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Abstract� We consider several halting problems for the additive real BSS machines
and the Turing reducibility by additive machines using only a few number of permitted
constants� We use several techniques in order to present a problem below the Halting
Problem for the additive machines using only the constants � and � and the equality
test� an in�nite hierarchy of problems between the latter problem and the Halting
Problem for the additive machines using only the constants � and � and the order
test� and �nite hierarchies above these problems where the reductions of these �nite
hierarchies to the Halting Problem for all additive BSS machines are only possible if
the machines are encoded in a special way� �Version of December ����	
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� Introduction

The Turing degrees with respect to the BSS model are the equivalence classes

de�ned by means of Turing reductions which can be performed by BSS oracle

machines� These degrees allow a characterisation of hard problems with respect

to the BSS model� In �Meer and Ziegler ����� and �Meer and Ziegler �����	 the

many
one reducibility as well as the Turing reducibility are discussed� For ad


ditive machines whose constants are restricted to be � and �	 Klaus Meer and

Martin Ziegler posed the question whether there are degrees of unsolvability

which are lower than the degree of the Halting Problem and higher than one of

the set of rational numbers� Inspired by this question we want to consider the

Turing reducibility	 at �rst	 by additive machines using only � and � as constants

without additional real parameters �that means without real machine constants

in IRnf�� �g
	 and later by machines with parameters� Then	 in both settings we

can say that a problem A is easier �to solve
 than a problem B	 if A is decidable

by an oracle machine using B as oracle where we allow real parameters in the

reduction procedure or we do not allow parameters� If B is not easier that A	
then the problem A is strictly easier to solve than B and both problems are

members of two di�erent Turing degrees� Note that the many
one reducibility

as well as the Turing reducibility without real parameters re�ne the equivalence

classes under Turing reducibility with parameters� Since the halting problem for

a class of BSS machines cannot be solved by a machine in this class we have in

any case two di�erent degrees denoted by � and ��� The class consisting of all

the decidable problems and the class consisting of all those semi
decidable sets



which are equivalent to the halting problem� The problems of the latter class

are called complete for the class of semi
decidable problems with respect to the

considered reducibility relation�

Whereas we mainly speak about decidable and semi
decidable �or recogniz


able
 sets	 in the classical theory of recursive functions and in the theory of

recursive reducibility	 the corresponding notions are recursive and recursively

enumerable sets� The recursive sets S � IN are decidable by Turing machines

that means that their characteristic functions are total recursive functions� A set

S � IN is recursively enumerable �or e�ectively enumerable
 if a bijective func


tion f � IN � S is computable by a Turing machine� Therefore	 these sets also

are the halting sets of Turing machines and	 thus	 they can be reduced to the

Halting Problem for Turing machines with respect to the many
one reducibility

relation and they are semi
decidable	 that means that their partial characteristic

functions are computable� Thus	 a set of positive integers is recursive if and only

if the set itself and its complement are e�ectively enumerable� The halting sets

of BSS machines can be reduced to the Halting Problem for BSS machines and

their partial characteristic functions are computable� Thus the halting sets of

BSS machines are semi
decidable	 too	 and a set is decidable if and only if the

set itself and its complement are semi
decidable� However	 there are halting sets

S � IR� �e�g� S � IR
 which are not e�ectively enumerable by computing a

bijective function f � IN � S� Note that this de�nition of the notion e�ectively

enumerable di�ers from the de�nition given in �Blum et al� ������

For the classical model of computation based on Turing machines	 Emil Post

showed in �Post ����� that there are undecidable semi
decidable problems which

are not complete with respect to many
one reducibility and he posed the problem

whether there are degrees between both corresponding Turing degrees of decid


able and complete semi
decidable problems	 respectively� The positive answer

to this problem was presented by Friedberg �in �Friedberg �����
 and Muchnik

by means of a technique using the �nite injury priority method� Some modern

versions of the proofs and their relationship to the classical results are presented

in �Soare �����	 �B�orger �����	 and �Kozen ������ The constructions are based on

diagonalization techniques which can be used since all halting sets of the Turing

