
Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Exact String Matching
Problem and Definition

1.1

Datenstrukturen und Effiziente
Algorithmen
Vorlesung Datenstrukturen und Effiziente Algorithmen im WS
18/19

Marc Hellmuth
Institut für Mathematik und Informatik

Universität Greifswald

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Exact String Matching
Problem and Definition

1.2

Exact String Matching Problem

Definition 1

Let P and T be strings, called pattern and text, respectively,
and let T be longer than P. The exact matching problem is to
find all occurrences, if any, of pattern P in text T .

Instead of the simple linear matching algorithm (using the
Z-algorithm), we give a further algorithm (Boyer-Moore) that
typically runs in sub-linear time.

Important Rules

“Right-Left-Scan”

To check the occurence of P in (some part of) T we compare the characters
of P in T from left to right.

Important Rules

Definition 2

For each x ∈ Σ let R(x) be the position of the right-most occurence of
character x in P and put R(x) = 0, if x does not occur in P.
Exercise: R(x) can be computed in O(|P|) time

“Bad Character (Shift) Rule”

Suppose for a particular alignment of P against T , the right-most n − i characters of
P match their counterparts in T , but the next character to the left, P(i), mismatches
with its counterpart, say in position k of T .

The bad character rule says that P should be shifted right by max{1, i − R(T (k))}
places.

That is, if the right-most occurrence in P of character T (k) is in position j < i
(including the possibility that j = 0), then shift P so that character j of P is below
character k of T . Otherwise, shift P by one position.

Important Rules

Definition 3

For each x ∈ Σ let R(x) be the position of the right-most occurence of
character x in P and put R(x) = 0, if x does not occur in P.
Exercise: R(x) can be computed in O(|P|) time

“(Strong) Good Suffix Rule”
Suppose for a given alignment of P and T , a substring t of T matches a suffix of P, but a mismatch occurs
at the next comparison to the left.

Then find, if it exists, the right-most copy t′ of t in P such that
• t′ is not a suffix of P and
• the character to the left of t′ in P differs from the character to the left of t in P.

Shift P to the right so that substring t′ in P is below substring t in T

If t′ does not exist,then shift the left end of P past the left end of t in T by the least amount so that a prefix of
the shifted pattern matches a suffix of t in T .

If no such shift is possible, then shift P by n places to the right.

If an occurrence of P is found, then shift P by the least amount so that a proper prefix of the shifted P
matches a suffix of the occurrence of P in T .

If no such shift is possible, then shift P by n places, that is, shift P past t in T .

Important Rules

Theorem 4

The use of the good suffix rule never shifts P past an occurrence in T .

Proof.

(chalk board)

Important Rules

Definition 5

For each i , L′(i) is the largest position less than n such that string P[i ..n]
matches a suffix of P[1..L′(i)] and such that the character preceding that
suffix is not equal to P(i − 1).
L′(i) = 0, if there is no position satisfying the conditions.

Let l ′(i) denote the length of the largest suffix of P[i ..n] that is also a prefix
of P, if one exists. If none exists, then let l ′(i) be zero.

Compute L′(i), l ′(i)

Definition 6

For string S = s1s2 . . . sn, the inverse S−1 of S is S−1 = snsn−2 . . . s1

Definition 7

For string P, Nj (P) is the length of the longest suffix of the substring P[1..j]
that is also a suffix of the full string P.

Nj (P) = Z|P|−j+1(P−1)

Thus, the Nj (P) values can be computed O(|P|) time using the Z-Algorithm
on P−1.

Theorem 8

L′(i) is the largest index j < n such that Nj (P) = |P[i ..n]| = n − i + 1.

Compute L′(i), l ′(i)

Compute L′(i), l ′(i)

Require: All Nj(P) are computed using Z-alg on P−1.
1: n=|P|
2: for i = 1 to n do L′(i)← 0
3: for j = 1 to n − 1 do
4: i ← n − Nj(P) + 1
5: L′(i)← j
6: j ← 0
7: for i = 1 to n do
8: if Nj(P) = i then j ← i
9: l ′(n − i + 1)← j

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Exact String Matching
Problem and Definition

1.10

Boyer-Moore Algorithm

Boyer-Moore Algorithm

Require: Pattern P and Text T
1: n← |P|, m← |T |
2: Compute L′(i), l ′(i), R(x) for P
3: k ← n
4: while k ≤ m do
5: i ← n, h← k
6: while i > 0 and P(i) = T (h) do
7: i ← i − 1, h← h − 1
8: if i = 0 then // P occurs in T
9: output occurrence of P starting at position k − n + 1 in T

10: k ← k + n − l ′(2)
11: else// P does not occur in T
12: shiftBC ← max{1, i − R(T (h))}
13: if L’(i+1) = 0 then shiftGS ← n − l ′(i + 1)
14: else shiftGS ← n − L′(i + 1)
15: k ← k + max{shiftBC , shiftGS}

	Exact String Matching
	Problem and Definition

