5. Exercise "Datenstrukturen und Effiziente Algorithmen", WS18/19

Exercise 1: (5 Credits)

Construct for each $k \in \{0, ..., m-2\}$ a string of length m such that its suffix tree has k + m edges. Proof your result.

Exercise 2: (4.5+4.5+6=15 Credits)

Use the existence of a linear-time algorithm to construct a (compressed) suffix tree to show that the following problems can be solved in linear-time.

- (a) Find *all* occurrences of pattern P in a string S.
- (b) Determine whether pattern P occurs in all strings S_1, \ldots, S_ℓ .
- (c) Determine the longest substring of a string S that occurs at least two times in S.

Exercise 3: (2.5+2.5=5 Credits)

Let *m* be an arbitrary integer and S be the set of strings $S = s_1 s_2 \dots s_m$ with $s_i \neq s_m =$ \$, $1 \leq i < m$. Provide a string $S \in S$ such that its implicit suffix

- (a) has the fewest number
- (b) has the largest number

of edges among all strings in S. Proof your result. HINT: Exercise 1

Exercise 4: (5 Credits)

Build the implicit suffixtree \mathcal{T} of the string S = TOCOTOC using Ukkonens algorithm. Give for each phase i + 1 and each extension j where Rule 1 is not applied the respective "intermediate" trees.

Draw all suffix-links within your constructed \mathcal{T} .

Deadline: Wednesday - November 21, 2018 - 12.15pm