Marc Hellmuth

Graph Traversal

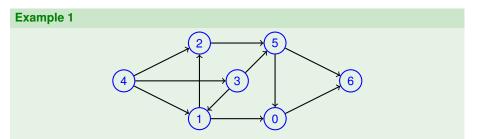
Adjacency List Representation Breads-First-Search Depth-First Search Topological Ordering

Datenstrukturen und Effiziente Algorithmen

Vorlesung Datenstrukturen und Effiziente Algorithmen im WS 18/19

Marc Hellmuth Institut für Mathematik und Informatik Universität Greifswald

Adjacency List Representation of a Graph

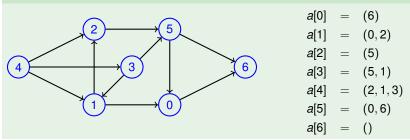


Let G = (V, E) be a graph with n := |V| vertices. Let $V = \{0, 1, ..., n-1\}$. The adjacency list representation of *G* consists of

- an array of *n* adjacency lists, say $a[0], \ldots, a[n-1]$
- for vertex $u \in V$, a[u] is the list of all $v \in V$ with an edge from u to v:
 - $(u, v) \in E$ (directed graphs)
 - $\{u, v\} \in E$ (undirected graphs)

Adjacency List Representation of a Graph

Example 2



- The space required to store the graph in this representation is O(|V| + |E|).
- Vertex IDs do not need to be 0, 1, ..., n − 1. Options:
 - Make IDs an attribute of the vertex, e.g. v.id in object-oriented programming
 - 2 Use another array with ids, e.g. $id[0], \ldots id[n-1]$
 - Instead of an array use a data structure that allows other indexing: A hash allows to access a node like a["Greifswald"]

Marc Hellmuth

Graph Traversal

Adjacency List Representation

Breads-First-Search Depth-First Search Topological Ordering

Adjacency List Representation of a Graph

C++ example (just one of many ways to code a graph in adjacency list representation)

```
class Node {
    string ID;
    list<Edge> adj;
};
class Edge {
    int weight;
    Node *from;
    Node *to;
};
class Graph {
    vector<Node> nodes;
};
```


Marc Hellmuth

Graph Traversal

Adjacency List Representation

Breads-First-Search Depth-First Search Topological Ordering

Alternative: Adjacency Matrix Representation of a Graph

Adjacency matrix

Edges are represented by a binary matrix $A = (a_{ij})_{0 \le i,j \le n}$

$$a_{ij} = \left\{egin{array}{cc} 1 & ext{, if } (i,j) \in E \ 0 & ext{, otherwise.} \end{array}
ight.$$

- requires $O(|V|^2)$ space which is often asymptotically larger than O(|V| + |E|) (sparse/dense graphs)
- checking the presence of an edge takes only constant time (adjacency list: O(|k|), where k is the length of the adjacency list)

Marc Hellmuth

Graph Traversal

Adjacency List Representation

Breads-First-Search

Depth-First Search

Topological Ordering

Breadth-First Search

BFS(*G*, *s***)**

Let G = (V, E) be a (directed) graph and $s \in V$ be the source.

- 1: $Q \leftarrow empty queue$
- 2: for each vertex $v \in V \setminus \{s\}$ do
- 3: $v.\pi \leftarrow NULL // \text{ predecessor during run of BFS}$
- 4: $v.d \leftarrow \infty // \text{ distance to } s$
- 5: $v.color \leftarrow white // white: not queued yet$
- 6: $s.d \leftarrow 0$, $s.color \leftarrow gray$, $s.\pi \leftarrow NULL$
- 7: enqueue(Q, s) // insert s into Q
- 8: while Q not empty do

```
9: u \leftarrow \text{dequeue}(Q, s) // u = \text{first element of } Q
```

- 10: for each $v \in Adj[u]$ do
- 11: **if** v.color = white **then**
- 12: $v.d \leftarrow u.d + 1$
- 13: $V.\pi \leftarrow U$
- 14: $v.color \leftarrow gray$
- 15: enqueue(*Q*, *v*)
- 16: $v.color \leftarrow black$

```
Running time: O(|V| + |E|)
```

Marc Hellmuth

Graph Traversal

Adjacency List Representation

Breads-First-Search Depth-First Search

Topological Ordering

Breadth-First Search

Properties (proof chalkboard)

Let $v \in V$ be any node. After running BFS(G, s)

- v.d is the distance d(s, v) (length of a shortest path) from s to v.
- 2 A shortest path from s to v is obtained (in reverse order) by following the links *.π starting from v and until reaching s.

