
Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.1

Datenstrukturen und Effiziente
Algorithmen
Vorlesung Datenstrukturen und Effiziente Algorithmen im WS
18/19

Marc Hellmuth
Institut für Mathematik und Informatik

Universität Greifswald

Introduction

Suffix Tree

• data structure build from a string
• will assume that the alphabet size is a constant
• also allows to solve the exact matching problem in time O(n + m)

• but here: preprocessing of text T in O(m) and then searching of P in T
in time O(n + k), where k is the number of occurences of P in T

• Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching
• suffix trees much more efficient than Z-Algorithm or Boyer-Moore,

when m� n and many patterns are searched in fixed text
• suffix trees flexible data structure to solve many more string problems
• first linear-time algorithm for suffix tree construction found in 1973

(Wiener)
• simpler algorithm by Ukkonen (1995), that we will cover

Introduction

Suffix Tree

• data structure build from a string
• will assume that the alphabet size is a constant
• also allows to solve the exact matching problem in time O(n + m)

• but here: preprocessing of text T in O(m) and then searching of P in T
in time O(n + k), where k is the number of occurences of P in T

• Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching
• suffix trees much more efficient than Z-Algorithm or Boyer-Moore,

when m� n and many patterns are searched in fixed text
• suffix trees flexible data structure to solve many more string problems
• first linear-time algorithm for suffix tree construction found in 1973

(Wiener)
• simpler algorithm by Ukkonen (1995), that we will cover

Introduction

Suffix Tree

• data structure build from a string
• will assume that the alphabet size is a constant
• also allows to solve the exact matching problem in time O(n + m)

• but here: preprocessing of text T in O(m) and then searching of P in T
in time O(n + k), where k is the number of occurences of P in T

• Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching
• suffix trees much more efficient than Z-Algorithm or Boyer-Moore,

when m� n and many patterns are searched in fixed text
• suffix trees flexible data structure to solve many more string problems
• first linear-time algorithm for suffix tree construction found in 1973

(Wiener)
• simpler algorithm by Ukkonen (1995), that we will cover

Introduction

Suffix Tree

• data structure build from a string
• will assume that the alphabet size is a constant
• also allows to solve the exact matching problem in time O(n + m)

• but here: preprocessing of text T in O(m) and then searching of P in T
in time O(n + k), where k is the number of occurences of P in T

• Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching
• suffix trees much more efficient than Z-Algorithm or Boyer-Moore,

when m� n and many patterns are searched in fixed text
• suffix trees flexible data structure to solve many more string problems
• first linear-time algorithm for suffix tree construction found in 1973

(Wiener)
• simpler algorithm by Ukkonen (1995), that we will cover

Introduction

Suffix Tree

• data structure build from a string
• will assume that the alphabet size is a constant
• also allows to solve the exact matching problem in time O(n + m)

• but here: preprocessing of text T in O(m) and then searching of P in T
in time O(n + k), where k is the number of occurences of P in T

• Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching
• suffix trees much more efficient than Z-Algorithm or Boyer-Moore,

when m� n and many patterns are searched in fixed text
• suffix trees flexible data structure to solve many more string problems
• first linear-time algorithm for suffix tree construction found in 1973

(Wiener)
• simpler algorithm by Ukkonen (1995), that we will cover

Introduction

Suffix Tree

• data structure build from a string
• will assume that the alphabet size is a constant
• also allows to solve the exact matching problem in time O(n + m)

• but here: preprocessing of text T in O(m) and then searching of P in T
in time O(n + k), where k is the number of occurences of P in T

• Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching
• suffix trees much more efficient than Z-Algorithm or Boyer-Moore,

when m� n and many patterns are searched in fixed text
• suffix trees flexible data structure to solve many more string problems
• first linear-time algorithm for suffix tree construction found in 1973

(Wiener)
• simpler algorithm by Ukkonen (1995), that we will cover

Introduction

Suffix Tree

• data structure build from a string
• will assume that the alphabet size is a constant
• also allows to solve the exact matching problem in time O(n + m)

• but here: preprocessing of text T in O(m) and then searching of P in T
in time O(n + k), where k is the number of occurences of P in T

• Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching
• suffix trees much more efficient than Z-Algorithm or Boyer-Moore,

when m� n and many patterns are searched in fixed text
• suffix trees flexible data structure to solve many more string problems
• first linear-time algorithm for suffix tree construction found in 1973

(Wiener)
• simpler algorithm by Ukkonen (1995), that we will cover

Introduction

Suffix Tree

• data structure build from a string
• will assume that the alphabet size is a constant
• also allows to solve the exact matching problem in time O(n + m)

• but here: preprocessing of text T in O(m) and then searching of P in T
in time O(n + k), where k is the number of occurences of P in T

• Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching
• suffix trees much more efficient than Z-Algorithm or Boyer-Moore,

when m� n and many patterns are searched in fixed text
• suffix trees flexible data structure to solve many more string problems
• first linear-time algorithm for suffix tree construction found in 1973

(Wiener)
• simpler algorithm by Ukkonen (1995), that we will cover

Introduction

Suffix Tree

• data structure build from a string
• will assume that the alphabet size is a constant
• also allows to solve the exact matching problem in time O(n + m)

• but here: preprocessing of text T in O(m) and then searching of P in T
in time O(n + k), where k is the number of occurences of P in T

• Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching
• suffix trees much more efficient than Z-Algorithm or Boyer-Moore,

when m� n and many patterns are searched in fixed text
• suffix trees flexible data structure to solve many more string problems
• first linear-time algorithm for suffix tree construction found in 1973

(Wiener)
• simpler algorithm by Ukkonen (1995), that we will cover

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.3

Definition: Suffix Tree

Definition 1 (suffix tree)

• A suffix tree T for an m-character string S is a rooted
directed tree with exactly m leaves numbered 1 to m.

• Each internal node, other than the root, has at least two
children and each edge is labeled with a nonempty
substring of S.

• No two edges out of a node can have edge-labels
beginning with the same character.

• For any leaf i , the concatenation of the edge-labels on the
path from the root to leaf i exactly spells out the suffix
S[i ..m].

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.3

Definition: Suffix Tree

Definition 1 (suffix tree)

• A suffix tree T for an m-character string S is a rooted
directed tree with exactly m leaves numbered 1 to m.

• Each internal node, other than the root, has at least two
children and each edge is labeled with a nonempty
substring of S.

• No two edges out of a node can have edge-labels
beginning with the same character.

• For any leaf i , the concatenation of the edge-labels on the
path from the root to leaf i exactly spells out the suffix
S[i ..m].

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.3

Definition: Suffix Tree

Definition 1 (suffix tree)

• A suffix tree T for an m-character string S is a rooted
directed tree with exactly m leaves numbered 1 to m.

• Each internal node, other than the root, has at least two
children and each edge is labeled with a nonempty
substring of S.

• No two edges out of a node can have edge-labels
beginning with the same character.

• For any leaf i , the concatenation of the edge-labels on the
path from the root to leaf i exactly spells out the suffix
S[i ..m].

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.3

Definition: Suffix Tree

Definition 1 (suffix tree)

• A suffix tree T for an m-character string S is a rooted
directed tree with exactly m leaves numbered 1 to m.

• Each internal node, other than the root, has at least two
children and each edge is labeled with a nonempty
substring of S.

• No two edges out of a node can have edge-labels
beginning with the same character.

• For any leaf i , the concatenation of the edge-labels on the
path from the root to leaf i exactly spells out the suffix
S[i ..m].

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.4

Example: Suffix Tree

Example 2 (Suffix tree for S = xabxac)

3

c a x b

6
c

u

5
c

2

b
x

a
c

a

w

4

c

1

b
x

a
c

x a

(letters on the edges to be read top-down)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.5

Suffix Tree

Existence

• if a suffix of S is also as proper substring of S then no
suffix tree according to above definition exists

• if the last character of S does not appear elsewhere, then
a suffix tree always exists

• therefore will append a unique character $ to S and
assume that $ does not appear in S

• will build suffix tree of S$ but sometimes not explicitly
mention that $ has been added

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.5

Suffix Tree

Existence

• if a suffix of S is also as proper substring of S then no
suffix tree according to above definition exists

• if the last character of S does not appear elsewhere, then
a suffix tree always exists

• therefore will append a unique character $ to S and
assume that $ does not appear in S

• will build suffix tree of S$ but sometimes not explicitly
mention that $ has been added

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.5

Suffix Tree

Existence

• if a suffix of S is also as proper substring of S then no
suffix tree according to above definition exists

• if the last character of S does not appear elsewhere, then
a suffix tree always exists

• therefore will append a unique character $ to S and
assume that $ does not appear in S

• will build suffix tree of S$ but sometimes not explicitly
mention that $ has been added

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.5

Suffix Tree

Existence

• if a suffix of S is also as proper substring of S then no
suffix tree according to above definition exists

• if the last character of S does not appear elsewhere, then
a suffix tree always exists

• therefore will append a unique character $ to S and
assume that $ does not appear in S

• will build suffix tree of S$ but sometimes not explicitly
mention that $ has been added

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.6

Suffix Tree, Definitions

Definition 3 (label of a path)

The label of a path in a suffix tree T is the concatenation, in
order, of the substrings labeling the edges of that path. The
path-label of a node is the label of the path from the root of T
to that node.

Definition 4 (string-depth)

For any node v in a suffix tree, the string-depth of v is the
number of characters in v ’s label.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.6

Suffix Tree, Definitions

Definition 3 (label of a path)

The label of a path in a suffix tree T is the concatenation, in
order, of the substrings labeling the edges of that path. The
path-label of a node is the label of the path from the root of T
to that node.

Definition 4 (string-depth)

For any node v in a suffix tree, the string-depth of v is the
number of characters in v ’s label.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.7

Suffix Tree, Definitions

Definition 5 (path splits an edge)

Let (u, v) be an edge of a suffix tree and the string α be its
label. For a proper prefix α′ of α we then say the path from root
to u and α′ specify together a path that splits the edge (u, v).
This path has as label the concatenation of the label of the
path from root to u with α′.

Definition 6 (string in the tree)

We say that string α is in the tree if there is a path in the tree,
starting from the root, that has label α.

Notation

When a string uniquely determines a path from the root with
given path-label (as is the case in suffix trees), we will identify
strings and paths.
For example, we will say string α ends at vertex u.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.7

Suffix Tree, Definitions

Definition 5 (path splits an edge)

Let (u, v) be an edge of a suffix tree and the string α be its
label. For a proper prefix α′ of α we then say the path from root
to u and α′ specify together a path that splits the edge (u, v).
This path has as label the concatenation of the label of the
path from root to u with α′.