machines and all Turing machines are enumerable� In �Meer and Ziegler �����

Klaus Meer and Martin Ziegler gave a solution to Post�s Problem for the full

BSS model over the real numbers� This solution signi�cantly di�ers from its clas


sical	 discrete variant where only diagonalization techniques are known to yield

the existence of Turing degrees below the classical Halting problem� They proved

the existence of an in�nite number of semi
decidable Turing degrees below the

real Halting problem in the BSS model and the fact that the rational numbers

are strictly easier than the real Halting problem� For the additive BSS machines

without real constants they showed that the set of quadratic rational numbers



is strictly easier than the Halting problem and they posed the question� Does Q

have the same degree of undecidability as the Halting Problem for additive BSS

machines without real constants�

We want to discuss several variants of this question for any additive real BSS

machines where we only restrict the domains of constants used in the reductions�

On one hand	 we will use the strong reductions without real parameters in order

to better understand the hardness of decision problems over the reals� On the

other hand	 the study of additive machines using real constants shows the great

power of single real numbers� Whereas in the classical case	 the main ideas are

of logical nature	 we can also use algebraic and topological properties of the real

numbers and	 in addition to these ones	 some logical techniques�

� The Model of Computation and Halting Problems

The uniform BSS model of computation was introduced in �Blum et al� �����

�cp� also �Blum et al� �����
� The additive BSS machines were considered	 for in


stance	 in �Koiran �����	 �Cucker and Koiran �����	 and �Meer and Ziegler ������

They can perform labelled instructions of the form Zi �� Zj�Zk	 Zi �� Zj�Zk	

Zj �� c	 if Zj � � then goto l� else goto l�	 if Zj � � then goto l� else goto l�	

ZIj �� ZIk 	 Ij �� �	 Ij �� Ij � �	 and if Ij � Ik then goto l� else goto l�� Each

assignment of an input �x�� � � � � xn
 �
S

i�� IR
i to the registers of a machine M

can be realized by Z� �� x�� � � � �Zn �� xn� I� �� n� � � � � IkM �� n� We denote the

class of additive BSS machines by Madd�

LetM�
add be the class of the additive BSS machines using only the constants �

and � in the instruction Zj �� c� For any oracleO � Si�� IR
i	 letM�

add�O
 be the
class of the additive oracle machines which can execute additional instructions

of the form if �Z�� � � � � ZI�
 �O then goto l� else goto l�� We say that a problem

A � Si�� IR
i is easier than a problem B � Si�� IR

i �denoted by A � B here
 if

A is decidable by a machine in M�
add�B
� The problem A is strictly easier than

B �denoted by A �� B here
 if B cannot be decided by a machine in M�
add�A
�

We will consider the following Halting Problem IH�
add for the machines in

M
�
add using only the constants � and � in the instruction Zj �� c	 the Halt


ing Problem IH���
add for the machines in M���

add � M
�
add performing only tests of

the form Zj � ��	 and the Halting Problem IHadd for all additive BSS ma


chines� The codes code�M
 of the machines M � M
�
add are sequences of the

codes of the single symbols of their programs where	 for some k	 each of the

single symbols is encoded by k symbols in f�� �g unambiguously� For any BSS

machine M � Madd	 let code�M
 be the usual code of its program where any

real constant is encoded by itself and the other single symbols are encoded by

k zeros and ones �for some k
� To simplify matters	 in the following de�nitions

we write �n�x� code�M

 instead of �n� x�� � � � � xn� s�� � � � � sm
 if x � �x�� � � � � xn


and code�M
 � �s�� � � � � sm
�



IH���
add �

S
n��f�n�x� code�M

 j x � IRn � M� M���

add � M�x
 	g�
IH�

add �
S

n��f�n�x� code�M

 j x � IRn � M� M�
add � M�x
 	g�

IHadd �
S

n��f�n�x� code�M

 j x � IRn � M� Madd � M�x
 	g

where M�x
 	 means that M halts on x� It is easy to see that

IH���
add � IH�

add � IHadd�

We will de�ne a problem below IH���
add by means of a priority method often

used in the classical recursion theory for constructing recursively enumerable sets

and we will present a hierarchy between IH���
add and IH�

add as well as hierarchies

between IH�
add and IHadd� Since we want to derive the latter hierarchies from the

