Marc Hellmuth

Greedy Algorithms Greedy Principles Kruskal's Algorithm Huffman Codes Matroids

Datenstrukturen und Effiziente Algorithmen

Vorlesung Datenstrukturen und Effiziente Algorithmen im WS 18/19

Greedy Heuristic

Greedy heuristic

In a combinatorial optimization problem, try to find a (near) optimal solution, by making a sequence of choices such that each choice appears to be optimal at the time of choice.

The greedy heuristic is usually efficient but does not always produce a correct or near optimal result.

Design Principles of a Greedy Algorithm

Design Principles

(1) Choice and subproblem: Formulate the optimization problem as one in which a choice is made which leaves a subproblem to solve.
(2) Greedy choice is safe: Prove that there is always an optimal solution to the original problem that makes the greedy choice.
(3) Demonstrate optimal substructure: After choosing greedily, an optimal solution to the subproblem combined with the greedy choice yields an optimal solution to the original problem.

Minimum Spanning Tree

Definition 1 (Spanning Tree)

Let $G=(V, E)$ be a weighted, connected, undirected graph and $w(\{u, v\})$ be the weight of edge $\{u, v\}$.
A spanning tree of G is a subset $T \subset E$ such that (V, T) is a tree.

Marc Hellmuth

Minimum Spanning Tree

Definition 1 (Spanning Tree)

Let $G=(V, E)$ be a weighted, connected, undirected graph and $w(\{u, v\})$ be the weight of edge $\{u, v\}$.
A spanning tree of G is a subset $T \subset E$ such that (V, T) is a tree.
A minimum spanning tree (MST) is a spanning tree of minimum weight $w(T)$, where

$$
w(T):=\sum_{e \in T} w(e) .
$$

Minimum Spanning Tree

Definition 1 (Spanning Tree)

Let $G=(V, E)$ be a weighted, connected, undirected graph and $w(\{u, v\})$ be the weight of edge $\{u, v\}$.
A spanning tree of G is a subset $T \subset E$ such that (V, T) is a tree.
A minimum spanning tree (MST) is a spanning tree of minimum weight $w(T)$, where

$$
w(T):=\sum_{e \in T} w(e) .
$$

MST problem

Find a minimum spanning tree for a given weighted, connected, undirected graph.

Kruskal's Algorithm

Kruskal's Algorithm

1: $T \leftarrow\}$
2: for each $v \in V$ do
3: MAKE-SET(v)
4: sort the edges in E in nondecreasing order by weight
5: for each edge $\{u, v\} \in E$ in above order do
6: if $\operatorname{Find}-\operatorname{Set}(u) \neq \operatorname{Find}-\operatorname{Set}(v)$ then
7: $\quad T \leftarrow T \cup\{\{u, v\}\}$
8: $\quad \operatorname{UNION}(u, v)$

Marc Hellmuth

Greedy Algorithms Greedy Principles Kruskal's Algorithm
Huffman Codes Matroids

Kruskal's Algorithm

Kruskal's Algorithm

1: $T \leftarrow\}$
2: for each $v \in V$ do
3: MAKE-SET(v)
4: sort the edges in E in nondecreasing order by weight
5: for each edge $\{u, v\} \in E$ in above order do
6: if $\operatorname{Find}-\operatorname{Set}(u) \neq \operatorname{Find}-\operatorname{Set}(v)$ then
7: $\quad T \leftarrow T \cup\{\{u, v\}\}$
8: $\quad \operatorname{UNION}(u, v)$

Running time

Marc Hellmuth

Greedy Algorithms

Kruskal's Algorithm

Kruskal's Algorithm

1: $T \leftarrow\}$
2: for each $v \in V$ do
3: MAKE-SET(v)
4: sort the edges in E in nondecreasing order by weight
5: for each edge $\{u, v\} \in E$ in above order do
6: if $\operatorname{Find}-\operatorname{Set}(u) \neq \operatorname{Find}-\operatorname{Set}(v)$ then
7: $\quad T \leftarrow T \cup\{\{u, v\}\}$
8: $\quad \operatorname{UNION}(u, v)$

Running time

Observation: $|V|=O(|E|)$ as G is connected.

