
Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.1

Datenstrukturen und Effiziente
Algorithmen
Vorlesung Datenstrukturen und Effiziente Algorithmen im WS
18/19

Marc Hellmuth
Institut für Mathematik und Informatik

Universität Greifswald

A Real Flow Network

Example 1

http://enipedia.tudelft.nl/wiki/NaturalGasInfrastructure

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.3

Flow Network

Flow Network

• a material (e.g. a liquid, electrical current, countable items)
is produced at a source

• it is moving through a system (e.g. of pipes, wires, roads)
that is modeled as a directed graph

• each edge has a given capacity (e.g. diameter of pipe,
wire, capacity of road) that limits the amount of material
that can pass this edge

• the system is in a steady state, i.e. the amount of material
leaving a vertex is equal to the amount of material entering
the vertex

• all material ends at a vertex called sink, where it is
consumed

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.4

Flow Network

Example 2

ssource

1

2

3

4

5

t sink

7

6

1
1

4

8

2

4

10

6

5

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.5

Flow Network

Definition 3 (Flow network)

A flow network G = (V ,E) is a directed graph such that
• G has no self-loops
• each edge (u, v) ∈ E has a capacity c(u, v) ≥ 0
• we define c(u, v) := 0 if (u, v) 6∈ E
• V has two distinct vertices, a source s and a sink t

Further assumptions we make

1 (u, v) ∈ E ⇒ (v ,u) 6∈ E (∀u, v ∈ V)

2 ∀v ∈ V there is a path s ; v ; t

Will later see: both assumptions are not constraining generality.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.6

Flow

Definition 4 (Flow)

Let G = (V ,E) be a flow network as above.
A flow in G is a function f : V × V → R that satisfies

• capacity constraint: 0 ≤ f (u, v) ≤ c(u, v) (∀u, v ∈ V)

• flow conservation:∑
v∈V

f (u, v) =
∑
v∈V

f (v ,u) (u ∈ V \ {s, t})

Observation

There is only positive flow along edges:
(u, v) 6∈ E ⇒ f (u, v) = 0

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.7

Flow

Example 5 (Flow network G)

ssource

1

2

3

4

5

t sink

7

6

1
1

4

8

2

4

10

6

5

Example 6 (A flow f in network G)

ssource

1

2

3

4

5

t sink

3/7

4/6

1/1
1/1

3/4

5/8

1/2

0/4

5/10

3/6

2/5

E.g. f (s,2) = 4, f (2,5) = 5, etc.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.8

Flow

Definition 7 (Value of a flow)

The value |f | of a flow f is defined as

|f | :=
∑
v∈V

f (s, v)−
∑
v∈V

f (v , s).

It is the total flow out of the source minus the total flow into the
source.

Remark

Usually, in practially relevant flows, there is no flow into s, i.e.∑
v∈V f (v , s) = 0. However, we will need this possibility in

intermediate steps in the algorithm that solves the

Definition 8 (Maximum flow problem)

Given a flow network G, find a flow in G of maximum value.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.8

Flow

Definition 7 (Value of a flow)

The value |f | of a flow f is defined as

|f | :=
∑
v∈V

f (s, v)−
∑
v∈V

f (v , s).

It is the total flow out of the source minus the total flow into the
source.

Remark

Usually, in practially relevant flows, there is no flow into s, i.e.∑
v∈V f (v , s) = 0. However, we will need this possibility in

intermediate steps in the algorithm that solves the

Definition 8 (Maximum flow problem)

Given a flow network G, find a flow in G of maximum value.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.9

Antiparallel Edges

Antiparallel edges

If both (u, v) and (v ,u) are edges in a directed graph, then we
call these edges antiparallel. A flow network with antiparallel
edges (u, v) and (v ,u), can be modeled by an equivalent flow
network that has no antiparallel edges.

(chalk board)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.10

Multiple sources and sinks

• a flow network may have multiple sources s1, . . . , sm
and/or multiple sinks t1, . . . , tn.

• the material is produced at these multiple sources and it is
consumed at these multiple sinks

• such a flow network can be modeled with an equivalent
flow network that has just one source and one sink

(chalk board)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.10

Multiple sources and sinks

• a flow network may have multiple sources s1, . . . , sm
and/or multiple sinks t1, . . . , tn.

• the material is produced at these multiple sources and it is
consumed at these multiple sinks

• such a flow network can be modeled with an equivalent
flow network that has just one source and one sink

(chalk board)

Residual Network

• want to iteratively approach a maximal flow

• an intermediate flow f will use some edge capacity and leave some capacity
unused

• will define a flow network capturing the unused capacity, termed “residual
network”

Definition 9 (Residual network)

Let G = (V ,E) be a flow network with source s and sink t . Let f be a flow in G.
Then for two vertices u, v the residual capacity is defined as

cf (u, v) =


c(u, v)− f (u, v) , if (u, v) ∈ E
f (v , u) , if (v , u) ∈ E
0 , otherwise.

The residual network of G induced by f is Gf = (V ,Ef), where

Ef = {(u, v) ∈ V × V | cf (u, v) > 0}.