halting sets of some additive machines which can also use real constants	 the

construction is also dependent on a special encoding technique used to encode

the real constants� Furthermore	 we will shortly characterize the relationship

between these problems and the Halting Problem for non
deterministic additive

machines�

The question posed by Meer and Ziegler can be formalized as follows�

Question� Does Q �� IH�
add hold�

� Q is Strictly Easier than IH
���

add

In �Ga�ner ����� we considered a list of problems of n
tuples over the real num


bers which allow to compute integers from these tuples by additive machines

without using machine constants� For

ILn � f�x�� � � � � xn
 � IRn j �
�q�� � � � � qn��
 � Qn
�q� �
Pn��

i�� qixi � xn
g�

we showed

Q � IL� �� IL� �� � � � �� IL �
S

n��ILn � IH�
add�

More precisely	 we have IL� �� IL� �� � � � and	 for any k � �	 ILk �� IL� Since the

order test is not necessary for recognizing IL	 we have even IL � IH���
add� This

example shows that we can use algebraic and topological properties for con


structing a whole hierarchy of undecidable problems below the Halting Problem

IH���
add�

On the other hand	 we can construct a set A � IN by the priority method

as given in �Soare ����� such that A �� Q and A � IH���
add and	 consequently	

Q �� IH���
add are satis�ed� This construction is possible since the machines in

M
�
add�O
 as well as in M���

add are countable and their codes can be e�ectively

enumerated by additive machines in M���
add� We will also use the following lemma�



Lemma�� The intersection of the halting set of any machine in M
���
add and IN

is e�ectively enumerable and� consequently� it is a halting set of a machine in

M
���
add�

Proof� Let HM be the halting set of any machine M� M���
add� Then	 a machine

can enumerate all pairs �n�� t�
� �n�� t�
� � � � for whichM halts on ni after exactly

ti steps� For the input j	 the enumeration machine �M compute the �rst pair

�n�� t�
 from � and each further pair �ni��� ti��
 step
by
step from its enumerated

predecessor �ni� ti
	 and outputs the jth integer nj � ut
Our de�nition of A follows �B�orger ������ For any machine M � M�

add�O
	 let
kM � �jcode�M�j � cM where cM is the integer whose binary code matches with

code�M
 � f�� �g�� If a number i does not match with a program	 then let the

corresponding machine MO
i be a simple machine that halts in any case and let

kMO
i
� i� Thus	 we can take the numbers �� �� � � � for listing all additive oracle

machines MO
� �MO

� � � � �� For any oracle set O � IN we introduce the following

special halting problem�

IKO �df IHspec�M
�
add�O

 �df fkM j M � M�

add�O
 � M�kM
 	g�
Moreover	 letN��N�� � � � be the machines inM���

add where the indices determine

the programs of the machines� If a number i does not match with a program

without order tests and oracle queries	 then let Ni be a simple machine that

halts in any case� Moreover	 let �Ni enumerate all positive integers n belonging

to the halting set of Ni by the procedure described in the proof of Lemma ��

We de�ne a new set A �
S

s��As in stages� Let A� � �� For s � �	 let As be

de�ned and

Is � fi 
 s j Wi�s � As � � � �
x �Wi�s
��i � x � ��j 
 i
�a�j� s
 � x

g
where	 for any i 
 s	

� a�i� s
 is the greatest integer which is used in a query by the machine MAs

i

on i within the �rst s steps if MAs

i �i
 	s �where 	s means that the machine

halts within s steps
 and � if MAs

i �i
 �s �otherwise
 and
� Wi�s is the set of the integers computed by �Ni on input s within s steps�

Then	

As�� �df

�As if Is � �
As � fx�g otherwise

where x� � minfx �Wi��s j �i� � x � ��j 
 i�
�a�j� s
 � x
g for i� � min Is�

Note that	 for the input i	 the machine MAs

i computes only integers� Conse


quently	 any test x � y� executed by MAs

i on i is decidable by a machine in

M
���
add� Thus	 the set A has the following properties�



�i
 A is e�ectively enumerable by an additive machine in M���
add�

�ii
 IN n A is in�nite�

�iii
 The intersection of A with any in�nite halting set of a machine Ni is not

empty�

�iv
 IKA � IK��

These properties of A hold by analogy with the classical result �compare e�g�

�Kozen �����
 since any additive machine in M���
add on positive integers can be

simulated by some Turing machine and vice versa and the set of partial recur


sive functions agrees with the set of functions computable by Turing machines�

Because of �i
	 �ii
 and �iii
 A is a simple set and because of �i
 and �iv
 A is a

