Degrees of Unsolvability for Additive BSS Machines

Christine Gafiner
Ernst-Moritz-Arndt-Universitat Greifswald, Germany
gassnerc@uni-greifswald.de

Abstract: We consider several halting problems for the additive real BSS machines
and the Turing reducibility by additive machines using only a few number of permitted
constants. We use several techniques in order to present a problem below the Halting
Problem for the additive machines using only the constants 0 and 1 and the equality
test, an infinite hierarchy of problems between the latter problem and the Halting
Problem for the additive machines using only the constants 0 and 1 and the order
test, and finite hierarchies above these problems where the reductions of these finite
hierarchies to the Halting Problem for all additive BSS machines are only possible if
the machines are encoded in a special way. (Version of December 2009)

Key Words: BSS model, additive machines, oracle machine, Turing degrees
Category: F.1, F.1.1, F.1.2

1 Introduction

The Turing degrees with respect to the BSS model are the equivalence classes
defined by means of Turing reductions which can be performed by BSS oracle
machines. These degrees allow a characterisation of hard problems with respect
to the BSS model. In [Meer and Ziegler 2008] and [Meer and Ziegler 2006], the
many-one reducibility as well as the Turing reducibility are discussed. For ad-
ditive machines whose constants are restricted to be 0 and 1, Klaus Meer and
Martin Ziegler posed the question whether there are degrees of unsolvability
which are lower than the degree of the Halting Problem and higher than one of
the set of rational numbers. Inspired by this question we want to consider the
Turing reducibility, at first, by additive machines using only 0 and 1 as constants
without additional real parameters (that means without real machine constants
in IR\ {0,1}), and later by machines with parameters. Then, in both settings we
can say that a problem A is easier (to solve) than a problem B, if A is decidable
by an oracle machine using B as oracle where we allow real parameters in the
reduction procedure or we do not allow parameters. If B is not easier that A,
then the problem A is strictly easier to solve than B and both problems are
members of two different Turing degrees. Note that the many-one reducibility
as well as the Turing reducibility without real parameters refine the equivalence
classes under Turing reducibility with parameters. Since the halting problem for
a class of BSS machines cannot be solved by a machine in this class we have in
any case two different degrees denoted by @ and ()': The class consisting of all
the decidable problems and the class consisting of all those semi-decidable sets

which are equivalent to the halting problem. The problems of the latter class
are called complete for the class of semi-decidable problems with respect to the
considered reducibility relation.

Whereas we mainly speak about decidable and semi-decidable (or recogniz-
able) sets, in the classical theory of recursive functions and in the theory of
recursive reducibility, the corresponding notions are recursive and recursively
enumerable sets. The recursive sets S C IN are decidable by Turing machines
that means that their characteristic functions are total recursive functions. A set
S C NN is recursively enumerable (or effectively enumerable) if a bijective func-
tion f : IN — S is computable by a Turing machine. Therefore, these sets also
are the halting sets of Turing machines and, thus, they can be reduced to the
Halting Problem for Turing machines with respect to the many-one reducibility
relation and they are semi-decidable, that means that their partial characteristic
functions are computable. Thus, a set of positive integers is recursive if and only
if the set itself and its complement are effectively enumerable. The halting sets
of BSS machines can be reduced to the Halting Problem for BSS machines and
their partial characteristic functions are computable. Thus the halting sets of
BSS machines are semi-decidable, too, and a set is decidable if and only if the
set itself and its complement are semi-decidable. However, there are halting sets
S C R™ (e.g. S = RR) which are not effectively enumerable by computing a
bijective function f : IN — S. Note that this definition of the notion effectively
enumerable differs from the definition given in [Blum et al. 1989].

For the classical model of computation based on Turing machines, Emil Post
showed in [Post 1944] that there are undecidable semi-decidable problems which
are not complete with respect to many-one reducibility and he posed the problem
whether there are degrees between both corresponding Turing degrees of decid-
able and complete semi-decidable problems, respectively. The positive answer
to this problem was presented by Friedberg (in [Friedberg 1957]) and Muchnik
by means of a technique using the finite injury priority method. Some modern
versions of the proofs and their relationship to the classical results are presented
in [Soare 1987], [Borger 1992], and [Kozen 2006]. The constructions are based on
diagonalization techniques which can be used since all halting sets of the Turing
machines and all Turing machines are enumerable. In [Meer and Ziegler 2008]
Klaus Meer and Martin Ziegler gave a solution to Post’s Problem for the full
BSS model over the real numbers. This solution significantly differs from its clas-
sical, discrete variant where only diagonalization techniques are known to yield
the existence of Turing degrees below the classical Halting problem. They proved
the existence of an infinite number of semi-decidable Turing degrees below the
real Halting problem in the BSS model and the fact that the rational numbers
are strictly easier than the real Halting problem. For the additive BSS machines
without real constants they showed that the set of quadratic rational numbers