Definition 6 (string in the tree)

We say that string α is in the tree if there is a path in the tree,
starting from the root, that has label α.

Notation

When a string uniquely determines a path from the root with
given path-label (as is the case in suffix trees), we will identify
strings and paths.
For example, we will say string α ends at vertex u.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.8

Suffix Trees to Solve the Exact Substring Matching Problem

Exact Substring Matching with Suffix Trees

1: Input: strings P and T of lengths n,m, respectively
2: buid suffix tree for T $ in O(m) // explained later
3: follow the unique path from the root to find the path π with

label P
4: if no such path exists then
5: report that P does not occur as substring in T
6: else
7: report the number of every leaf below the end of π as

starting position of P in T

Running time

The running time of above algorithm is O(n + m).
More specifically, after O(m) preprocessing of T , it finds all
occurences of P in T in time O(n + k) where k is the number
of times P occurs in T .
(Exercise: Argue, that the subtree below the end of π has O(k) vertices and edges and

show how its leaf set can be determined in O(k) time.)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.8

Suffix Trees to Solve the Exact Substring Matching Problem

Exact Substring Matching with Suffix Trees

1: Input: strings P and T of lengths n,m, respectively
2: buid suffix tree for T $ in O(m) // explained later
3: follow the unique path from the root to find the path π with

label P
4: if no such path exists then
5: report that P does not occur as substring in T
6: else
7: report the number of every leaf below the end of π as

starting position of P in T

Running time

The running time of above algorithm is O(n + m).
More specifically, after O(m) preprocessing of T , it finds all
occurences of P in T in time O(n + k) where k is the number
of times P occurs in T .
(Exercise: Argue, that the subtree below the end of π has O(k) vertices and edges and

show how its leaf set can be determined in O(k) time.)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.9

Suffix Trees to Solve the Exact Substring Matching Problem

Example 7 (T = verlierer$, P = er)

10

$

u

8

$

6

er$

2

lierer$

re

5

$r
er

ei

4
lierer$

v

9

$

7

er$

3

lierer$

r

1

verlierer$

10

$

u

8

$

6

er$

2

lierer$

re

5

$r
er

ei

4
lierer$

v

9

$

7

er$

3

lierer$

r

1

verlierer$

The pattern er occurs at positions 2, 6 and 8 in the text. These
are the labels of all leaves in the subtree below the end of the
path with label er.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.9

Suffix Trees to Solve the Exact Substring Matching Problem

Example 7 (T = verlierer$, P = er)

10

$

u

8

$

6

er$

2

lierer$

re

5

$r
er

ei

4
lierer$

v

9

$

7

er$

3

lierer$

r

1

verlierer$

10

$

u

8

$

6

er$

2

lierer$

re

5

$r
er

ei

4
lierer$

v

9

$

7

er$

3

lierer$

r

1

verlierer$

The pattern er occurs at positions 2, 6 and 8 in the text. These
are the labels of all leaves in the subtree below the end of the
path with label er.

Naive Algorithm to Build Suffix Tree

Naive Algorithm to Build Suffix Tree T (chalk board)

• let S be a string of length m ending in $

• iteratively build suffix trees T1, T2, · · · , Tm = T , where Ti contains all
suffixes S[1..m], . . . ,S[i ..m]

• start with T1 which has a single edge for S from root to leaf labeled 1
• when Ti has already been build, insert suffix S[i + 1..n] into Ti :

• from the root find a path with label that matches the longest possible
prefix of S[i + 1..m]

• there is a unique such path π, since the labels of all edges leaving a node
start with different characters

• π cannot have label S[i + 1..m], since $ appears at the end of each suffix
• two cases: 1) π ends at internal node w or 2) π splits an edge u and v
• in case 2) insert a new node w between u and v , remove edge (u, v) and

insert edges (u,w) and (w , v), label them with the prefix of (u, v)’s label
that still matched and the rest of that string, respectively

• in both cases 1) and 2) insert a new edge (w , i + 1) labeled with the suffix
of S[i + 1..m] that is not matched by the label of the path from root to w

• call the new tree Ti+1

Naive Algorithm to Build Suffix Tree

Naive Algorithm to Build Suffix Tree T (chalk board)

• let S be a string of length m ending in $
• iteratively build suffix trees T1, T2, · · · , Tm = T , where Ti contains all

suffixes S[1..m], . . . ,S[i ..m]

• start with T1 which has a single edge for S from root to leaf labeled 1
• when Ti has already been build, insert suffix S[i + 1..n] into Ti :

• from the root find a path with label that matches the longest possible
prefix of S[i + 1..m]

• there is a unique such path π, since the labels of all edges leaving a node
start with different characters

• π cannot have label S[i + 1..m], since $ appears at the end of each suffix
• two cases: 1) π ends at internal node w or 2) π splits an edge u and v
• in case 2) insert a new node w between u and v , remove edge (u, v) and

insert edges (u,w) and (w , v), label them with the prefix of (u, v)’s label
that still matched and the rest of that string, respectively

• in both cases 1) and 2) insert a new edge (w , i + 1) labeled with the suffix
of S[i + 1..m] that is not matched by the label of the path from root to w

• call the new tree Ti+1

Naive Algorithm to Build Suffix Tree

Naive Algorithm to Build Suffix Tree T (chalk board)

• let S be a string of length m ending in $
• iteratively build suffix trees T1, T2, · · · , Tm = T , where Ti contains all

suffixes S[1..m], . . . ,S[i ..m]

• start with T1 which has a single edge for S from root to leaf labeled 1

• when Ti has already been build, insert suffix S[i + 1..n] into Ti :

• from the root find a path with label that matches the longest possible
prefix of S[i + 1..m]

• there is a unique such path π, since the labels of all edges leaving a node
start with different characters

• π cannot have label S[i + 1..m], since $ appears at the end of each suffix
• two cases: 1) π ends at internal node w or 2) π splits an edge u and v
• in case 2) insert a new node w between u and v , remove edge (u, v) and

insert edges (u,w) and (w , v), label them with the prefix of (u, v)’s label
that still matched and the rest of that string, respectively

• in both cases 1) and 2) insert a new edge (w , i + 1) labeled with the suffix
of S[i + 1..m] that is not matched by the label of the path from root to w

• call the new tree Ti+1

Naive Algorithm to Build Suffix Tree

Naive Algorithm to Build Suffix Tree T (chalk board)

• let S be a string of length m ending in $
• iteratively build suffix trees T1, T2, · · · , Tm = T , where Ti contains all

suffixes S[1..m], . . . ,S[i ..m]

• start with T1 which has a single edge for S from root to leaf labeled 1
• when Ti has already been build, insert suffix S[i + 1..n] into Ti :

• from the root find a path with label that matches the longest possible
prefix of S[i + 1..m]

• there is a unique such path π, since the labels of all edges leaving a node
start with different characters

• π cannot have label S[i + 1..m], since $ appears at the end of each suffix
• two cases: 1) π ends at internal node w or 2) π splits an edge u and v
• in case 2) insert a new node w between u and v , remove edge (u, v) and

insert edges (u,w) and (w , v), label them with the prefix of (u, v)’s label
that still matched and the rest of that string, respectively

• in both cases 1) and 2) insert a new edge (w , i + 1) labeled with the suffix
of S[i + 1..m] that is not matched by the label of the path from root to w

• call the new tree Ti+1

Naive Algorithm to Build Suffix Tree

Naive Algorithm to Build Suffix Tree T (chalk board)

• let S be a string of length m ending in $
• iteratively build suffix trees T1, T2, · · · , Tm = T , where Ti contains all

suffixes S[1..m], . . . ,S[i ..m]

• start with T1 which has a single edge for S from root to leaf labeled 1
• when Ti has already been build, insert suffix S[i + 1..n] into Ti :

• from the root find a path with label that matches the longest possible
prefix of S[i + 1..m]

• there is a unique such path π, since the labels of all edges leaving a node
start with different characters

• π cannot have label S[i + 1..m], since $ appears at the end of each suffix
• two cases: 1) π ends at internal node w or 2) π splits an edge u and v
• in case 2) insert a new node w between u and v , remove edge (u, v) and

insert edges (u,w) and (w , v), label them with the prefix of (u, v)’s label
that still matched and the rest of that string, respectively

• in both cases 1) and 2) insert a new edge (w , i + 1) labeled with the suffix
of S[i + 1..m] that is not matched by the label of the path from root to w

• call the new tree Ti+1

Naive Algorithm to Build Suffix Tree

Naive Algorithm to Build Suffix Tree T (chalk board)

• let S be a string of length m ending in $
• iteratively build suffix trees T1, T2, · · · , Tm = T , where Ti contains all

suffixes S[1..m], . . . ,S[i ..m]

• start with T1 which has a single edge for S from root to leaf labeled 1
• when Ti has already been build, insert suffix S[i + 1..n] into Ti :

• from the root find a path with label that matches the longest possible
prefix of S[i + 1..m]

• there is a unique such path π, since the labels of all edges leaving a node
start with different characters

• π cannot have label S[i + 1..m], since $ appears at the end of each suffix
• two cases: 1) π ends at internal node w or 2) π splits an edge u and v
• in case 2) insert a new node w between u and v , remove edge (u, v) and

insert edges (u,w) and (w , v), label them with the prefix of (u, v)’s label
that still matched and the rest of that string, respectively

• in both cases 1) and 2) insert a new edge (w , i + 1) labeled with the suffix
of S[i + 1..m] that is not matched by the label of the path from root to w

• call the new tree Ti+1

Naive Algorithm to Build Suffix Tree

Naive Algorithm to Build Suffix Tree T (chalk board)

• let S be a string of length m ending in $
• iteratively build suffix trees T1, T2, · · · , Tm = T , where Ti contains all

suffixes S[1..m], . . . ,S[i ..m]

• start with T1 which has a single edge for S from root to leaf labeled 1
• when Ti has already been build, insert suffix S[i + 1..n] into Ti :

• from the root find a path with label that matches the longest possible
prefix of S[i + 1..m]

• there is a unique such path π, since the labels of all edges leaving a node
start with different characters

• π cannot have label S[i + 1..m], since $ appears at the end of each suffix

• two cases: 1) π ends at internal node w or 2) π splits an edge u and v
• in case 2) insert a new node w between u and v , remove edge (u, v) and

insert edges (u,w) and (w , v), label them with the prefix of (u, v)’s label
that still matched and the rest of that string, respectively

• in both cases 1) and 2) insert a new edge (w , i + 1) labeled with the suffix
of S[i + 1..m] that is not matched by the label of the path from root to w