Marc Hellmuth

Kruskal's Algorithm

Kruskal's Algorithm

1: $T \leftarrow\}$
2: for each $v \in V$ do
3: MAKE-SET(v)
4: sort the edges in E in nondecreasing order by weight
5: for each edge $\{u, v\} \in E$ in above order do
6: if $\operatorname{Find}-\operatorname{SET}(u) \neq \operatorname{FIND}-\operatorname{SET}(v)$ then
7: $\quad T \leftarrow T \cup\{\{u, v\}\}$
8: $\quad \operatorname{UNION}(u, v)$

Running time

Observation: $|V|=O(|E|)$ as G is connected. All Make-Set, Find-Set, Union operations together:
$O((|E|+|V|) \cdot \alpha(|V|))=O(|E| \cdot \alpha(|V|))$

Marc Hellmuth

Kruskal's Algorithm

Kruskal's Algorithm

1: $T \leftarrow\}$
2: for each $v \in V$ do
3: MAKE-SET(v)
4: sort the edges in E in nondecreasing order by weight
5: for each edge $\{u, v\} \in E$ in above order do
6: if $\operatorname{Find}-\operatorname{SET}(u) \neq \operatorname{FIND}-\operatorname{SET}(v)$ then
7: $\quad T \leftarrow T \cup\{\{u, v\}\}$
8: $\quad \operatorname{UNION}(u, v)$

Running time

Observation: $|V|=O(|E|)$ as G is connected. All Make-Set, Find-Set, Union operations together:
$O((|E|+|V|) \cdot \alpha(|V|))=O(|E| \cdot \alpha(|V|))$
Line 4: $O(|E| \cdot \log |E|)=O(|E| \cdot \log |V|)$

Marc Hellmuth

Kruskal's Algorithm

Kruskal's Algorithm

1: $T \leftarrow\}$
2: for each $v \in V$ do
3: MAKE-SET(v)
4: sort the edges in E in nondecreasing order by weight
5: for each edge $\{u, v\} \in E$ in above order do
6: if $\operatorname{Find}-\operatorname{Set}(u) \neq \operatorname{Find}-\operatorname{Set}(v)$ then
7: $\quad T \leftarrow T \cup\{\{u, v\}\}$
8: $\quad \operatorname{UNION}(u, v)$

Running time

Observation: $|V|=O(|E|)$ as G is connected.
All Make-Set, Find-Set, Union operations together:
$O((|E|+|V|) \cdot \alpha(|V|))=O(|E| \cdot \alpha(|V|))$
Line 4: $O(|E| \cdot \log |E|)=O(|E| \cdot \log |V|)$
Total time $O(|E| \log |V|)$
Here: α is the slightly superlinear function defined in section about disjoint sets.

Marc Hellmuth

Kruskal's Algorithm

Kruskal's algorithm is greedy

- Subproblems: For a given T that is a subset of a MST, find a MST containing T.

Marc Hellmuth

Kruskal's Algorithm

Kruskal's algorithm is greedy

- Subproblems: For a given T that is a subset of a MST, find a MST containing T.
- Greedy choice: Choose the lightest edge e from $E \backslash T$ such that T remains acyclic.

Kruskal's Algorithm

Kruskal's algorithm is greedy

- Subproblems: For a given T that is a subset of a MST, find a MST containing T.
- Greedy choice: Choose the lightest edge e from $E \backslash T$ such that T remains acyclic.
- Greedy choice is save:

Needs to be proven: $T \cup\{e\}$ is a subset of a MST

Kruskal's Algorithm

Kruskal's algorithm is greedy

- Subproblems: For a given T that is a subset of a MST, find a MST containing T.
- Greedy choice:

Choose the lightest edge e from $E \backslash T$ such that T remains acyclic.

