
Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Basics

Short Intermezzo:
Graph
Graph Terminology

Types of Algorithms
iterative Alg.

recursive Alg.

dynamic Alg.

heuristic Alg.

prob. Alg.

1.1

Datenstrukturen und Effiziente
Algorithmen
Vorlesung Datenstrukturen und Effiziente Algorithmen im WS
18/19

Marc Hellmuth
Institut für Mathematik und Informatik

Universität Greifswald



Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Basics

Short Intermezzo:
Graph
Graph Terminology

Types of Algorithms
iterative Alg.

recursive Alg.

dynamic Alg.

heuristic Alg.

prob. Alg.

1.2

• basics
• some simple graph theory
• some types of algorithms

(which you should know)



Recap: What is an Algorithm?

Etymology

The word "algorithm" has its roots in Latinizing the name of Muhammad ibn Musa
al-Khwarizmi (∼ 780-850) in a first step to algorismus, who was a Persian
mathematician, astronomer, geographer, and scholar in the House of Wisdom in
Baghdad.

He wrote a treatise "on the Hindu-Arabic numeral system" in Arabic language.

Translated into Latin during the 12th century under the title Algoritmi de numero
Indorum. "Algoritmi on the numbers of the Indians".

"Algoritmi" was the translator’s Latinization of Al-Khwarizmi’s name. In the 15th
century, under the influence of the Greek word ’number’ (cf. ’arithmetic’), the Latin
word was altered to algorithmus, and the corresponding English term ’algorithm’ is
first attested in the 17th century; the modern sense was introduced in the 19th
century.

First algorithm (computer program) by Ada Lovelace (1843) for the for the Analytical
Engine (by Charles Babbage) to compute Bernoulli numbers.



Recap: What is an Algorithm?

Etymology

The word "algorithm" has its roots in Latinizing the name of Muhammad ibn Musa
al-Khwarizmi (∼ 780-850) in a first step to algorismus, who was a Persian
mathematician, astronomer, geographer, and scholar in the House of Wisdom in
Baghdad.

He wrote a treatise "on the Hindu-Arabic numeral system" in Arabic language.

Translated into Latin during the 12th century under the title Algoritmi de numero
Indorum. "Algoritmi on the numbers of the Indians".

"Algoritmi" was the translator’s Latinization of Al-Khwarizmi’s name. In the 15th
century, under the influence of the Greek word ’number’ (cf. ’arithmetic’), the Latin
word was altered to algorithmus, and the corresponding English term ’algorithm’ is
first attested in the 17th century; the modern sense was introduced in the 19th
century.

First algorithm (computer program) by Ada Lovelace (1843) for the for the Analytical
Engine (by Charles Babbage) to compute Bernoulli numbers.



Recap: What is an Algorithm?

Etymology

The word "algorithm" has its roots in Latinizing the name of Muhammad ibn Musa
al-Khwarizmi (∼ 780-850) in a first step to algorismus, who was a Persian
mathematician, astronomer, geographer, and scholar in the House of Wisdom in
Baghdad.

He wrote a treatise "on the Hindu-Arabic numeral system" in Arabic language.

Translated into Latin during the 12th century under the title Algoritmi de numero
Indorum. "Algoritmi on the numbers of the Indians".

"Algoritmi" was the translator’s Latinization of Al-Khwarizmi’s name. In the 15th
century, under the influence of the Greek word ’number’ (cf. ’arithmetic’), the Latin
word was altered to algorithmus, and the corresponding English term ’algorithm’ is
first attested in the 17th century; the modern sense was introduced in the 19th
century.

First algorithm (computer program) by Ada Lovelace (1843) for the for the Analytical
Engine (by Charles Babbage) to compute Bernoulli numbers.



Recap: What is an Algorithm?

Etymology

The word "algorithm" has its roots in Latinizing the name of Muhammad ibn Musa
al-Khwarizmi (∼ 780-850) in a first step to algorismus, who was a Persian
mathematician, astronomer, geographer, and scholar in the House of Wisdom in
Baghdad.

He wrote a treatise "on the Hindu-Arabic numeral system" in Arabic language.

Translated into Latin during the 12th century under the title Algoritmi de numero
Indorum. "Algoritmi on the numbers of the Indians".