Residual Network

• want to iteratively approach a maximal flow

• an intermediate flow f will use some edge capacity and leave some capacity
unused

• will define a flow network capturing the unused capacity, termed “residual
network”

Definition 9 (Residual network)

Let G = (V ,E) be a flow network with source s and sink t . Let f be a flow in G.
Then for two vertices u, v the residual capacity is defined as

cf (u, v) =


c(u, v)− f (u, v) , if (u, v) ∈ E
f (v , u) , if (v , u) ∈ E
0 , otherwise.

The residual network of G induced by f is Gf = (V ,Ef), where

Ef = {(u, v) ∈ V × V | cf (u, v) > 0}.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.12

Residual Network

Example 10 (Flow f in network G)

s

1

2

3

4

5

t

3/7

4/6

1/1

1/1

3/4

5/8

1/2

0/4

5/10

3/6

2/5

Example 11 (The residual network Gf with residual capacities cf)

s

1

2

3

4

5

t

4

3

2

4
1

1

1

3

3

5

1

1

4

5

5

3

3
32

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.13

Residual Network

Comments

• Gf can have an edge (v ,u), where G had an edge (u, v)

• a residual network is very similar to a flow network;
however, antiparallel edges are allowed

• will consider flows in the residual network – they are
defined just as in flow networks

• a flow f ′ along such a reversed edge (v ,u), models a
decrease of the flow in the original direction (u, v)

• f ′ then partially or completely cancels the flow f
• |Ef | ≤ 2|E |

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.14

Flows in the Residual Network

Augmenting a flow

A flow f ′ in the residual network can be used to add flow to flow
f in the original flow network.

Definition 12 (Augmentation of flow)

Let f be a flow in G and f ′ be a flow in the residual network Gf .
Define f ↑ f ′ : V × V → R – the augmentation of f by f ′ – as
follows

(f ↑ f ′)(u, v) =

{
f (u, v) + f ′(u, v)− f ′(v ,u) , if (u, v) ∈ E
0 , otherwise.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.14

Flows in the Residual Network

Augmenting a flow

A flow f ′ in the residual network can be used to add flow to flow
f in the original flow network.

Definition 12 (Augmentation of flow)

Let f be a flow in G and f ′ be a flow in the residual network Gf .
Define f ↑ f ′ : V × V → R – the augmentation of f by f ′ – as
follows

(f ↑ f ′)(u, v) =

{
f (u, v) + f ′(u, v)− f ′(v ,u) , if (u, v) ∈ E
0 , otherwise.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.15

Augmenting a flow

Example 13 (A flow f ′ in the residual network Gf)

s

1

2

3

4

5

t

2/4

3

2/2

4
1

1/1

1/1

3

2/3

5

1

1/1

4

5

5

3/3

3
31/2

Example 14 (Augmentation f ↑ f ′)

s

1

2

3

4

5

t

5/7

6/6

0/1

1/1

4/4

7/8

0/2

0/4

5/10

6/6

1/5

Augmentation of a Flow

Lemma 15

Let G, f , f ′ be as above. Then the function f ↑ f ′ is a flow in G with value
|f ↑ f ′| = |f |+ |f ′|

Proof...
Capacity constraint:
If (u, v) 6∈ E then (f ↑ f ′)(u, v) = 0 satisfies the capacity constraint.
Let (u, v) ∈ E . Then

(f ↑ f ′)(u, v) = f (u, v) + f ′(u, v)− f ′(v , u)

≥ f (u, v)− f ′(v , u)

≥ 0 (as f ′(v , u) ≤ cf (v , u) = f (u, v))

We also have

(f ↑ f ′)(u, v) = f (u, v) + f ′(u, v)− f ′(v , u)

≤ f (u, v) + f ′(u, v)

≤ f (u, v) + cf (u, v)

= f (u, v) + c(u, v)− f (u, v)

= c(u, v)

f ↑ f ′ therefore satisfies the capacity constraint.

Augmentation of a Flow

Lemma 15

Let G, f , f ′ be as above. Then the function f ↑ f ′ is a flow in G with value
|f ↑ f ′| = |f |+ |f ′|

Proof...
Capacity constraint:
If (u, v) 6∈ E then (f ↑ f ′)(u, v) = 0 satisfies the capacity constraint.
Let (u, v) ∈ E . Then

(f ↑ f ′)(u, v) = f (u, v) + f ′(u, v)− f ′(v , u)

≥ f (u, v)− f ′(v , u)

≥ 0 (as f ′(v , u) ≤ cf (v , u) = f (u, v))

We also have

(f ↑ f ′)(u, v) = f (u, v) + f ′(u, v)− f ′(v , u)

≤ f (u, v) + f ′(u, v)

≤ f (u, v) + cf (u, v)

= f (u, v) + c(u, v)− f (u, v)

= c(u, v)

f ↑ f ′ therefore satisfies the capacity constraint.

Augmentation of a Flow

Proof.
Flow conservation:
Both f and f ′ obey flow conservation. Therefore, we have for any u ∈ V \ {s, t}

∑
v∈V

(f ↑ f ′)(u, v) =
∑
v∈V

(
f (u, v) + f ′(u, v)− f ′(v , u)

)
=

∑
v∈V

f (v , u) +
∑
v∈V

f ′(v , u)−
∑
v∈V

f ′(u, v)

=
∑
v∈V

(f ↑ f ′)(v , u).

