Universität Greifswald Institute für Mathematik and Informatik Lecturer: Marc Hellmuth Tutor: Nikolai Nøjgaard

11. EXERCISE "DATENSTRUKTUREN UND EFFIZIENTE Algorithmen", WS 18/19

Exercise 1: (4 Credits)

Show that if p is prime and e is a positive integer, then $\varphi(p^e) = p^{e-1}(p-1)$, where φ denotes Euler's phi function.

Exercise 2: (4 Credits)

Show that for any integer n > 1 and for any $a \in Z_n^*$, the function $f_a \colon Z_n^* \to Z_n^*$ defined by $f_a(x) = ax \mod n$ is a permutation of Z_n^* , that is, a bijective map.

Exercise 3: (5 Credits)

Prove that the equation $ax \equiv ay \pmod{n}$ implies $x \equiv y \pmod{n}$ whenever gcd(a, n) = 1. Show that the condition gcd(a, n) = 1 is necessary by supplying a counterexample with gcd(a, n) > 1.

Exercise 4: RSA public-key cryptosystem (7 Credits)

Let $S_A = (d, n)$ and $P_A = (e, n)$ be the secret and public key of Alice, respectively. Here n = pq, where p and q are distinct primes. We assume that $P_A = (e, n)$ is known for all participants.

Prove that if Alice's public exponent e is 3 and an adversary obtains Alice's secret exponent d, where $0 < d < \varphi(n)$, then the adversary can factor Alice's n = pq in time polynomial in the number of bits in n.

Exercise 5: RSA public-key cryptosystem (10 Credits)

Letters A, B, C, \ldots, Y, Z are identified with their letter number in the alphabet. Thus, $A = 01, B = 02, \ldots, Z = 26$. By way of example, the three numbers "18 19 01" would encode the word "R S A".

Let p = 7, q = 11 and e be the smallest odd positive integer that is relatively prime to $\varphi(n)$, where φ denotes Euler's phi function.

Based on p, q, e and the encoding of letters as above, use the RSA public-key cryptosystem

- (a) to encode the word "H U T" and
- (b) to decode the word "68 71 68".

Deadline: Wednesday - January 23, 2019 - 12.15pm