"Algoritmi" was the translator’s Latinization of Al-Khwarizmi’s name. In the 15th
century, under the influence of the Greek word ’number’ (cf. ’arithmetic’), the Latin
word was altered to algorithmus, and the corresponding English term ’algorithm’ is
first attested in the 17th century; the modern sense was introduced in the 19th
century.

First algorithm (computer program) by Ada Lovelace (1843) for the for the Analytical
Engine (by Charles Babbage) to compute Bernoulli numbers.



Recap: What is an Algorithm?

Informal

Every well-defined computable procedure which

• has as input (a finite set of) some values

• applies a sequence of operations on the values

• has as output (a finite set of) some values



Recap: What is an Algorithm?

(More) Formal

Via Turing-machines (Alan Turing)

TM mathematically models a machine that mechanically operates on a tape.

On this tape are symbols, which the machine can read and write, one at a time,
using a tape head.

Operation is fully determined by a finite set of elementary instructions such as
"in state 42, if the symbol seen is 0, write a 1; if the symbol seen is 1, change into
state 17; in state 17, if the symbol seen is 0, write a 1 and change to state 6;

A computational rule for solving a problem is called Algorithm if and only if there
exists an equivalent Turing machine to this computation rule and stops for each
input that has a solution.

Necessary Conditions:

• The procedure must be clearly describable in a finite text (finite).

• Every step of the procedure must be executable (executability).

• The method needs only finite amount of memory at any given time (dynamic
finiteness).

• The procedure may only need a finite number of steps (termination).



Recap: What is an Algorithm?

(More) Formal

Via Turing-machines (Alan Turing)

TM mathematically models a machine that mechanically operates on a tape.

On this tape are symbols, which the machine can read and write, one at a time,
using a tape head.

Operation is fully determined by a finite set of elementary instructions such as
"in state 42, if the symbol seen is 0, write a 1; if the symbol seen is 1, change into
state 17; in state 17, if the symbol seen is 0, write a 1 and change to state 6;

A computational rule for solving a problem is called Algorithm if and only if there
exists an equivalent Turing machine to this computation rule and stops for each
input that has a solution.

Necessary Conditions:

• The procedure must be clearly describable in a finite text (finite).

• Every step of the procedure must be executable (executability).

• The method needs only finite amount of memory at any given time (dynamic
finiteness).

• The procedure may only need a finite number of steps (termination).



Recap: What is an Algorithm?

(More) Formal

Via Turing-machines (Alan Turing)

TM mathematically models a machine that mechanically operates on a tape.

On this tape are symbols, which the machine can read and write, one at a time,
using a tape head.

Operation is fully determined by a finite set of elementary instructions such as
"in state 42, if the symbol seen is 0, write a 1; if the symbol seen is 1, change into
state 17; in state 17, if the symbol seen is 0, write a 1 and change to state 6;

A computational rule for solving a problem is called Algorithm if and only if there
exists an equivalent Turing machine to this computation rule and stops for each
input that has a solution.

Necessary Conditions:

• The procedure must be clearly describable in a finite text (finite).

• Every step of the procedure must be executable (executability).

• The method needs only finite amount of memory at any given time (dynamic
finiteness).

• The procedure may only need a finite number of steps (termination).



Recap: What is a Data Structure ?

Data Structure

is a data organization, management and storage format that enables efficient
access and modification

Efficiency

= "Speed" and "economical usage of resources".

Example Blackboard:

• Merge-sort VS Insertion-sort

Reminder: O-/Θ-/Ω-Notation

For positive functions f and g, we define

• g(n) ∈ O(f (n)) :⇔ ∃c > 0, n0 > 0 : ∀n > n0 : g(n) ≤ cf (n)

• g(n) ∈ Ω(f (n)) :⇔ ∃c > 0, n0 > 0 : ∀n > n0 : g(n) ≥ cf (n)

• g(n) ∈ Θ(f (n)) :⇔ g(n) ∈ O(f (n)) and g(n) ∈ Ω(f (n)).

The notation g(n) = O(f (n)) is also very commonly used.



Recap: What is a Data Structure ?

Data Structure

is a data organization, management and storage format that enables efficient
access and modification

Efficiency

= "Speed" and "economical usage of resources".

