Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Datenstrukturen und Effiziente
Graph Traversal Alg O rlth m e n

Adjacency List
Representation

Breads-First-Search
Depth-First Search

Vorlesung Datenstrukturen und Effiziente Algorithmenim WS
Topological Ordering 1 8/ 1 9

Marc Hellmuth
Institut fir Mathematik und Informatik

Universitat Greifswald

Adjacency List Representation of a Graph

Example 1

Let G = (V, E) be a graph with n := | V| vertices. Let V = {0,1,...,n—1}. The
adjacency list representation of G consists of

* an array of n adjacency lists, say a[0],...,a[n— 1]

* for vertex u € V, a[u] is the list of all v € V with an edge from u to v:

* (u,v) € E (directed graphs)
+ {u, v} € E (undirected graphs)

Adjacency List Representation of a Graph

Example 2
a0] = (6)
a[l] = (0,2)
a2l = (5)
a3l = (51)
a4 = (2,1,3)
app] = (0,6)
a6] = ()

* The space required to store the graph in this representation is O(| V| + |E|).
* Vertex IDs do not need to be 0,1, ..., n— 1. Options:

© Make IDs an attribute of the vertex, e.g. v. id in object-oriented
programming

@® Use another array with ids, e.g. id[0], ... id[n — 1]

@ Instead of an array use a data structure that allows other indexing: A hash
allows to access a node like a["Greifswald"]

Datenstrukturen und
Effiziente Algorithmen

Adjacency List Representation of a Graph
Marc Hellmuth

C++ example (just one of many ways to code a graph in adjacency list representation)

Graph Traversal c l ass Node {

string ID;

Breads-First-Search
Depth-First Search

list<Edge> adj;
Topological Ordering

class Edge {

int weight;
Node xfrom;
Node =*to;

class Graph ({

vector<Node> nodes;

enmeme noitmen Alternative: Adjacency Matrix Representation of a Graph

Marc Hellmuth

T~ Adjacency matrix
S Edges are represented by a binary matrix A = (@j)o<ij<n
Depth-First Search
Topological Ordering o 1 , |f (I,]) c E
4i=1 0 , otherwise.

« requires O(|V|?) space which is often asymptotically larger
than O(|V| + |E|) (sparse/dense graphs)

+ checking the presence of an edge takes only constant time
(adjacency list: O(|k|), where k is the length of the
adjacency list)

B meeetee Breadth-First Search

Marc Hellmuth

BFS(G, 5)

Let G = (V, E) be a (directed) graph and s € V be the source.
Graph Traversal 1: Q — empty queue
Auacony it 2: for each vertex v € V'\ {s} do

; 3: v.r « NULL // predecessor during run of BFS

Depth-First Search

e oo 4: v.d + oo // distance to s
5: v.color < white // white: not queued yet
6: s.d « 0, s.color «<— gray, s.m < NULL
7: enqueue(Q, s) // insert sinto Q
8: while Q not empty do
9: U < dequeue(Q, s) // u = first element of Q
10: for each v € Adj[u] do
11: if v.color = white then
12: v.d+ u.d+1
13: V.r < u
14: v.color < gray
15: enqueue(Q, v)
16: v.color < black

Running time: O(| V| + |E|)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Graph Traversal

Adjacency List
Representation

Depth-First Search
Topological Ordering

Breadth-First Search

Properties (proof chalkboard)

Let v € V be any node. After running BFS(G, s)

@ v.dis the distance d(s, v) (length of a shortest path) from
stov.

® A shortest path from s to v is obtained (in reverse order) by
following the links *.7 starting from v and until reaching s.

Remark

BFS can be considered a special case of Dijkstra’s algorithm.
The latter finds shortest paths in a weighted graph and uses a
priority queque instead of an ordinary queque.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Depth-First Search (DFS, Tiefensuche)

* runs on directed and undirected graphs G = (V, E)

* is a graph traversal algorithm: it determines an ordering for

Graph Traversal

Adjacency List the nOdeS, that

Representation . . .