Therefore, f ↑ f ′ obeys flow conservation.
For computing the value of f ↑ f ′, let F = {v ∈ V | (s, v) ∈ E} be the set of vertices with edges From s
and let T = {v ∈ V | (v , s) ∈ E} be the set of vertices with edges To s. F ∩ T = ∅ because G has no
antiparallel edges.

|f ↑ f ′| =
∑
v∈F

(f ↑ f ′)(s, v)−
∑
v∈T

(f ↑ f ′)(v , s)

=
∑
v∈F

(f (s, v) + f ′(s, v)− f ′(v , s))−
∑
v∈T

(f (v , s) + f ′(v , s)− f ′(s, v))

= |f | +
∑

v∈F∪T

(f ′(s, v)− f ′(v , s))

= |f | + |f ′|

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.18

Augmenting Path

Choice of f ′

• above lemma allows augmenting a flow f with an arbitrary
flow f ′ in the residual network

• will only consider a simple kind of flow for f ′

Definition 16 (Augmenting path)

Given a flow network G = (V ,E) and a flow f in G, an
augmenting path is a simple path from s to t in the residual
network Gf .

Example 17 (An augmenting path in the residual network Gf)

s

1

2

3

4

5

t

4

3

2

4
1

1

1

3

3

5

1

1

4

5

5

3

3
32

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.19

Augmenting Path

Augmenting path

• let p be an augmenting path
• p naturally defines a flow in the residual network:

there is a positive flow on all the edges of p
there is no flow elsewhere

Definition 18 (residual capacity of a path)

Let
cf (p) = min{cf (u, v) | (u, v) is on p}.

Definition 19 (flow defined by augmenting path)

The flow fp : V × V → R defined by augmenting path p is

fp(u, v) =

{
cf (p) , if (u, v) is on p
0 , otherwise.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.20

Augmenting Path

Augmenting path

• let p be an augmenting path
• fp really is a flow in Gf

• |fp| = cf (p) > 0
• f ↑ fp is a flow in G with value |f |+ |fp| > |f |

Example 20 (The flow fp in the residual network Gf)

s

1

2

3

4

5

t

4

3

1/2

4
1/1

1

1

3

3

5

1

1/1

1/4

1/5

5

3

3
1/32

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.21

Augmenting Path

Example 21 (Augmentation f ↑ fp of value 9)

s

1

2

3

4

5

t

3/7

5/6

1/1

0/1

3/4

5/8

0/2

1/4

6/10

3/6

3/5

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.22

Ford-Fulkerson Method

Ford-Fulkerson Method

1: initialize flow f to 0 everywhere
2: while there is an augmenting path p in the residual

network Gf do
3: augment flow f along p by setting f ← f ↑ fp
4: return f

Optimality

• above method increases the flow until no augmenting path
exists

• is the resulting network f globally optimal or does the result
value depend on the choices of the augmenting paths?

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.22

Ford-Fulkerson Method

Ford-Fulkerson Method

1: initialize flow f to 0 everywhere
2: while there is an augmenting path p in the residual

network Gf do
3: augment flow f along p by setting f ← f ↑ fp
4: return f

Optimality

• above method increases the flow until no augmenting path
exists

• is the resulting network f globally optimal or does the result
value depend on the choices of the augmenting paths?

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.23

Cuts of Flow Networks

Definition 22 (Cut)

A cut (S,T) of flow network G = (V ,E) is a partition of V into S and
T = V \ S such that s ∈ S and t ∈ T .

Definition 23 (Net flow across cut)

Let f be a flow in G. The net flow f (S,T) across the cut (S,T) is

f (S,T) =
∑
u∈S

∑
v∈T

f (u, v)−
∑
u∈S

∑
v∈T

f (v , u).

Example 24 (A cut (S,T) with net flow f (S,T) = 12− 3 = 9)

s

1

2

3

4

5

t

3/7

5/6

1/1

0/1

3/4

5/8

0/2

1/4

6/10

3/6

3/5

S = {s, 1, 2, 4},T = {t , 3, 5}

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.24

Cuts of Flow Networks

Definition 25 (Capacity of a cut)

The capacity c(S,T) of the cut (S,T) is

c(S,T) =
∑
u∈S

∑
v∈T

c(u, v).

Example 26 (A cut (S,T) with capacity c(S,T) = 19)

s

1

2

3

4

5

t

7

6

1

1

4

8

2

4

10

6

5

S = {s, 1, 2, 4},T = {t , 3, 5}

Definition 27 (Minimum cut)

A minimum cut of a flow network is a cut whose capacity is minimal
over all cuts of the network.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.25

Minimum cut

Example 28 (A minimum cut)

ssource

1

2

3

4

5

t sink

7

6

1
1

4

8

2

4

10

6

5

mininum cut ({s,1}, {t ,2,3,4,5}) with capacity 12

Net Flow Independent of Cut

Lemma 29

Let f be a flow in G and let (S,T) be any cut of G. Then the net flow across
(S,T) is

f (S,T) = |f |.

Proof.

