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1.2

Greedy Heuristic

Greedy heuristic

In a combinatorial optimization problem, try
to find a (near) optimal solution, by making a
sequence of choices such that each choice
appears to be optimal at the time of choice.

The greedy heuristic is usually efficient but does not always
produce a correct or near optimal result.
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1.3

Design Principles of a Greedy Algorithm

Design Principles

1 Choice and subproblem:
Formulate the optimization problem as one in which a
choice is made which leaves a subproblem to solve.

2 Greedy choice is safe:
Prove that there is always an optimal solution to the
original problem that makes the greedy choice.

3 Demonstrate optimal substructure:
After choosing greedily, an optimal solution to the
subproblem combined with the greedy choice yields an
optimal solution to the original problem.
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1.4

Minimum Spanning Tree

Definition 1 (Spanning Tree)

Let G = (V ,E) be a weighted, connected, undirected graph
and w({u, v}) be the weight of edge {u, v}.
A spanning tree of G is a subset T ⊂ E such that (V ,T ) is a
tree.

A minimum spanning tree (MST) is a spanning tree of minimum
weight w(T ), where

w(T ) :=
∑
e∈T

w(e).

MST problem

Find a minimum spanning tree for a given weighted,
connected, undirected graph.
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1.5

Kruskal’s Algorithm

Kruskal’s Algorithm

1: T ← {}
2: for each v ∈ V do
3: MAKE-SET(v )
4: sort the edges in E in nondecreasing order by weight
5: for each edge {u, v} ∈ E in above order do
6: if FIND-SET(u) 6= FIND-SET(v ) then
7: T ← T ∪ {{u, v}}
8: UNION(u, v )

Running time

Observation: |V | = O(|E |) as G is connected.
All MAKE-SET, FIND-SET, UNION operations together:
O((|E |+ |V |) · α(|V |)) = O(|E | · α(|V |))
Line 4: O(|E | · log |E |) = O(|E | · log |V |)
Total time O(|E | log |V |)
Here: α is the slightly superlinear function defined in section
about disjoint sets.
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1.6

Kruskal’s Algorithm

Kruskal’s algorithm is greedy

• Subproblems:
For a given T that is a subset of a MST, find a MST
containing T .

• Greedy choice:
Choose the lightest edge e from E \ T such that T
remains acyclic.

• Greedy choice is save:
Needs to be proven: T ∪ {e} is a subset of a MST

• Optimal substructure:
Trivial: A MST containing T ∪ {e} is a MST containing T
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1.7

Prefix Codes

Binary Character Code

Let C be a finite set of objects.
A binary code or short code is an injective mapping

C → {0,1}+.

Each object is represented by a unique binary string, its
codeword.

If all codewords have the same length, then the code is said to
be a fixed-length code, otherwise a variable-length code.

Example 2 (Braille)

Braille is a fixed-length binary code.
object codeword
A 100000
B 110000
C 100100
D 100110
· · · · · ·
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Prefix Codes

Prefix Code

A prefix code (German: präfixfreier Code) is a code in which no
codeword is a prefix of another codeword.

Example 3

• phone numbers
• Morse code (ternary code: {short, long, pause})

• the code

A 0
B 10
C 110
D 111

Decoding

For prefix codes a sequence of codewords can be decoded
online:
100111→ 10,0,111→ BAD
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Huffman Codes

Lossless Data Compression with Prefix Codes

Consider a sequence s of objects and the corresponding sequence t of codewords.
Aim: Choose prefix code such that t has minimal length.

Example 4 (Protein sequences)

A protein sequence s of length 1000 consists of the
following objects (C = {amino acids}, |C| = 20)).
A fixed-length code would require dlog2 20e = 5 bits
per codeword and therefore 5000 bits for coding the
whole sequence.

amino acid 1 letter freq
Alanine A 60
Arginine R 67
Asparagine N 37
Aspartic acid D 53
Cysteine C 17
Glutamic acid E 60
Glutamine Q 48
Glycine G 76
Histidine H 20
Isoleucine I 39
Leucine L 78
Lysine K 60
Methionine M 25
Phenylalanine F 44
Proline P 61
Serine S 87
Threonine T 51
Tryptophan W 7
Tyrosine Y 26
Valine V 84
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Huffman Codes