• call the new tree Ti+1

Naive Algorithm to Build Suffix Tree

Naive Algorithm to Build Suffix Tree T (chalk board)

• let S be a string of length m ending in $
• iteratively build suffix trees T1, T2, · · · , Tm = T , where Ti contains all

suffixes S[1..m], . . . ,S[i ..m]

• start with T1 which has a single edge for S from root to leaf labeled 1
• when Ti has already been build, insert suffix S[i + 1..n] into Ti :

• from the root find a path with label that matches the longest possible
prefix of S[i + 1..m]

• there is a unique such path π, since the labels of all edges leaving a node
start with different characters

• π cannot have label S[i + 1..m], since $ appears at the end of each suffix
• two cases: 1) π ends at internal node w or 2) π splits an edge u and v

• in case 2) insert a new node w between u and v , remove edge (u, v) and
insert edges (u,w) and (w , v), label them with the prefix of (u, v)’s label
that still matched and the rest of that string, respectively

• in both cases 1) and 2) insert a new edge (w , i + 1) labeled with the suffix
of S[i + 1..m] that is not matched by the label of the path from root to w

• call the new tree Ti+1

Naive Algorithm to Build Suffix Tree

Naive Algorithm to Build Suffix Tree T (chalk board)

• let S be a string of length m ending in $
• iteratively build suffix trees T1, T2, · · · , Tm = T , where Ti contains all

suffixes S[1..m], . . . ,S[i ..m]

• start with T1 which has a single edge for S from root to leaf labeled 1
• when Ti has already been build, insert suffix S[i + 1..n] into Ti :

• from the root find a path with label that matches the longest possible
prefix of S[i + 1..m]

• there is a unique such path π, since the labels of all edges leaving a node
start with different characters

• π cannot have label S[i + 1..m], since $ appears at the end of each suffix
• two cases: 1) π ends at internal node w or 2) π splits an edge u and v
• in case 2) insert a new node w between u and v , remove edge (u, v) and

insert edges (u,w) and (w , v), label them with the prefix of (u, v)’s label
that still matched and the rest of that string, respectively

• in both cases 1) and 2) insert a new edge (w , i + 1) labeled with the suffix
of S[i + 1..m] that is not matched by the label of the path from root to w

• call the new tree Ti+1

Naive Algorithm to Build Suffix Tree

Naive Algorithm to Build Suffix Tree T (chalk board)

• let S be a string of length m ending in $
• iteratively build suffix trees T1, T2, · · · , Tm = T , where Ti contains all

suffixes S[1..m], . . . ,S[i ..m]

• start with T1 which has a single edge for S from root to leaf labeled 1
• when Ti has already been build, insert suffix S[i + 1..n] into Ti :

• from the root find a path with label that matches the longest possible
prefix of S[i + 1..m]

• there is a unique such path π, since the labels of all edges leaving a node
start with different characters

• π cannot have label S[i + 1..m], since $ appears at the end of each suffix
• two cases: 1) π ends at internal node w or 2) π splits an edge u and v
• in case 2) insert a new node w between u and v , remove edge (u, v) and

insert edges (u,w) and (w , v), label them with the prefix of (u, v)’s label
that still matched and the rest of that string, respectively

• in both cases 1) and 2) insert a new edge (w , i + 1) labeled with the suffix
of S[i + 1..m] that is not matched by the label of the path from root to w

• call the new tree Ti+1

Naive Algorithm to Build Suffix Tree

Naive Algorithm to Build Suffix Tree T (chalk board)

• let S be a string of length m ending in $
• iteratively build suffix trees T1, T2, · · · , Tm = T , where Ti contains all

suffixes S[1..m], . . . ,S[i ..m]

• start with T1 which has a single edge for S from root to leaf labeled 1
• when Ti has already been build, insert suffix S[i + 1..n] into Ti :

• from the root find a path with label that matches the longest possible
prefix of S[i + 1..m]

• there is a unique such path π, since the labels of all edges leaving a node
start with different characters

• π cannot have label S[i + 1..m], since $ appears at the end of each suffix
• two cases: 1) π ends at internal node w or 2) π splits an edge u and v
• in case 2) insert a new node w between u and v , remove edge (u, v) and

insert edges (u,w) and (w , v), label them with the prefix of (u, v)’s label
that still matched and the rest of that string, respectively

• in both cases 1) and 2) insert a new edge (w , i + 1) labeled with the suffix
of S[i + 1..m] that is not matched by the label of the path from root to w

• call the new tree Ti+1

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.11

Naive Algorithm to Build Suffix Tree

Running Time

Above algorithm takes time O(m2) to build a suffix tree of a
string of length m.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.12

Ukkonen’s Algorithm

Ukkonen’s Algorithm

• constructs a suffix tree in linear time (Esko Ukkonen,
1995)

• will introduce the algorithm by step-wise improvements,
starting from a simple, inefficient version, introducing ideas
for the speedup from O(m3) to O(m2) to O(m)

Definition 8 (implicit suffix tree)

An implicit suffix tree for string S is a tree obtained from the
suffix tree for S$ by removing every copy of the terminal
symbol $ from the edge labels of the tree, then removing any
edge that has no label, and then removing any internal node
that does not have at least two children.

implicit suffix tree

• an implicit suffix tree also contains all the suffixes of S
• but not necessarily all suffixes are the path-labels of leafs

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.12

Ukkonen’s Algorithm

Ukkonen’s Algorithm

• constructs a suffix tree in linear time (Esko Ukkonen,
1995)

• will introduce the algorithm by step-wise improvements,
starting from a simple, inefficient version, introducing ideas
for the speedup from O(m3) to O(m2) to O(m)

Definition 8 (implicit suffix tree)

An implicit suffix tree for string S is a tree obtained from the
suffix tree for S$ by removing every copy of the terminal
symbol $ from the edge labels of the tree, then removing any
edge that has no label, and then removing any internal node
that does not have at least two children.

implicit suffix tree

• an implicit suffix tree also contains all the suffixes of S
• but not necessarily all suffixes are the path-labels of leafs

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.12

Ukkonen’s Algorithm

Ukkonen’s Algorithm

• constructs a suffix tree in linear time (Esko Ukkonen,
1995)

• will introduce the algorithm by step-wise improvements,
starting from a simple, inefficient version, introducing ideas
for the speedup from O(m3) to O(m2) to O(m)

Definition 8 (implicit suffix tree)

An implicit suffix tree for string S is a tree obtained from the
suffix tree for S$ by removing every copy of the terminal
symbol $ from the edge labels of the tree, then removing any
edge that has no label, and then removing any internal node
that does not have at least two children.

implicit suffix tree

• an implicit suffix tree also contains all the suffixes of S
• but not necessarily all suffixes are the path-labels of leafs

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.13

Implicit Suffix Tree

Example 9 (Suffix tree for S = xabxa$)

3

$axb

6

$

u

5

$

2
bxa$

a

w

4

$

1

bxa$

xa

Example 10 (Implicit suffix tree for S = xabxa)

3

ax
b

2

abxa

1

xabxa

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.13

Implicit Suffix Tree

Example 9 (Suffix tree for S = xabxa$)

3

$axb

6

$

u

5

$

2
bxa$

a

w

4

$

1

bxa$

xa

Example 10 (Implicit suffix tree for S = xabxa)

3

ax
b

2

abxa

1

xabxa

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.14

Ukkonen’s algorithm on a high-level

• constructs an implicit suffix tree Ii for prefix S[1..i] for
i = 1, . . . ,m in that order

• the suffix tree for S is build from Im

• algorithm divided into m phases
• in phase i + 1, Ii+1 is build from Ii

• each phase is subdivided into i + 1 (suffix) extensions
• in extension j of phase i + 1 the algorithm finds the end of

the path from the root labeled with S[j..i]
• it then extends the substring by adding S[i + 1] to its end if it

is not already in the tree
• extension i + 1 of phase i + 1 just puts the single-letter

string S[i + 1] into the tree, if it is not already there

Ukkonen’s Algorithm on a High-Level

Ukkonen’s algorithm on a high-level

1: construct tree I1

2: for i = 1 to m − 1 do
3: // phase i + 1 begins
4: for j = 1 to i + 1 do
5: // extension j begins
6: find the end of the path π with label S[j..i] from the root in the current tree
7: if S[j..i + 1] is not already in the tree then
8: extend π by adding character S[i + 1]

Order of suffix insertions

S[1], (phase 1)
S[1..2], S[2..2], (phase 2)
S[1..3], S[2..3], S[3..3], (phase 3)
· · ·
S[1..i], S[2..i], ..., S[i..i], (phase i)
· · ·
S[1..m], S[2..m], ..., S[m..m], (phase m)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.16

Suffix Extension Rules

Suffix Extension Rules

In extension j of phase i + 1 the algorithm first finds the end of
β := S[j ..i] in the tree.
It then extends β and ensures that βS[i + 1] = S[j ..i + 1] is in
the tree, according to one of the following rules:

case 1 If β ends at a leaf, character S[i + 1] is appended to the
end of the leaf edge.

case 2 If no path from the end of β starts with S[i + 1], but β does
not end at a leaf, then:

• If β ends inside an edge (u, v), then create a new node w
between u and v , such that β ends in w .

• If β ends at a node, then let w denote that node.
• Create a new leaf labeled j and an edge from w to that leaf

labeled S[i + 1].

case 3 If some path from the end of β starts with character
S[i + 1], then do nothing.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.16

Suffix Extension Rules

Suffix Extension Rules

In extension j of phase i + 1 the algorithm first finds the end of
β := S[j ..i] in the tree.
It then extends β and ensures that βS[i + 1] = S[j ..i + 1] is in
the tree, according to one of the following rules:

case 1 If β ends at a leaf, character S[i + 1] is appended to the
end of the leaf edge.

case 2 If no path from the end of β starts with S[i + 1], but β does
not end at a leaf, then:

• If β ends inside an edge (u, v), then create a new node w
between u and v , such that β ends in w .

• If β ends at a node, then let w denote that node.
• Create a new leaf labeled j and an edge from w to that leaf

labeled S[i + 1].

case 3 If some path from the end of β starts with character
S[i + 1], then do nothing.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.16

Suffix Extension Rules

Suffix Extension Rules

In extension j of phase i + 1 the algorithm first finds the end of
β := S[j ..i] in the tree.
It then extends β and ensures that βS[i + 1] = S[j ..i + 1] is in
the tree, according to one of the following rules:

case 1 If β ends at a leaf, character S[i + 1] is appended to the
end of the leaf edge.

case 2 If no path from the end of β starts with S[i + 1], but β does
not end at a leaf, then:

• If β ends inside an edge (u, v), then create a new node w
between u and v , such that β ends in w .

