
Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.1

Datenstrukturen und Effiziente
Algorithmen
Vorlesung Datenstrukturen und Effiziente Algorithmen im WS
18/19

Marc Hellmuth
Institut für Mathematik und Informatik

Universität Greifswald

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.2

Greedy Heuristic

Greedy heuristic

In a combinatorial optimization problem, try
to find a (near) optimal solution, by making a
sequence of choices such that each choice
appears to be optimal at the time of choice.

The greedy heuristic is usually efficient but does not always
produce a correct or near optimal result.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.3

Design Principles of a Greedy Algorithm

Design Principles

1 Choice and subproblem:
Formulate the optimization problem as one in which a
choice is made which leaves a subproblem to solve.

2 Greedy choice is safe:
Prove that there is always an optimal solution to the
original problem that makes the greedy choice.

3 Demonstrate optimal substructure:
After choosing greedily, an optimal solution to the
subproblem combined with the greedy choice yields an
optimal solution to the original problem.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.4

Minimum Spanning Tree

Definition 1 (Spanning Tree)

Let G = (V ,E) be a weighted, connected, undirected graph
and w({u, v}) be the weight of edge {u, v}.
A spanning tree of G is a subset T ⊂ E such that (V ,T) is a
tree.

A minimum spanning tree (MST) is a spanning tree of minimum
weight w(T), where

w(T) :=
∑
e∈T

w(e).

MST problem

Find a minimum spanning tree for a given weighted,
connected, undirected graph.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.4

Minimum Spanning Tree

Definition 1 (Spanning Tree)

Let G = (V ,E) be a weighted, connected, undirected graph
and w({u, v}) be the weight of edge {u, v}.
A spanning tree of G is a subset T ⊂ E such that (V ,T) is a
tree.
A minimum spanning tree (MST) is a spanning tree of minimum
weight w(T), where

w(T) :=
∑
e∈T

w(e).

MST problem

Find a minimum spanning tree for a given weighted,
connected, undirected graph.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.4

Minimum Spanning Tree

Definition 1 (Spanning Tree)

Let G = (V ,E) be a weighted, connected, undirected graph
and w({u, v}) be the weight of edge {u, v}.
A spanning tree of G is a subset T ⊂ E such that (V ,T) is a
tree.
A minimum spanning tree (MST) is a spanning tree of minimum
weight w(T), where

w(T) :=
∑
e∈T

w(e).

MST problem

Find a minimum spanning tree for a given weighted,
connected, undirected graph.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.5

Kruskal’s Algorithm

Kruskal’s Algorithm

1: T ← {}
2: for each v ∈ V do
3: MAKE-SET(v)
4: sort the edges in E in nondecreasing order by weight
5: for each edge {u, v} ∈ E in above order do
6: if FIND-SET(u) 6= FIND-SET(v) then
7: T ← T ∪ {{u, v}}
8: UNION(u, v)

Running time

Observation: |V | = O(|E |) as G is connected.
All MAKE-SET, FIND-SET, UNION operations together:
O((|E |+ |V |) · α(|V |)) = O(|E | · α(|V |))
Line 4: O(|E | · log |E |) = O(|E | · log |V |)
Total time O(|E | log |V |)
Here: α is the slightly superlinear function defined in section
about disjoint sets.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.5

Kruskal’s Algorithm

Kruskal’s Algorithm

1: T ← {}
2: for each v ∈ V do
3: MAKE-SET(v)
4: sort the edges in E in nondecreasing order by weight
5: for each edge {u, v} ∈ E in above order do
6: if FIND-SET(u) 6= FIND-SET(v) then
7: T ← T ∪ {{u, v}}
8: UNION(u, v)

Running time

Observation: |V | = O(|E |) as G is connected.
All MAKE-SET, FIND-SET, UNION operations together:
O((|E |+ |V |) · α(|V |)) = O(|E | · α(|V |))
Line 4: O(|E | · log |E |) = O(|E | · log |V |)
Total time O(|E | log |V |)
Here: α is the slightly superlinear function defined in section
about disjoint sets.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.5

Kruskal’s Algorithm

Kruskal’s Algorithm

1: T ← {}
2: for each v ∈ V do
3: MAKE-SET(v)
4: sort the edges in E in nondecreasing order by weight
5: for each edge {u, v} ∈ E in above order do
6: if FIND-SET(u) 6= FIND-SET(v) then
7: T ← T ∪ {{u, v}}
8: UNION(u, v)

Running time

Observation: |V | = O(|E |) as G is connected.

