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Adjacency List Representation of a Graph

Example 1
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V = {0, 1, 2, 3, 4, 5, 6}
E = {(4, 2), (2, 5), (5, 6), (4, 3), (3, 5), (5, 0), (1, 2), (4, 1), (3, 1), (1, 0), (0, 6)}

Let G = (V ,E) be a graph with n := |V | vertices. Let V = {0, 1, . . . , n − 1}. The
adjacency list representation of G consists of

• an array of n adjacency lists, say a[0], . . . , a[n − 1]

• for vertex u ∈ V , a[u] is the list of all v ∈ V with an edge from u to v :

• (u, v) ∈ E (directed graphs)
• {u, v} ∈ E (undirected graphs)



Adjacency List Representation of a Graph

Example 2
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a[0] = (6)

a[1] = (0, 2)

a[2] = (5)

a[3] = (5, 1)

a[4] = (2, 1, 3)

a[5] = (0, 6)

a[6] = ()

• The space required to store the graph in this representation is O(|V |+ |E |).
• Vertex IDs do not need to be 0, 1, . . . , n − 1. Options:

1 Make IDs an attribute of the vertex, e.g. v.id in object-oriented
programming

2 Use another array with ids, e.g. id [0], . . . id [n − 1]
3 Instead of an array use a data structure that allows other indexing: A hash

allows to access a node like a["Greifswald"]
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Adjacency List Representation of a Graph

C++ example (just one of many ways to code a graph in adjacency list representation)

class Node {
string ID;
list<Edge> adj;

};

class Edge {
int weight;
Node *from;
Node *to;

};

class Graph {
vector<Node> nodes;

};
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Alternative: Adjacency Matrix Representation of a Graph

Adjacency matrix

Edges are represented by a binary matrix A = (aij)0≤i,j<n

aij =

{
1 , if (i , j) ∈ E
0 , otherwise.

• requires O(|V |2) space which is often asymptotically larger
than O(|V |+ |E |) (sparse/dense graphs)

• checking the presence of an edge takes only constant time
(adjacency list: O(|k |), where k is the length of the
adjacency list)
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Breadth-First Search

BFS(G, s)

Let G = (V ,E) be a (directed) graph and s ∈ V be the source.
1: Q ← empty queue
2: for each vertex v ∈ V \ {s} do
3: v .π ← NULL // predecessor during run of BFS
4: v .d ←∞ // distance to s
5: v .color← white // white: not queued yet
6: s.d ← 0, s.color← gray, s.π ← NULL
7: enqueue(Q, s) // insert s into Q
8: while Q not empty do
9: u ← dequeue(Q, s) // u = first element of Q

10: for each v ∈ Adj[u] do
11: if v .color = white then
12: v .d ← u.d + 1
13: v .π ← u
14: v .color← gray
15: enqueue(Q, v)
16: v .color← black
Running time: O(|V |+ |E |)
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Breadth-First Search

Properties (proof chalkboard)

Let v ∈ V be any node. After running BFS(G, s)
1 v .d is the distance d(s, v) (length of a shortest path) from

s to v .
2 A shortest path from s to v is obtained (in reverse order) by

following the links ∗.π starting from v and until reaching s.

Remark

BFS can be considered a special case of Dijkstra’s algorithm.
The latter finds shortest paths in a weighted graph and uses a
priority queque instead of an ordinary queque.
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Depth-First Search (DFS, Tiefensuche)

• runs on directed and undirected graphs G = (V ,E)

• is a graph traversal algorithm: it determines an ordering for
the nodes, that

• is every useful for many algorithms on trees that require
bottom-up traversal

• defines a so-called topological ordering on DAGs (more
later)

• determines a forest on the node set V
• each vertex v ∈ V will receive a predecessor

v .pred ∈ V ∪ {NULL}
• the depth-first forest is (V ,Epred), where

Epred := {(v .pred , v) | v ∈ V , v .pred 6= NULL}
• if v .pred = NULL then v is a root in the forest

otherwise v .pred is v ’s father.