Tree representing a prefix code

• a binary prefix code can be represented by a binary tree T
with edge labels in {0,1}

• the edges from an internal node to its sons have different
labels

• decoding a sequence of codewords can be done efficiently
parsing T root to leaf for each object
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Huffman Codes

Example 5 (A tree representing a prefix code)

A has codeword 0100
Y has codeword 1011000
etc.
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Huffman Codes

Cost of a tree

Let T be a binary tree representing a prefix code for objects in
the set C. For c ∈ C

• let c.freq > 0 be the frequency of character c
• let dT (c) be the depth of the leaf representing the

codeword for c (= number of bits in the codeword).

Define
B(T ) :=

∑
c∈C

c.freq · dT (c)

to be the cost of tree T .
B(T ) is the total number of bits required when coding all
objects using the code represented by T .

Example 6

For above tree and frequencies we get the costs
B(T ) = 60 · 4 + 67 · 4 + · · ·+ 84 · 7 = 4947.
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Huffman Codes

Observation

Every optimal tree (with minimal costs) is a full binary tree.
(Why?)

Let n = |C| be the number of objects. The number of internal
nodes of a full binary tree T with n leaves is n − 1.

Bottom-up strategy

Consider the following generic leaf-to-root strategy for
construcing a full binary tree T .

1: n← |C|
2: create a leaf node for every object in C
3: for i = 1..n − 1 do
4: pick two nodes x and y from C
5: create a new internal node z[i] with edges to x and y

labeled 0 and 1, respectively
6: z[i].freq ← x .freq + y .freq
7: remove x and y from C and add z[i] to C
8: return z[n − 1] as root of the tree
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Huffman Codes

Observations

1 above pseudocode is generic, it leaves open the choice of nodes x , y in
line 4

2 every full binary tree T can be constructed with this procedure
3 z[i].freq is the sum of the frequencies of all objects in the subtree

rooted at z[i]
4

n−1∑
i=1

z[i].freq = B(T )

Proof.
n−1∑
i=1

z[i].freq =

n−1∑
i=1

∑
c ∈ C

c descendant of z[i]

c.freq =
∑
c∈C

∑
1 ≤ i < n

z[i] ancestor of c

c.freq

=
∑
c∈C

dT (c) · c.freq = B(T )
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Huffman Codes

Greedy choice of internal nodes

Want to minimize B(T ) =
∑n−1

i=1 z[i].freq.

Will minimize z[i].freq in every step i , independent of
considering future possible choices z[j], j > i .

HUFFMAN(C)

1: n← |C|
2: construct a min-priority queue Q with elements C and

frequencies as keys
3: for i = 1..n − 1 do
4: create a new internal node z[i]
5: z[i].left ← x ← EXTRACT-MIN(Q)
6: z[i].right ← y ← EXTRACT-MIN(Q)
7: label edges from z[i] to x and y with 0 and 1,

respectively
8: z[i].freq ← x .freq + y .freq
9: INSERT(Q, z[i])

10: return z[n − 1] as root of the tree
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Huffman Codes

Example 7 (Huffman’s algorithm)

z[1].left = W z[1].right = C z[1].freq = 24
z[2].left = H z[2].right = z[1] z[2].freq = 44
z[3].left = M z[3].right = Y z[3].freq = 51
z[4].left = N z[4].right = I z[4].freq = 76
z[5].left = z[2] z[5].right = F z[5].freq = 88
z[6].left = Q z[6].right = z[3] z[6].freq = 99
z[7].left = T z[7].right = D z[7].freq = 104
z[8].left = A z[8].right = E z[8].freq = 120
z[9].left = K z[9].right = P z[9].freq = 121
z[10].left = R z[10].right = z[4] z[10].freq = 143
z[11].left = G z[11].right = L z[11].freq = 154
z[12].left = V z[12].right = S z[12].freq = 171
z[13].left = z[5] z[13].right = z[6] z[13].freq = 187
z[14].left = z[7] z[14].right = z[8] z[14].freq = 224
z[15].left = z[9] z[15].right = z[10] z[15].freq = 264
z[16].left = z[11] z[16].right = z[12] z[16].freq = 325
z[17].left = z[13] z[17].right = z[14] z[17].freq = 411
z[18].left = z[15] z[18].right = z[16] z[18].freq = 589
z[19].left = z[17] z[19].right = z[18] z[19].freq = 1000
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Huffman Codes