Adding a “trick-0” to the right-hand side of the definition of f (S,T) we get

f (S,T) =
∑
u∈S

∑
v∈T

f (u, v)−
∑
u∈S

∑
v∈T

f (v , u) +
∑
u∈S

∑
v∈S

f (u, v)−
∑
u∈S

∑
v∈S

f (v , u)︸ ︷︷ ︸
=0

=
∑
u∈S

∑
v∈V

f (u, v)−
∑
u∈S

∑
v∈V

f (v , u) (as S ∪̇ T = V)

=
∑
v∈V

f (s, v)−
∑
v∈V

f (v , s) (1)

= |f | (by definition of |f |)

Here, (1) follows from the definition of flow conservation for all u ∈ S \ {s}.

Net Flow Independent of Cut

Lemma 29

Let f be a flow in G and let (S,T) be any cut of G. Then the net flow across
(S,T) is

f (S,T) = |f |.

Proof.

Adding a “trick-0” to the right-hand side of the definition of f (S,T) we get

f (S,T) =
∑
u∈S

∑
v∈T

f (u, v)−
∑
u∈S

∑
v∈T

f (v , u) +
∑
u∈S

∑
v∈S

f (u, v)−
∑
u∈S

∑
v∈S

f (v , u)︸ ︷︷ ︸
=0

=
∑
u∈S

∑
v∈V

f (u, v)−
∑
u∈S

∑
v∈V

f (v , u) (as S ∪̇ T = V)

=
∑
v∈V

f (s, v)−
∑
v∈V

f (v , s) (1)

= |f | (by definition of |f |)

Here, (1) follows from the definition of flow conservation for all u ∈ S \ {s}.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.27

Capacity of Cut Upper Boundary for Maximal Flow

Corollary 30

Let f be any flow in a flow network and (S,T) be any cut. Then

|f | ≤ c(S,T).

Proof.

|f | = f (S,T) (by lemma 29)

=
∑
u∈S

∑
v∈T

f (u, v)−
∑
u∈S

∑
v∈T

f (v , u) (by definition of net flow)

≤
∑
u∈S

∑
v∈T

f (u, v)

≤
∑
u∈S

∑
v∈T

c(u, v)

= c(S,T)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.27

Capacity of Cut Upper Boundary for Maximal Flow

Corollary 30

Let f be any flow in a flow network and (S,T) be any cut. Then

|f | ≤ c(S,T).

Proof.

|f | = f (S,T) (by lemma 29)

=
∑
u∈S

∑
v∈T

f (u, v)−
∑
u∈S

∑
v∈T

f (v , u) (by definition of net flow)

≤
∑
u∈S

∑
v∈T

f (u, v)

≤
∑
u∈S

∑
v∈T

c(u, v)

= c(S,T)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.28

Max-Flow Min-Cut Theorem

Theorem 31 (Max-flow min-cut)

Let G = (V ,E) be a flow network and f be a flow in G. Then
the following three conditions are equivalent:

1) f is a maximum flow in G.
2) The residual network Gf contains no augmenting paths.
3) |f | = c(S,T) for some cut (S,T) of G.

Proof...

1)⇒ 2):
Let f be a maximum flow in G and let the residual network Gf contain
an augmenting path p. Then, by lemma 15, |f ↑ fp| is a flow with value
|f |+ |fp| > |f |. �

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.28

Max-Flow Min-Cut Theorem

Theorem 31 (Max-flow min-cut)

Let G = (V ,E) be a flow network and f be a flow in G. Then
the following three conditions are equivalent:

1) f is a maximum flow in G.
2) The residual network Gf contains no augmenting paths.
3) |f | = c(S,T) for some cut (S,T) of G.

Proof...

1)⇒ 2):
Let f be a maximum flow in G and let the residual network Gf contain
an augmenting path p. Then, by lemma 15, |f ↑ fp| is a flow with value
|f |+ |fp| > |f |. �

Max-Flow Min-Cut Theorem

...Proof...

2)⇒ 3):
Let Gf contain no augmenting paths. Define

S = {v ∈ V | there is a path in Gf from s to v}

and T := V \ S.
Clearly, s ∈ S. Also t ∈ T as otherwise Gf would contain an augmenting path.
Therefore, (S,T) is a cut. Consider a pair u ∈ S, v ∈ T of vertices. Observe, that
cf (u, v) = 0, as otherwise v would be reachabe by an edge in Gf from u and
therefore also be in S. By definition of cf this means that f (u, v) = c(u, v) for
(u, v) ∈ E and f (v , u) = 0 for (v , u) ∈ E . We get

|f | = f (S,T) (by lemma 29)

=
∑

u ∈ S, v ∈ T
(u, v) ∈ E

f (u, v)−
∑

u ∈ S, v ∈ T
(v , u) ∈ E

f (v , u)

=
∑
u∈S

∑
v∈T

c(u, v)

= c(S,T)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.30

Max-Flow Min-Cut Theorem

...Proof.

3)⇒ 1):
By corollary 30 we know that |f ′| ≤ c(S,T) for any flow f ′.
|f | = c(S,T) therefore implies that f is maximal.