is strictly easier than the Halting problem and they posed the question: Does Q
have the same degree of undecidability as the Halting Problem for additive BSS
machines without real constants?

We want to discuss several variants of this question for any additive real BSS
machines where we only restrict the domains of constants used in the reductions.
On one hand, we will use the strong reductions without real parameters in order
to better understand the hardness of decision problems over the reals. On the
other hand, the study of additive machines using real constants shows the great
power of single real numbers. Whereas in the classical case, the main ideas are
of logical nature, we can also use algebraic and topological properties of the real
numbers and, in addition to these ones, some logical techniques.

2 The Model of Computation and Halting Problems

The uniform BSS model of computation was introduced in [Blum et al. 1989)
(cp. also [Blum et al. 1998]). The additive BSS machines were considered, for in-
stance, in [Koiran 1994], [Cucker and Koiran 1995], and [Meer and Ziegler 2008].
They can perform labelled instructions of the form Z; := Z; 4+ Zy, Z; .= Z; — Z,
Zj :=c, if Zj = 0 then goto l, else goto l>, if Z; > 0 then goto I, else goto s,
Zy; = Zy,, Iy =1, I; := I; + 1, and if I; = I}, then goto l; else goto [>. Each
assignment of an input (z1,...,z,) € U;5, IR" to the registers of a machine M
can be realized by Z; :=x1;...; Zp = ;1 =15, .. Iy, :=n. We denote the
class of additive BSS machines by Maqq.

Let M!, be the class of the additive BSS machines using only the constants 0
and 1 in the instruction Z; := c. For any oracle O C |J;5, R', let ML,,(O) be the
class of the additive oracle machines which can execute additional instructions
of the form if (Z1,...,Z1,) €O then goto Iy else goto l5. We say that a problem
A C U;», R" is easier than a problem B C |J,»; R’ (denoted by A < B here) if
A is decidable by a machine in M., ,(B). The problem A is strictly easier than
B (denoted by A 2B here) if B cannot be decided by a machine in M}, (A).

We will consider the following Halting Problem IH},, for the machines in
M4 using only the constants 0 and 1 in the instruction Z; := ¢, the Halt-
ing Problem]H;;; for the machines in l\/l,clléfi C M., performing only tests of
the form Z; = 07, and the Halting Problem IH.qq for all additive BSS ma-
chines. The codes code(M) of the machines M € M! , are sequences of the
codes of the single symbols of their programs where, for some k, each of the
single symbols is encoded by k symbols in {0,1} unambiguously. For any BSS
machine M € Maqq, let code(M) be the usual code of its program where any
real constant is encoded by itself and the other single symbols are encoded by
k zeros and ones (for some k). To simplify matters, in the following definitions
we write (n, x,code(M)) instead of (n,x1,...,Tn,S1,---,8m) if x = (x1,...,2y)
and code(M) = (s1,...,8m).

H, 5 = Ups i {(n,%, code(M)) | x € R" & M € Mg & M(x) L},
H,q = U,>1{(1, %, code(M)) | x € R" & M € My & M(x) 1},
H.qq = Un21{(n,x,code(/\/l)) | x€R" & M € Myqq & M(X) J,}

where M(x) | means that M halts on x. It is easy to see that
1,= 1
]Hadd =]Hadd = Haqa-

We will define a problem below]H;;; by means of a priority method often
used in the classical recursion theory for constructing recursively enumerable sets
and we will present a hierarchy between]Hidf1 and H.,, as well as hierarchies
between H: . and IH,qq. Since we want to derive the latter hierarchies from the
halting sets of some additive machines which can also use real constants, the
construction is also dependent on a special encoding technique used to encode
the real constants. Furthermore, we will shortly characterize the relationship
between these problems and the Halting Problem for non-deterministic additive
machines.

The question posed by Meer and Ziegler can be formalized as follows.

Question. Does @ % H,qq hold?