Remark

BFS can be considered a special case of Dijkstra's algorithm. The latter finds shortest paths in a *weighted* graph and uses a priority queque instead of an ordinary queque.

Marc Hellmuth

Graph Traversal

Adjacency List Representation Breads-First-Search

Depth-First Search

Topological Ordering

Depth-First Search (DFS, Tiefensuche)

- runs on directed and undirected graphs G = (V, E)
- is a graph traversal algorithm: it determines an ordering for the nodes, that
 - is every useful for many algorithms on trees that require bottom-up traversal
 - defines a so-called topological ordering on DAGs (more later)
- determines a forest on the node set V
 - each vertex v ∈ V will receive a predecessor
 v.pred ∈ V ∪ {NULL}
 - the depth-first forest is (V, E_{pred}) , where $E_{pred} := \{(v.pred, v) | v \in V, v.pred \neq \text{NULL}\}$
 - if *v.pred* = NULL then *v* is a root in the forest otherwise *v.pred* is *v*'s father.
- we will assume an adjacency list representation for the time analysis

Marc Hellmuth

Graph Traversal

Adjacency List Representation Breads-First-Search

Depth-First Search

Topological Ordering

Depth-First Search

Node colors

- white: The vertex has not yet been discovered.
 - gray: The vertex has been discovered but is not yet finished.
- black: The vertex is finished: The vertex and all outgoing edges have been visited.

Depth-First Search

DFS(G)

- 1: for each vertex v of G do
- 2: $v.color \leftarrow white$
- 3: $v.pred \leftarrow NULL$
- 4: $time \leftarrow 0$
- 5: for each vertex v of G do
- 6: **if** v.color = white **then**
- 7: DFS-Visit(G, v)

DFS-VISIT(G, v)

- 1: $\textit{time} \leftarrow \textit{time} + 1$
- 2: *v*.*discoverTime* \leftarrow *time*
- 3: *v*.*color* \leftarrow gray
- 4: for each w in the adjacency list of v do
- 5: **if** *w*.*color* = white **then**
- 6: $w.pred \leftarrow v$
- 7: DFS-VISIT(G, w)
- 8: $\textit{time} \leftarrow \textit{time} + 1$
- 9: $v.finishTime \leftarrow time$
- 10: *v.color* \leftarrow black

Depth-First Search

DFS(G)

1: for each vertex v of G do

- 2: $v.color \leftarrow white$
- 3: $v.pred \leftarrow NULL$
- 4: $time \leftarrow 0$
- 5: for each vertex v of G do
- 6: **if** v.color = white **then**
- 7: DFS-Visit(*G*, *v*)

DFS-VISIT(G, v)

- 1: *time* \leftarrow *time* + 1
- 2: *v*.*discoverTime* \leftarrow *time*
- 3: *v*.*color* \leftarrow gray
- 4: for each w in the adjacency list of v do
- 5: **if** *w*.*color* = white **then**
- 6: $w.pred \leftarrow v$
- 7: DFS-VISIT(G, w)
- 8: $time \leftarrow time + 1$
- 9: $v.finishTime \leftarrow time$
- 10: $v.color \leftarrow black$

Running time

Loops 1-3 and 5-7 of DFS(*G*) each take time O(|V|), not counting the time spent in DFS-VISIT(*v*). DFS-VISIT(*v*) is called *exactly once* for each vertex. Loop 3-6 of DFS-VISIT(*v*) is executed |a[v]| times. As $\sum_{v} |a[v]| = |E|$, we obtain the total running time O(|V| + |E|).

Marc Hellmuth

Graph Traversal

Adjacency List Representation

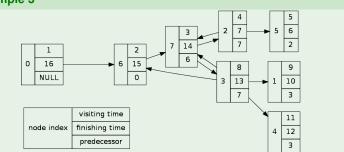
Breads-First-Search

Depth-First Search

Topological Ordering

Depth-First Search

Example 3



Classification of edges

Note that the depth-first forest is indeed a forest (exercise: prove that (V, E_{pred}) is acyclic). Edges $(u, v) \in E$ are either

- tree edges: $(u, v) \in E_{pred}$
- forward edges: not a tree edge and v is a proper descendant of u in the depth-first forest
- back edges: not a tree edge and v is an ancestor of u in the depth-first forest (includes self-loops)
- or cross edges: all other edges

Classification of edges

Note that the depth-first forest is indeed a forest (exercise: prove that (V, E_{pred}) is acyclic). Edges $(u, v) \in E$ are either

- tree edges: $(u, v) \in E_{pred}$
- forward edges: not a tree edge and v is a proper descendant of u in the depth-first forest
- back edges: not a tree edge and v is an ancestor of u in the depth-first forest (includes self-loops)
- or cross edges: all other edges

Observation

v is a descendant of *u* iff *v* is discovered during the time when *u* is gray iff DFS-VISIT(*v*) is called recursively during the execution of DFS-VISIT(*u*).