BreacsFirst-Search * is every useful for many algorithms on trees that require
 Depin FirstSoarch |

Topological Ordering bOttom'Up traversal

+ defines a so-called topological ordering on DAGs (more
later)

+ determines a forest on the node set V
+ each vertex v € V will receive a predecessor
v.pred € V U {NULL}
« the depth-first forest is (V, Epreq), Where
Epred := {(v.pred,v)|v € V,v.pred # NULL}
* if v.pred = NULL then v is a root in the forest
otherwise v.pred is v’s father.

» we will assume an adjacency list representation for the
time analysis

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Graph Traversal

Adjacency List
Representation

Breads-First-Search

Topological Ordering

Depth-First Search

Node colors

white:
gray:

black:

The vertex has not yet been discovered.

The vertex has been discovered but is not yet
finished.

The vertex is finished: The vertex and all outgoing
edges have been visited.

Depth-First Search

DFS(G) DFS-VISIT(G, v)

: for each vertex v of G do
v.color < white
v.pred < NULL

1 time + time + 1
2

3

4: time + 0

5

6

7

v.discoverTime < time
v.color + gray
for each w in the adjacency list of v do
if w.color = white then
w.pred < v
DFS-VISIT(G, w)
time + time + 1
v.finishTime « time
v.color + black

: for each vertex v of G do
if v.color = white then
DFS-Visit(G, v)

S © ® N O ah w2

—_

Depth-First Search

DFS(G) DFS-VISIT(G, v)

1: for each vertex v of G do
2 v.color < white

3 v.pred <+ NULL

4: time + 0

5: for each vertex v of G do
6
7

DFS-Visit(G, v)

1

Running time

1
2
3
4
5
if v.color = white then 6:
2.
8
9
0

: time «+ time + 1

: v.discoverTime < time

: v.color + gray

: for each w in the adjacency list of v do

if w.color = white then
w.pred < v
DFS-VISIT(G, w)

: time «+ time + 1
: v.finishTime « time
: v.color + black

Loops 1-3 and 5-7 of DFS(G) each take time O(|V/|), not counting the time
spent in DFS-VIsIT(v). DFS-VISIT(v) is called exactly once for each
vertex. Loop 3-6 of DFS-VISIT(v) is executed |a[v]| times. As

>, lalv]| = |E|, we obtain the total running time O(|V| + | E|).

Datenstrukturen und

Effiziente Algorithmen Depth'FirSt SearCh

Marc Hellmuth

Graph Traversal
Adjacency List Exam P le 3
Representation

Breads-First-Search

Topological Ordering

NULL

15

visiting time

node index | finishing time

predecessor

4 5

T, 2756
14/’ 7 2

6
‘\\~ 8 9
313 |—»1 |10
7 3
\ 11
4112
3

Classification of edges

Note that the depth-first forest is indeed a forest (exercise: prove that (V, Epreq) is
acyclic). Edges (u, v) € E are either
* tree edges: (u, V) € Epred

 forward edges: not a tree edge and v is a proper descendant of u in the
depth-first forest

* back edges: not a tree edge and v is an ancestor of u in the depth-first forest
(includes self-loops)

* or cross edges: all other edges

Classification of edges

Note that the depth-first forest is indeed a forest (exercise: prove that (V, Epreq) is
acyclic). Edges (u, v) € E are either
* tree edges: (u, V) € Epred

 forward edges: not a tree edge and v is a proper descendant of u in the
depth-first forest

* back edges: not a tree edge and v is an ancestor of u in the depth-first forest
(includes self-loops)

* or cross edges: all other edges

Observation

v is a descendant of u iff v is discovered during the time when u is gray iff
DFS-VisIT(v) is called recursively during the execution of DFS-VISIT(u).

Classification of edges

Note that the depth-first forest is indeed a forest (exercise: prove that (V, Epreq) is
acyclic). Edges (u, v) € E are either
* tree edges: (U, V) € Epred

 forward edges: not a tree edge and v is a proper descendant of u in the
depth-first forest

* back edges: not a tree edge and v is an ancestor of u in the depth-first forest
(includes self-loops)

* or cross edges: all other edges

Observation

v is a descendant of u iff v is discovered during the time when u is gray iff
DFS-VisIT(v) is called recursively during the execution of DFS-VISIT(u).