• If β ends at a node, then let w denote that node.
• Create a new leaf labeled j and an edge from w to that leaf

labeled S[i + 1].

case 3 If some path from the end of β starts with character
S[i + 1], then do nothing.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.16

Suffix Extension Rules

Suffix Extension Rules

In extension j of phase i + 1 the algorithm first finds the end of
β := S[j ..i] in the tree.
It then extends β and ensures that βS[i + 1] = S[j ..i + 1] is in
the tree, according to one of the following rules:

case 1 If β ends at a leaf, character S[i + 1] is appended to the
end of the leaf edge.

case 2 If no path from the end of β starts with S[i + 1], but β does
not end at a leaf, then:

• If β ends inside an edge (u, v), then create a new node w
between u and v , such that β ends in w .

• If β ends at a node, then let w denote that node.
• Create a new leaf labeled j and an edge from w to that leaf

labeled S[i + 1].

case 3 If some path from the end of β starts with character
S[i + 1], then do nothing.

Suffix Extension

Example 11 (Implicit suffix tree of cdababbdab)
1 2 3 4 5 6 7 8 9 10

S = c d a b a b b d a b

1

badbbabadc

r

6

ba
db

7

dab

4

abbdab

b

s

5

ba
db

3
abbdab

ab

2

dababbdab

goto compressed version

Example 12 (Implicit suffix tree of cdababbdabc (after appending c))

1

cbadbbabadc

r

6

cb
adb

7

cb
ad

10

c

4

abbdabc

b

s

5

cb
ad

b

9

c

3

abbdabc

ab

t

2

cb
ad

bb
a

8

c

dab

Suffix Extension

Example 11 (Implicit suffix tree of cdababbdab)
1 2 3 4 5 6 7 8 9 10

S = c d a b a b b d a b

1

badbbabadc

r

6

ba
db

7

dab

4

abbdab

b

s

5

ba
db

3
abbdab

ab

2

dababbdab

goto compressed version

Example 12 (Implicit suffix tree of cdababbdabc (after appending c))

1

cbadbbabadc

r

6

cb
adb

7

cb
ad

10

c

4

abbdabc

b

s

5

cb
ad

b

9

c

3

abbdabc

ab

t

2

cb
ad

bb
a

8

c

dab

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.18

Direct Implementation of High-Level Algorithm

Direct implementation

Suppose in extension j of phase i the end of S[j ..i] were
determined by a search of the path from the root.

• extension j of phase i would then take time O(i − j)

• phase i would then take time O(i2)

• the whole algorithm would take time O(m3)

Will reduce this to O(m) with several tricks

Observation

If the end of S[j ..i] in the tree is known then the extension of
S[i + 1] to it can be done in constant time.
We will therefore try to speed up the search for the S[j ..i]’s.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.18

Direct Implementation of High-Level Algorithm

Direct implementation

Suppose in extension j of phase i the end of S[j ..i] were
determined by a search of the path from the root.

• extension j of phase i would then take time O(i − j)
• phase i would then take time O(i2)

• the whole algorithm would take time O(m3)

Will reduce this to O(m) with several tricks

Observation

If the end of S[j ..i] in the tree is known then the extension of
S[i + 1] to it can be done in constant time.
We will therefore try to speed up the search for the S[j ..i]’s.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.18

Direct Implementation of High-Level Algorithm

Direct implementation

Suppose in extension j of phase i the end of S[j ..i] were
determined by a search of the path from the root.

• extension j of phase i would then take time O(i − j)
• phase i would then take time O(i2)

• the whole algorithm would take time O(m3)

Will reduce this to O(m) with several tricks

Observation

If the end of S[j ..i] in the tree is known then the extension of
S[i + 1] to it can be done in constant time.
We will therefore try to speed up the search for the S[j ..i]’s.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.18

Direct Implementation of High-Level Algorithm

Direct implementation

Suppose in extension j of phase i the end of S[j ..i] were
determined by a search of the path from the root.

• extension j of phase i would then take time O(i − j)
• phase i would then take time O(i2)

• the whole algorithm would take time O(m3)

Will reduce this to O(m) with several tricks

Observation

If the end of S[j ..i] in the tree is known then the extension of
S[i + 1] to it can be done in constant time.
We will therefore try to speed up the search for the S[j ..i]’s.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.18

Direct Implementation of High-Level Algorithm

Direct implementation

Suppose in extension j of phase i the end of S[j ..i] were
determined by a search of the path from the root.

• extension j of phase i would then take time O(i − j)
• phase i would then take time O(i2)

• the whole algorithm would take time O(m3)

Will reduce this to O(m) with several tricks

Observation

If the end of S[j ..i] in the tree is known then the extension of
S[i + 1] to it can be done in constant time.
We will therefore try to speed up the search for the S[j ..i]’s.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.19

Suffix Links

Definition 13 (Suffix link)

Let v be an internal node with path-label xα, where x is an
arbitrary character and α an arbitrary, possibly empty, string. If
there is another node s(v) with path-label α, then a pointer
from v to s(v) is called a suffix link.

Example 14 (Suffix links)

1

badbbabadc

r

6

ba
db

7

dab

4

abbdab

b

s

5

ba
db

3

abbdab

ab

2

dababbdab

(suffix links dashed and in blue)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.19

Suffix Links

Definition 13 (Suffix link)

Let v be an internal node with path-label xα, where x is an
arbitrary character and α an arbitrary, possibly empty, string. If
there is another node s(v) with path-label α, then a pointer
from v to s(v) is called a suffix link.

Example 14 (Suffix links)

1

badbbabadc

r

6

ba
db

7

dab

4

abbdab

b

s

5
ba

db

3

abbdab

ab

2

dababbdab

(suffix links dashed and in blue)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.20

Suffix Links

Lemma 15 (about existence of suffix links)

If a new internal node v with path-label xα is added to the
current tree in extension j of phase i + 1, then after extension
j + 1 of that phase, α will end at an internal node also.

Proof.

(chalk board)
Let v be a new internal node with path-label xα that was added in
extension j (of phase i + 1). New internal nodes are only added in
case 2 of the extension rules and we have α = S[j + 1..i]. After
extension j there are at least two edges leaving v , the one to the newly
created leaf and at least one other edge. Let c be the first character
on that other edge. We must have c 6= S[i + 1] because of the suffix
tree property. After extension j + 1 the string S[j + 1..i + 1] = αS[i + 1]
and the string αc are both in the tree. The latter because xαc must
have first been inserted in an earlier phase i ′ ≤ i . After that phase i ′

also αc was in the tree. As the first disagreement between αS[i + 1]
and αc is right after α, there must be an internal node at α.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.20

Suffix Links

Lemma 15 (about existence of suffix links)

If a new internal node v with path-label xα is added to the
current tree in extension j of phase i + 1, then after extension
j + 1 of that phase, α will end at an internal node also.

Proof.

(chalk board)
Let v be a new internal node with path-label xα that was added in
extension j (of phase i + 1). New internal nodes are only added in
case 2 of the extension rules and we have α = S[j + 1..i]. After
extension j there are at least two edges leaving v , the one to the newly
created leaf and at least one other edge. Let c be the first character
on that other edge. We must have c 6= S[i + 1] because of the suffix
tree property. After extension j + 1 the string S[j + 1..i + 1] = αS[i + 1]
and the string αc are both in the tree. The latter because xαc must
have first been inserted in an earlier phase i ′ ≤ i . After that phase i ′

also αc was in the tree. As the first disagreement between αS[i + 1]
and αc is right after α, there must be an internal node at α.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.21

Suffix Links

Corollary 16

In Ukkonen’s algorithm, any newly created internal node will
have a suffix link from it by the end of the next extension.

Proof.

This follows from above lemma by observing that the only
extension that is not followed by another extension of the same
phase is the last extension of a phase, which inserts a single
character and does not create an internal node.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.21

Suffix Links

Corollary 16

In Ukkonen’s algorithm, any newly created internal node will
have a suffix link from it by the end of the next extension.

Proof.

This follows from above lemma by observing that the only
extension that is not followed by another extension of the same
phase is the last extension of a phase, which inserts a single
character and does not create an internal node.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.22

First Extension is a Special Case

The first extension of a phase

• consider extension 1 of phase i + 1

• inserts S[1..i + 1] into the tree
• S[1..i] is previously the longest string in the tree
• β = S[1..i] therefore ends at a leaf labeled 1
• ⇒ first extension is of suffix extension case 1
• S[1..i + 1] will be a leaf again
• can be done in constant time, when a pointer to the leaf

labeled 1 is maintained

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.22

First Extension is a Special Case

The first extension of a phase

• consider extension 1 of phase i + 1
• inserts S[1..i + 1] into the tree

• S[1..i] is previously the longest string in the tree
• β = S[1..i] therefore ends at a leaf labeled 1
• ⇒ first extension is of suffix extension case 1
• S[1..i + 1] will be a leaf again
• can be done in constant time, when a pointer to the leaf

labeled 1 is maintained

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.22

First Extension is a Special Case

The first extension of a phase

• consider extension 1 of phase i + 1
• inserts S[1..i + 1] into the tree
• S[1..i] is previously the longest string in the tree

• β = S[1..i] therefore ends at a leaf labeled 1
• ⇒ first extension is of suffix extension case 1
• S[1..i + 1] will be a leaf again
• can be done in constant time, when a pointer to the leaf

labeled 1 is maintained

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.22

First Extension is a Special Case

The first extension of a phase

• consider extension 1 of phase i + 1
• inserts S[1..i + 1] into the tree
• S[1..i] is previously the longest string in the tree
• β = S[1..i] therefore ends at a leaf labeled 1

• ⇒ first extension is of suffix extension case 1
• S[1..i + 1] will be a leaf again
• can be done in constant time, when a pointer to the leaf

labeled 1 is maintained

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.22

First Extension is a Special Case

The first extension of a phase

• consider extension 1 of phase i + 1
• inserts S[1..i + 1] into the tree
• S[1..i] is previously the longest string in the tree
• β = S[1..i] therefore ends at a leaf labeled 1
• ⇒ first extension is of suffix extension case 1

• S[1..i + 1] will be a leaf again
• can be done in constant time, when a pointer to the leaf

labeled 1 is maintained

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.22

First Extension is a Special Case

The first extension of a phase

• consider extension 1 of phase i + 1
• inserts S[1..i + 1] into the tree
• S[1..i] is previously the longest string in the tree
• β = S[1..i] therefore ends at a leaf labeled 1
• ⇒ first extension is of suffix extension case 1
• S[1..i + 1] will be a leaf again

• can be done in constant time, when a pointer to the leaf
labeled 1 is maintained

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.22

First Extension is a Special Case

The first extension of a phase

• consider extension 1 of phase i + 1
• inserts S[1..i + 1] into the tree
• S[1..i] is previously the longest string in the tree
• β = S[1..i] therefore ends at a leaf labeled 1
• ⇒ first extension is of suffix extension case 1
• S[1..i + 1] will be a leaf again
• can be done in constant time, when a pointer to the leaf

labeled 1 is maintained

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.23

Suffix Links

Using suffix links

Idea of suffix links: a shortcut so we don’t have to start walking
all the way from the root.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.23

Suffix Links

Using suffix links

Idea of suffix links: a shortcut so we don’t have to start walking
all the way from the root.