- Greedy choice is save:

Needs to be proven: $T \cup\{e\}$ is a subset of a MST

- Optimal substructure:

Trivial: A MST containing $T \cup\{e\}$ is a MST containing T

Greedy Algorithms Greedy Principles Kruskal's Algorithm

Huffman Codes

Matroids

Prefix Codes

Binary Character Code

Let C be a finite set of objects.
A binary code or short code is an injective mapping

$$
C \rightarrow\{0,1\}^{+} .
$$

Each object is represented by a unique binary string, its codeword.

Greedy Algorithms

Prefix Codes

Binary Character Code

Let C be a finite set of objects.
A binary code or short code is an injective mapping

$$
C \rightarrow\{0,1\}^{+} .
$$

Each object is represented by a unique binary string, its codeword.
If all codewords have the same length, then the code is said to be a fixed-length code, otherwise a variable-length code.

Greedy Algorithms

Prefix Codes

Binary Character Code

Let C be a finite set of objects.
A binary code or short code is an injective mapping

$$
C \rightarrow\{0,1\}^{+} .
$$

Each object is represented by a unique binary string, its codeword.
If all codewords have the same length, then the code is said to be a fixed-length code, otherwise a variable-length code.

Example 2 (Braille)

Braille is a fixed-length binary code.

object	codeword
A	100000
B	110000
C	100100
D	100110
‥	\cdots

(3) (6)

Marc Hellmuth

Prefix Codes

Prefix Code

A prefix code (German: präfixfreier Code) is a code in which no codeword is a prefix of another codeword.

Marc Hellmuth

edy Algorithms
Greedy Principles
Kruskal's Algorithm
Huffman Codes
Matroids

Prefix Codes

Prefix Code

A prefix code (German: präfixfreier Code) is a code in which no codeword is a prefix of another codeword.

Example 3

- phone numbers

Marc Hellmuth

eedy Algorithms Greedy Principles Kruskal's Algorithm

Prefix Codes

Prefix Code

A prefix code (German: präfixfreier Code) is a code in which no codeword is a prefix of another codeword.

Example 3

- phone numbers
- Morse code (ternary code: \{short, long, pause\})

Marc Hellmuth

reedy Algorithms
Greedy Principles

Prefix Codes

Prefix Code

A prefix code (German: präfixfreier Code) is a code in which no codeword is a prefix of another codeword.

Example 3

- phone numbers
- Morse code (ternary code: \{short, long, pause\})

A 0

- the code

B 10
C 110
D 111

Greedy Algorithms

Prefix Codes

Prefix Code

A prefix code (German: präfixfreier Code) is a code in which no codeword is a prefix of another codeword.

Example 3

- phone numbers
- Morse code (ternary code: \{short, long, pause\})

A 0

- the code

B 10
C 110
D 111

Decoding

For prefix codes a sequence of codewords can be decoded online:
$100111 \rightarrow$

Greedy Algorithms

Prefix Codes

Prefix Code

A prefix code (German: präfixfreier Code) is a code in which no codeword is a prefix of another codeword.

Example 3

- phone numbers
- Morse code (ternary code: \{short, long, pause\})

A 0

- the code

B 10
C 110
D 111

Decoding

For prefix codes a sequence of codewords can be decoded online:
$100111 \rightarrow 10,0,111 \rightarrow$

Greedy Algorithms

Prefix Codes

Prefix Code

A prefix code (German: präfixfreier Code) is a code in which no codeword is a prefix of another codeword.

Example 3

- phone numbers
- Morse code (ternary code: \{short, long, pause\})

A 0

- the code

B 10
C 110
D 111

Decoding

For prefix codes a sequence of codewords can be decoded online:
$100111 \rightarrow 10,0,111 \rightarrow$ BAD

Huffman Codes

Lossless Data Compression with Prefix Codes

Consider a sequence s of objects and the corresponding sequence t of codewords. Aim: Choose prefix code such that t has minimal length.