Node colors partially determine edge class
If in the loop of line 3 of DFS-VISIT(v)
* wis white. Then (v, w) is a tree edge.
* wis gray. Then (v, w) is a back edge.
* w is black. Then (v, w) is a forward or cross edge.

Properties of DFS

Theorem 4 (Parenthesis theorem)

For a vertex v let v.d be short for v.discoverTime and v.f be short for v.finishTime. Let u and v be two
different vertices in G. After a run of DFS(G) exactly one of the following three statements holds

(1) [u.d, u.flN [v.d, v.f] = @ and neither of the two vertices is a descendant of the other
9 [u.d, u.f] C [v.d, v.f] and u is a descendant of v in a depth-first-tree

9 [u.d,u.f] D [v.d, v.f] and u is an ancestor of v in a depth-first-tree.

Properties of DFS

Theorem 4 (Parenthesis theorem)

For a vertex v let v.d be short for v.discoverTime and v.f be short for v.finishTime. Let u and v be two
different vertices in G. After a run of DFS(G) exactly one of the following three statements holds

(1) [u.d, u.flN [v.d, v.f] = @ and neither of the two vertices is a descendant of the other
(2) [u.d, u.f] C [v.d, v.f] and u is a descendant of v in a depth-first-tree

9 [u.d,u.f] D [v.d, v.f] and u is an ancestor of v in a depth-first-tree.

Example 5

NULL

visiting time W

node index | finishing time ECh

predecessor

10 11 12 13 14 15 16

0
> o))))
1

9
c c c c)) (
1 4 4 3 7 6 0

0 6 7 2 5 5 2 3

Datenstrukturen und

Effiziente Algorithmen PrOperties of DFS

Marc Hellmuth

Proof.

Without loss of generality assume that u was discovered before v, i.e.
u.d<v.d. Thena)v.d < u.forb)v.d > u.f.

Clan Taversal In case a) v was discovered while u was gray. Therefore u is an

Repesenlon ancestor of v. v must be finished before u, i.e. v.f < u.f. Therefore,
case 3 of the theorem applies.

Incase b) u.d < u.f < v.d < v.f and case 1 of the theorem

aplies. O

Topological Ordering

B e PrOperties of DFS

Marc Hellmuth

Theorem 6 (White path theorem)

Vertex v is a descendant of vertex u in the depth-first forest
constructed by DFS(G) if and only if at time u.d there is a path
in G from u to v consisting entirely of white vertices.

(We consider a vertex to be white until right after it is discovered and each vertext is considered its own descendant.).

Graph Traversal

Adjacency List
Representation

Breads-First-Search

Topological Ordering

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Graph Traversal

Adjacency List
Representation

Breads-First-Search

Topological Ordering

Properties of DFS

Theorem 6 (White path theorem)

Vertex v is a descendant of vertex u in the depth-first forest
constructed by DFS(G) if and only if at time u.d there is a path
in G from u to v consisting entirely of white vertices.

(We consider a vertex to be white until right after it is discovered and each vertext is considered its own descendant.).

Proof.

=: Let v be a descendant of u in the depth-first forest. Then any vertex w on the path
from u to v is also a descendant of u. Then case 3 of the parenthesis theorem holds and
[u.d,u.f] D [w.d, w.f], which implies u.d < w.d. As w is discovered after u, vertex w is
white at time u.d.