All MAKE-SET, FIND-SET, UNION operations together:
O((|E |+ |V |) · α(|V |)) = O(|E | · α(|V |))
Line 4: O(|E | · log |E |) = O(|E | · log |V |)
Total time O(|E | log |V |)
Here: α is the slightly superlinear function defined in section
about disjoint sets.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.5

Kruskal’s Algorithm

Kruskal’s Algorithm

1: T ← {}
2: for each v ∈ V do
3: MAKE-SET(v)
4: sort the edges in E in nondecreasing order by weight
5: for each edge {u, v} ∈ E in above order do
6: if FIND-SET(u) 6= FIND-SET(v) then
7: T ← T ∪ {{u, v}}
8: UNION(u, v)

Running time

Observation: |V | = O(|E |) as G is connected.
All MAKE-SET, FIND-SET, UNION operations together:
O((|E |+ |V |) · α(|V |)) = O(|E | · α(|V |))

Line 4: O(|E | · log |E |) = O(|E | · log |V |)
Total time O(|E | log |V |)
Here: α is the slightly superlinear function defined in section
about disjoint sets.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.5

Kruskal’s Algorithm

Kruskal’s Algorithm

1: T ← {}
2: for each v ∈ V do
3: MAKE-SET(v)
4: sort the edges in E in nondecreasing order by weight
5: for each edge {u, v} ∈ E in above order do
6: if FIND-SET(u) 6= FIND-SET(v) then
7: T ← T ∪ {{u, v}}
8: UNION(u, v)

Running time

Observation: |V | = O(|E |) as G is connected.
All MAKE-SET, FIND-SET, UNION operations together:
O((|E |+ |V |) · α(|V |)) = O(|E | · α(|V |))
Line 4: O(|E | · log |E |) = O(|E | · log |V |)

Total time O(|E | log |V |)
Here: α is the slightly superlinear function defined in section
about disjoint sets.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.5

Kruskal’s Algorithm

Kruskal’s Algorithm

1: T ← {}
2: for each v ∈ V do
3: MAKE-SET(v)
4: sort the edges in E in nondecreasing order by weight
5: for each edge {u, v} ∈ E in above order do
6: if FIND-SET(u) 6= FIND-SET(v) then
7: T ← T ∪ {{u, v}}
8: UNION(u, v)

Running time

Observation: |V | = O(|E |) as G is connected.
All MAKE-SET, FIND-SET, UNION operations together:
O((|E |+ |V |) · α(|V |)) = O(|E | · α(|V |))
Line 4: O(|E | · log |E |) = O(|E | · log |V |)
Total time O(|E | log |V |)
Here: α is the slightly superlinear function defined in section
about disjoint sets.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.6

Kruskal’s Algorithm

Kruskal’s algorithm is greedy

• Subproblems:
For a given T that is a subset of a MST, find a MST
containing T .

• Greedy choice:
Choose the lightest edge e from E \ T such that T
remains acyclic.

• Greedy choice is save:
Needs to be proven: T ∪ {e} is a subset of a MST

• Optimal substructure:
Trivial: A MST containing T ∪ {e} is a MST containing T

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.6

Kruskal’s Algorithm

Kruskal’s algorithm is greedy

• Subproblems:
For a given T that is a subset of a MST, find a MST
containing T .

• Greedy choice:
Choose the lightest edge e from E \ T such that T
remains acyclic.

• Greedy choice is save:
Needs to be proven: T ∪ {e} is a subset of a MST

• Optimal substructure:
Trivial: A MST containing T ∪ {e} is a MST containing T

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.6

Kruskal’s Algorithm

Kruskal’s algorithm is greedy

• Subproblems:
For a given T that is a subset of a MST, find a MST
containing T .

• Greedy choice:
Choose the lightest edge e from E \ T such that T
remains acyclic.

• Greedy choice is save:
Needs to be proven: T ∪ {e} is a subset of a MST

• Optimal substructure:
Trivial: A MST containing T ∪ {e} is a MST containing T

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.6

Kruskal’s Algorithm

Kruskal’s algorithm is greedy

• Subproblems:
For a given T that is a subset of a MST, find a MST
containing T .