3 Q@ is Strictly Easier than]H;(’;

In [GafBiner 2008] we considered a list of problems of n-tuples over the real num-
bers which allow to compute integers from these tuples by additive machines
without using machine constants. For

L, ={(z1, .-, 2,) € R" | g0, »qn1) € Q") (0 + X1 qiwi =)},

we showed
Q=L 2Ly % - 2 L=U,5 L, <Hyyq.

More precisely, we have IL; 2 L, 2o and, for any k£ > 1, Iy 2 IL. Since the

order test is not necessary for recognizing IL, we have even IL <]H;;;. This
example shows that we can use algebraic and topological properties for con-
structing a whole hierarchy of undecidable problems below the Halting Problem
H,5q-

On the other hand, we can construct a set 4 C IN by the priority method
as given in [Soare 1987] such that 4 A @ and A <]H;;; and, consequently,

Q 7]Hifd are satisfied. This construction is possible since the machines in

ML, (O) as well as in ML:; are countable and their codes can be effectively
enumerated by additive machines in Mi;;l. We will also use the following lemma.

Lemma 1. The intersection of the halting set of any machine in M;&j and IN

is effectively enumerable and, consequently, it is a halting set of a machine in
1,=

Madd'

Proof. Let Haq be the halting set of any machine M € M;’dj. Then, a machine

can enumerate all pairs (n1,t1), (n2,t2), ... for which M halts on n; after exactly

t; steps. For the input j, the enumeration machine M compute the first pair

(n1,t1) from 1 and each further pair (n;41, ti+1) step-by-step from its enumerated

predecessor (n;,t;), and outputs the j*® integer n;. O

Our definition of A follows [Borger 1992]. For any machine M € M}, ,(0), let
kag = 210deM) 4 ¢ where ¢y is the integer whose binary code matches with
code(M) € {0,1}°. If a number i does not match with a program, then let the
corresponding machine ./\/l? be a simple machine that halts in any case and let
k MO = 1. Thus, we can take the numbers 1,2, ... for listing all additive oracle
machines MY, M§,.... For any oracle set @ C IN we introduce the following
special halting problem.

]KO =df]H:Spec(Midd(O)) =df {k./\/l | M e Midd(o) & M(kM) *If}

Moreover, let A1, N, ... be the machines in Mié:d where the indices determine
the programs of the machines. If a number i does not match with a program
without order tests and oracle queries, then let A; be a simple machine that
halts in any case. Moreover, let \; enumerate all positive integers n belonging
to the halting set of A; by the procedure described in the proof of Lemma, 1.
We define a new set A = (J,~,As in stages. Let Ay = 0. For s > 0, let A, be
defined and B

Li={i<s|WisNA; =0 & (Fz e W, 4)(2i <z & (Vj <i)(a(j,s) < z))}
where, for any i < s,

— afi,) is the greatest integer which is used in a query by the machine M
on i within the first s steps if M:* (i) |* (where |* means that the machine
halts within s steps) and 0 if ./\/l;4 (i) 1* (otherwise) and

— Wi;,s is the set of the integers computed by N; on input s within s steps.

Then,
Ao = As ifI, =0
ST 4, U {zo} otherwise

where zo = min{z € Wy, s | 2ip < z & (Vj <ip)(a(j,s) < z)} for ip = min [.

Note that, for the input ¢, the machine M;“S computes only integers. Conse-
quently, any test x > y? executed by M;“S on ¢ is decidable by a machine in
M;;;. Thus, the set A has the following properties.

(i) A is effectively enumerable by an additive machine in M;;;.

(ii) IN'\ A is infinite.

(iii) The intersection of A with any infinite halting set of a machine N; is not
empty.

(iv) KA < K.

These properties of A hold by analogy with the classical result (compare e.g.
[Kozen 2006]) since any additive machine in M;;; on positive integers can be
simulated by some Turing machine and vice versa and the set of partial recur-
sive functions agrees with the set of functions computable by Turing machines.
Because of (i), (ii) and (iii) A is a simple set and because of (i) and (iv) A is a
low set.

The conditions (i) and (ii) follow immediately from the definition of .A. The
conditions (iii) and (iv) follow from the positive and the negative conditions for
simplicity and lowness.

Conditions for simplicity:

(P,) Ut W, = L_Ji21 W, is infinite, then A NW,, # 0.