<«: Suppose at time u.d there is a path = from u to v consisting entirely of white vertices.
Assume, for the sake of contradiction, that v is not a descendant of u. Then, there are
vertices r and s on 7 such that (r, s) € E, ris a descentant of u, but s is not a
descendant of u (r = u is possible). By the parenthesis theorem, u.d < r.d < r.f < u.f.
As s is not a descendant of u it must remain white during the time interval [u.d, u.f]. As
there is an edge from r to s, when the loop in line 3 is executed during the call to
DFS-VIsIT(r) vertex s is discovered: r.d < s.d < r.f. By the parenthesis theorem s must
also be a descendant of u, which consitutes the desired contradiction. O

Datenstrukturen und

efiiziente Algorithimen 10OlOgical Ordering

Marc Hellmuth

Definition 7 (Topologial ordering)

A topological ordering of a directed graph G = (V, E) with n

G;;j‘:c:;fj;jsa' vertices is an ordering s = (v1, ..., V) of the vertices V (i.e.
e V ={wi,...,vy}) such that
reads-First-Search

Depth-First Search

i <jforall (v;,v) € E.

Example 8

dressing
(chalk board)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Graph Traversal

Adjacency List
Representation

Breads-First-Search
Depth-First Search

Topological Ordering

Definition 7 (Topologial ordering)

A topological ordering of a directed graph G = (V, E) with n
vertices is an ordering s = (v1, ..., V) of the vertices V (i.e.
V ={wv1,...,vy}) such that

i <jforall (v;,v) € E.

Example 8

dressing
(chalk board)

DAG

When G contains a cycle, then no topologial ordering can exist.
We will below give an algorithm that constructs a topological
ordering for any DAG, however.

Datenstrukturen und
Effiziente Algorithmen

Topological Ordering

Marc Hellmuth

Sl TOPOLOGICAL-SORT(G)
Adjacency List
Representation
Breads-First-Search
Depth-First Search

@ initialize s as the empty list
® call a variant of DFS(G), where DFS-VISIT(v) has an
additional line:

9: insert v at the front of s
@® return s

The topological order is the
reverse order of finishing times.

Datenstrukturen und
Effiziente Algorithmen

Topological Ordering

Marc Hellmuth

Theorem 9
Graph Traversal

Adjacency List
Representation

A directed graph G has a cycle iff DFS(G) yields at least one
_ back edge.

Depth-First Search

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Graph Traversal

Adjacency List
Representation

Breads-First-Search
Depth-First Search

Topological Ordering

Theorem 9

A directed graph G has a cycle iff DFS(G) yields at least one
back edge.

Proof.

<: Suppose (u, v) is a back edge. Then v is an ancestor of u in the
depth-first forest produced by DFS(G). Therefore, there is a path in G
from v to u which becomes a cycle by adding the edge (u, v) to it.

=-: Suppose G has a cycle c. Let v be the vertex on the cycle that is
discovered fist during DFS(G). Let u be the vertex preceeding v on
the cycle ¢ (u = v is possible). By the white path theorem, and as all
vertices on c are white at time v.d, u is a descendant of v in the
depth-first forest. The edge (u, v) is not a tree edge, as the tree would
otherwise contain cycle c. The edge (u, v) must therefore be a back
edge. O

Datenstrukturen und
Effiziente Algorithmen

Topological Ordering

Marc Hellmuth

Theorem 10

Graph Traversal
Adjacency List
Representation

For a DAG G, TOPOLOGICAL-SORT(G) returns a topological
Y. ordering of the vertices of G.

Depth-First Search
 Topologieal Ordering |

Datenstrukturen und

efiiziente Algorithimen 10OlOgical Ordering

Marc Hellmuth

Theorem 10
oo ot For a DAG G, TOPOLOGICAL-SORT(G) returns a topological
ot 1ot e ordering of the vertices of G.
Depth-First Search

Proof.

Let G be acyclic and let (v, w) € E be any edge. Consider the point in
time when this edge is explored (line 3 of DFS-VISIT(v)). If w is white
at that time, then DFS-VISIT(w) is called and w is finished before v:
w.f < v.f. w cannot be gray at that time, as otherwise (v, w) would be
a back edge and by Theorem 9 G would not be acyclic. If w is black at
that time, then it has already been finished and also w.f < v.f. In any
case all edges go from a vertex with a later finishing time to a vertex
with an earlier finishing time. Therefore, the reversed finishing times
consitute a topological ordering. O

	Graph Traversal
	Adjacency List Representation
	Breads-First-Search
	Depth-First Search
	Topological Ordering