low set�

The conditions �i
 and �ii
 follow immediately from the de�nition of A� The
conditions �iii
 and �iv
 follow from the positive and the negative conditions for

simplicity and lowness�

Conditions for simplicity�

�Pn
 If Wn �
S

i��Wn�i is in�nite	 then A �Wn �� ��

Conditions for lowness�

�Nn
 If MAt
n �n
 	t for in�nitely many t	 then MA

n �n
 	�

The latter conditions follow from the fact that MA
i �i
 	 implies MA

i �i
 	t for
some t andMAs

i �i
 	t for some s and t	 and consequentlyMAmaxfs�tg

i �i
 	maxfs�tg�
The conditions Pn follow from the conditions Nn�

Remark� The goal of the priority method is to de�ne the oracle by satisfying

conditions of this kind where it is allowed to injure these conditions �nitely

many times� Note that	 for these conditions	 the priorities are determined by

P� � N� � P� � N� � P� � N� � P	 � N	 � � � � where H� � H�

means that the priority of H� is higher than the priority of H�� In de�ning

As it is allowed to injured conditions Nn although n 
 s	 that means that

MAs
n �n
 � holds although we will get MAt

n �n
 	t for in�nitely many t and

MA
n �n
 	� However	 the conditions Nn are only injured in order to satisfy a

condition of a higher priority� Moreover	 it is easy to see that any condition

can only be injured �nitely many times� For more details see �B�orger ����� and

�Kozen ������

Since the set of integers can be reduced to IH���
add	 we have the following lemma

by �i
�



Lemma	� A � IH���
add�

For Turing machines we have ��
� � co��

� � ��
� � co��

� for the class ��
� of the

semi
decidable sets and the class ��
� of sets being semi
decidable by machines

using the classical Halting Problem IH as oracle� Since IH is complete for ��
�

and the Halting Problem for Turing machines using IH is complete for ��
� 	 we

have IK� �� IKIK� � Thus	 since IH���
add � A together with IK� � IH���

add would imply

IK� � A and consequently IKIK� � IKA � IK� by �iv
	 we get the following�

Lemma
� A �� IH���
add�

Moreover	 we obtain the following lemma since the oracle set Q is not really

helpful for deciding A�

Lemma�� A �� Q�

Proof� Let us assume that A is decidable by a machine in M�
add�Q
� Then	 �IR n

A
 � IN is semi
decidable by a machine M � M�
add�Q
� We will modify M in

the following way� We extend the machine by instructions for enumerating all

positive integers and compare it with the input at the beginning� If the input is

not a positive integer	 then the enumeration of integers will not be stopped� If

the input is a positive integer	 then the instructions of M can be simulated by

a machine in M���
add since all queries of M are answered in the positive and each

order test can be simulated by means of few equality tests� Therefore we remove

all oracle instructions in the program of M and replace the order tests by some

instructions without order tests such that the resulting machine belongs to M���
add

and �IRnA
�IN is semi
decidable by this machine� Since A satis�es the property

�ii
	 there is an in�nite Wj such that �IR n A
 � IN � Wj � This contradicts the

property �iii
� Hence	 the assumption is wrong� ut

This implies the following�

Proposition�� Q �� IH���
add�

� IH
���

add
is Strictly Easier than IH�

add

The aim of this section is to de�ne an in�nite hierarchy between IH���
add and IH