• Greedy choice:
Choose the lightest edge e from E \ T such that T
remains acyclic.

• Greedy choice is save:
Needs to be proven: T ∪ {e} is a subset of a MST

• Optimal substructure:
Trivial: A MST containing T ∪ {e} is a MST containing T

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.7

Prefix Codes

Binary Character Code

Let C be a finite set of objects.
A binary code or short code is an injective mapping

C → {0,1}+.

Each object is represented by a unique binary string, its
codeword.

If all codewords have the same length, then the code is said to
be a fixed-length code, otherwise a variable-length code.

Example 2 (Braille)

Braille is a fixed-length binary code.
object codeword
A 100000
B 110000
C 100100
D 100110
· · · · · ·

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.7

Prefix Codes

Binary Character Code

Let C be a finite set of objects.
A binary code or short code is an injective mapping

C → {0,1}+.

Each object is represented by a unique binary string, its
codeword.
If all codewords have the same length, then the code is said to
be a fixed-length code, otherwise a variable-length code.

Example 2 (Braille)

Braille is a fixed-length binary code.
object codeword
A 100000
B 110000
C 100100
D 100110
· · · · · ·

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.7

Prefix Codes

Binary Character Code

Let C be a finite set of objects.
A binary code or short code is an injective mapping

C → {0,1}+.

Each object is represented by a unique binary string, its
codeword.
If all codewords have the same length, then the code is said to
be a fixed-length code, otherwise a variable-length code.

Example 2 (Braille)

Braille is a fixed-length binary code.
object codeword
A 100000
B 110000
C 100100
D 100110
· · · · · ·

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.8

Prefix Codes

Prefix Code

A prefix code (German: präfixfreier Code) is a code in which no
codeword is a prefix of another codeword.

Example 3

• phone numbers
• Morse code (ternary code: {short, long, pause})

• the code

A 0
B 10
C 110
D 111

Decoding

For prefix codes a sequence of codewords can be decoded
online:
100111→ 10,0,111→ BAD

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.8

Prefix Codes

Prefix Code

A prefix code (German: präfixfreier Code) is a code in which no
codeword is a prefix of another codeword.

Example 3

• phone numbers

• Morse code (ternary code: {short, long, pause})

• the code

A 0
B 10
C 110
D 111

Decoding

For prefix codes a sequence of codewords can be decoded
online:
100111→ 10,0,111→ BAD

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.8

Prefix Codes

Prefix Code

A prefix code (German: präfixfreier Code) is a code in which no
codeword is a prefix of another codeword.

Example 3

• phone numbers
• Morse code (ternary code: {short, long, pause})

• the code

A 0
B 10
C 110
D 111

Decoding

For prefix codes a sequence of codewords can be decoded
online:
100111→ 10,0,111→ BAD

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.8

Prefix Codes

Prefix Code

A prefix code (German: präfixfreier Code) is a code in which no
codeword is a prefix of another codeword.

Example 3

• phone numbers
• Morse code (ternary code: {short, long, pause})

• the code

A 0
B 10
C 110
D 111

Decoding

For prefix codes a sequence of codewords can be decoded
online:
100111→ 10,0,111→ BAD

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.8

Prefix Codes

Prefix Code

A prefix code (German: präfixfreier Code) is a code in which no
codeword is a prefix of another codeword.

Example 3

• phone numbers
• Morse code (ternary code: {short, long, pause})

• the code

A 0
B 10
C 110
D 111

Decoding

For prefix codes a sequence of codewords can be decoded
online:
100111→

10,0,111→ BAD

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.8

Prefix Codes

Prefix Code

A prefix code (German: präfixfreier Code) is a code in which no
codeword is a prefix of another codeword.

Example 3

• phone numbers
• Morse code (ternary code: {short, long, pause})

• the code

A 0
B 10
C 110
D 111

Decoding

For prefix codes a sequence of codewords can be decoded
online:
100111→ 10,0,111→

BAD

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.8

Prefix Codes

Prefix Code

A prefix code (German: präfixfreier Code) is a code in which no
codeword is a prefix of another codeword.

Example 3

• phone numbers
• Morse code (ternary code: {short, long, pause})

• the code

A 0
B 10
C 110
D 111

Decoding

For prefix codes a sequence of codewords can be decoded
online:
100111→ 10,0,111→ BAD

Huffman Codes

Lossless Data Compression with Prefix Codes

Consider a sequence s of objects and the corresponding sequence t of codewords.
Aim: Choose prefix code such that t has minimal length.

