5. Exercise "Datenstrukturen und Effiziente Algorithmen", WS 18/19

Exercise 1: (5 Credits)
Construct for each $k \in\{0, \ldots, m-2\}$ a string of length m such that its suffix tree has $k+m$ edges. Proof your result.

Exercise 2: (4.5+4.5+6=15 Credits)
Use the existence of a linear-time algorithm to construct a (compressed) suffix tree to show that the following problems can be solved in linear-time.
(a) Find all occurrences of pattern P in a string S.
(b) Determine whether pattern P occurs in all strings S_{1}, \ldots, S_{ℓ}.
(c) Determine the longest substring of a string S that occurs at least two times in S.

Exercise 3: (2.5+2.5=5 Credits)
Let m be an arbitrary integer and \mathcal{S} be the set of strings $S=s_{1} s_{2} \ldots s_{m}$ with $s_{i} \neq s_{m}=\$$, $1 \leq i<m$. Provide a string $S \in \mathcal{S}$ such that its implicit suffix
(a) has the fewest number
(b) has the largest number
of edges among all strings in \mathcal{S}. Proof your result.
HINT: Exercise 1

Exercise 4: (5 Credits)
Build the implicit suffixtree \mathcal{T} of the string $S \$=$ TOCOTOC $\$$ using Ukkonens algorithm. Give for each phase $i+1$ and each extension j where Rule 1 is not applied the respective "intermediate" trees.
Draw all suffix-links within your constructed \mathcal{T}.