Using Suffix Links

Single Extension Algorithm

1 consider extension j > 1 of some phase i + 1

2 need to extend S[j ..i] to S[j ..i + 1]

3 start at end of S[j − 1..i] (known from previous extension)
4 if not at a node which has a suffix link, walk up to the next node:

internal or root
5 let v be the current node (walked up or not)
6 if v is the root, then find S[j ..i] as in the naive algorithm, continue at 11
7 assume now, v is internal, with path-label xα and S[j − 1..i] = xαγ
8 v has a suffix link by the lemma about the existence of suffix links
9 follow suffix link to s(v), which has path-label α

10 follow from s(v) the path labeled γ to the end of S[j ..i]
11 extend character S[i + 1] using the suffix extension rules
12 if in extension j − 1 a new internal node w was created (at the end of

S[j − 1..i], then create the suffix link from w to the end of αγ = S[j ..i]

Using Suffix Links

Single Extension Algorithm

1 consider extension j > 1 of some phase i + 1
2 need to extend S[j ..i] to S[j ..i + 1]

3 start at end of S[j − 1..i] (known from previous extension)
4 if not at a node which has a suffix link, walk up to the next node:

internal or root
5 let v be the current node (walked up or not)
6 if v is the root, then find S[j ..i] as in the naive algorithm, continue at 11
7 assume now, v is internal, with path-label xα and S[j − 1..i] = xαγ
8 v has a suffix link by the lemma about the existence of suffix links
9 follow suffix link to s(v), which has path-label α

10 follow from s(v) the path labeled γ to the end of S[j ..i]
11 extend character S[i + 1] using the suffix extension rules
12 if in extension j − 1 a new internal node w was created (at the end of

S[j − 1..i], then create the suffix link from w to the end of αγ = S[j ..i]

Using Suffix Links

Single Extension Algorithm

1 consider extension j > 1 of some phase i + 1
2 need to extend S[j ..i] to S[j ..i + 1]

3 start at end of S[j − 1..i] (known from previous extension)

4 if not at a node which has a suffix link, walk up to the next node:
internal or root

5 let v be the current node (walked up or not)
6 if v is the root, then find S[j ..i] as in the naive algorithm, continue at 11
7 assume now, v is internal, with path-label xα and S[j − 1..i] = xαγ
8 v has a suffix link by the lemma about the existence of suffix links
9 follow suffix link to s(v), which has path-label α

10 follow from s(v) the path labeled γ to the end of S[j ..i]
11 extend character S[i + 1] using the suffix extension rules
12 if in extension j − 1 a new internal node w was created (at the end of

S[j − 1..i], then create the suffix link from w to the end of αγ = S[j ..i]

Using Suffix Links

Single Extension Algorithm

1 consider extension j > 1 of some phase i + 1
2 need to extend S[j ..i] to S[j ..i + 1]

3 start at end of S[j − 1..i] (known from previous extension)
4 if not at a node which has a suffix link, walk up to the next node:

internal or root

5 let v be the current node (walked up or not)
6 if v is the root, then find S[j ..i] as in the naive algorithm, continue at 11
7 assume now, v is internal, with path-label xα and S[j − 1..i] = xαγ
8 v has a suffix link by the lemma about the existence of suffix links
9 follow suffix link to s(v), which has path-label α

10 follow from s(v) the path labeled γ to the end of S[j ..i]
11 extend character S[i + 1] using the suffix extension rules
12 if in extension j − 1 a new internal node w was created (at the end of

S[j − 1..i], then create the suffix link from w to the end of αγ = S[j ..i]

Using Suffix Links

Single Extension Algorithm

1 consider extension j > 1 of some phase i + 1
2 need to extend S[j ..i] to S[j ..i + 1]

3 start at end of S[j − 1..i] (known from previous extension)
4 if not at a node which has a suffix link, walk up to the next node:

internal or root
5 let v be the current node (walked up or not)

6 if v is the root, then find S[j ..i] as in the naive algorithm, continue at 11
7 assume now, v is internal, with path-label xα and S[j − 1..i] = xαγ
8 v has a suffix link by the lemma about the existence of suffix links
9 follow suffix link to s(v), which has path-label α

10 follow from s(v) the path labeled γ to the end of S[j ..i]
11 extend character S[i + 1] using the suffix extension rules
12 if in extension j − 1 a new internal node w was created (at the end of

S[j − 1..i], then create the suffix link from w to the end of αγ = S[j ..i]

Using Suffix Links

Single Extension Algorithm

1 consider extension j > 1 of some phase i + 1
2 need to extend S[j ..i] to S[j ..i + 1]

3 start at end of S[j − 1..i] (known from previous extension)
4 if not at a node which has a suffix link, walk up to the next node:

internal or root
5 let v be the current node (walked up or not)
6 if v is the root, then find S[j ..i] as in the naive algorithm, continue at 11

7 assume now, v is internal, with path-label xα and S[j − 1..i] = xαγ
8 v has a suffix link by the lemma about the existence of suffix links
9 follow suffix link to s(v), which has path-label α

10 follow from s(v) the path labeled γ to the end of S[j ..i]
11 extend character S[i + 1] using the suffix extension rules
12 if in extension j − 1 a new internal node w was created (at the end of

S[j − 1..i], then create the suffix link from w to the end of αγ = S[j ..i]

Using Suffix Links

Single Extension Algorithm

1 consider extension j > 1 of some phase i + 1
2 need to extend S[j ..i] to S[j ..i + 1]

3 start at end of S[j − 1..i] (known from previous extension)
4 if not at a node which has a suffix link, walk up to the next node:

internal or root
5 let v be the current node (walked up or not)
6 if v is the root, then find S[j ..i] as in the naive algorithm, continue at 11
7 assume now, v is internal, with path-label xα and S[j − 1..i] = xαγ

8 v has a suffix link by the lemma about the existence of suffix links
9 follow suffix link to s(v), which has path-label α

10 follow from s(v) the path labeled γ to the end of S[j ..i]
11 extend character S[i + 1] using the suffix extension rules
12 if in extension j − 1 a new internal node w was created (at the end of

S[j − 1..i], then create the suffix link from w to the end of αγ = S[j ..i]

Using Suffix Links

Single Extension Algorithm

1 consider extension j > 1 of some phase i + 1
2 need to extend S[j ..i] to S[j ..i + 1]

3 start at end of S[j − 1..i] (known from previous extension)
4 if not at a node which has a suffix link, walk up to the next node:

internal or root
5 let v be the current node (walked up or not)
6 if v is the root, then find S[j ..i] as in the naive algorithm, continue at 11
7 assume now, v is internal, with path-label xα and S[j − 1..i] = xαγ
8 v has a suffix link by the lemma about the existence of suffix links

9 follow suffix link to s(v), which has path-label α
10 follow from s(v) the path labeled γ to the end of S[j ..i]
11 extend character S[i + 1] using the suffix extension rules
12 if in extension j − 1 a new internal node w was created (at the end of

S[j − 1..i], then create the suffix link from w to the end of αγ = S[j ..i]

Using Suffix Links

Single Extension Algorithm

1 consider extension j > 1 of some phase i + 1
2 need to extend S[j ..i] to S[j ..i + 1]

3 start at end of S[j − 1..i] (known from previous extension)
4 if not at a node which has a suffix link, walk up to the next node:

internal or root
5 let v be the current node (walked up or not)
6 if v is the root, then find S[j ..i] as in the naive algorithm, continue at 11
7 assume now, v is internal, with path-label xα and S[j − 1..i] = xαγ
8 v has a suffix link by the lemma about the existence of suffix links
9 follow suffix link to s(v), which has path-label α

10 follow from s(v) the path labeled γ to the end of S[j ..i]
11 extend character S[i + 1] using the suffix extension rules
12 if in extension j − 1 a new internal node w was created (at the end of

S[j − 1..i], then create the suffix link from w to the end of αγ = S[j ..i]

Using Suffix Links

Single Extension Algorithm

1 consider extension j > 1 of some phase i + 1
2 need to extend S[j ..i] to S[j ..i + 1]

3 start at end of S[j − 1..i] (known from previous extension)
4 if not at a node which has a suffix link, walk up to the next node:

internal or root
5 let v be the current node (walked up or not)
6 if v is the root, then find S[j ..i] as in the naive algorithm, continue at 11
7 assume now, v is internal, with path-label xα and S[j − 1..i] = xαγ
8 v has a suffix link by the lemma about the existence of suffix links
9 follow suffix link to s(v), which has path-label α

10 follow from s(v) the path labeled γ to the end of S[j ..i]

11 extend character S[i + 1] using the suffix extension rules
12 if in extension j − 1 a new internal node w was created (at the end of

S[j − 1..i], then create the suffix link from w to the end of αγ = S[j ..i]

Using Suffix Links

Single Extension Algorithm

1 consider extension j > 1 of some phase i + 1
2 need to extend S[j ..i] to S[j ..i + 1]

3 start at end of S[j − 1..i] (known from previous extension)
4 if not at a node which has a suffix link, walk up to the next node:

internal or root
5 let v be the current node (walked up or not)
6 if v is the root, then find S[j ..i] as in the naive algorithm, continue at 11
7 assume now, v is internal, with path-label xα and S[j − 1..i] = xαγ
8 v has a suffix link by the lemma about the existence of suffix links
9 follow suffix link to s(v), which has path-label α

10 follow from s(v) the path labeled γ to the end of S[j ..i]
11 extend character S[i + 1] using the suffix extension rules

12 if in extension j − 1 a new internal node w was created (at the end of
S[j − 1..i], then create the suffix link from w to the end of αγ = S[j ..i]

Using Suffix Links

Single Extension Algorithm

1 consider extension j > 1 of some phase i + 1
2 need to extend S[j ..i] to S[j ..i + 1]