Huffman Codes

Lossless Data Compression with Prefix Codes

Consider a sequence s of objects and the corresponding sequence t of codewords. Aim: Choose prefix code such that t has minimal length.

Example 4 (Protein sequences)

A protein sequence s of length 1000 consists of the following objects ($C=\{$ amino acids $\},|C|=20)$). A fixed-length code would require $\left\lceil\log _{2} 20\right\rceil=5$ bits per codeword and therefore 5000 bits for coding the whole sequence.

amino acid	1 letter	freq
Alanine	A	60
Arginine	R	67
Asparagine	N	37
Aspartic acid	D	53
Cysteine	C	17
Glutamic acid	E	60
Glutamine	Q	48
Glycine	G	76
Histidine	H	20
Isoleucine	I	39
Leucine	L	78
Lysine	K	60
Methionine	M	25
Phenylalanine	F	44
Proline	P	61
Serine	S	87
Threonine	T	51
Tryptophan	W	7
Tyrosine	Y	26
Valine	V	84

Marc Hellmuth

Huffman Codes

Tree representing a prefix code

- a binary prefix code can be represented by a binary tree T with edge labels in $\{0,1\}$
- the edges from an internal node to its sons have different labels
- decoding a sequence of codewords can be done efficiently parsing T root to leaf for each object

Marc Hellmuth

Greedy Algorithms Greedy Principles Kruskal's Algorithm Huffman Codes Matroids

Huffman Codes

Example 5 (A tree representing a prefix code)

A has codeword 0100
Y has codeword 1011000 etc.

Marc Hellmuth

Greedy Algorithms Greedy Principles Kruskal's Algorithm

Huffman Codes

Cost of a tree

Let T be a binary tree representing a prefix code for objects in the set C. For $c \in C$

- let $c . f r e q>0$ be the frequency of character c
- let $d_{T}(c)$ be the depth of the leaf representing the codeword for c (= number of bits in the codeword).

Huffman Codes

Cost of a tree

Let T be a binary tree representing a prefix code for objects in the set C. For $c \in C$

- let $c . f r e q>0$ be the frequency of character c
- let $d_{T}(c)$ be the depth of the leaf representing the codeword for c (= number of bits in the codeword).
Define

$$
B(T):=\sum_{c \in C} c . f r e q \cdot d_{T}(c)
$$

to be the cost of tree T.
$B(T)$ is the total number of bits required when coding all objects using the code represented by T.

Huffman Codes

Cost of a tree

Let T be a binary tree representing a prefix code for objects in the set C. For $c \in C$

- let c.freq >0 be the frequency of character c
- let $d_{T}(c)$ be the depth of the leaf representing the codeword for c (= number of bits in the codeword).
Define

$$
B(T):=\sum_{c \in C} c . \text { freq } \cdot d_{T}(c)
$$

to be the cost of tree T.
$B(T)$ is the total number of bits required when coding all objects using the code represented by T.

Example 6

For above tree and frequencies we get the costs

$$
B(T)=60 \cdot 4+67 \cdot 4+\cdots+84 \cdot 7=4947 .
$$

Marc Hellmuth

Huffman Codes

Observation

Every optimal tree (with minimal costs) is a full binary tree. (Why?)

Marc Hellmuth

Greedy Algorithms
Greedy Principles
Kruskal's Algorithm
Huffman Codes
Matroids

Huffman Codes

Observation

Every optimal tree (with minimal costs) is a full binary tree. (Why?)
Let $n=|C|$ be the number of objects. The number of internal nodes of a full binary tree T with n leaves is $n-1$.

Greedy Algorithms

Huffman Codes

Observation

Every optimal tree (with minimal costs) is a full binary tree. (Why?)
Let $n=|C|$ be the number of objects. The number of internal nodes of a full binary tree T with n leaves is $n-1$.

