings of the 42nd ACM symposium on Theory of computing,

495-502. ACM, 2010.

On Lower Bounds for Algebraic Decision Trees

Peter Scheiblechner

Hausdorff-Zentrum für Mathematik

Bonn

We will discuss the use of topological and algebro-geometric methods in proving
lower bounds for algebraic decision (or computation) trees solving the member-
ship problem of a given semi-algebraic set in Rn or algebraic set in Cn. We
will present some lower bounds in terms of several topological invariants like
the number of connected components [Ben-Or ’83], Euler characteristic [Yao
’92], and Betti numbers [Yao ’94, Scheiblechner ’10], and applications thereof,
see also the survey [Bürgisser ’01]. We will introduce and explain all relevant
notions and techniques from topology and algebraic geometry.

[Ben-Or ’83] M. Ben-Or, M.: ”Lower bounds for algebraic computation trees”; STOC
’83: Proceedings of the fifteenth annual ACM symposium on Theory of computing,
New York, ACM (1983), 80–86.

[Bürgisser ’01] Bürgisser, P.: ”Lower bounds and real algebraic geometry”; Algo-
rithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and
Computer Science (2001), 35–54.

[Scheiblechner ’10] Scheiblechner, P.: ”On lower bounds for algebraic decision trees
over the complex numbers”; Poceedings of the 12th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, Los Alamitos, IEEE
Computer Society (2010), 362–365.

[Yao ’92] Yao, A.: ”Algebraic decision trees and Euler characteristics”; FOCS ’92:
Proceedings of the 33rd Annual Symposium on Foundations of Computer Science,
Washington, IEEE Computer Society (1992), 268–277.
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[Yao ’94] Yao, A.: ”Decision tree complexity and Betti numbers”, STOC ’94: Pro-

ceedings of the twenty-sixth annual ACM symposium on Theory of computing, New

York, ACM (1994), 615–624.

Automata on ordinals and linear orders

Philipp Schlicht

Rheinische Friedrich-Wilhelms-Universität Bonn

Mathematisches Institut

I will introduce finite automata with running time a limit ordinal α and consider
structures recognizable by such automata whose domain consists of finite words
of length α with gaps. The extra ingredient for these automata is a limit rule
which maps the set of states which appear cofinally often before the limit to a
limit state. Such structures share some properties with structures recognized by
finite automata. I will sketch how to determine the suprema of the α-automatic
ordinals and the ranks of α-automatic linear orders and show that the power of
α-automata increases with every power of ω.

A short review on the history of register machines

Isabel Schwende

Ernst-Moritz-Arndt-Universität Greifswald

Institut für Mathematik unfd Informatik

We want to give a short review on the history of register machines starting with
the modified Turing machine by Wang in 1957. The development of real com-
puters beginning in the early 60s justified the importance of register machines
and therefore many new models were invented which are based on Wang’s work.
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We have chosen Kaphengst’s from amongst lots of models of register machines
published in that time to illustrate the rapprochement of the model and digital
computers. Thereafter, to end the diversity of different definitions, Shepherdson
and Sturgis gathered some of them and blended them into own models: lim-
ited register machine and unlimited register machine. They also have compared
and evaluated several previous papers. In conclusion we want to give a short
prospect on the following progress in the idea of RAM.

[Wang ’57] Hao Wang: ”A Variant to Turing’s Theory of Computing Machines”;
JACM (Journal of the Association for Computing Machinery) 4 (1957), 63–92.

[Kaphengst ’59] Heinz Kaphengst: ”Eine Abstrakte programmgesteuerte Rechen-
maschine”; Zeitschrift für mathematische Logik und Grundlagen der Mathematik:
5 (1959), 366–379.

[Shepherdson Sturgis ’63] John C. Shepherdson and H. E. Sturgis: ”Computability
of Recursive Function”; Journal of the Association of Computing Machinery (JACM)
10(1963), 217–255.

Computational complexity of quantum satisfiability

Martin Ziegler

Technische Universität Darmstadt
Fachbereich Mathematik

Quantum logic generalizes, and in dimension one coincides with, Boolean logic. We
show that the satisfiability problem of quantum logic formulas is NP-complete in
dimension two as well. For higher higher-dimensional spaces Rd and Cd with d > 2
fixed, we establish quantum satisfiability to be polynomial time equivalent to the
real feasibility of a multivariate quartic polynomial equation: a problem well-known
complete for the counterpart of NP in the Blum-Shub-Smale model of computation
lying (probably strictly) between classical NP and PSPACE. We finally investigate the
problem over INdefinite finite dimensions and relate it to the real feasibility of quartic
NONcommutative *-polynomial equations. (joint work with Christian Herrmann...)