3 start at end of S[j − 1..i] (known from previous extension)
4 if not at a node which has a suffix link, walk up to the next node:

internal or root
5 let v be the current node (walked up or not)
6 if v is the root, then find S[j ..i] as in the naive algorithm, continue at 11
7 assume now, v is internal, with path-label xα and S[j − 1..i] = xαγ
8 v has a suffix link by the lemma about the existence of suffix links
9 follow suffix link to s(v), which has path-label α

10 follow from s(v) the path labeled γ to the end of S[j ..i]
11 extend character S[i + 1] using the suffix extension rules
12 if in extension j − 1 a new internal node w was created (at the end of

S[j − 1..i], then create the suffix link from w to the end of αγ = S[j ..i]

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.25

Trick 1: Count Edge Label Lengths

Improving performance of path searching

• following a path γ as in the Single Extension Algorithm
(SEA) the naive way takes time proportional to |γ|

• want to improve to time proportional to the number of
nodes on γ

• better, since the edge-labels can become arbitrarily long
• in the SEA we know that γ must be in the tree
• therefore: no need to compare all characters on an edge
• correct edge can be chosen by comparing the first

character only

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.25

Trick 1: Count Edge Label Lengths

Improving performance of path searching

• following a path γ as in the Single Extension Algorithm
(SEA) the naive way takes time proportional to |γ|

• want to improve to time proportional to the number of
nodes on γ

• better, since the edge-labels can become arbitrarily long
• in the SEA we know that γ must be in the tree
• therefore: no need to compare all characters on an edge
• correct edge can be chosen by comparing the first

character only

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.25

Trick 1: Count Edge Label Lengths

Improving performance of path searching

• following a path γ as in the Single Extension Algorithm
(SEA) the naive way takes time proportional to |γ|

• want to improve to time proportional to the number of
nodes on γ

• better, since the edge-labels can become arbitrarily long

• in the SEA we know that γ must be in the tree
• therefore: no need to compare all characters on an edge
• correct edge can be chosen by comparing the first

character only

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.25

Trick 1: Count Edge Label Lengths

Improving performance of path searching

• following a path γ as in the Single Extension Algorithm
(SEA) the naive way takes time proportional to |γ|

• want to improve to time proportional to the number of
nodes on γ

• better, since the edge-labels can become arbitrarily long
• in the SEA we know that γ must be in the tree

• therefore: no need to compare all characters on an edge
• correct edge can be chosen by comparing the first

character only

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.25

Trick 1: Count Edge Label Lengths

Improving performance of path searching

• following a path γ as in the Single Extension Algorithm
(SEA) the naive way takes time proportional to |γ|

• want to improve to time proportional to the number of
nodes on γ

• better, since the edge-labels can become arbitrarily long
• in the SEA we know that γ must be in the tree
• therefore: no need to compare all characters on an edge

• correct edge can be chosen by comparing the first
character only

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.25

Trick 1: Count Edge Label Lengths

Improving performance of path searching

• following a path γ as in the Single Extension Algorithm
(SEA) the naive way takes time proportional to |γ|

• want to improve to time proportional to the number of
nodes on γ

• better, since the edge-labels can become arbitrarily long
• in the SEA we know that γ must be in the tree
• therefore: no need to compare all characters on an edge
• correct edge can be chosen by comparing the first

character only

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.26

Count Edge Label Length Algorithm for Downwalk

1: input: starting node v , string γ guaranteed to be in subtree
rooted at v

2: h← 0 // the number of characters of γ matched so far
3: repeat
4: let (v ,w) be the edge for which the first character of its

label β matches character h + 1 of γ
5: h→ h + |β|
6: v ← w
7: until h ≥ |γ|
8: if h = |γ| then
9: γ ends at node w

10: else
11: γ ends on the edge from w ’s parent to w after character
|β| − h + |γ| on that edge

Runing time

Above algorithm finds the end of γ in time proportional to the
number of nodes on its path.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.26

Count Edge Label Length Algorithm for Downwalk

1: input: starting node v , string γ guaranteed to be in subtree
rooted at v

2: h← 0 // the number of characters of γ matched so far
3: repeat
4: let (v ,w) be the edge for which the first character of its

label β matches character h + 1 of γ
5: h→ h + |β|
6: v ← w
7: until h ≥ |γ|
8: if h = |γ| then
9: γ ends at node w

10: else
11: γ ends on the edge from w ’s parent to w after character
|β| − h + |γ| on that edge

Runing time

Above algorithm finds the end of γ in time proportional to the
number of nodes on its path.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.27

Suffix Links

Definition 17 (depth of a node)

The (node)-depth of a node u is the number of edges on the
path from the root to u. The depth of the root is 0.
We will use the term “current depth” referring to the depth of
the node last visited.

Lemma 18 (depth and suffix link)

Let (v , s(v)) be any suffix link traversed during Ukkonen’s
algorithm. At that moment, the depth of v is at most one
greater than the depth of s(v).

Proof.

(chalk board)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.27

Suffix Links

Definition 17 (depth of a node)

The (node)-depth of a node u is the number of edges on the
path from the root to u. The depth of the root is 0.
We will use the term “current depth” referring to the depth of
the node last visited.

Lemma 18 (depth and suffix link)

Let (v , s(v)) be any suffix link traversed during Ukkonen’s
algorithm. At that moment, the depth of v is at most one
greater than the depth of s(v).

Proof.

(chalk board)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.28

Depth and Suffix Links

Example 19

Gusfield, “Algorithms on Strings, Trees and Sequences”

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.29

Reduction to Quadratic Running Time

Theorem 20

Using the Count Edge Label Length Trick, any phase of
Ukkonen’s algorithm takes O(m) time and the complete
algorithm takes time O(m2).

Proof.

(chalk board)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.30

Storing Edge Labels

Space requirements

• storing all edge labels explicitly can take more than O(m)
space:

consider the string abcdefghijklmnopqrstuvwxyz
with 26 characters
the suffix tree has 26 edges with length 1,2,. . . , 26 each,
totalling 26 · 27/2 characters

• since an algorithm takes at least as much time as the
output size, a linear-time suffix tree construction algorithm
cannot use explicit edge label

• use availability of input string S and only implicitly store
edge labels=substrings of S

Edge-label compression

When implementing an (implicit) suffix tree of string S, store at
each edge only a pair of indices:
the start and end position of a location of the edge label as
substring in S.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.30

Storing Edge Labels

Space requirements

• storing all edge labels explicitly can take more than O(m)
space:

consider the string abcdefghijklmnopqrstuvwxyz
with 26 characters
the suffix tree has 26 edges with length 1,2,. . . , 26 each,
totalling 26 · 27/2 characters

• since an algorithm takes at least as much time as the
output size, a linear-time suffix tree construction algorithm
cannot use explicit edge label

• use availability of input string S and only implicitly store
edge labels=substrings of S

Edge-label compression

When implementing an (implicit) suffix tree of string S, store at
each edge only a pair of indices:
the start and end position of a location of the edge label as
substring in S.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.30

Storing Edge Labels

Space requirements

• storing all edge labels explicitly can take more than O(m)
space:
consider the string abcdefghijklmnopqrstuvwxyz
with 26 characters

the suffix tree has 26 edges with length 1,2,. . . , 26 each,
totalling 26 · 27/2 characters

• since an algorithm takes at least as much time as the
output size, a linear-time suffix tree construction algorithm
cannot use explicit edge label

• use availability of input string S and only implicitly store
edge labels=substrings of S

Edge-label compression

When implementing an (implicit) suffix tree of string S, store at
each edge only a pair of indices:
the start and end position of a location of the edge label as
substring in S.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.30

Storing Edge Labels

Space requirements

• storing all edge labels explicitly can take more than O(m)
space:
consider the string abcdefghijklmnopqrstuvwxyz
with 26 characters
the suffix tree has 26 edges with length 1,2,. . . , 26 each,
totalling 26 · 27/2 characters

• since an algorithm takes at least as much time as the
output size, a linear-time suffix tree construction algorithm
cannot use explicit edge label

• use availability of input string S and only implicitly store
edge labels=substrings of S

Edge-label compression

When implementing an (implicit) suffix tree of string S, store at
each edge only a pair of indices:
the start and end position of a location of the edge label as
substring in S.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.30

Storing Edge Labels

Space requirements

• storing all edge labels explicitly can take more than O(m)
space:
consider the string abcdefghijklmnopqrstuvwxyz
with 26 characters
the suffix tree has 26 edges with length 1,2,. . . , 26 each,
totalling 26 · 27/2 characters

• since an algorithm takes at least as much time as the
output size, a linear-time suffix tree construction algorithm
cannot use explicit edge label

• use availability of input string S and only implicitly store
edge labels=substrings of S

Edge-label compression

When implementing an (implicit) suffix tree of string S, store at
each edge only a pair of indices:
the start and end position of a location of the edge label as
substring in S.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.30

Storing Edge Labels

Space requirements

• storing all edge labels explicitly can take more than O(m)
space:
consider the string abcdefghijklmnopqrstuvwxyz
with 26 characters
the suffix tree has 26 edges with length 1,2,. . . , 26 each,
totalling 26 · 27/2 characters

• since an algorithm takes at least as much time as the
output size, a linear-time suffix tree construction algorithm
cannot use explicit edge label

• use availability of input string S and only implicitly store
edge labels=substrings of S

Edge-label compression

When implementing an (implicit) suffix tree of string S, store at
each edge only a pair of indices:
the start and end position of a location of the edge label as
substring in S.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.31

Edge label compression

Example 21 (implicit suffix tree for cdababbdab with edge-label
compression)

1

(1,10)

r

6

(7
,1

0)

7
(8,10)

4
(5,10)
(4

,4
)

s

5

(7
,1

0)

3

(5,10)

(3,4)

2

(2,10)

goto uncompressed version

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.32

Suffix Extension Case 3 Ends Phase

Suffix Extension Case 3

• suppose j is an extension of some phase i in which case 3
aplies, i.e. S[j ..i] was already in the tree before extension j

• then also S[j + 1..i] must already be in the tree: it was
inserted to the latest in the extension after S[j ..i] was
initially inserted

• inductively, in all extensions after j also the case 3 applies

Trick 2: End phase after case 3

• if in extension j case 3 aplies, then end that phase
• nothing more would be done in that phase anyways as

case 3 applies to all further extensions of that phase

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.32

Suffix Extension Case 3 Ends Phase

Suffix Extension Case 3

• suppose j is an extension of some phase i in which case 3
aplies, i.e. S[j ..i] was already in the tree before extension j

