10. Exercise "Datenstrukturen und Effiziente Algorithmen", WS 18/19

Exercise 1: (5 Credits)
Use the Extended_EUCLID algorithm with input $a=899$ and $b=493$ to compute $\operatorname{gcd}(a, b)=a x+b y$ together with the coefficients x and y. Give the intermediate results for each recursive call.

Exercise 2: (7.5 Credits)
Suppose that the prime factorizations of a and b is $a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$ and $b=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{r}^{f_{r}}$, respectively, with zero exponents being used to make the set of primes $p_{1}, p_{2}, \ldots, p_{r}$ the same for both a and b. Show that

$$
\operatorname{gcd}(a, b)=p_{1}^{\min \left\{e_{1}, f_{1}\right\}} p_{2}^{\min \left\{e_{2}, f_{2}\right\}} \cdots p_{r}^{\min \left\{e_{r}, f_{r}\right\}} .
$$

Exercise 3: (7.5 Credits)
The i-th Fibonacci number is denoted by F_{i}, where $F_{0}:=0, F_{1}:=1$ and $F_{i}=F_{i-1}+F_{i-2}$, $i>1$. Show that Fibonacci numbers can be used to convert miles to kilometers by:

$$
F_{n} \mathrm{~km} \approx F_{n-1} \mathrm{mi} .
$$

Using the latter approximation, convert 100 miles to kilometers.

Exercise 4: (10 Credits)
What does the Extended_EUCLID algorithm return, if the input is $a=F_{k+1}$ and $b=F_{k}$? Prove your answer correct.

Deadline: Wednesday - January 16, 2019-12.15pm