Classification of edges

Note that the depth-first forest is indeed a forest (exercise: prove that (V, E_{pred}) is acyclic). Edges $(u, v) \in E$ are either

- tree edges: $(u, v) \in E_{pred}$
- forward edges: not a tree edge and v is a proper descendant of u in the depth-first forest
- back edges: not a tree edge and v is an ancestor of u in the depth-first forest (includes self-loops)
- or cross edges: all other edges

Observation

v is a descendant of *u* iff *v* is discovered during the time when *u* is gray iff DFS-VISIT(*v*) is called recursively during the execution of DFS-VISIT(*u*).

Node colors partially determine edge class

If in the loop of line 3 of DFS-VISIT(v)

- w is white. Then (v, w) is a tree edge.
- w is gray. Then (v, w) is a back edge.
- w is black. Then (v, w) is a forward or cross edge.

Properties of DFS

Theorem 4 (Parenthesis theorem)

For a vertex v let v.d be short for v.discoverTime and v.f be short for v.finishTime. Let u and v be two different vertices in G. After a run of DFS(G) exactly one of the following three statements holds

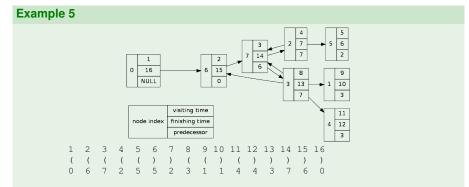
- **1** $[u.d, u.f] \cap [v.d, v.f] = \emptyset$ and neither of the two vertices is a descendant of the other
- 2 $[u.d, u.f] \subset [v.d, v.f]$ and u is a descendant of v in a depth-first-tree
- **3** $[u.d, u.f] \supset [v.d, v.f]$ and u is an ancestor of v in a depth-first-tree.

Properties of DFS

Theorem 4 (Parenthesis theorem)

For a vertex v let v.d be short for v.discoverTime and v.f be short for v.finishTime. Let u and v be two different vertices in G. After a run of DFS(G) exactly one of the following three statements holds

- **1** $[u.d, u.f] \cap [v.d, v.f] = \emptyset$ and neither of the two vertices is a descendant of the other
- 2 $[u.d, u.f] \subset [v.d, v.f]$ and u is a descendant of v in a depth-first-tree
- **3** $[u.d, u.f] \supset [v.d, v.f]$ and u is an ancestor of v in a depth-first-tree.



Marc Hellmuth

Graph Traversal

Adjacency List Representation Breads-First-Search Depth-First Search Topological Ordering

Properties of DFS

Proof.

Without loss of generality assume that u was discovered before v, i.e. u.d < v.d. Then a) v.d < u.f or b) v.d > u.f. In case a) v was discovered while u was gray. Therefore u is an

ancestor of *v*. *v* must be finished before *u*, i.e. v.f < u.f. Therefore, case 3 of the theorem applies.

In case b) u.d < u.f < v.d < v.f and case 1 of the theorem aplies.

Marc Hellmuth

Graph Traversal

Adjacency List Representation Breads-First-Search

Depth-First Search

Topological Ordering

Theorem 6 (White path theorem)

Properties of DFS

Vertex v is a descendant of vertex u in the depth-first forest constructed by DFS(G) if and only if at time u.d there is a path in G from u to v consisting entirely of white vertices.

(We consider a vertex to be white until right after it is discovered and each vertext is considered its own descendant.).

Marc Hellmuth

Graph Traversal

Adjacency List Representation Breads-First-Search Depth-First Search Topological Ordering

Properties of DFS

Theorem 6 (White path theorem)

Vertex v is a descendant of vertex u in the depth-first forest constructed by DFS(G) if and only if at time u.d there is a path in G from u to v consisting entirely of white vertices.

(We consider a vertex to be white until right after it is discovered and each vertext is considered its own descendant.).

Proof.

 \Rightarrow : Let *v* be a descendant of *u* in the depth-first forest. Then any vertex *w* on the path from *u* to *v* is also a descendant of *u*. Then case 3 of the parenthesis theorem holds and $[u.d, u.f] \supset [w.d, w.f]$, which implies u.d < w.d. As *w* is discovered after *u*, vertex *w* is white at time *u.d*.

