11. Exercise "Datenstrukturen und Effiziente Algorithmen", WS 18/19

Exercise 1: (4 Credits)
Show that if p is prime and e is a positive integer, then $\varphi\left(p^{e}\right)=p^{e-1}(p-1)$, where φ denotes Euler's phi function.

Exercise 2: (4 Credits)
Show that for any integer $n>1$ and for any $a \in Z_{n}^{*}$, the function $f_{a}: Z_{n}^{*} \rightarrow Z_{n}^{*}$ defined by $f_{a}(x)=a x \bmod n$ is a permutation of Z_{n}^{*}, that is, a bijective map.

Exercise 3: (5 Credits)
Prove that the equation $a x \equiv a y(\bmod n)$ implies $x \equiv y(\bmod n)$ whenever $\operatorname{gcd}(a, n)=1$. Show that the condition $\operatorname{gcd}(a, n)=1$ is necessary by supplying a counterexample with $\operatorname{gcd}(a, n)>1$.

Exercise 4: RSA public-key cryptosystem (7 Credits)
Let $S_{A}=(d, n)$ and $P_{A}=(e, n)$ be the secret and public key of Alice, respectively. Here $n=p q$, where p and q are distinct primes. We assume that $P_{A}=(e, n)$ is known for all participants.
Prove that if Alice's public exponent e is 3 and an adversary obtains Alice's secret exponent d, where $0<d<\varphi(n)$, then the adversary can factor Alice's $n=p q$ in time polynomial in the number of bits in n.

Exercise 5: RSA public-key cryptosystem (10 Credits)
Letters A, B, C, \ldots, Y, Z are identified with their letter number in the alphabet. Thus, $A=01, B=02, \ldots, Z=26$. By way of example, the three numbers "18 1901 " would encode the word " $R S A$ ".
Let $p=7, q=11$ and e be the smallest odd positive integer that is relatively prime to $\varphi(n)$, where φ denotes Euler's phi function.
Based on p, q, e and the encoding of letters as above, use the RSA public-key cryptosystem
(a) to encode the word " $H U T$ " and
(b) to decode the word "68 7168 ".