�
add�

K� Meer and M� Ziegler showed that the power of algebraic numbers is great

enough to give Turing degrees below the Halting Problem with respect to the

BSS model of computation� Here	 we will consider only the square roots of prime

numbers in order to construct a hierarchy of Turing degrees with respect to the

additive BSS machines without additional real parameters� We will show that

the roots of di�erent prime numbers yield	 on one hand	 an in�nite number of



incomparable Turing degrees and	 on the other hand	 a possibility to construct a

hierarchy of Turing degrees such that the Halting Problem for additive machines

without order and without real constants is easier than these degrees� In the

proofs we will use the observation that the complement of a problem can be

decided by using the problem itself as oracle�

Let p� � �� p� � �� � � � be an enumeration of the prime numbers� Moreover

let Ki be a machine recognizing IR n fppig by checking	 for any input x	 the

condition �x � r
q
and r�

q�
� pi
 or �x � r

q
and r�

q�
� pi
 for all enumerated

�r� q
 � IN� until the condition is satis�ed�

Thus	 we can consider the following halting problems�

IPi � f��� x� code�Ki

 � IH�
add j x � IR n fppigg�

IHi � IH���
add �

S
j�i IPj �

We assume that all machine Kj compute the prime number p � pj from j by

executing the same procedure on j� To simplify matters we take instructions

realizing the algorithm k �� �� p �� �� while k � j fp �� p � �� if ���t� s
 �
f�� � � � � p� �g�
�p �� t � s
 then k �� k � ��g� Then	 the codes of these machines

di�er only in the code of the integers j� That means that the set of codes code�Kj


and the set of pairs �j� code�Kj

 are decidable� Therefore	 we get a hierarchy of

the following form�

Lemma
� IH���
add � IH� � IH� � � � � � IH�

add�

The following lemmas are useful for showing that IHi is strictly easier than

IHi���

Lemma�� For any � 
 k 
 i� fppkg � fpp�� � � � �ppig�
Proof� Let K be the following machine� K queries the oracle fpp�� � � � �ppig
whether the input x belongs to this oracle and outputs � if the answer is in the

negative� Otherwise	 let I � f�� � � � � ig be the set of the indices of the �rst i

prime numbers and let K simulate the machines K�� � � � �Ki simultaneously� For

all enumerated �r� q
	 K checks x � r
q
and r�

q�
� pj as well as x � r

q
and r�

q�
� pj

for any j � I � If one of both conditions is satis�ed for some j and	 consequently	

x �� p
pj 	 then I �� I n fjg� If k � j	 then the machine halts and the output is

�� Otherwise	 the machine continues its operations� If the only member of I is

k	 then the output is �� ut
Relationships as fpp�� � � � �ppig � IR n fpp�� � � � �ppig � fpp�� � � � �ppig are

characteristic for the Turing reducibility relation� Moreover fppjg � IPj �
fppjg is easy to see and we even have the following�

Lemma�� For any i � ��

fpp�� � � � �ppig �
S

j�i IPj � fpp�� � � � �ppig�



Proof� IR n fpp�� � � � �ppig �
S

j�i IPj holds since x � IR n fpp�� � � � �ppig is

satis�ed if and only if f��� x� code�K�

� � � � � ��� x� code�Ki

g �
S

j�i IPj holds�

On the other hand	 the set f��� code�K�

� � � � � �i� code�Ki

g is decidable� Conse

quently	 for any input �x�� x�� x�
 and for any j 
 i	 we can check whether x� � �	

x� � code�Kj
 und x� �� p
pj by using the oracle f���pp�
� � � � � �i�ppi
g� Thus	

by Lemma � we also obtain
S

j�i IPj � fpp�� � � � �ppig� ut

Thus	 the decidability of the set of codes code�Ki
 implies also the following�

Lemma�� Let i � � and O � Sj�� IR
j � If IHi is decidable by an oracle machine

in M�
add�O
� then the problems

S
j�i IPj and fpp�� � � � �ppig are also decidable

by some machines in M�
add�O
�

Lemma��� Let M � M�
add�IH

���
add
 be a machine deciding a problem S � IR�

Then� there are n�m � IN� such that M rejects the inputs
p
� and n

m
� or M

accepts both inputs�

Proof� For the computation path of an M� M�
add�IH

���
add
 on input x � IR there

is a �nite system of conditions of the form

k�x� l� � � and k�x� l� � �� ��


�j� k�x� l�� � � � � kjx� lj � code�N 

 � IH���
add� ��


�j� k�x� l�� � � � � kjx� lj � code�N 

 �� IH���
add ��


�ki� li � ZZ	 N � M���
add
 which is satis�ed by an input x if and only if this path

is traversed by M on x� Let us remark that the oracle queries which are not of

the form

�j� k�x� l�� � � � � kjx� lj � code�N 

 � IH���
add� ��


are always answered in the negative�

Let x � IRnQ� Then	 each equation k�x�l� � � and k�x�l� � �	 respectively	

can only be satis�ed if k� � �� That means that any component of the tuple

code�N 
 � f�� �g� in ��
 is determined by the constant function f�x
 � � and

g�x
 � �	 respectively�

Moreover	 every computation path of N � M
���
add on an input of the form

�k�x � l�� � � � � kjx � lj
 can be described by equations and inequalities of the