Example Blackboard:

• Merge-sort VS Insertion-sort

Reminder: O-/Θ-/Ω-Notation

For positive functions f and g, we define

• g(n) ∈ O(f (n)) :⇔ ∃c > 0, n0 > 0 : ∀n > n0 : g(n) ≤ cf (n)

• g(n) ∈ Ω(f (n)) :⇔ ∃c > 0, n0 > 0 : ∀n > n0 : g(n) ≥ cf (n)

• g(n) ∈ Θ(f (n)) :⇔ g(n) ∈ O(f (n)) and g(n) ∈ Ω(f (n)).

The notation g(n) = O(f (n)) is also very commonly used.



Recap: What is a Data Structure ?

Data Structure

is a data organization, management and storage format that enables efficient
access and modification

Efficiency

= "Speed" and "economical usage of resources".

Example Blackboard:

• Merge-sort VS Insertion-sort

Reminder: O-/Θ-/Ω-Notation

For positive functions f and g, we define

• g(n) ∈ O(f (n)) :⇔ ∃c > 0, n0 > 0 : ∀n > n0 : g(n) ≤ cf (n)

• g(n) ∈ Ω(f (n)) :⇔ ∃c > 0, n0 > 0 : ∀n > n0 : g(n) ≥ cf (n)

• g(n) ∈ Θ(f (n)) :⇔ g(n) ∈ O(f (n)) and g(n) ∈ Ω(f (n)).

The notation g(n) = O(f (n)) is also very commonly used.



Recap: What is a Data Structure ?

Data Structure

is a data organization, management and storage format that enables efficient
access and modification

Efficiency

= "Speed" and "economical usage of resources".

Example Blackboard:

• Merge-sort VS Insertion-sort

Reminder: O-/Θ-/Ω-Notation

For positive functions f and g, we define

• g(n) ∈ O(f (n)) :⇔ ∃c > 0, n0 > 0 : ∀n > n0 : g(n) ≤ cf (n)

• g(n) ∈ Ω(f (n)) :⇔ ∃c > 0, n0 > 0 : ∀n > n0 : g(n) ≥ cf (n)

• g(n) ∈ Θ(f (n)) :⇔ g(n) ∈ O(f (n)) and g(n) ∈ Ω(f (n)).

The notation g(n) = O(f (n)) is also very commonly used.



Graph Terminology
directed graph gerichteter Graph (V ,E), E ⊆ V × V
undirected graph ungerichteter Graph (V ,E), either E ⊆

(V
2

)
or E ⊆ V×V

with (u, v) ∈ E ⇐⇒ (v , u) ∈ E
vertex, node Knoten v ∈ V
edge Kante (u, v) ∈ E (directed)

{u, v} ∈ E (undirected)
degree Grad deg(v) = |{u ∈ V |, {u, v} ∈ E}|
in-degree Eingrad indeg(v) = |{u ∈ V |, (u, v) ∈ E}|
out-degree Ausgrad outdeg(v) = |{u ∈ V |, (v , u) ∈ E}|
adjacent benachbart two vertices can be adjacent
incident inzident an edge can be incident to a vertex
path Weg u ; v , (u = u0, u1, . . . , uk = v) and

(ui , ui+1) are edges 0 ≤ i ≤ k − 1
length of path Länge eines Weges k
edge on path Kante auf Weg edges (ui , ui+1) are on path
simple path Pfad i 6= j ⇒ ui 6= uj

self-loop Selbstschleife (u, u) ∈ E
cycle Kreis u ; u
DAG, directed gerichteter gerichteter Graph
acyclic graph azyklischer Graph ohne Kreise



Graph Terminology - Blackboard

• isomorphism

• (induced) subgraph ((induzierter) Teilgraph)

• complete graph (vollständiger Graph)

• complement (Komplement)

• Tree (Baum)

• connected component (Zusammenhangskomponente)

• Forest (Wald)

• Spanningtree (Spannbaum)



Results (Undirected Graphs) - Blackboard/Exercise

Lemma 1.1

The following statements are equivalent

• The graph T = (V ,E) is a tree.

• For all u, v ∈ V there is exactly one simple path u ; v .

• T is connected and |E | = |V | − 1.

Corollary 1.1

If G = (V ,E) is connected, then |E | ≥ |V | − 1 and G has a spanningtree T ⊆ G.



Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Basics

Short Intermezzo:
Graph
Graph Terminology

Types of Algorithms
iterative Alg.

recursive Alg.

dynamic Alg.

heuristic Alg.

prob. Alg.

1.10

(Some not necessarily disjoint) Types of Algorithms

• Iterative Algorithms
• Recursive Algorithms
• Dynamic Algorithms
• Heuristic Algorithms
• Probabilistic Algorithms



Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Basics

Short Intermezzo:
Graph
Graph Terminology

Types of Algorithms
iterative Alg.

recursive Alg.

dynamic Alg.

heuristic Alg.

prob. Alg.

1.11

Iterative Alg (Exmpl: n-Factorial)

int FAC_ITER(int n)

1: int SOLUTION ← 1
2: for int i = 2, . . . ,n do
3: SOLUTION ← SOLUTION∗i
4: return SOLUTION



Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Basics

Short Intermezzo:
Graph
Graph Terminology

Types of Algorithms
iterative Alg.

recursive Alg.

dynamic Alg.

heuristic Alg.

prob. Alg.

1.12

Recursive Alg (Exmpl: n-Factorial)

int FAC_REC(int n)

1: if n = 1 then
2: return 1
3: return

n∗FAC_REC(n − 1)

Algorithmen kompakt und verständlich, Rimscha, Springer, 2017



Recursive Alg (Exmpl: Tower of Hanoi)

HANOI_REC(string SOURCE, string TARGET, string BUFFER, int n)

1: if n = 1 then
2: printout "Move topmost disc from" SOURCE "to" TARGET
3: else
4: HANOI_REC(SOURCE, BUFFER, TARGET, n − 1)
5: HANOI_REC(SOURCE, TARGET, BUFFER, 1)
6: HANOI_REC(BUFFER, TARGET, SOURCE, n − 1)

Algorithmen kompakt und verständlich, Rimscha, Springer, 2017



Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Basics

Short Intermezzo:
Graph
Graph Terminology

Types of Algorithms
iterative Alg.

recursive Alg.

dynamic Alg.

heuristic Alg.

prob. Alg.

1.14

Dynamic Alg (Exmpl: Fibonacci number)

init fib(0) = 0, fib(1) = 1, fib(i) = −1

FIB_DYN-REC(array fib, in n)

1: if fib(n) ≥ 0 then
2: return fib(n)
3: fib(n) =

FIB_DYN-REC(fib,n-2) +
FIB_DYN-REC(fib,n-1);

4: return fib(n)

FIB_DYN-ITER(array fib, in n)

1: for i = 2, . . . ,n do
2:

fib(i) = fib(i −2)+ fib(i −1)
3: return fib(n)



Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Basics

Short Intermezzo:
Graph
Graph Terminology

Types of Algorithms
iterative Alg.

recursive Alg.

dynamic Alg.

heuristic Alg.

prob. Alg.

1.15

Heuristic Alg (Exmpl: Coin Change)

GREEDY_COINCHANGE(int change,
int m1, . . . , int mk (denomination) )

1: NumberCoins ← 0
2: U ← change
3: for t=k,. . . ,1 do
4: xt ← bU/mtc
5: U ← U − xtmt
6: NumberCoins ← NumberCoins + xt

7: return x1, . . . , xk ,NumberCoins



Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Basics

Short Intermezzo:
Graph
Graph Terminology

Types of Algorithms
iterative Alg.

recursive Alg.

dynamic Alg.

heuristic Alg.

prob. Alg.

1.16

Probablistic Alg (Blackboard)

• Las Vegas (always produces the correct result or it informs
about the failure)

• Monte Carlo (may be incorrect with a certain (typically
small) probability)

source: wikipedia



Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Basics

Short Intermezzo:
Graph
Graph Terminology

Types of Algorithms
iterative Alg.

recursive Alg.

dynamic Alg.

heuristic Alg.

prob. Alg.

1.16

Probablistic Alg (Blackboard)

• Las Vegas (always produces the correct result or it informs
about the failure)

• Monte Carlo (may be incorrect with a certain (typically
small) probability)

source: wikipedia


	Basics
	Short Intermezzo: Graph
	Graph Terminology

	Types of Algorithms
	iterative Alg.
	recursive Alg.
	dynamic Alg.
	heuristic Alg.
	prob. Alg.