Conditions for lowness:

(N,) If MA¢(n) |t for infinitely many ¢, then M2 (n) |.

The latter conditions follow from the fact that M7 (i) | implies M7(i) }! for
some t and M7 (i) ! for some s and ¢, and consequently M?“‘“{s‘” () |max{sth,
The conditions P, follow from the conditions IV,,.

Remark. The goal of the priority method is to define the oracle by satisfying
conditions of this kind where it is allowed to injure these conditions finitely
many times. Note that, for these conditions, the priorities are determined by
Pl>>N1>>P2>>N2>>P3>>N3>>P4>>N4>>---WhereH1>>H2
means that the priority of H; is higher than the priority of Hy. In defining
As it is allowed to injured conditions NV, although n < s, that means that
MAs(n) 1 holds although we will get MZA¢(n) |t for infinitely many ¢ and
Mﬁ(n) J. However, the conditions N,, are only injured in order to satisfy a
condition of a higher priority. Moreover, it is easy to see that any condition
can only be injured finitely many times. For more details see [Borger 1992] and
[Kozen 2006].

Since the set of integers can be reduced to]H;;;, we have the following lemma

by (i).

Lemma?2. A4 <]H;;;.

For Turing machines we have X9 U coX¥ C X9 N coXy for the class XY of the
semi-decidable sets and the class X9 of sets being semi-decidable by machines
using the classical Halting Problem H as oracle. Since IH is complete for X9
and the Halting Problem for Turing machines using H is complete for X9, we
have IK” i]K]Km. Thus, since]H;;;l < A together with IK° =<]H;;; would imply

K? < A and consequently KK’ < KA < K by (iv), we get the following.
Lemma3. A 2]H;’dj.

Moreover, we obtain the following lemma since the oracle set @ is not really
helpful for deciding A.

Lemma4. A £ Q.

Proof. Let us assume that A is decidable by a machine in M. ,(®). Then, (R'\
A) NN is semi-decidable by a machine M € M!,,(Q). We will modify M in
the following way. We extend the machine by instructions for enumerating all
positive integers and compare it with the input at the beginning. If the input is
not a positive integer, then the enumeration of integers will not be stopped. If
the input is a positive integer, then the instructions of M can be simulated by
a machine in M;’dj since all queries of M are answered in the positive and each
order test can be simulated by means of few equality tests. Therefore we remove
all oracle instructions in the program of M and replace the order tests by some
instructions without order tests such that the resulting machine belongs to M;&j
and (R\ A)NIN is semi-decidable by this machine. Since A satisfies the property
(ii), there is an infinite W; such that (IR \ .A) NIN = W;. This contradicts the

property (iii). Hence, the assumption is wrong. O

This implies the following.

Proposition5. @ 2]H;;;l.

4 IH;ZE is Strictly Easier than IH!

The aim of this section is to define an infinite hierarchy between]Hi’dj and TH} 4.
K. Meer and M. Ziegler showed that the power of algebraic numbers is great
enough to give Turing degrees below the Halting Problem with respect to the
BSS model of computation. Here, we will consider only the square roots of prime
numbers in order to construct a hierarchy of Turing degrees with respect to the
additive BSS machines without additional real parameters. We will show that
the roots of different prime numbers yield, on one hand, an infinite number of

incomparable Turing degrees and, on the other hand, a possibility to construct a
hierarchy of Turing degrees such that the Halting Problem for additive machines
without order and without real constants is easier than these degrees. In the
proofs we will use the observation that the complement of a problem can be
decided by using the problem itself as oracle.

Let p1 = 2,p2 = 3,... be an enumeration of the prime numbers. Moreover
let K; be a machine recognizing IR \ {,/p;} by checking, for any input =, the
condition (z < £ and ;—2 < pi) or (z > % and Z—Z > p;) for all enumerated
(r,q) € IN* until the condition is satisfied.

Thus, we can consider the following halting problems.

P; = {(1,,code(K;)) € Hyqq | © € R\ {\/Pi}},
H; =]Hzlm&j U Ujgi IP;.

We assume that all machine K; compute the prime number p = p; from j by
executing the same procedure on j. To simplify matters we take instructions
realizing the algorithm &k := 1; p := 2; while k < j {p :== p+ 1; if (V(¢,s) €
{2,...,p—=1}*)(p # t- s) then k := k + 1;}. Then, the codes of these machines
differ only in the code of the integers j. That means that the set of codes code(K;)
and the set of pairs (4, code(K;)) are decidable. Therefore, we get a hierarchy of
the following form.