Example 4 (Protein sequences)

A protein sequence s of length 1000 consists of the
following objects (C = {amino acids}, |C| = 20)).
A fixed-length code would require dlog2 20e = 5 bits
per codeword and therefore 5000 bits for coding the
whole sequence.

amino acid 1 letter freq
Alanine A 60
Arginine R 67
Asparagine N 37
Aspartic acid D 53
Cysteine C 17
Glutamic acid E 60
Glutamine Q 48
Glycine G 76
Histidine H 20
Isoleucine I 39
Leucine L 78
Lysine K 60
Methionine M 25
Phenylalanine F 44
Proline P 61
Serine S 87
Threonine T 51
Tryptophan W 7
Tyrosine Y 26
Valine V 84

Huffman Codes

Lossless Data Compression with Prefix Codes

Consider a sequence s of objects and the corresponding sequence t of codewords.
Aim: Choose prefix code such that t has minimal length.

Example 4 (Protein sequences)

A protein sequence s of length 1000 consists of the
following objects (C = {amino acids}, |C| = 20)).
A fixed-length code would require dlog2 20e = 5 bits
per codeword and therefore 5000 bits for coding the
whole sequence.

amino acid 1 letter freq
Alanine A 60
Arginine R 67
Asparagine N 37
Aspartic acid D 53
Cysteine C 17
Glutamic acid E 60
Glutamine Q 48
Glycine G 76
Histidine H 20
Isoleucine I 39
Leucine L 78
Lysine K 60
Methionine M 25
Phenylalanine F 44
Proline P 61
Serine S 87
Threonine T 51
Tryptophan W 7
Tyrosine Y 26
Valine V 84

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.10

Huffman Codes

Tree representing a prefix code

• a binary prefix code can be represented by a binary tree T
with edge labels in {0,1}

• the edges from an internal node to its sons have different
labels

• decoding a sequence of codewords can be done efficiently
parsing T root to leaf for each object

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.11

Huffman Codes

Example 5 (A tree representing a prefix code)

A has codeword 0100
Y has codeword 1011000
etc.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.12

Huffman Codes

Cost of a tree

Let T be a binary tree representing a prefix code for objects in
the set C. For c ∈ C

• let c.freq > 0 be the frequency of character c
• let dT (c) be the depth of the leaf representing the

codeword for c (= number of bits in the codeword).

Define
B(T) :=

∑
c∈C

c.freq · dT (c)

to be the cost of tree T .
B(T) is the total number of bits required when coding all
objects using the code represented by T .

Example 6

For above tree and frequencies we get the costs
B(T) = 60 · 4 + 67 · 4 + · · ·+ 84 · 7 = 4947.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.12

Huffman Codes

Cost of a tree

Let T be a binary tree representing a prefix code for objects in
the set C. For c ∈ C

• let c.freq > 0 be the frequency of character c
• let dT (c) be the depth of the leaf representing the

codeword for c (= number of bits in the codeword).
Define

B(T) :=
∑
c∈C

c.freq · dT (c)

to be the cost of tree T .
B(T) is the total number of bits required when coding all
objects using the code represented by T .

Example 6

For above tree and frequencies we get the costs
B(T) = 60 · 4 + 67 · 4 + · · ·+ 84 · 7 = 4947.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.12

Huffman Codes

Cost of a tree

Let T be a binary tree representing a prefix code for objects in
the set C. For c ∈ C

• let c.freq > 0 be the frequency of character c
• let dT (c) be the depth of the leaf representing the

codeword for c (= number of bits in the codeword).
Define

B(T) :=
∑
c∈C

c.freq · dT (c)

to be the cost of tree T .
B(T) is the total number of bits required when coding all
objects using the code represented by T .

Example 6

For above tree and frequencies we get the costs
B(T) = 60 · 4 + 67 · 4 + · · ·+ 84 · 7 = 4947.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.13

Huffman Codes

Observation

Every optimal tree (with minimal costs) is a full binary tree.
(Why?)

Let n = |C| be the number of objects. The number of internal
nodes of a full binary tree T with n leaves is n − 1.

Bottom-up strategy

Consider the following generic leaf-to-root strategy for
construcing a full binary tree T .

