Universität Greifswald
Institute für Mathematik and Informatik
Lecturer: Marc Hellmuth Tutor: Nikolai Nøjgaard

2. Exercise "Datenstrukturen und Effiziente Algorithmen", WS 18/19

Exercise 1: (2.5+2.5=5 Credits)
Let B a decision problem in the class \mathcal{P} and A a decision problem with $A \leq_{p} B$.
(a) Explain in a few words if $A \notin \mathcal{N P}$ or $A \in \mathcal{N P}$.
(b) What can you conclude about the "subset relation" of the classes \mathcal{P} and $\mathcal{N} \mathcal{P}$ if Problem A is $\mathcal{N} \mathcal{P}$-hard. Explain your results.

Exercise 2: "Subgraph Isomorphism" (10 Credits)

Show that the following decision problem is NP-complete:
Given two undirected graphs H and G.
Is there an isomorphism φ from H to some subgraph $G^{\prime} \subseteq G$?
HINT: You may start the reduction from Clique.

Exercise 3: "BoolMatrixDecomposition" (15 Credits)

The following problem, called SetBasisProblem, is NP-complete:
Given a set \mathcal{C} of subsets of a finite set U and a positive integer k.
Is there a set \mathcal{B} of subsets of U with $|\mathcal{B}| \leq k$ such that for every $C \in \mathcal{C}$ there is a subset $\mathcal{B}_{C} \subseteq \mathcal{B}$ with $\cup_{B \in \mathcal{B}_{C}} B=C$?

Now, let A and B be binary matrices of dimensions $n \times k$ and $k \times m$, respectively. Let $C=A \circ B$ denote the ($n \times m$ matrix) Boolean product of A and B, i.e., the usual matrix product with the exception that $1+1=1$. By way of example

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right) \circ\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) .
$$

Use reduction from SetBasisProblem to show that the following problem BoolMatrixDecomposition is NP-complete.

Given an $n \times m$ matrix C and a positive integer $k<\min \{m, n\}$.
Is there a $n \times k$ matrix A and a $k \times m$ matrix B such that $C=A \circ B$?