Lemma6. H o < H; <H, <. < H.y,.

The following lemmas are useful for showing that H; is strictly easier than
Hi+1-

Lemma?7. For any 1 <k <4, {\/px} 2 {\/P1,---,/Di}

Proof. Let K be the following machine. K queries the oracle {\/p1,...,/Pi}
whether the input z belongs to this oracle and outputs 0 if the answer is in the
negative. Otherwise, let I = {1,...,i} be the set of the indices of the first i
prime numbers and let K simulate the machines &y, ..., ; simultaneously. For
all enumerated (r, q), K checks z < g and ;—2 < p; as well as © > g and ;—Z > pj
for any j € I. If one of both conditions is satisfied for some j and, consequently,
z # /pj, then I := T\ {j}. If k = j, then the machine halts and the output is
0. Otherwise, the machine continues its operations. If the only member of I is
k, then the output is 1. O

Relationships as {\/p1,...,v/Pi} 2 R\ {y/p1,...,/Di} =2 {/P1,...,/Pi} are

characteristic for the Turing reducibility relation. Moreover {,/p;} < P; <
{\/Pj} is easy to see and we even have the following.

Lemmas8. For anyi > 1,

Proof. R\ {{/p1,...,/Pi} 2 U,<;P; holds since z € R\ {{/p1,...,/Pi} is
satisfied if and only if {(1,,code(K1)), ..., (1,2, code(K;))} C U<, IP; holds.
On the other hand, the set {(1,code(K1)), ..., (i, code(K;))} is decidable. Conse-
quently, for any input (x,x2,x3) and for any j < i, we can check whether x; =1,
x3 = code(K;) und z2 # /p; by using the oracle {(1, \/p1),- .-, (i,/Pi)}- Thus,
by Lemma 7 we also obtain ;. IP; < {\/p1,...,/Pi}- a

Thus, the decidability of the set of codes code(K;) implies also the following.

Lemma9. Leti>1and O C L_Jj>1 IRY. If H; is decidable by an oracle machine
in ML,,(0), then the problems Uj<i]Pj and {\/p1,...,/Pi} are also decidable
by some machines in M ,(O).

Lemma10. Let M € Midd(]Hi;;l) be a machine deciding a problem S C IR.
Then, there are n,m € INT such that M rejects the inputs \/2 and m oor M
accepts both inputs.

Proof. For the computation path of an M € M., (IH:2) on input = € IR there
is a finite system of conditions of the form

kve+1,>0 and kyx+1,>0, (1)
(j,krw + 11, kjz + 1j,code(N)) € HL=, (2)
(J, kv + 11, kjz + 1, code(N)) & HEo (3)

(kiyl; € Z, N € MLx;) which is satisfied by an input if and only if this path
is traversed by M on x. Let us remark that the oracle queries which are not of
the form

(J, vz + 11, kjz + 1, code(N)) € HL5? (4)

are always answered in the negative.

Let z € R\ Q. Then, each equation kxz+0) = 0 and kxz+I) = 1, respectively,
can only be satisfied if k5 = 0. That means that any component of the tuple
code(N) € {0,1}* in (4) is determined by the constant function f(z) = 0 and
g(x) = 1, respectively.

Moreover, every computation path of NV € M;’dj on an input of the form
(kiz + 11,...,kjz + 1) can be described by equations and inequalities of the
form

kyx+1l,=0 and kyzx+1,#0.
Since, for any n,m € INT, - and V2 satisfy the same equations of the form
kv +1, =0, every N € ML halts on (ki 27 + 1y, ..., kj 27 +1;) if and only
if it halts on (k1v2 + ll,...,kj\/i + ;). Moreover, for any ¢ > 0, there are
ne,me € INT such that |:1—i - §| < . Thus, there are some ng,mg € INT such
that 27 and V/2 satisfy the same system (1). a

Thus, we get the following corollaries.

Corollary 11. The problem {\/2} is not decidable by a machine in Midd(]H;;;).
Corollary 12.]H;; 7 H,.

Our next goal is to show that IH; is strictly easier than IH;; for any i > 1.
The following corollary results from Lemma 9 and Lemma 7.

Corollary 13. For any i > 1, if H;y1 would be decidable by a machine in
M (H;), then IP;y1 as well as the problem {\/pit1} would also be decidable by
machines in ML, (IH;).