• we will assume an adjacency list representation for the
time analysis
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Depth-First Search

Node colors

white: The vertex has not yet been discovered.
gray: The vertex has been discovered but is not yet

finished.
black: The vertex is finished: The vertex and all outgoing

edges have been visited.



Depth-First Search

DFS(G)

1: for each vertex v of G do
2: v .color ← white
3: v .pred ← NULL
4: time← 0
5: for each vertex v of G do
6: if v .color = white then
7: DFS-Visit(G, v )

DFS-VISIT(G, v )

1: time← time + 1
2: v .discoverTime← time
3: v .color ← gray
4: for each w in the adjacency list of v do
5: if w .color = white then
6: w .pred ← v
7: DFS-VISIT(G,w)
8: time← time + 1
9: v .finishTime← time

10: v .color ← black

Running time

Loops 1-3 and 5-7 of DFS(G) each take time O(|V |), not counting the time
spent in DFS-VISIT(v ). DFS-VISIT(v ) is called exactly once for each
vertex. Loop 3-6 of DFS-VISIT(v ) is executed |a[v]| times. As∑

v |a[v ]| = |E |, we obtain the total running time O(|V |+ |E |).



Depth-First Search

DFS(G)

1: for each vertex v of G do
2: v .color ← white
3: v .pred ← NULL
4: time← 0
5: for each vertex v of G do
6: if v .color = white then
7: DFS-Visit(G, v )

DFS-VISIT(G, v )

1: time← time + 1
2: v .discoverTime← time
3: v .color ← gray
4: for each w in the adjacency list of v do
5: if w .color = white then
6: w .pred ← v
7: DFS-VISIT(G,w)
8: time← time + 1
9: v .finishTime← time

10: v .color ← black

Running time

Loops 1-3 and 5-7 of DFS(G) each take time O(|V |), not counting the time
spent in DFS-VISIT(v ). DFS-VISIT(v ) is called exactly once for each
vertex. Loop 3-6 of DFS-VISIT(v ) is executed |a[v]| times. As∑

v |a[v ]| = |E |, we obtain the total running time O(|V |+ |E |).



Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Graph Traversal
Adjacency List
Representation

Breads-First-Search

Depth-First Search

Topological Ordering

1.11

Depth-First Search

Example 3



Classification of edges

Note that the depth-first forest is indeed a forest (exercise: prove that (V ,Epred) is
acyclic). Edges (u, v) ∈ E are either

• tree edges: (u, v) ∈ Epred

• forward edges: not a tree edge and v is a proper descendant of u in the
depth-first forest

• back edges: not a tree edge and v is an ancestor of u in the depth-first forest
(includes self-loops)

• or cross edges: all other edges

Observation

v is a descendant of u iff v is discovered during the time when u is gray iff
DFS-VISIT(v ) is called recursively during the execution of DFS-VISIT(u).

Node colors partially determine edge class

If in the loop of line 3 of DFS-VISIT(v )

• w is white. Then (v ,w) is a tree edge.

• w is gray. Then (v ,w) is a back edge.

• w is black. Then (v ,w) is a forward or cross edge.
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Properties of DFS

Theorem 4 (Parenthesis theorem)
For a vertex v let v .d be short for v .discoverTime and v .f be short for v .finishTime. Let u and v be two
different vertices in G. After a run of DFS(G) exactly one of the following three statements holds

1 [u.d, u.f ] ∩ [v .d, v .f ] = ∅ and neither of the two vertices is a descendant of the other

2 [u.d, u.f ] ⊂ [v .d, v .f ] and u is a descendant of v in a depth-first-tree

3 [u.d, u.f ] ⊃ [v .d, v .f ] and u is an ancestor of v in a depth-first-tree.

Example 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
( ( ( ( ( ) ) ( ( ) ( ) ) ) ) )
0 6 7 2 5 5 2 3 1 1 4 4 3 7 6 0
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Properties of DFS

Proof.