form

k�x� l� � � and k�x� l� �� ��

Since	 for any n�m � IN�	 n
m
� and

p
� satisfy the same equations of the form

k�x � l� � �	 every N � M���
add halts on �k�

n
m
� � l�� � � � � kj

n
m
� � lj
 if and only

if it halts on �k�
p
� � l�� � � � � kj

p
� � lj
� Moreover	 for any � � �	 there are

n��m� � IN� such that j n�

m�
�
p
�
�
j � �

�
� Thus	 there are some n��m� � IN� such

that n�
m�

� and
p
� satisfy the same system ��
� ut



Thus	 we get the following corollaries�

Corollary ��� The problem fp�g is not decidable by a machine in M�
add�IH

���
add
�

Corollary �	� IH���
add �� IH��

Our next goal is to show that IHi is strictly easier than IHi�� for any i � ��

The following corollary results from Lemma � and Lemma ��

Corollary �
� For any i � �� if IHi�� would be decidable by a machine in

M
�
add�IHi
� then IPi�� as well as the problem fppi��g would also be decidable by

machines in M�
add�IHi
�

Lemma��� LetM� M�
add�IHi
 be a machine deciding a problem S � IR� Then�

there are n�m � IN� such that M rejects
p
pi�� and n

m
� or M accepts the both

inputs�

Proof� In analogy with the proof of Lemma ��	 there are n�m � IN� such thatp
pi�� and n

m
� satisfy same conditions of the form ��
	 ��
	 and ��
� Moreover	

we have k�
p
pi�� � l� �� p

pj for any j 
 i and k�
n
m
� � l� �� p

pj for any j 
 i

and any m�n � IN�� Thus	 questions like ��� k�x � l�� code�Kj

 � IH���
add� are

answered in the positive� ut

From this lemma we deduce the following result�

Corollary ��� For any i � �� the problem fppi��g is not decidable by a ma�

chine in M�
add�IHi
�

Since these results are independent of the order of the prime numbers	 we get

incomparable Turing degrees for the strong Turing reduction without additional

real parameters �apart from � and �
�

Corollary �
� For any i� j � � where i �� j� we have IPi �� IPj and IPj �� IPi�

By Corrolary �� we moreover get the following�

Lemma��� For any i � �� IHi �� IHi���

Consequently	 we have the following�

Proposition��� IH���
add �� IH� �� IH� �� � � � ��

S
i�� IHi � IH�

add�



� IH�

add
is Strictly Easier than IHadd

Now we want to demonstrate the power of real machine constants� We will de�ne

a special sequence �ci
i�� of real numbers which	 consequently	 can be encoded

by their indices i�

Recall that	 for any BSS machineM� Madd	 code�M
 is the usual code of its

programwhere any real constant is encoded by itself and the other single symbols

are encoded by tuples in f�� �gk �for some k
� For any machine M � M�
add�O
	

let kM � �jcode�M�j � cM where cM is the integer whose binary code matches

with code�M
 � f�� �g��
Now	 we want to de�ne a sequence of real numbers c�� c�� c�� � � � ���� �� in

stages which allow to evaluate some special halting problems of the form

IHspec�M
�
add�O

 � fkM � IN� j M � M�

add�O
 � M�kM
 	g�

De�nition ��� Let c� � ��

Stage i � �� Let ci �
P�

j�� �j��
�j where

�j �

�
� if j � IHspec�M

�
add�IH

c������ci��
add 



� otherwise�

For any BSS machine M � Madd	 let code
�i��M
 be the sequence of the codes

of the single symbols of the program of M where the single symbols	 including

the real numbers c�� c�� � � � � ci	 are encoded by tuples in f�� �gk�i and any real

constant in IR n fc�� c�� � � � � cig is encoded by itself� In this way we get

IH
�i�
add �

S
n��f�n�x� code�i��M

 j x � IRn � M� Madd � M�x
 	g�

Moreover	 let Mc������ci
add be the set of the additive BSS machines using only the