Lemma14. Let M € M., (H;) be a machine deciding a problem S C R. Then,
there are n,m € IN' such that M rejects /pir1 and = or M accepts the both
nputs.

Proof. In analogy with the proof of Lemma, 10, there are n,m € IN' such that
V/Pir1 and > satisfy same conditions of the form (1), (2), and (3). Moreover,

we have ki\/pit1 + 11 # \/pj for any j < i and ki >m + 1 # /pj for any j <
and any m,n € INT. Thus, questions like (1, k12 + [1,code(K;)) €]H;;;? are
answered in the positive. O

From this lemma we deduce the following result.

Corollary 15. For any i > 1, the problem {,/piy1} is not decidable by a ma-
chine in M, (H;).

Since these results are independent of the order of the prime numbers, we get
incomparable Turing degrees for the strong Turing reduction without additional
real parameters (apart from 0 and 1).

Corollary 16. For any i,j > 1 where i # j, we have IP; 7 IP; and IP; 7 IP;.
By Corrolary 13 we moreover get the following.

Lemmal7. For anyi> 1, H; 7<L H;y.
Consequently, we have the following.

Proposition 18.]Hifd 2 H, 2 H, 2 32 Ui21 H; < H.,,.

5]I-I:ldcl is Strictly Easier than IH,qq

Now we want to demonstrate the power of real machine constants. We will define
a special sequence (c;);>1 of real numbers which, consequently, can be encoded
by their indices i.

Recall that, for any BSS machine M € Maqq, code(M) is the usual code of its
program where any real constant is encoded by itself and the other single symbols
are encoded by tuples in {0,1}* (for some k). For any machine M € M’ (0),
let kag = 2/c0detMI 4 ¢ where caq is the integer whose binary code matches
with code(M) € {0,1}.

Now, we want to define a sequence of real numbers ¢y, ca,c3,... €]0,1] in
stages which allow to evaluate some special halting problems of the form

]HSPBC(Melxdd(O)) = {kM € INF | Me Melxdd(o) & M(kM) ~L}

Definition 19. Let ¢; = 1.
Stage i > 2: Let ¢; = 352 ;1077 where

Q= 1 lf_] € IHspeC(M;dd(]H;H(-l-wcz'fl))
! 0 otherwise.

For any BSS machine M € Mgqq, let code!? (M) be the sequence of the codes
of the single symbols of the program of M where the single symbols, including
the real numbers ¢, ca, ..., c;, are encoded by tuples in {0, 1}¥% and any real
constant in IR\ {c1,c2,..., ¢} is encoded by itself. In this way we get

H, = U,s1{(n,x, code” (M) | x € R" & M € Maaa & M(x) L}

Moreover, let MZ4 7 be the set of the additive BSS machines using only the
constants ci,...,c; and

% = Uz {(n, %, code (M) € H), | M € M%)
Lemma20. For anyi > 2, Hly, = H%, < H2 <o <HS " <HY)

In order to show that IH] 7" is strictly easier than HSY, ", we consider
the special Halting Problem for the machines in M., (H "% "). We want to
use the following known result.

Lemma21. For O C ;5 R', Hypec(ML,4(0)) is not decidable by a machine
in Mzq4(0).

Lemma 22. For any i > 2, Hpec(Myqq (B 5" ")) is decidable by a machine
asking only the oracle Y 7.

Proof. Let N; € M}, be a machine starting with ¢ := ¢; and j := 1 on input
z € IR and repeating ¢ := 10 - ¢; if ¢ > 1 then {if j = = then halt; ¢ := ¢ — 1;
J :=j + 1;} until the machine halts. Hence, by the definition of ¢;, the machine
N; halts on kpq for M € ML (H; 77 "“7") if and only if the (k)™ digit of ¢;
after the point is an one and, consequently, if and only if M halts on k. Thus,
Hgpee (ML g (H 7)) can be reduced to H L. O

Therefore we have following lemma and by analogy with this we get also
Lemma 24.

Lemma 23. For any i > 1, H i7" < 1 B
Lemma24. For anyi > 1, H ;7% 7 lﬂfﬁd

Then, we get the following.

Proposition 25. For any i > 2, HS,, p: H L7 7 B H p:]H;Qd.