1: n← |C|
2: create a leaf node for every object in C
3: for i = 1..n − 1 do
4: pick two nodes x and y from C
5: create a new internal node z[i] with edges to x and y

labeled 0 and 1, respectively
6: z[i].freq ← x .freq + y .freq
7: remove x and y from C and add z[i] to C
8: return z[n − 1] as root of the tree

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.13

Huffman Codes

Observation

Every optimal tree (with minimal costs) is a full binary tree.
(Why?)
Let n = |C| be the number of objects. The number of internal
nodes of a full binary tree T with n leaves is n − 1.

Bottom-up strategy

Consider the following generic leaf-to-root strategy for
construcing a full binary tree T .

1: n← |C|
2: create a leaf node for every object in C
3: for i = 1..n − 1 do
4: pick two nodes x and y from C
5: create a new internal node z[i] with edges to x and y

labeled 0 and 1, respectively
6: z[i].freq ← x .freq + y .freq
7: remove x and y from C and add z[i] to C
8: return z[n − 1] as root of the tree

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.13

Huffman Codes

Observation

Every optimal tree (with minimal costs) is a full binary tree.
(Why?)
Let n = |C| be the number of objects. The number of internal
nodes of a full binary tree T with n leaves is n − 1.

Bottom-up strategy

Consider the following generic leaf-to-root strategy for
construcing a full binary tree T .

1: n← |C|
2: create a leaf node for every object in C
3: for i = 1..n − 1 do
4: pick two nodes x and y from C
5: create a new internal node z[i] with edges to x and y

labeled 0 and 1, respectively
6: z[i].freq ← x .freq + y .freq
7: remove x and y from C and add z[i] to C
8: return z[n − 1] as root of the tree

Huffman Codes

Observations

1 above pseudocode is generic, it leaves open the choice of nodes x , y in
line 4

2 every full binary tree T can be constructed with this procedure
3 z[i].freq is the sum of the frequencies of all objects in the subtree

rooted at z[i]
4

n−1∑
i=1

z[i].freq = B(T)

Proof.
n−1∑
i=1

z[i].freq =

n−1∑
i=1

∑
c ∈ C

c descendant of z[i]

c.freq =
∑
c∈C

∑
1 ≤ i < n

z[i] ancestor of c

c.freq

=
∑
c∈C

dT (c) · c.freq = B(T)

Huffman Codes

Observations

1 above pseudocode is generic, it leaves open the choice of nodes x , y in
line 4

2 every full binary tree T can be constructed with this procedure

3 z[i].freq is the sum of the frequencies of all objects in the subtree
rooted at z[i]

4
n−1∑
i=1

z[i].freq = B(T)

Proof.
n−1∑
i=1

z[i].freq =

n−1∑
i=1

∑
c ∈ C

c descendant of z[i]

c.freq =
∑
c∈C

∑
1 ≤ i < n

z[i] ancestor of c

c.freq

=
∑
c∈C

dT (c) · c.freq = B(T)

Huffman Codes

Observations

1 above pseudocode is generic, it leaves open the choice of nodes x , y in
line 4

2 every full binary tree T can be constructed with this procedure
3 z[i].freq is the sum of the frequencies of all objects in the subtree

rooted at z[i]

4
n−1∑
i=1

z[i].freq = B(T)

Proof.
n−1∑
i=1

z[i].freq =

n−1∑
i=1

∑
c ∈ C

c descendant of z[i]

c.freq =
∑
c∈C

∑
1 ≤ i < n

z[i] ancestor of c

c.freq

=
∑
c∈C

dT (c) · c.freq = B(T)

Huffman Codes

Observations

1 above pseudocode is generic, it leaves open the choice of nodes x , y in
line 4

2 every full binary tree T can be constructed with this procedure
3 z[i].freq is the sum of the frequencies of all objects in the subtree

rooted at z[i]
4

n−1∑
i=1

z[i].freq = B(T)

Proof.
n−1∑
i=1

z[i].freq =

n−1∑
i=1

∑
c ∈ C

c descendant of z[i]

c.freq =
∑
c∈C

∑
1 ≤ i < n

z[i] ancestor of c

c.freq

=
∑
c∈C

dT (c) · c.freq = B(T)

Huffman Codes

Observations

1 above pseudocode is generic, it leaves open the choice of nodes x , y in
line 4