• then also S[j + 1..i] must already be in the tree: it was
inserted to the latest in the extension after S[j ..i] was
initially inserted

• inductively, in all extensions after j also the case 3 applies

Trick 2: End phase after case 3

• if in extension j case 3 aplies, then end that phase
• nothing more would be done in that phase anyways as

case 3 applies to all further extensions of that phase

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.32

Suffix Extension Case 3 Ends Phase

Suffix Extension Case 3

• suppose j is an extension of some phase i in which case 3
aplies, i.e. S[j ..i] was already in the tree before extension j

• then also S[j + 1..i] must already be in the tree: it was
inserted to the latest in the extension after S[j ..i] was
initially inserted

• inductively, in all extensions after j also the case 3 applies

Trick 2: End phase after case 3

• if in extension j case 3 aplies, then end that phase
• nothing more would be done in that phase anyways as

case 3 applies to all further extensions of that phase

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.32

Suffix Extension Case 3 Ends Phase

Suffix Extension Case 3

• suppose j is an extension of some phase i in which case 3
aplies, i.e. S[j ..i] was already in the tree before extension j

• then also S[j + 1..i] must already be in the tree: it was
inserted to the latest in the extension after S[j ..i] was
initially inserted

• inductively, in all extensions after j also the case 3 applies

Trick 2: End phase after case 3

• if in extension j case 3 aplies, then end that phase
• nothing more would be done in that phase anyways as

case 3 applies to all further extensions of that phase

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.33

Once a Leaf, Always a Leaf

Observation

• suppose at some point during Ukkonen’s algorithm a leaf
labeled j is created

• the suffix extension rules never create an edge out of a
leaf

• therefore, after leaf j is created all extensions j of future
phases will be case 1 extensions, only increasing the end
position of the leaf edge label

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.33

Once a Leaf, Always a Leaf

Observation

• suppose at some point during Ukkonen’s algorithm a leaf
labeled j is created

• the suffix extension rules never create an edge out of a
leaf

• therefore, after leaf j is created all extensions j of future
phases will be case 1 extensions, only increasing the end
position of the leaf edge label

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.33

Once a Leaf, Always a Leaf

Observation

• suppose at some point during Ukkonen’s algorithm a leaf
labeled j is created

• the suffix extension rules never create an edge out of a
leaf

• therefore, after leaf j is created all extensions j of future
phases will be case 1 extensions, only increasing the end
position of the leaf edge label

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.34

Succession of Suffix Extension Cases

Suffix extensions

Consider the cases for the suffix extension in phase i + 1
• some (possibly empty) rest of the extensions in any phase

is of case 3, the other cases are 1 or 2: {1,2}*3*

• let ji be the number of cases 1 or 2 from phase i (j1 = 1)
• extensions 1,2, . . . , ji of phase i + 1 must then be case 1:

• if extension j was of case 1 in phase i then it is of case 1 in
phase i + 1 again because of the “once a leaf, always a
leaf” observation

• if extension j was of case 2, then a new leaf labeled j was
created in phase i + 1, therefore extension j is of case 1 in
phase i + 1

• in phase i + 1 the pattern of cases is therefore :
1[ji]{1,2}*3*

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.34

Succession of Suffix Extension Cases

Suffix extensions

Consider the cases for the suffix extension in phase i + 1
• some (possibly empty) rest of the extensions in any phase

is of case 3, the other cases are 1 or 2: {1,2}*3*
• let ji be the number of cases 1 or 2 from phase i (j1 = 1)

• extensions 1,2, . . . , ji of phase i + 1 must then be case 1:

• if extension j was of case 1 in phase i then it is of case 1 in
phase i + 1 again because of the “once a leaf, always a
leaf” observation

• if extension j was of case 2, then a new leaf labeled j was
created in phase i + 1, therefore extension j is of case 1 in
phase i + 1

• in phase i + 1 the pattern of cases is therefore :
1[ji]{1,2}*3*

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.34

Succession of Suffix Extension Cases

Suffix extensions

Consider the cases for the suffix extension in phase i + 1
• some (possibly empty) rest of the extensions in any phase

is of case 3, the other cases are 1 or 2: {1,2}*3*
• let ji be the number of cases 1 or 2 from phase i (j1 = 1)
• extensions 1,2, . . . , ji of phase i + 1 must then be case 1:

• if extension j was of case 1 in phase i then it is of case 1 in
phase i + 1 again because of the “once a leaf, always a
leaf” observation

• if extension j was of case 2, then a new leaf labeled j was
created in phase i + 1, therefore extension j is of case 1 in
phase i + 1

• in phase i + 1 the pattern of cases is therefore :
1[ji]{1,2}*3*

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.34

Succession of Suffix Extension Cases

Suffix extensions

Consider the cases for the suffix extension in phase i + 1
• some (possibly empty) rest of the extensions in any phase

is of case 3, the other cases are 1 or 2: {1,2}*3*
• let ji be the number of cases 1 or 2 from phase i (j1 = 1)
• extensions 1,2, . . . , ji of phase i + 1 must then be case 1:

• if extension j was of case 1 in phase i then it is of case 1 in
phase i + 1 again because of the “once a leaf, always a
leaf” observation

• if extension j was of case 2, then a new leaf labeled j was
created in phase i + 1, therefore extension j is of case 1 in
phase i + 1

• in phase i + 1 the pattern of cases is therefore :
1[ji]{1,2}*3*

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.34

Succession of Suffix Extension Cases

Suffix extensions

Consider the cases for the suffix extension in phase i + 1
• some (possibly empty) rest of the extensions in any phase

is of case 3, the other cases are 1 or 2: {1,2}*3*
• let ji be the number of cases 1 or 2 from phase i (j1 = 1)
• extensions 1,2, . . . , ji of phase i + 1 must then be case 1:

• if extension j was of case 1 in phase i then it is of case 1 in
phase i + 1 again because of the “once a leaf, always a
leaf” observation

• if extension j was of case 2, then a new leaf labeled j was
created in phase i + 1, therefore extension j is of case 1 in
phase i + 1

• in phase i + 1 the pattern of cases is therefore :
1[ji]{1,2}*3*

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.34

Succession of Suffix Extension Cases

Suffix extensions

Consider the cases for the suffix extension in phase i + 1
• some (possibly empty) rest of the extensions in any phase

is of case 3, the other cases are 1 or 2: {1,2}*3*
• let ji be the number of cases 1 or 2 from phase i (j1 = 1)
• extensions 1,2, . . . , ji of phase i + 1 must then be case 1:

• if extension j was of case 1 in phase i then it is of case 1 in
phase i + 1 again because of the “once a leaf, always a
leaf” observation

• if extension j was of case 2, then a new leaf labeled j was
created in phase i + 1, therefore extension j is of case 1 in
phase i + 1

• in phase i + 1 the pattern of cases is therefore :
1[ji]{1,2}*3*

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.35

Trick 3: Store End Position Only Globally

• after phase i + 1 all leaf edges end at position i + 1

• do not update each leaf edge individually, instead consider
this fact in the implementation, making all leaf edge
updates in constant time,
e.g. by storing a reference to a global variable that holds
the leaf label end positions

• after entering phase i + 1 start extensions only at
extension ji + 1

• do extensions only until the first case 3 aplies (at
extension ji+1 + 1)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.35

Trick 3: Store End Position Only Globally

• after phase i + 1 all leaf edges end at position i + 1
• do not update each leaf edge individually, instead consider

this fact in the implementation, making all leaf edge
updates in constant time,
e.g. by storing a reference to a global variable that holds
the leaf label end positions

• after entering phase i + 1 start extensions only at
extension ji + 1

• do extensions only until the first case 3 aplies (at
extension ji+1 + 1)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.35

Trick 3: Store End Position Only Globally

• after phase i + 1 all leaf edges end at position i + 1
• do not update each leaf edge individually, instead consider

this fact in the implementation, making all leaf edge
updates in constant time,
e.g. by storing a reference to a global variable that holds
the leaf label end positions

• after entering phase i + 1 start extensions only at
extension ji + 1

• do extensions only until the first case 3 aplies (at
extension ji+1 + 1)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.35

Trick 3: Store End Position Only Globally

• after phase i + 1 all leaf edges end at position i + 1
• do not update each leaf edge individually, instead consider

this fact in the implementation, making all leaf edge
updates in constant time,
e.g. by storing a reference to a global variable that holds
the leaf label end positions

• after entering phase i + 1 start extensions only at
extension ji + 1

• do extensions only until the first case 3 aplies (at
extension ji+1 + 1)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.36

Single Phase Algorithm for Phase i > 1

1 increment global variable that holds the leaf label end
positions (or similar)

2 explicitly compute extensions using the Single Extension
Algorithm starting with extension ji + 1 until the first case
extension j∗ where case 3 aplies or until all extensions of
this phase are done (set j∗ := i + 1 in this case), remember
the location in the tree where the last extension ended

3 set ji+1 to j∗ − 1

Observations

• phase i + 1 begins explicit extensions for the same j as the
last explicit extension of the previous phase, j∗

(e.g. the first case 3 of phase i)

• the later extension found the end of S[j∗..i], which is saved
• the first extension of each phase therefore only needs

constant time to extend S[j∗..i] by S[i + 1]

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.36

Single Phase Algorithm for Phase i > 1

1 increment global variable that holds the leaf label end
positions (or similar)

2 explicitly compute extensions using the Single Extension
Algorithm starting with extension ji + 1 until the first case
extension j∗ where case 3 aplies or until all extensions of
this phase are done (set j∗ := i + 1 in this case), remember
the location in the tree where the last extension ended

3 set ji+1 to j∗ − 1

Observations

• phase i + 1 begins explicit extensions for the same j as the
last explicit extension of the previous phase, j∗

(e.g. the first case 3 of phase i)

• the later extension found the end of S[j∗..i], which is saved
• the first extension of each phase therefore only needs

constant time to extend S[j∗..i] by S[i + 1]

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.37

Linear Running Time Result

Theorem 22

Using suffix links, tricks 1, 2 and 3 and edge label
compression, above algorithm computes the implicit suffix tree
of S in time O(m).

Proof.
The time required for steps 1 and 3 of the Single Phase Algorithm is constant and so is
O(m) over the m phases.
The total number of explicit extensions is

≤ 1 + (j2 − j1 + 1) + (j3 − j2 + 1) + · · · + (jm − jm−1 + 1)

= jm − j1 + m (telescope sum)

≤ 2m

The time required for an explicit extension is constant plus time proportional to the number
of nodes passed in the down-walk. The last explicit extension has the same depth as the
first explicit extension of the next phase, and the first extension of each phase does not
require down-walks. There are therefore at most m explicit extensions with down-walks.
As the depth is bounded by m, the total number of down-walks is therefore O(m).