⇐: Suppose at time *u*.*d* there is a path π from *u* to *v* consisting entirely of white vertices. Assume, for the sake of contradiction, that *v* is not a descendant of *u*. Then, there are vertices *r* and *s* on π such that (*r*, *s*) ∈ *E*, *r* is a descentant of *u*, but *s* is not a descendant of *u* (*r* = *u* is possible). By the parenthesis theorem, *u*.*d* < *r*.*d* < *r*.*f* < *u*.*f*. As *s* is not a descendant of *u* it must remain white during the time interval [*u*.*d*, *u*.*f*]. As there is an edge from *r* to *s*, when the loop in line 3 is executed during the call to DFS-VISIT(*r*) vertex *s* is discovered: *r*.*d* < *r*.*f*. By the parenthesis theorem *s* must also be a descendant of *u*, which consitutes the desired contradiction.

Marc Hellmuth

Graph Traversal

Adjacency List Representation Breads-First-Search Depth-First Search Topological Ordering

Topological Ordering

Definition 7 (Topologial ordering)

A topological ordering of a directed graph G = (V, E) with *n* vertices is an ordering $s = (v_1, ..., v_n)$ of the vertices *V* (i.e. $V = \{v_1, ..., v_n\}$) such that

i < j for all $(v_i, v_j) \in E$.

Example 8

dressing

(chalk board)

Marc Hellmuth

Graph Traversal

Adjacency List Representation Breads-First-Search Depth-First Search Topological Ordering

Topological Ordering

Definition 7 (Topologial ordering)

A topological ordering of a directed graph G = (V, E) with *n* vertices is an ordering $s = (v_1, ..., v_n)$ of the vertices *V* (i.e. $V = \{v_1, ..., v_n\}$) such that

i < j for all $(v_i, v_j) \in E$.

Example 8

dressing

(chalk board)

DAG

When *G* contains a cycle, then no topologial ordering can exist. We will below give an algorithm that constructs a topological ordering for any DAG, however.

Marc Hellmuth

Graph Traversal

Adjacency List Representation Breads-First-Search Depth-First Search

Topological Ordering

Topological Ordering

TOPOLOGICAL-SORT(G)

- 1 initialize s as the empty list
- 2 call a variant of DFS(G), where DFS-VISIT(v) has an additional line:
 - 9: insert v at the front of s
- 3 return s

The topological order is the reverse order of finishing times.

Marc Hellmuth

Graph Traversal

Adjacency List Representation Breads-First-Search Depth-First Search

Topological Ordering

Topological Ordering

Theorem 9

A directed graph G has a cycle iff DFS(G) yields at least one back edge.

Marc Hellmuth

Graph Traversal

Adjacency List Representation Breads-First-Search Depth-First Search Topological Ordering

Topological Ordering

Theorem 9

A directed graph G has a cycle iff DFS(G) yields at least one back edge.

Proof.

 \Leftarrow : Suppose (u, v) is a back edge. Then v is an ancestor of u in the depth-first forest produced by DFS(*G*). Therefore, there is a path in *G* from v to u which becomes a cycle by adding the edge (u, v) to it. \Rightarrow : Suppose *G* has a cycle *c*. Let v be the vertex on the cycle that is discovered fist during DFS(*G*). Let u be the vertex preceeding v on the cycle c (u = v is possible). By the white path theorem, and as all vertices on *c* are white at time v.d, u is a descendant of v in the depth-first forest. The edge (u, v) is not a tree edge, as the tree would otherwise contain cycle *c*. The edge (u, v) must therefore be a back edge.

Marc Hellmuth

Graph Traversal

Adjacency List Representation Breads-First-Search Depth-First Search Topological Ordering

Topological Ordering

Theorem 10

For a DAG G, TOPOLOGICAL-SORT(G) returns a topological ordering of the vertices of G.

Marc Hellmuth

Graph Traversal

Adjacency List Representation Breads-First-Search Depth-First Search Topological Ordering

Topological Ordering

Theorem 10

For a DAG G, TOPOLOGICAL-SORT(G) returns a topological ordering of the vertices of G.

Proof.

Let *G* be acyclic and let $(v, w) \in E$ be any edge. Consider the point in time when this edge is explored (line 3 of DFS-VISIT(v)). If w is white at that time, then DFS-VISIT(w) is called and w is finished before v: w.f < v.f. w cannot be gray at that time, as otherwise (v, w) would be a back edge and by Theorem 9 *G* would not be acyclic. If w is black at that time, then it has already been finished and also w.f < v.f. In any case all edges go from a vertex with a later finishing time to a vertex with an earlier finishing time. Therefore, the reversed finishing times consitute a topological ordering.