Max-Flow Min-Cut Theorem

Example 32 (max-flow f of value 12 and min-cut ({s, 1}, {t , 2, 3, 4, 5}) of
capacity 12)

s

1

2

3

4

5

t

5/7

6/6

1/1

1/1

4/4

7/8

0/2

1/4

6/10

6/6

2/5

Example 33 (The residual network Gf has no augmenting paths)

s

1

2

3

4

5

t

2

5

6 1

1

4

1

7

2

3 1

4

6

6

32

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.32

Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

1: for each edge (u, v) ∈ E do
2: f (u, v)← 0
3: while there is a path p from s to t in the residual network

Gf do
4: cf (p)← min{cf (u, v) | (u, v) is on p}
5: for each edge (u, v) in p do
6: if (u, v) ∈ E then
7: f (u, v)← f (u, v) + cf (p)
8: else
9: f (v ,u)← f (v ,u)− cf (p)

10: return f as maximum flow

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.33

Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

• correctness follows from Max-Flow Min-Cut Theorem
• running time depends on the choice of the augmenting

path

Ford-Fulkerson Algorithm, Example

1) a flow network G

s

1

2

t

1

1

1
1

1

3) residual network Gf

s

1

2

t

1

1

1
1
1

5) residual network Gf

s

1

2

t

1

1
1

1

1

2) an augmenting path p in G = Gf when f ≡ 0

s

1

2

t

1

1

1
1

1

4) an augmenting path p in Gf

s

1

2

t

1

1

1
1
1

6) maximal flow f in G of value 2

s

1

2

t

1/1

1/1

0/1

1/1

1/1

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.35

Ford-Fulkerson Algorithm

Running time

• Let m = |E | be the number of edges.
• Let E ′ = {(u, v) | (u, v) ∈ E or (v ,u) ∈ E}. Then at any

given time, we only need to consider edges in E ′.
• |E ′| ≤ 2m
• Finding an augmenting path can be done with search

algorithms that run in time O(m) (e.g. depth-first search,
breadth-first search).

• When capacities are integers, then |f | increases each step
by at least 1, therefore the running time is then in
O(m · |f ∗|), where f ∗ is a maximum flow.

• Θ(m · |f ∗|) can really be achieved in the worst case.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.36

Ford-Fulkerson Algorithm, Example

Example 34 (flow network, where FF can take Θ(m · |f ∗|) time)

s

1

2

t

1000

1000

1

1000

1000

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.37

Edmonds-Karp Algorithm

Choice of augmenting path

• worst-case running time of FF is unsatisfying
• want to pick augmenting paths in a way that guarantees a

better worst-case running time
• shortest augmenting path: shortest path from s to t in the

residual network (minimal number of edges)

Edmonds-Karp algorithm

Follow the general Ford-Fulkerson method, and choose for
each update step a shortest augmenting path.

Reminder: Breadth-First Search

Breadth-first search
Let G = (V , E) be a (directed) graph and s ∈ V be the source.
1: Q ← empty queue
2: for each vertext v ∈ V \ {s} do
3: p(v)← NULL // predecessor on the shortest path to s
4: d(v)←∞ // distance to s
5: color(v)← white // white: not queued yet
6: d(s)← 0, color(s)← gray, p(s)← NULL
7: insert s into Q
8: while Q not empty do
9: u ← remove first element of Q
10: for each v such that (u, v) ∈ E do
11: if color(v) = white then
12: d(v)← d(u) + 1
13: p(v)← u
14: color(v)← gray
15: insert v into Q

Running time: O(|V |+ |E |)
For any node v (e.g. the sink in a flow network) we can find the shortest path to s by
iteratively following the links p(v) until reaching s.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.39

Edmonds-Karp Algorithm

Lemma 35

Let G = (V ,E) be a flow network with source s and sink t, let
v ∈ V \ {s, t}. Let f be a flow. Let df (v) be the shortest-path
distance from s to v in the residual network Gf .
Then, during the Edmonds-Karp algorithm, df (v) increases
monotonically with each flow augmentation.

Edmonds-Karp Algorithm

Proof.
Assume for the sake of contradiction that the lemma was not true and the distance from s decreases for
some vertex for some updating step. Let f and f ′ be the flows just before and after this updating step,
respectively. Let v ∈ V \ {s, t} be such that df (v) > df ′ (v) and such that df ′ (v) is minimal among such
vertices.
Let u be the last vertex visited on a shortest path from s to t in Gf ′ : s ; u → v . Then df ′ (u) = df ′ (v)− 1
by definition of a shortest path.
Suppose we had (u, v) ∈ Ef as well. Then

df (v) ≤ df (u) + 1 (triangle inequality)

≤ df ′ (u) + 1 (as v was the closest vertext to s in G′
f violating monotonicity)

= df ′ (v)

would contradict our assumption df (v) > df ′ (v). Therefore, (u, v) 6∈ Ef .
Since we have (u, v) 6∈ Ef and (u, v) ∈ Ef ′ the augmenting path in Gf must contain the edge (v , u).
Therefore

df (v) = df (u)− 1

≤ df ′ (u)− 1

= df ′ (v)− 2

< df ′ (v).

�This contradicts the assumption that v violates the monotonicity from f to f ′. Therefore, the claim of the
lemma must be true.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.41

Edmonds-Karp Algorithm

Theorem 36

Let G = (E ,V) be a flow network with n = |V | vertices and
m = |E | edges. The total number of flow augmentations
performed by the Edmonds-Karp algorithm is O(nm) and the
total running time to find the maximum flow is O(nm2).

Proof...