Bottom-up strategy

Consider the following generic leaf-to-root strategy for construcing a full binary tree T.
1: $n \leftarrow|C|$
2. create a leaf node for every object in C

3: for $i=1$.. $n-1$ do
4: \quad pick two nodes x and y from C
5: \quad create a new internal node $z[i]$ with edges to x and y labeled 0 and 1, respectively
6: $\quad z[i]$.freq $\leftarrow x$.freq $+y$.freq
7: \quad remove x and y from C and add $z[i]$ to C
8: return $z[n-1]$ as root of the tree

Huffman Codes

Observations

(1) above pseudocode is generic, it leaves open the choice of nodes x, y in line 4

Huffman Codes

Observations

(1) above pseudocode is generic, it leaves open the choice of nodes x, y in line 4
(2) every full binary tree T can be constructed with this procedure

Huffman Codes

Observations

(1) above pseudocode is generic, it leaves open the choice of nodes x, y in line 4
(2) every full binary tree T can be constructed with this procedure
(3) $z[i]$.freq is the sum of the frequencies of all objects in the subtree rooted at $z[i]$

Huffman Codes

Observations

(1) above pseudocode is generic, it leaves open the choice of nodes x, y in line 4
(2) every full binary tree T can be constructed with this procedure
(3) $z[i]$.freq is the sum of the frequencies of all objects in the subtree rooted at $z[i]$
4

$$
\sum_{i=1}^{n-1} z[i] . \text { freq }=B(T)
$$

Huffman Codes

Observations

(1) above pseudocode is generic, it leaves open the choice of nodes x, y in line 4
(2) every full binary tree T can be constructed with this procedure
(3) $z[i]$.freq is the sum of the frequencies of all objects in the subtree rooted at $z[i]$
4

$$
\sum_{i=1}^{n-1} z[i] . f r e q=B(T)
$$

Proof.

$$
\sum_{i=1}^{n-1} z[i] . \text { freq }=\sum_{i=1}^{n-1} \sum_{\substack{c \in C \\ c \text { descendant of } z[i]}} c \text {.freq }
$$

Huffman Codes

Observations

(1) above pseudocode is generic, it leaves open the choice of nodes x, y in line 4
(2) every full binary tree T can be constructed with this procedure
(3) $z[i]$.freq is the sum of the frequencies of all objects in the subtree rooted at $z[i]$
4

$$
\sum_{i=1}^{n-1} z[i] . \text { freq }=B(T)
$$

Proof.

$$
\sum_{i=1}^{n-1} z[i] . \text { freq }=\sum_{i=1}^{n-1} \sum_{\substack{c \in C \\ c \text { descendant of } z[i]}} c . \text { freq }=\sum_{c \in C} \sum_{\substack{1 \leq i<n \\ z[i] \text { ancestor of } c}} c . f r e q
$$

Huffman Codes

Observations

(1) above pseudocode is generic, it leaves open the choice of nodes x, y in line 4
(2) every full binary tree T can be constructed with this procedure
(3) $z[i]$.freq is the sum of the frequencies of all objects in the subtree rooted at $z[i]$
4

$$
\sum_{i=1}^{n-1} z[i] . \text { freq }=B(T)
$$

Proof.

$$
\begin{aligned}
\sum_{i=1}^{n-1} z[i] . \text { freq }=\sum_{i=1}^{n-1} & \sum_{\substack{c \in C \\
c \text { descendant of } z[i]}} c . \text { freq }=\sum_{c \in C} \sum_{\substack{1 \leq i<n \\
z[i] \text { ancestor of } c}} c . \text { freq } \\
& =\sum_{c \in C} d_{T}(c) \cdot c . \text { freq }
\end{aligned}
$$

Huffman Codes

Observations

(1) above pseudocode is generic, it leaves open the choice of nodes x, y in line 4
(2) every full binary tree T can be constructed with this procedure
(3) $z[i]$.freq is the sum of the frequencies of all objects in the subtree rooted at $z[i]$
4

$$
\sum_{i=1}^{n-1} z[i] . \text { freq }=B(T)
$$

Proof.