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.37

Linear Running Time Result

Theorem 22

Using suffix links, tricks 1, 2 and 3 and edge label
compression, above algorithm computes the implicit suffix tree
of S in time O(m).

Proof.
The time required for steps 1 and 3 of the Single Phase Algorithm is constant and so is
O(m) over the m phases.
The total number of explicit extensions is

≤ 1 + (j2 − j1 + 1) + (j3 − j2 + 1) + · · · + (jm − jm−1 + 1)

= jm − j1 + m (telescope sum)

≤ 2m

The time required for an explicit extension is constant plus time proportional to the number
of nodes passed in the down-walk. The last explicit extension has the same depth as the
first explicit extension of the next phase, and the first extension of each phase does not
require down-walks. There are therefore at most m explicit extensions with down-walks.
As the depth is bounded by m, the total number of down-walks is therefore O(m).

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.38

Constructing the Suffix Tree

Making the implicit suffix tree explicit

• append the unique termination character $ to the end of S
and run above algorithm

• the resulting implicit suffix tree will also be a suffix tree, as
no suffix of S$ is prefix of another suffix

• correctly set all end positions of leaf edges to |S$| by an
O(m) algorithm

Theorem 23

Ukkonen’s algorithm builds the suffix tree of string S along with
all its suffix links in O(m) time.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.38

Constructing the Suffix Tree

Making the implicit suffix tree explicit

• append the unique termination character $ to the end of S
and run above algorithm

• the resulting implicit suffix tree will also be a suffix tree, as
no suffix of S$ is prefix of another suffix

• correctly set all end positions of leaf edges to |S$| by an
O(m) algorithm

Theorem 23

Ukkonen’s algorithm builds the suffix tree of string S along with
all its suffix links in O(m) time.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.39

Ukkonen’s Algorithm

Example 24 (Ukkonen’s Algorithm on S = abaabbabab$)

(chalk board)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.40

Generalized Suffix Trees for Sets of Strings

Sets of strings

• have a set of strings {S1,S2, . . . ,Sz}
• in some applications we want to find substrings common

to several or all strings in the set
• solution: a generalized suffix tree that holds suffixes of all

strings in the set

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.41

Generalized Suffix Trees for Sets of Strings

Construction of a generalized suffix tree (theoretical way)

1 construct S = S1$S2 CS3£ · · ·Sz¥,
where $, C, £, . . ., ¥ are terminal symbols assumed to be
not in any of the Si

2 build suffix tree of S with Ukkonen’s algorithm in O(m)
where m := |S1|+ · · ·+ |Sz |

(chalk board)
3 remove artificial suffixes that span more than 1 string in

set, determine and store at each leaf the index
i ∈ {1, . . . , z} of the string and shift sequence coordinates
at leaf labels

(chalk board)

Observation

Because the terminal symbols are unique, after step 2 every
internal node has a path label that is a substring of one or more
of the Si (no artificial substring spanning different strings).

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.41

Generalized Suffix Trees for Sets of Strings

Construction of a generalized suffix tree (theoretical way)

1 construct S = S1$S2 CS3£ · · ·Sz¥,
where $, C, £, . . ., ¥ are terminal symbols assumed to be
not in any of the Si

2 build suffix tree of S with Ukkonen’s algorithm in O(m)
where m := |S1|+ · · ·+ |Sz |

(chalk board)
3 remove artificial suffixes that span more than 1 string in

set, determine and store at each leaf the index
i ∈ {1, . . . , z} of the string and shift sequence coordinates
at leaf labels

(chalk board)

Observation

Because the terminal symbols are unique, after step 2 every
internal node has a path label that is a substring of one or more
of the Si (no artificial substring spanning different strings).

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.42

Generalized Suffix Trees for Sets of Strings

Step 3

• for i = 0,1, . . . , z let `(i) =
∑i

k=1(1 + |Sk |)

• let i∗(c) := min{i | `(i) ≥ c} be the index of the string that
suffix starting at i “really” represents

• in the suffix tree for S relabel a leaf labeled j as
(i∗(j), j − `(i∗(j)− 1))

• in the suffix tree for S relabel an edge labeled (c,d) as
follows

• c ← c − `(i∗(c)− 1)
• d ← min{d − `(i∗(c)− 1), |Si∗(c)|+ 1}
• also store the index i∗(c) of the string with the edge

• remove all but one edge from the root that start with a
special end-of-string-character

• step 3 requires only time in O(m) if i∗ is computed in
constant time after preprocessing

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.42

Generalized Suffix Trees for Sets of Strings

Step 3

• for i = 0,1, . . . , z let `(i) =
∑i

k=1(1 + |Sk |)
• let i∗(c) := min{i | `(i) ≥ c} be the index of the string that

suffix starting at i “really” represents

• in the suffix tree for S relabel a leaf labeled j as
(i∗(j), j − `(i∗(j)− 1))

• in the suffix tree for S relabel an edge labeled (c,d) as
follows

• c ← c − `(i∗(c)− 1)
• d ← min{d − `(i∗(c)− 1), |Si∗(c)|+ 1}
• also store the index i∗(c) of the string with the edge

• remove all but one edge from the root that start with a
special end-of-string-character

• step 3 requires only time in O(m) if i∗ is computed in
constant time after preprocessing

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.42

Generalized Suffix Trees for Sets of Strings

Step 3

• for i = 0,1, . . . , z let `(i) =
∑i

k=1(1 + |Sk |)
• let i∗(c) := min{i | `(i) ≥ c} be the index of the string that

suffix starting at i “really” represents
• in the suffix tree for S relabel a leaf labeled j as

(i∗(j), j − `(i∗(j)− 1))

• in the suffix tree for S relabel an edge labeled (c,d) as
follows

• c ← c − `(i∗(c)− 1)
• d ← min{d − `(i∗(c)− 1), |Si∗(c)|+ 1}
• also store the index i∗(c) of the string with the edge

• remove all but one edge from the root that start with a
special end-of-string-character

• step 3 requires only time in O(m) if i∗ is computed in
constant time after preprocessing

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.42

Generalized Suffix Trees for Sets of Strings

Step 3

• for i = 0,1, . . . , z let `(i) =
∑i

k=1(1 + |Sk |)
• let i∗(c) := min{i | `(i) ≥ c} be the index of the string that

suffix starting at i “really” represents
• in the suffix tree for S relabel a leaf labeled j as

(i∗(j), j − `(i∗(j)− 1))

• in the suffix tree for S relabel an edge labeled (c,d) as
follows

• c ← c − `(i∗(c)− 1)
• d ← min{d − `(i∗(c)− 1), |Si∗(c)|+ 1}
• also store the index i∗(c) of the string with the edge

• remove all but one edge from the root that start with a
special end-of-string-character

• step 3 requires only time in O(m) if i∗ is computed in
constant time after preprocessing

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.42

Generalized Suffix Trees for Sets of Strings

Step 3

• for i = 0,1, . . . , z let `(i) =
∑i

k=1(1 + |Sk |)
• let i∗(c) := min{i | `(i) ≥ c} be the index of the string that

suffix starting at i “really” represents
• in the suffix tree for S relabel a leaf labeled j as

(i∗(j), j − `(i∗(j)− 1))

• in the suffix tree for S relabel an edge labeled (c,d) as
follows

• c ← c − `(i∗(c)− 1)
• d ← min{d − `(i∗(c)− 1), |Si∗(c)|+ 1}
• also store the index i∗(c) of the string with the edge

• remove all but one edge from the root that start with a
special end-of-string-character

• step 3 requires only time in O(m) if i∗ is computed in
constant time after preprocessing

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.42

Generalized Suffix Trees for Sets of Strings

Step 3

• for i = 0,1, . . . , z let `(i) =
∑i

k=1(1 + |Sk |)
• let i∗(c) := min{i | `(i) ≥ c} be the index of the string that

suffix starting at i “really” represents
• in the suffix tree for S relabel a leaf labeled j as

(i∗(j), j − `(i∗(j)− 1))

• in the suffix tree for S relabel an edge labeled (c,d) as
follows

• c ← c − `(i∗(c)− 1)
• d ← min{d − `(i∗(c)− 1), |Si∗(c)|+ 1}
• also store the index i∗(c) of the string with the edge

• remove all but one edge from the root that start with a
special end-of-string-character

• step 3 requires only time in O(m) if i∗ is computed in
constant time after preprocessing

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.43

Generalized Suffix Trees for Sets of Strings

Example 25 (suffix tree for S1 = bbxab and S2 = xbab)

xab$xbab&

b
a
b
&

ab
&

&

&
&

b
 b

 x
 a

 b
 $

 x
 b

 a
 b

 &

x a b $xbab&

1

2

3

4

5

7

8

9

10

11

6
$xbab&

& b a b x $

&babx $ b a

suffix tree for concatenation bbxab$xbab&
.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.43

Generalized Suffix Trees for Sets of Strings

Example 25 (suffix tree for S1 = bbxab and S2 = xbab)

1

2

3

4

5

7

8

9

10

11

(2,11)

(11,11)

(6,11)

(11,11)

(6,11)

(4,5)

(8,11)

(4,11)

(6,11)

(3,11)

(9,11)

6

(11,11)

(3,3)

(1,1)

same tree in edge label compression display
.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.43

Generalized Suffix Trees for Sets of Strings

Example 25 (suffix tree for S1 = bbxab and S2 = xbab)

1,1

1,2

1,3

2,2

2,5

(2,6)

(5,5)

(6,6)

(5,5)

(6,6)

(4,5)

(2,5)

(4,6)

(6,6)

(3,6)

(3,5)

1,6

(5,5)

(3,3)

(1,1)

2,1

1,5

1,4

2,3

2,4

generalized suffix tree after step 3; first number at leaf marks
whether suffix belongs to S1 or S2

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees
Introduction

Ukkonen’s Algorithm

Generalized Suffix Trees

1.43

Generalized Suffix Trees for Sets of Strings

Example 25 (suffix tree for S1 = bbxab and S2 = xbab)

1,1

1,2

1,3

2,2

2,5

1,6

2,1

1,5

1,4

2,3

2,4

b

b
 x

 a
 b

 $

x a b $

$

a b $

$

$

&

&

&

&
 b

 a
 b

x
b a

a b
 &

generalized suffix tree with uncompressed edge labels
.

	Suffix Trees
	Introduction
	Ukkonen's Algorithm
	Generalized Suffix Trees

