2. Exercise "Datenstrukturen und Effiziente Algorithmen", WS 18/19

Exercise 1: (2.5+2.5=5 Credits)

Let B a decision problem in the class \mathcal{P} and A a decision problem with $A \leq_p B$.

- (a) Explain in a few words if $A \notin \mathcal{NP}$ or $A \in \mathcal{NP}$.
- (b) What can you conclude about the "subset relation" of the classes \mathcal{P} and \mathcal{NP} if Problem A is \mathcal{NP} -hard. Explain your results.

Exercise 2: "Subgraph Isomorphism" (10 Credits)

Show that the following decision problem is NP-complete:

Given two undirected graphs H and G.

Is there an isomorphism φ from H to some subgraph $G' \subseteq G$?

HINT: You may start the reduction from CLIQUE.

Exercise 3: "BoolMatrixDecomposition" (15 Credits)

The following problem, called SETBASISPROBLEM, is NP-complete:

Given a set C of subsets of a finite set U and a positive integer k.

Is there a set \mathcal{B} of subsets of U with $|\mathcal{B}| \leq k$ such that for every $C \in \mathcal{C}$ there is a subset $\mathcal{B}_C \subseteq \mathcal{B}$ with $\bigcup_{B \in \mathcal{B}_C} B = C$?

Now, let A and B be binary matrices of dimensions $n \times k$ and $k \times m$, respectively. Let $C = A \circ B$ denote the $(n \times m \text{ matrix})$ Boolean product of A and B, i.e., the usual matrix product with the exception that 1 + 1 = 1. By way of example

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

Use reduction from SETBASISPROBLEM to show that the following problem BOOLMA-TRIXDECOMPOSITION is NP-complete.

Given an $n \times m$ matrix C and a positive integer $k < \min\{m, n\}$. Is there a $n \times k$ matrix A and a $k \times m$ matrix B such that $C = A \circ B$?

Deadline: Wednesday - October 31, 2018 - 12.15pm