$$
\begin{aligned}
\sum_{i=1}^{n-1} z[i] . \text { freq }=\sum_{i=1}^{n-1} & \sum_{\substack{c \in C \\
c \text { descendant of } z[i]}} c . \text { freq }=\sum_{c \in C} \sum_{\substack{1 \leq i<n \\
z[i] \text { ancestor of } c}} c . \text { freq } \\
& =\sum_{c \in C} d_{T}(c) \cdot c . \text { freq }=B(T)
\end{aligned}
$$

Datenstrukturen und Effiziente Algorithmen

Marc Hellmuth

Greedy Algorithms Greedy Principles
Kruskal's Algorithm
Huffman Codes
Matroids

Huffman Codes

Greedy choice of internal nodes

Want to minimize $B(T)=\sum_{i=1}^{n-1} z[i]$.freq.

Marc Hellmuth

Greedy Algorithms Greedy Principles Kruskal's Algorithm
Huffman Codes
Matroids

Huffman Codes

Greedy choice of internal nodes

Want to minimize $B(T)=\sum_{i=1}^{n-1} z[i]$.freq. Will minimize $z[i]$.freq in every step i, independent of considering future possible choices $z[j], j>i$.

Greedy Algorithms

Huffman Codes

Greedy choice of internal nodes

Want to minimize $B(T)=\sum_{i=1}^{n-1} z[i]$.freq. Will minimize $z[i]$.freq in every step i, independent of considering future possible choices $z[j], j>i$.

Huffman(C)

1: $n \leftarrow|C|$
2: construct a min-priority queue Q with elements C and frequencies as keys
3: for $i=1$.. $n-1$ do
4: \quad create a new internal node $z[i]$
5: $\quad z[i]$.left $\leftarrow x \leftarrow$ Extract- $\operatorname{Min}(Q)$
6: $\quad z[i] \cdot$ right $\leftarrow y \leftarrow$ Extract- $\operatorname{Min}(Q)$
7: label edges from $z[i]$ to x and y with 0 and 1, respectively
8: $\quad z[i]$.freq $\leftarrow x$.freq $+y$.freq
9: $\quad \operatorname{INSERT}(Q, z[i])$
10: return $z[n-1]$ as root of the tree

Marc Hellmuth

Greedy Algorithms

Greedy Principles

 Kruskal's Algorithm
Huffman Codes

Example 7 (Huffman's algorithm)

$$
\begin{aligned}
& z[1] \text {.left }=W \\
& z[2] \text {.left }=H \\
& z[3] \text {.left }=M \\
& z[4] \text {.left }=N \\
& z[5] \text {.left }=z[2] \\
& z[6] \text {.left }=Q \\
& z[7] \text {. } \text { left }=T \\
& z[8] \text {.left }=A \\
& z[9] \text {.left }=K \\
& z[10] \text {.left }=R \\
& z[11] . \text { left }=G \\
& z[12] . \text { left }=V \\
& z[13] \text {.left }=z[5] \\
& z[14] \text {.left }=z[7] \\
& z[15] \text {.left }=z[9] \\
& z[16] \text {.left }=z[11] \\
& z[17] \text {.left }=z[13] \\
& z[18] . \text { left }=z[15] \\
& z[19] . l e f t=z[17] \\
& z[1] \text {.freq }=24 \\
& z[2] \text {. } \text { freq }=44 \\
& z[3] \text {.freq }=51 \\
& z[4] \text {.freq }=76 \\
& z[5] \text {.freq }=88 \\
& z[6] \text {.freq }=99 \\
& z[7] . \text { freq }=104 \\
& z[8] . \text { freq }=120 \\
& z[9] \text {.freq }=121 \\
& z[10] \text {.freq }=143 \\
& z[11] \text {.freq }=154 \\
& z[12] \text {.freq }=171 \\
& z[13] \text {.freq }=187 \\
& z[14] \text {.freq }=224 \\
& z[15] . \text { freq }=264 \\
& z[16] . \text { freq }=325 \\
& z[17] \text {.freq }=411 \\
& z[18] . \text { freq }=589 \\
& z[19] . \text { freq }=1000
\end{aligned}
$$