Now, we symbolize the reductions executed by additive BSS machines using
the constants ki,...,k; by <% A =FoR B means A <EboF B and
B <keoki g,

Proposition 26. For anyi > 1,]Hg(id =]H;Zdtll) and Haqq =357]Hggd.

Ni>1]H;gd contains only codes of machines whose machine constants are encoded
by themselves. Therefore, we get the first relation in the following proposition.

Proposition 27. ﬂi21]H;gd < Haqq < Ui21 IHz(j(;d'
Remark. We believe that Hada Zadd ;>; H add and (J;5, H add ZAadd Hagq even

if any additive machines with real constants can be used for reducing one problem
to the other problem.

6 The Halting Problem for the Non-Deterministic Additive
BSS Machines

The non-deterministic machines are able to guess arbitrary real numbers. For
the corresponding Halting Problem Y} holds

Hyd) = U, s1{(n,x, code(M)) | x € R" & M € Maaa & By € R™)M(x,y) |}.

Since P. Koiran had shown in [Koiran 1994] that, for an input x, a compu-
tation path of a non-deterministic additive machine determined by additional
real guesses is also traversed on the same input x if the guesses are restricted

to be linear combinations of the input values and the machine constants with
rational coefficients. More precisely, for any computation path of length [, each
of these guesses can be replaced by a linear combination of the input values and
the machine constants whose rational coefficients can be computed in polyno-
mial time (depending on [) if it is possible to guess zeros and ones. Thus, for
any | = 1,2,..., a deterministic machine can decide whether a sequence of [
instructions is a computation path traversed by a non-deterministic machine on
an input. Consequently, the Halting Problem for the deterministic additive BSS
machines is not easier than the Halting Problem IHX1) for the non-deterministic
additive BSS machines.

Proposition 28. H,4q <]Hg(ﬁ and]Hg(ﬁ < H.,q4q-

7 Summary

These results can be summarized where — symbolizes the reduction 2,
ok

. . k1.
symbolizes =, and klﬁkj symbolizes =,

ND
]Hadd

(2) (3) (4)
Hada 3 Hygq < Hyge < w Hygg

! ! ! !

1 C1,C2 €1,C2,C3 C1,---,Ci Cl,---,Ci
Hygq = Hogy™ — Hygy = o HRT = Uis Hogy

H, =H, 7 UP, UP,
H, = H, UlP;

HS e Ly Ly« Ly Ly« Q0

T

A

T

0
References

[Blum et al. 1998] Blum, L., F. Cucker, M. SHuB, and S. SMALE: ”Complexity and
Real Computation”; Springer-Verlag (1998).

[Blum et al. 1989] Blum, L., M. Shub, and S. Smale: “On a theory of computation
and complexity over the real numbers: NP-completeness, recursive functions and
universal machines”; Bulletin of the Amer. Math. Soc. 21 (1989), 1-46.

[Borger 1992] Borger, E.: ”Berechenbarkeit, Komplexitat, Logik”; Vieweg (1992).

[Cucker and Koiran 1995] Cucker, F. and P. Koiran: ” Computing over the reals with
addition and order: Higher complexity classes”; Journal of Complexity 11 (1995),
358-376.

[Friedberg 1957] Friedberg, R.M.: “T'wo recursively enumerable sets of incomparable
degrees of unsolvability”; Proc. Natl. Acad. Sci. 43 (1957), 236-238.

[GaBner 2008] GaBner, C.: “A hierarchy below the Halting Problem for additive ma-
chines”; Theory of Computer Systems 43 (2008) (3), 464-470.

[Koiran 1994] Koiran, P.: ”Computing over the reals with addition and order”; Theo-
retical Computer Science 133 (1994), 35-47.

[Kozen 2006] Kozen, D. C.: “Theory of Computation”; Springer-Verlag (2006).

[Meer and Ziegler 2008] Meer, K., and M. Ziegler: “An explicit solution to Post’s Prob-
lem over the reals”; Journal of Complexity 24 (2008), 3-15.

[Meer and Ziegler 2006] Meer, K., M. Ziegler: “Uncomputability below the real Halting
Problem”; LNCS 3988 (2006), 368-377.

[Post 1944] Post, E.L.: “Recursively enumerable sets of positive integers and their
decision problems”; Bull. Amer. Math. Soc. 50 (1944), 284-316.

[Soare 1987] Soare, R.I. “Recursively Enumerable Sets and Degrees”; Springer-Verlag
(1987).