2 every full binary tree T can be constructed with this procedure
3 z[i].freq is the sum of the frequencies of all objects in the subtree

rooted at z[i]
4

n−1∑
i=1

z[i].freq = B(T)

Proof.
n−1∑
i=1

z[i].freq =

n−1∑
i=1

∑
c ∈ C

c descendant of z[i]

c.freq

=
∑
c∈C

∑
1 ≤ i < n

z[i] ancestor of c

c.freq

=
∑
c∈C

dT (c) · c.freq = B(T)

Huffman Codes

Observations

1 above pseudocode is generic, it leaves open the choice of nodes x , y in
line 4

2 every full binary tree T can be constructed with this procedure
3 z[i].freq is the sum of the frequencies of all objects in the subtree

rooted at z[i]
4

n−1∑
i=1

z[i].freq = B(T)

Proof.
n−1∑
i=1

z[i].freq =

n−1∑
i=1

∑
c ∈ C

c descendant of z[i]

c.freq =
∑
c∈C

∑
1 ≤ i < n

z[i] ancestor of c

c.freq

=
∑
c∈C

dT (c) · c.freq = B(T)

Huffman Codes

Observations

1 above pseudocode is generic, it leaves open the choice of nodes x , y in
line 4

2 every full binary tree T can be constructed with this procedure
3 z[i].freq is the sum of the frequencies of all objects in the subtree

rooted at z[i]
4

n−1∑
i=1

z[i].freq = B(T)

Proof.
n−1∑
i=1

z[i].freq =

n−1∑
i=1

∑
c ∈ C

c descendant of z[i]

c.freq =
∑
c∈C

∑
1 ≤ i < n

z[i] ancestor of c

c.freq

=
∑
c∈C

dT (c) · c.freq

= B(T)

Huffman Codes

Observations

1 above pseudocode is generic, it leaves open the choice of nodes x , y in
line 4

2 every full binary tree T can be constructed with this procedure
3 z[i].freq is the sum of the frequencies of all objects in the subtree

rooted at z[i]
4

n−1∑
i=1

z[i].freq = B(T)

Proof.
n−1∑
i=1

z[i].freq =

n−1∑
i=1

∑
c ∈ C

c descendant of z[i]

c.freq =
∑
c∈C

∑
1 ≤ i < n

z[i] ancestor of c

c.freq

=
∑
c∈C

dT (c) · c.freq = B(T)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.15

Huffman Codes

Greedy choice of internal nodes

Want to minimize B(T) =
∑n−1

i=1 z[i].freq.

Will minimize z[i].freq in every step i , independent of
considering future possible choices z[j], j > i .

HUFFMAN(C)

1: n← |C|
2: construct a min-priority queue Q with elements C and

frequencies as keys
3: for i = 1..n − 1 do
4: create a new internal node z[i]
5: z[i].left ← x ← EXTRACT-MIN(Q)
6: z[i].right ← y ← EXTRACT-MIN(Q)
7: label edges from z[i] to x and y with 0 and 1,

respectively
8: z[i].freq ← x .freq + y .freq
9: INSERT(Q, z[i])

10: return z[n − 1] as root of the tree

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.15

Huffman Codes

Greedy choice of internal nodes

Want to minimize B(T) =
∑n−1

i=1 z[i].freq.
Will minimize z[i].freq in every step i , independent of
considering future possible choices z[j], j > i .

HUFFMAN(C)

1: n← |C|
2: construct a min-priority queue Q with elements C and

frequencies as keys
3: for i = 1..n − 1 do
4: create a new internal node z[i]
5: z[i].left ← x ← EXTRACT-MIN(Q)
6: z[i].right ← y ← EXTRACT-MIN(Q)
7: label edges from z[i] to x and y with 0 and 1,

respectively
8: z[i].freq ← x .freq + y .freq
9: INSERT(Q, z[i])

10: return z[n − 1] as root of the tree

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.15

Huffman Codes

Greedy choice of internal nodes

Want to minimize B(T) =
∑n−1

i=1 z[i].freq.
Will minimize z[i].freq in every step i , independent of
considering future possible choices z[j], j > i .