We say that an edge (u, v) is critical in a residual network Gf on an
augmenting path p if cf (p) = cf (u, v). Therefore, after augmenting the
flow along the augmenting path, a critical edge is removed from the
residual network. Consider some vertex pair (u, v) such that either
(u, v) ∈ E or (v , u) ∈ E . If that vertex pair ever becomes a critical
edge in some residual network, then let f be the flow the first time it
becomes critical. Then

df (v) = df (u) + 1

as the augmenting path is a shortest path in Gf . If (u, v) should ever
become critial again, then in the meantime an augmenting path must
have included the reverse edge (v , u). Let f ′ be the flow of the
residual network at that time.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.41

Edmonds-Karp Algorithm

Theorem 36

Let G = (E ,V) be a flow network with n = |V | vertices and
m = |E | edges. The total number of flow augmentations
performed by the Edmonds-Karp algorithm is O(nm) and the
total running time to find the maximum flow is O(nm2).

Proof...

We say that an edge (u, v) is critical in a residual network Gf on an
augmenting path p if cf (p) = cf (u, v). Therefore, after augmenting the
flow along the augmenting path, a critical edge is removed from the
residual network. Consider some vertex pair (u, v) such that either
(u, v) ∈ E or (v , u) ∈ E . If that vertex pair ever becomes a critical
edge in some residual network, then let f be the flow the first time it
becomes critical. Then

df (v) = df (u) + 1

as the augmenting path is a shortest path in Gf . If (u, v) should ever
become critial again, then in the meantime an augmenting path must
have included the reverse edge (v , u). Let f ′ be the flow of the
residual network at that time.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.42

Edmonds-Karp Algorithm

...Proof.

Then
df ′(u) = df ′(v) + 1.

We get

df ′(u) = df ′(v) + 1

≥ df (v) + 1 (by lemma 35)

= df (u) + 2

The distance to the source must have increased by at least 2 each
time (u, v) becomes critical again. As u 6= t the distance to the source
is limited by n− 2. By lemma 35 the distance can only increase, which
limits the total number of times that (u, v) becomes critical to
1 + (n − 2)/2 = n/2. The total number of vertex pairs that can
become critical edges is bounded by 2m. As each augmenting path
has at least one critical edge on it, there can be at most nm flow
augmentation steps.
Each search for an augmenting path by breadth-first search takes
O(n + m) time, which is also O(m) as we have assumed that there is
a path s ; v ; t for all v ∈ V . We therefore get a total worst-case
time bound of O(nm2).

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.43

Example: Assigning Seminar Topics

Example 37 (Topics in a Bioinformatics seminar)

t1 RNA-Sekundärstrukturvorhersage mit dem Nussinov-Algorithmus

t2 Ein Wettspiel und die Häufigkeitsverteilung eines Musters in einer Sequenz

t3 Spaced Seeds (2)

t4 Flüsse in Netzwerken und Multiples Sequenzalignment

t5 Hirschbergs Algorithmus mit linearem Speicherverbrauch

t6 Ant Colony Optimization

t7 Genetische Algorithmen

t8 Ein Kompressionsalgorithmus für DNA

t9 Einführung in Knotentheorie

t10 Polynomialzeitreduktion auf Multiples Alignment (2)

t11 Spliced Alignment mittels Netzwerk Alignment

t12 HMMs und das Logarithmische Zahlensystem

t13 Frameshift-korrigierendes HMM von ESTScan

t14 Schätzen einer Multinomialverteilung mit einem Bayes-Ansatz (2)

t15 Einführung in Neuronale Netze (2)

t16 Genvorhersage in der Metagenomik mit dem Programm Orphelia

t17 Erkennung von chimärischen 16S rRNA Sequenzen

t18 Topologie von Transkriptionsnetzwerken von Säugern

t19 Bewerten der Konserviertheit eines Residuums

Example: Assigning Seminar Topics

Seminar assignment problem

• 16 students s1, . . . , s16, 19 topics t1, . . . , t19

• some topics can be presented by two students
• each student is asked to give a nonempty list of preferred topics
• consider feasible assignments of topics to students, such that

• every student gets exactly one topic
• every topic is taken by at most 1 or 2 (if appropriate) students

Find a feasible assignment of topics to students,
such that all students get a topic they prefer or, if
not possible, such that a maximal number of stu-
dents get a topic of their preference.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.45

Example: Assigning Seminar Topics

Example 38 (Seminar topic preferences)

s1students s2 s3 s4 s5 s6

t1

1

topics t2

1

t3

2

t4

1

t5

1

t6

2

t7

1

Disallowing topics that can be taken more than once

For convenience, we will allow each topic to be taken at most
once. When there are topics that can be taken by two or more
students, then we can formulate an equivalent seminar
assignment problem in which each topic can only be taken
once. How?

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.45

Example: Assigning Seminar Topics

Example 38 (Seminar topic preferences)

s1students s2 s3 s4 s5 s6

t1

1

topics t2

1

t3

2

t4

1

t5

1

t6

2

t7

1

Disallowing topics that can be taken more than once

For convenience, we will allow each topic to be taken at most
once. When there are topics that can be taken by two or more
students, then we can formulate an equivalent seminar
assignment problem in which each topic can only be taken
once. How?

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.46

(Bipartite) Matching

Definition 39 (Matching)

Let G = (V ,E) be an undirected graph.
• A matching is a subset M ⊂ E of edges such that for all

vertices v ∈ V , at most one edge of M is incident on v .
• If v is incident to an edge in M, then v is matched,

otherwise it is unmatched.
• A maximum matching is a matching of maximal size.