Without loss of generality assume that u was discovered before v , i.e.
u.d < v .d . Then a) v .d < u.f or b) v .d > u.f .
In case a) v was discovered while u was gray. Therefore u is an
ancestor of v . v must be finished before u, i.e. v .f < u.f . Therefore,
case 3 of the theorem applies.
In case b) u.d < u.f < v .d < v .f and case 1 of the theorem
aplies.
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Properties of DFS

Theorem 6 (White path theorem)

Vertex v is a descendant of vertex u in the depth-first forest
constructed by DFS(G) if and only if at time u.d there is a path
in G from u to v consisting entirely of white vertices.
(We consider a vertex to be white until right after it is discovered and each vertext is considered its own descendant.).

Proof.
⇒: Let v be a descendant of u in the depth-first forest. Then any vertex w on the path
from u to v is also a descendant of u. Then case 3 of the parenthesis theorem holds and
[u.d, u.f ] ⊃ [w.d,w.f ], which implies u.d < w.d . As w is discovered after u, vertex w is
white at time u.d .
⇐: Suppose at time u.d there is a path π from u to v consisting entirely of white vertices.
Assume, for the sake of contradiction, that v is not a descendant of u. Then, there are
vertices r and s on π such that (r , s) ∈ E , r is a descentant of u, but s is not a
descendant of u (r = u is possible). By the parenthesis theorem, u.d < r .d < r .f < u.f .
As s is not a descendant of u it must remain white during the time interval [u.d, u.f ]. As
there is an edge from r to s, when the loop in line 3 is executed during the call to
DFS-VISIT(r ) vertex s is discovered: r .d < s.d < r .f . By the parenthesis theorem s must
also be a descendant of u, which consitutes the desired contradiction.
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Topological Ordering

Definition 7 (Topologial ordering)

A topological ordering of a directed graph G = (V ,E) with n
vertices is an ordering s = (v1, . . . , vn) of the vertices V (i.e.
V = {v1, . . . , vn}) such that

i < j for all (vi , vj) ∈ E .

Example 8

dressing
(chalk board)

DAG

When G contains a cycle, then no topologial ordering can exist.
We will below give an algorithm that constructs a topological
ordering for any DAG, however.
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Topological Ordering

TOPOLOGICAL-SORT(G)

1 initialize s as the empty list
2 call a variant of DFS(G), where DFS-VISIT(v ) has an

additional line:
9: insert v at the front of s

3 return s

The topological order is the
reverse order of finishing times.
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Topological Ordering

Theorem 9

A directed graph G has a cycle iff DFS(G) yields at least one
back edge.

Proof.

⇐: Suppose (u, v) is a back edge. Then v is an ancestor of u in the
depth-first forest produced by DFS(G). Therefore, there is a path in G
from v to u which becomes a cycle by adding the edge (u, v) to it.
⇒: Suppose G has a cycle c. Let v be the vertex on the cycle that is
discovered fist during DFS(G). Let u be the vertex preceeding v on
the cycle c (u = v is possible). By the white path theorem, and as all
vertices on c are white at time v .d , u is a descendant of v in the
depth-first forest. The edge (u, v) is not a tree edge, as the tree would
otherwise contain cycle c. The edge (u, v) must therefore be a back
edge.
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Topological Ordering

Theorem 10

For a DAG G, TOPOLOGICAL-SORT(G) returns a topological
ordering of the vertices of G.

Proof.

Let G be acyclic and let (v ,w) ∈ E be any edge. Consider the point in
time when this edge is explored (line 3 of DFS-VISIT(v )). If w is white
at that time, then DFS-VISIT(w) is called and w is finished before v :
w .f < v .f . w cannot be gray at that time, as otherwise (v ,w) would be
a back edge and by Theorem 9 G would not be acyclic. If w is black at
that time, then it has already been finished and also w .f < v .f . In any
case all edges go from a vertex with a later finishing time to a vertex
with an earlier finishing time. Therefore, the reversed finishing times
consitute a topological ordering.
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