Marc Hellmuth

Greedy Algorithms

 Greedy Principles Kruskal's Algorithm
Huffman Codes

Matroids

Huffman Codes

Example 8 (The tree from Huffman's algorithm)

$B(T)=z[1]$. freq $+\cdots+z[19]$. freq $=4195$

Huffman's Algorithm

Running Time

If the min-priority queue is implemented with a heap, then line 2 takes time $O(n)$ and each of the $n-1$ iterations of lines 4-9 take time $O(\log n)$ totaling to a running time of $O(n \log n)$.

Huffman's Algorithm

Running Time

If the min-priority queue is implemented with a heap, then line 2 takes time $O(n)$ and each of the $n-1$ iterations of lines 4-9 take time $O(\log n)$ totaling to a running time of $O(n \log n)$.

We will now prove the correctness of HuFFMAN using three lemmas.

Lemma 9

Let T be any tree and x and y be two different objects, such that

$$
x . f r e q \leq y . f r e q \quad \text { and } \quad d_{T}(x) \leq d_{T}(y)
$$

Let T^{\prime} be the tree obtained from T by exchanging leaves x and y. Then $B\left(T^{\prime}\right) \leq B(T)$.

Proof.
 (chalk board)

Huffman's Algorithm

Running Time

If the min-priority queue is implemented with a heap, then line 2 takes time $O(n)$ and each of the $n-1$ iterations of lines 4-9 take time $O(\log n)$ totaling to a running time of $O(n \log n)$.

We will now prove the correctness of HUFFMAN using three lemmas.

Lemma 9

Let T be any tree and x and y be two different objects, such that

$$
x . f r e q \leq y . f r e q \quad \text { and } \quad d_{T}(x) \leq d_{T}(y)
$$

Let T^{\prime} be the tree obtained from T by exchanging leaves x and y. Then $B\left(T^{\prime}\right) \leq B(T)$.

Proof.

(chalk board)

Lemma 10

Let x and y be two objects with lowest frequencies. Then there exists an optimal prefix code in which the codewords for x and y have the same length and differ only in the last bit.

Proof.

(chalk board)

Huffman Codes

Lemma 11

Let C be a set of objects and x and y be two characters with lowest frequencies.
Let $C^{\prime}=C \backslash\{x, y\} \cup\{z\}$ for a new object z with
$z . f r e q=x . f r e q+y . f r e q$.
Let T^{\prime} be an optimal tree for C^{\prime}.
Then the tree T obtained from T^{\prime} by replacing the leaf node for z with an internal node having x and y as children, is optimal for C.

Proof.

(chalk board)

Huffman Codes

Lemma 11

Let C be a set of objects and x and y be two characters with lowest frequencies.
Let $C^{\prime}=C \backslash\{x, y\} \cup\{z\}$ for a new object z with
$z . f r e q=x . f r e q+y . f r e q$.
Let T^{\prime} be an optimal tree for C^{\prime}.
Then the tree T obtained from T^{\prime} by replacing the leaf node for z with an internal node having x and y as children, is optimal for C.

Proof.
 (chalk board)

Theorem 12
Procedure HuFFMAN produces an optimal prefix code.

Greedy Algorithms

Huffman Codes

Lemma 11

Let C be a set of objects and x and y be two characters with lowest frequencies.
Let $C^{\prime}=C \backslash\{x, y\} \cup\{z\}$ for a new object z with
$z . f r e q=x . f r e q+y . f r e q$.
Let T^{\prime} be an optimal tree for C^{\prime}.
Then the tree T obtained from T^{\prime} by replacing the leaf node for z with an internal node having x and y as children, is optimal for C.