Definition 40 (Bipartite graph (German: “bipartit” oder “paar”))

A bipartite graph is an undirected graph G = (V ,E), in which V
can be partitioned into two sets L,R, such that for all
{u, v} ∈ E either u ∈ L and v ∈ R or u ∈ R and v ∈ L.

Maximum bipartite matching problem

Find a maximum matching in a given bipartite graph.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.46

(Bipartite) Matching

Definition 39 (Matching)

Let G = (V ,E) be an undirected graph.
• A matching is a subset M ⊂ E of edges such that for all

vertices v ∈ V , at most one edge of M is incident on v .
• If v is incident to an edge in M, then v is matched,

otherwise it is unmatched.
• A maximum matching is a matching of maximal size.

Definition 40 (Bipartite graph (German: “bipartit” oder “paar”))

A bipartite graph is an undirected graph G = (V ,E), in which V
can be partitioned into two sets L,R, such that for all
{u, v} ∈ E either u ∈ L and v ∈ R or u ∈ R and v ∈ L.

Maximum bipartite matching problem

Find a maximum matching in a given bipartite graph.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.46

(Bipartite) Matching

Definition 39 (Matching)

Let G = (V ,E) be an undirected graph.
• A matching is a subset M ⊂ E of edges such that for all

vertices v ∈ V , at most one edge of M is incident on v .
• If v is incident to an edge in M, then v is matched,

otherwise it is unmatched.
• A maximum matching is a matching of maximal size.

Definition 40 (Bipartite graph (German: “bipartit” oder “paar”))

A bipartite graph is an undirected graph G = (V ,E), in which V
can be partitioned into two sets L,R, such that for all
{u, v} ∈ E either u ∈ L and v ∈ R or u ∈ R and v ∈ L.

Maximum bipartite matching problem

Find a maximum matching in a given bipartite graph.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.47

Corresponding Flow Network

Flow network corresponding to bipartite graph

• let G = (V ,E) be a bipartite graph with partition V = L ∪̇R
• assumption: No vertex has degree 0. (Otherwise, remove

them first.)
• design a corresponding flow network G′ = (V ′,E ′)

Example 41 (Bipartite graph G from seminar assignment
example)

L

R

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.48

Corresponding Flow Network

Example 42 (Corresponding flow network G′)

ssource

L

R

tsink

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.49

Corresponding Flow Network

Definition 43 (Flow network corresponding to bipartite graph)

Let G = (V ,E) be a bipartite graph with partition V = L ∪̇ R.
The corresponding flow network G′ = (V ′,E ′) is defined as
follows:

• V ′ := V ∪ {s, t}, where source s and sink t are two new
vertices

• . E ′ := {(u, v) |u ∈ L, v ∈ R, {u, v} ∈ E}
∪ {(s, v) | v ∈ L}
∪ {(v , t) | v ∈ R}

• c(u, v) = 1 if (u, v) ∈ E ′, c(u, v) = 0, otherwise. (“unit
capacity”)

Observation

|E | ≤ |E ′| = |E |+ |V | ≤ 3|E |

as G has no isolated nodes and therefore |E ′| = Θ(E).

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.49

Corresponding Flow Network

Definition 43 (Flow network corresponding to bipartite graph)

Let G = (V ,E) be a bipartite graph with partition V = L ∪̇ R.
The corresponding flow network G′ = (V ′,E ′) is defined as
follows:

• V ′ := V ∪ {s, t}, where source s and sink t are two new
vertices

• . E ′ := {(u, v) |u ∈ L, v ∈ R, {u, v} ∈ E}
∪ {(s, v) | v ∈ L}
∪ {(v , t) | v ∈ R}

• c(u, v) = 1 if (u, v) ∈ E ′, c(u, v) = 0, otherwise. (“unit
capacity”)

Observation

|E | ≤ |E ′| = |E |+ |V | ≤ 3|E |

as G has no isolated nodes and therefore |E ′| = Θ(E).

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.50

Correspondence Between Matchings and Flows

Definition 44 (integer-valued)

A flow f is integer-valued if f (u, v) is an integer for all
(u, v) ∈ V × V

Lemma 45 (Correspondence between matchings and flows)

Let G,G′ be as above.
a) If M is a matching in G, then there is an integer-valued

flow f in G′ with value |f | = |M|.
b) If f is an integer-valued flow in G′, then there is a matching

M in G of size |M| = |f |.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.50

Correspondence Between Matchings and Flows

Definition 44 (integer-valued)

A flow f is integer-valued if f (u, v) is an integer for all
(u, v) ∈ V × V

Lemma 45 (Correspondence between matchings and flows)

Let G,G′ be as above.
a) If M is a matching in G, then there is an integer-valued

flow f in G′ with value |f | = |M|.
b) If f is an integer-valued flow in G′, then there is a matching

M in G of size |M| = |f |.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.51

Correspondence Between Matchings and Flows

Proof.

a)
Let M be a matching in G. Define f as follows. For any {u, v} ∈ M
with u ∈ L, v ∈ R, let f (s, u) = f (u, v) = f (v , t) = 1. Let the flow f be 0
on all other edges in E ′. This f satisfies the capacity constraint and
flow conservation as each vertex in E is incident to at most one edge
in M. Therefore, f is an integer-valued flow. Consider the cut
(S,T) = (L ∪ {s},R ∪ {t}). The net flow across this cut is
f (S,T) = |M| by definition of f and according to lemma 29
f (S,T) = |f |.
b)
Let f be an integer-valued flow in G′. As capacities in G′ are either 0
or 1, also f (u, v) ∈ {0, 1}. Define M as follows.