constants c�� � � � � ci and

IHc������ci
add �

S
n��f�n�x� code�i��M

 � IH

�i�
add j M � Mc������ci

add g�

Lemma	�� For any i � �� IH�
add � IHc�

add � IHc��c�
add � � � � � IHc������ci

add � IH
�i�
add�

In order to show that IH
c������ci��
add is strictly easier than IHc������ci

add 	 we consider

the special Halting Problem for the machines in M�
add�IH

c������ci��
add 
� We want to

use the following known result�

Lemma	�� For O � Si�� IR
i� IHspec�M

�
add�O

 is not decidable by a machine

in M�
add�O
�

Lemma		� For any i � �� IHspec�M
�
add�IH

c������ci��
add 

 is decidable by a machine

asking only the oracle IHc������ci
add �



Proof� Let Ni � Mci
add be a machine starting with c �� ci and j �� � on input

x � IR and repeating c �� �� � c� if c � � then fif j � x then halt� c �� c � ��

j �� j � ��g until the machine halts� Hence	 by the de�nition of ci	 the machine

Ni halts on kM for M � M�
add�IH

c������ci��
add 
 if and only if the �kM
th digit of ci

after the point is an one and	 consequently	 if and only ifM halts on kM� Thus	

IHspec�M
�
add�IH

c������ci��
add 

 can be reduced to IHc������ci

add � ut

Therefore we have following lemma and by analogy with this we get also

Lemma ���

Lemma	
� For any i � �� IHc������ci
add �� IH

c������ci��
add �

Lemma	�� For any i � �� IHc������ci
add �� IH

�i�
add�

Then	 we get the following�

Proposition	�� For any i � �� IHc�
add �� IHc��c�

add �� � � � �� IHc������ci
add �� IH

�i�
add�

Now	 we symbolize the reductions executed by additive BSS machines using

the constants k�� � � � � kj by �k������kj
add � A �k������kj

add B means A �k������kj
add B and

B �k������kj
add A�

Proposition	
� For any i � �� IH
�i�
add �ci��

add IH
�i���
add and IHadd �c������ci

add IH
�i�
add�

T
i�� IH

�i�
add contains only codes of machines whose machine constants are encoded

by themselves� Therefore	 we get the �rst relation in the following proposition�

Proposition	��
T

i�� IH
�i�
add � IHadd �

S
i�� IH

�i�
add�

Remark� We believe that IHadd ��add

T
i�� IH

�i�
add and

S
i�� IH

�i�
add ��add IHadd even

if any additive machines with real constants can be used for reducing one problem

to the other problem�

� The Halting Problem for the Non�Deterministic Additive

BSS Machines

The non
deterministic machines are able to guess arbitrary real numbers� For

the corresponding Halting Problem IHND
add holds

IHND
add �

S
n��f�n�x� code�M

 j x � IRn� M� Madd� �
y � IR�
M�x�y
 	g�

Since P� Koiran had shown in �Koiran ����� that	 for an input x	 a compu


tation path of a non
deterministic additive machine determined by additional

real guesses is also traversed on the same input x if the guesses are restricted



to be linear combinations of the input values and the machine constants with

rational coe�cients� More precisely	 for any computation path of length l	 each

of these guesses can be replaced by a linear combination of the input values and

the machine constants whose rational coe�cients can be computed in polyno


mial time �depending on l
 if it is possible to guess zeros and ones� Thus	 for

any l � �� �� � � �	 a deterministic machine can decide whether a sequence of l

instructions is a computation path traversed by a non
deterministic machine on

an input� Consequently	 the Halting Problem for the deterministic additive BSS

machines is not easier than the Halting Problem IHND
add for the non
deterministic

additive BSS machines�

Proposition	�� IHadd � IHND
add and IHND

add � IHadd�

� Summary

These results can be summarized where � symbolizes the reduction �� 	 �
symbolizes �	 and ��

k������kj
symbolizes �k������kj

add �

IHND
add

l
IHadd ��c� IH

���
add

��
c�

IH
���
add

��
c�

� � � ��ci IH
�i�
add

l l l l
IH�

add � IHc��c�
add � IHc��c��c�

add � � � � � IHc������ci
add � S

i�� IH
c������ci
add

���

�
IH� � IH���

add � IP� � IP�

�
IH� � IH���

add � IP�

�
IH���

add � � � � IL
 � IL	 � IL� � IL� � Q� �
�
A
�
�
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