HUFFMAN(C)

1: n← |C|
2: construct a min-priority queue Q with elements C and

frequencies as keys
3: for i = 1..n − 1 do
4: create a new internal node z[i]
5: z[i].left ← x ← EXTRACT-MIN(Q)
6: z[i].right ← y ← EXTRACT-MIN(Q)
7: label edges from z[i] to x and y with 0 and 1,

respectively
8: z[i].freq ← x .freq + y .freq
9: INSERT(Q, z[i])

10: return z[n − 1] as root of the tree

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.16

Huffman Codes

Example 7 (Huffman’s algorithm)

z[1].left = W z[1].right = C z[1].freq = 24
z[2].left = H z[2].right = z[1] z[2].freq = 44
z[3].left = M z[3].right = Y z[3].freq = 51
z[4].left = N z[4].right = I z[4].freq = 76
z[5].left = z[2] z[5].right = F z[5].freq = 88
z[6].left = Q z[6].right = z[3] z[6].freq = 99
z[7].left = T z[7].right = D z[7].freq = 104
z[8].left = A z[8].right = E z[8].freq = 120
z[9].left = K z[9].right = P z[9].freq = 121
z[10].left = R z[10].right = z[4] z[10].freq = 143
z[11].left = G z[11].right = L z[11].freq = 154
z[12].left = V z[12].right = S z[12].freq = 171
z[13].left = z[5] z[13].right = z[6] z[13].freq = 187
z[14].left = z[7] z[14].right = z[8] z[14].freq = 224
z[15].left = z[9] z[15].right = z[10] z[15].freq = 264
z[16].left = z[11] z[16].right = z[12] z[16].freq = 325
z[17].left = z[13] z[17].right = z[14] z[17].freq = 411
z[18].left = z[15] z[18].right = z[16] z[18].freq = 589
z[19].left = z[17] z[19].right = z[18] z[19].freq = 1000

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.17

Huffman Codes

Example 8 (The tree from Huffman’s algorithm)

B(T) = z[1].freq + · · ·+ z[19].freq = 4195

Huffman’s Algorithm

Running Time
If the min-priority queue is implemented with a heap, then line 2 takes time O(n) and each of the n − 1
iterations of lines 4-9 take time O(log n) totaling to a running time of O(n log n).

We will now prove the correctness of HUFFMAN using three lemmas.

Lemma 9
Let T be any tree and x and y be two different objects, such that

x.freq ≤ y.freq and dT (x) ≤ dT (y).

Let T ′ be the tree obtained from T by exchanging leaves x and y. Then B(T ′) ≤ B(T).

Proof.

(chalk board)

Lemma 10
Let x and y be two objects with lowest frequencies. Then there exists an optimal prefix code in which the
codewords for x and y have the same length and differ only in the last bit.

Proof.

(chalk board)

Huffman’s Algorithm

Running Time
If the min-priority queue is implemented with a heap, then line 2 takes time O(n) and each of the n − 1
iterations of lines 4-9 take time O(log n) totaling to a running time of O(n log n).

We will now prove the correctness of HUFFMAN using three lemmas.

Lemma 9
Let T be any tree and x and y be two different objects, such that

x.freq ≤ y.freq and dT (x) ≤ dT (y).

Let T ′ be the tree obtained from T by exchanging leaves x and y. Then B(T ′) ≤ B(T).

Proof.

(chalk board)

Lemma 10
Let x and y be two objects with lowest frequencies. Then there exists an optimal prefix code in which the
codewords for x and y have the same length and differ only in the last bit.

Proof.

(chalk board)

Huffman’s Algorithm

Running Time
If the min-priority queue is implemented with a heap, then line 2 takes time O(n) and each of the n − 1
iterations of lines 4-9 take time O(log n) totaling to a running time of O(n log n).

We will now prove the correctness of HUFFMAN using three lemmas.

Lemma 9
Let T be any tree and x and y be two different objects, such that

x.freq ≤ y.freq and dT (x) ≤ dT (y).

Let T ′ be the tree obtained from T by exchanging leaves x and y. Then B(T ′) ≤ B(T).

Proof.

(chalk board)

Lemma 10
Let x and y be two objects with lowest frequencies. Then there exists an optimal prefix code in which the
codewords for x and y have the same length and differ only in the last bit.

Proof.

(chalk board)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.19

Huffman Codes

Lemma 11

Let C be a set of objects and x and y be two characters with
lowest frequencies.
Let C′ = C \ {x , y} ∪ {z} for a new object z with
z.freq = x .freq + y .freq.
Let T ′ be an optimal tree for C′.
Then the tree T obtained from T ′ by replacing the leaf node for
z with an internal node having x and y as children, is optimal
for C.