Example 8 (The tree from Huffman’s algorithm)

B(T ) = z[1].freq + · · ·+ z[19].freq = 4195



Huffman’s Algorithm

Running Time
If the min-priority queue is implemented with a heap, then line 2 takes time O(n) and each of the n − 1
iterations of lines 4-9 take time O(log n) totaling to a running time of O(n log n).

We will now prove the correctness of HUFFMAN using three lemmas.

Lemma 9
Let T be any tree and x and y be two different objects, such that

x.freq ≤ y.freq and dT (x) ≤ dT (y).

Let T ′ be the tree obtained from T by exchanging leaves x and y. Then B(T ′) ≤ B(T ).

Proof.

(chalk board)

Lemma 10
Let x and y be two objects with lowest frequencies. Then there exists an optimal prefix code in which the
codewords for x and y have the same length and differ only in the last bit.

Proof.

(chalk board)
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Huffman Codes

Lemma 11

Let C be a set of objects and x and y be two characters with
lowest frequencies.
Let C′ = C \ {x , y} ∪ {z} for a new object z with
z.freq = x .freq + y .freq.
Let T ′ be an optimal tree for C′.
Then the tree T obtained from T ′ by replacing the leaf node for
z with an internal node having x and y as children, is optimal
for C.

Proof.

(chalk board)

Theorem 12

Procedure HUFFMAN produces an optimal prefix code.

Proof.

Induction on iteration i of HUFFMAN using lemma 11.
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A matroid is a tuple (R,F) such that
M1 F 6= ∅ is a collection of subsets of the set R, i.e., F ⊆ P(R).

(Elements in F are called independent)
M2 Closed w.r.t. Inclusion: Y ∈ F, X ⊆ Y ⇒ X ∈ F

M3 Exchange Property: For all X ,Y ∈ F and |Y | > |X | ⇒
exists y ∈ Y \ X such that X ∪ {y} ∈ F .

If (R,F) satisfies (M1) and (M2) but not necessarily (M3), then
(R,F) is called independent system.

Many optimization problems can be formulated as independent
system, where R is ground set of elements that can be chosen
(eg. edges in the MST-problem) and F is a set of subsets of
feasible solutions (eg. all spanning forests in a graph).
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Lemma 13

If (R,F) is an independent system, then the following
conditions are equivalent:
M3 For all X ,Y ∈ F and |Y | > |X | ⇒ exists y ∈ Y \ X such

that X ∪ {y} ∈ F.
M3’ For all X ,Y ∈ F and |Y | = |X |+ 1⇒ exists y ∈ Y \X such

that X ∪ {y} ∈ F.
M3” All maximal independent subsets of E have the same

cardinality.

Proof.

chalkboard.
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Bases of an independent system (R,F) are all maximal
elements of F.

Lemma 14

The basis elements of a matroid have always the same size.

Proof.

Let X ,Y be bases of F such that |Y | > |X |
(M3)⇒ ∃y ∈ Y \ X such that X ∪ {y} ∈ F

⇒ X is not maximal and thus no basis; a contradiction
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MAX-GREEDY((R,F), w : R → R+)

1: sort elements in R such that w(e1) ≥ w(e2) ≥ · · · ≥ w(em)
2: F ← ∅
3: for i = 1..m do
4: if F ∪ {ei} ∈ F then
5: F ← F ∪ {ei}
6: return F

Runtime: If f (m) denotes the runtime to check if F ∪ {ei} ∈ F,
we have total-runtime O(m log(m) + mf (m)).

Theorem 15

Let (R,F) be an independent system. Then, (R,F) is a matroid
if and only if MAX-GREEDY returns a maximum-weighted
element in F for all weighting functions w : R → R+.

Proof.

chalkboard.
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