M := {{u, v} | u ∈ L, v ∈ R, f (u, v) = 1}

Again, |f | = f (L ∪ {s},R ∪ {t}) by lemma 29. The net flow across this
cut is equal to the number of edges between L and R with a flow of 1,
which is |M|.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.52

Integrality of Flow

Integrality

In general, in a flow network corresponding to a bipartite graph,
a maximum flow must have a value that is an integer, but need
itself not be integer-valued. However, ...

Lemma 46

If the capacity function c takes only integer values, then |f | is
an integer and the maximum flow f produced by the Ford
Fulkerson method is integer-valued.

Proof.

The algorithm starts with f ≡ 0, an integer-valued flow. Let f be
an integer-valued flow (induction hypothesis) and p be an
augmenting path in Gf . cf (p) is an integer as the capacities are
integers. Therefore, the flow f ↑ fp is again integer-valued. The
claim that the maximum flow produced FF is integer-valued
follows by induction. That |f | is integer-valued is a direct
consequence.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.52

Integrality of Flow

Integrality

In general, in a flow network corresponding to a bipartite graph,
a maximum flow must have a value that is an integer, but need
itself not be integer-valued. However, ...

Lemma 46

If the capacity function c takes only integer values, then |f | is
an integer and the maximum flow f produced by the Ford
Fulkerson method is integer-valued.

Proof.

The algorithm starts with f ≡ 0, an integer-valued flow. Let f be
an integer-valued flow (induction hypothesis) and p be an
augmenting path in Gf . cf (p) is an integer as the capacities are
integers. Therefore, the flow f ↑ fp is again integer-valued. The
claim that the maximum flow produced FF is integer-valued
follows by induction. That |f | is integer-valued is a direct
consequence.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.52

Integrality of Flow

Integrality

In general, in a flow network corresponding to a bipartite graph,
a maximum flow must have a value that is an integer, but need
itself not be integer-valued. However, ...

Lemma 46

If the capacity function c takes only integer values, then |f | is
an integer and the maximum flow f produced by the Ford
Fulkerson method is integer-valued.

Proof.

The algorithm starts with f ≡ 0, an integer-valued flow. Let f be
an integer-valued flow (induction hypothesis) and p be an
augmenting path in Gf . cf (p) is an integer as the capacities are
integers. Therefore, the flow f ↑ fp is again integer-valued. The
claim that the maximum flow produced FF is integer-valued
follows by induction. That |f | is integer-valued is a direct
consequence.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.53

Maximum Matching and Maximum Flow

Corollary 47

The size |M| of a maximum matching M in a bipartite graph G
is equal to the value |f | of a maximum flow f in its
corresponding flow network G′.

Proof.

Let M be a maximum matching. By lemma 45 a), there is a flow
f with value |f | = |M|. If |f | was not the value of a maximum
flow, then there was another flow f ′ of higher value, |f ′| > |f |,
which can by lemma 46 be assumed to be integer-valued. This
would imply, by lemma 45 b), that there is another match M ′ of
size |M ′| = |f ′| > |f |, which contradicts that M is maximal.
Therefore, |f | is the value of a maximum flow.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.53

Maximum Matching and Maximum Flow

Corollary 47

The size |M| of a maximum matching M in a bipartite graph G
is equal to the value |f | of a maximum flow f in its
corresponding flow network G′.

Proof.

Let M be a maximum matching. By lemma 45 a), there is a flow
f with value |f | = |M|. If |f | was not the value of a maximum
flow, then there was another flow f ′ of higher value, |f ′| > |f |,
which can by lemma 46 be assumed to be integer-valued. This
would imply, by lemma 45 b), that there is another match M ′ of
size |M ′| = |f ′| > |f |, which contradicts that M is maximal.
Therefore, |f | is the value of a maximum flow.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Flow Networks
Flow Networks

Residual Networks

Cuts

The Ford-Fulkerson
Algorithm

The Edmonds-Karp
Algorithm

Maximum Bipartite
Matching
Bipartite Matching

MBM Using Flow Networks

1.54

Finding a Maximum Matching

Finding a maximum matching

Let G be a bipartite graph.
• create the flow network G′

• find a maximum flow f in G′ with a Ford-Fulkerson method
• construct a maximum matching M from f as in lemma 45

b)

Running time

• the worst-case running time of FF is O(|E ′| · |f ∗|), where
|f ∗| is the value of a maximum flow

• |E ′| = Θ(|E |) and |f ∗| = O(|V |)
• ⇒ the running time of above algorithm is O(nm),

where n = |V | and m = |E |.

	Flow Networks
	Flow Networks
	Residual Networks
	Cuts
	The Ford-Fulkerson Algorithm
	The Edmonds-Karp Algorithm

	Maximum Bipartite Matching
	Bipartite Matching
	MBM Using Flow Networks