Proof.

(chalk board)

Theorem 12

Procedure HUFFMAN produces an optimal prefix code.

Proof.

Induction on iteration i of HUFFMAN using lemma 11.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.19

Huffman Codes

Lemma 11

Let C be a set of objects and x and y be two characters with
lowest frequencies.
Let C′ = C \ {x , y} ∪ {z} for a new object z with
z.freq = x .freq + y .freq.
Let T ′ be an optimal tree for C′.
Then the tree T obtained from T ′ by replacing the leaf node for
z with an internal node having x and y as children, is optimal
for C.

Proof.

(chalk board)

Theorem 12

Procedure HUFFMAN produces an optimal prefix code.

Proof.

Induction on iteration i of HUFFMAN using lemma 11.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.19

Huffman Codes

Lemma 11

Let C be a set of objects and x and y be two characters with
lowest frequencies.
Let C′ = C \ {x , y} ∪ {z} for a new object z with
z.freq = x .freq + y .freq.
Let T ′ be an optimal tree for C′.
Then the tree T obtained from T ′ by replacing the leaf node for
z with an internal node having x and y as children, is optimal
for C.

Proof.

(chalk board)

Theorem 12

Procedure HUFFMAN produces an optimal prefix code.

Proof.

Induction on iteration i of HUFFMAN using lemma 11.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.20

A matroid is a tuple (R,F) such that
M1 F 6= ∅ is a collection of subsets of the set R, i.e., F ⊆ P(R).

(Elements in F are called independent)
M2 Closed w.r.t. Inclusion: Y ∈ F, X ⊆ Y ⇒ X ∈ F

M3 Exchange Property: For all X ,Y ∈ F and |Y | > |X | ⇒
exists y ∈ Y \ X such that X ∪ {y} ∈ F .

If (R,F) satisfies (M1) and (M2) but not necessarily (M3), then
(R,F) is called independent system.

Many optimization problems can be formulated as independent
system, where R is ground set of elements that can be chosen
(eg. edges in the MST-problem) and F is a set of subsets of
feasible solutions (eg. all spanning forests in a graph).

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.20

A matroid is a tuple (R,F) such that
M1 F 6= ∅ is a collection of subsets of the set R, i.e., F ⊆ P(R).

(Elements in F are called independent)
M2 Closed w.r.t. Inclusion: Y ∈ F, X ⊆ Y ⇒ X ∈ F

M3 Exchange Property: For all X ,Y ∈ F and |Y | > |X | ⇒
exists y ∈ Y \ X such that X ∪ {y} ∈ F .

Lemma 13

If (R,F) is an independent system, then the following
conditions are equivalent:
M3 For all X ,Y ∈ F and |Y | > |X | ⇒ exists y ∈ Y \ X such

that X ∪ {y} ∈ F.
M3’ For all X ,Y ∈ F and |Y | = |X |+ 1⇒ exists y ∈ Y \X such

that X ∪ {y} ∈ F.
M3” All maximal independent subsets of E have the same

cardinality.

Proof.

chalkboard.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.21

Bases of an independent system (R,F) are all maximal
elements of F.

Lemma 14

The basis elements of a matroid have always the same size.

Proof.

Let X ,Y be bases of F such that |Y | > |X |
(M3)⇒ ∃y ∈ Y \ X such that X ∪ {y} ∈ F

⇒ X is not maximal and thus no basis; a contradiction

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms
Greedy Principles

Kruskal’s Algorithm

Huffman Codes

Matroids

1.22

MAX-GREEDY((R,F), w : R → R+)

1: sort elements in R such that w(e1) ≥ w(e2) ≥ · · · ≥ w(em)
2: F ← ∅
3: for i = 1..m do
4: if F ∪ {ei} ∈ F then
5: F ← F ∪ {ei}
6: return F

Runtime: If f (m) denotes the runtime to check if F ∪ {ei} ∈ F,
we have total-runtime O(m log(m) + mf (m)).

Theorem 15

Let (R,F) be an independent system. Then, (R,F) is a matroid
if and only if MAX-GREEDY returns a maximum-weighted
element in F for all weighting functions w : R → R+.

Proof.

chalkboard.

	Greedy Algorithms
	Greedy Principles
	Kruskal's Algorithm
	Huffman Codes
	Matroids