Proof.

(chalk board)

Theorem 12

Procedure HuFFMAN produces an optimal prefix code.

Proof.

Induction on iteration i of Huffman using lemma 11.

A matroid is a tuple (R, \mathbb{F}) such that
M1 $\mathbb{F} \neq \emptyset$ is a collection of subsets of the set R, i.e., $\mathbb{F} \subseteq \mathbb{P}(R)$. (Elements in \mathbb{F} are called independent)
M2 Closed w.r.t. Inclusion: $Y \in \mathbb{F}, X \subseteq Y \Rightarrow X \in \mathbb{F}$
M3 Exchange Property: For all $X, Y \in \mathbb{F}$ and $|Y|>|X| \Rightarrow$ exists $y \in Y \backslash X$ such that $X \cup\{y\} \in \mathbb{F}$.
If (R, \mathbb{F}) satisfies (M1) and (M2) but not necessarily (M3), then (R, \mathbb{F}) is called independent system.

Many optimization problems can be formulated as independent system, where R is ground set of elements that can be chosen (eg. edges in the MST-problem) and \mathbb{F} is a set of subsets of feasible solutions (eg. all spanning forests in a graph).

A matroid is a tuple (R, \mathbb{F}) such that
M1 $\mathbb{F} \neq \emptyset$ is a collection of subsets of the set R, i.e., $\mathbb{F} \subseteq \mathbb{P}(R)$. (Elements in \mathbb{F} are called independent)
M2 Closed w.r.t. Inclusion: $Y \in \mathbb{F}, X \subseteq Y \Rightarrow X \in \mathbb{F}$
M3 Exchange Property: For all $X, Y \in \mathbb{F}$ and $|Y|>|X| \Rightarrow$ exists $y \in Y \backslash X$ such that $X \cup\{y\} \in \mathbb{F}$.

Lemma 13

If (R, \mathbb{F}) is an independent system, then the following conditions are equivalent:
M3 For all $X, Y \in \mathbb{F}$ and $|Y|>|X| \Rightarrow$ exists $y \in Y \backslash X$ such that $X \cup\{y\} \in \mathbb{F}$.
M3' For all $X, Y \in \mathbb{F}$ and $|Y|=|X|+1 \Rightarrow$ exists $y \in Y \backslash X$ such that $X \cup\{y\} \in \mathbb{F}$.
M3" All maximal independent subsets of E have the same cardinality.

Proof.

chalkboard.

Bases of an independent system (R, \mathbb{F}) are all maximal elements of \mathbb{F}.

Lemma 14

The basis elements of a matroid have always the same size.

Proof.

Let X, Y be bases of \mathbb{F} such that $|Y|>|X|$ $\stackrel{(M 3)}{\Rightarrow} \exists y \in Y \backslash X$ such that $X \cup\{y\} \in \mathbb{F}$ $\Rightarrow X$ is not maximal and thus no basis; a contradiction

Marc Hellmuth

$\operatorname{MAX}-\operatorname{GREEDY}\left((R, \mathbb{F}), w: R \rightarrow \mathbb{R}^{+}\right)$
1: sort elements in R such that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$
2: $F \leftarrow \emptyset$
3: for $i=1$.. m do
4: if $F \cup\left\{e_{i}\right\} \in \mathbb{F}$ then
5: $\quad F \leftarrow F \cup\left\{e_{i}\right\}$
6: return F
Runtime: If $f(m)$ denotes the runtime to check if $F \cup\left\{e_{i}\right\} \in \mathbb{F}$, we have total-runtime $O(m \log (m)+m f(m))$.

Theorem 15

Let (R, \mathbb{F}) be an independent system. Then, (R, \mathbb{F}) is a matroid if and only if MAX-GREEDY returns a maximum-weighted element in \mathbb{F} for all weighting functions $w: R \rightarrow \mathbb{R}^{+}$.

Proof.

chalkboard.

