
Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.1

Datenstrukturen und Effiziente
Algorithmen
Vorlesung Datenstrukturen und Effiziente Algorithmen im WS
18/19

Marc Hellmuth
Institut für Mathematik und Informatik

Universität Greifswald

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.2

Exact String Matching

Exact String Matching Problem

Given pattern P of length n and text T of length m ≥ n find all
(k) occurences of P in T as substring.

Solutions

• build suffix tree T for T , search path labeled P in T , then
all leaves below end of path
preprocessing of T : O(m), searching O(n + k)

• Boyer-Moore preprocessing of P: O(n), searching O(m)

• will later see: suffix trees allow preprocessing of P, too,
then same time bounds as Boyer-Moore or the Z-Algorithm

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.3

Exact Set Matching Problem

Find all k occurrences of any pattern in a set P = {P1,P2, . . . ,Pz} of
patterns with total length n as substring in text T of length m.

Example 1

BLAST

• approximate similarity search program for protein sequences

• most highly cited paper published in the 1990s

• as a subtask and heuristik speedup BLAST needs to find exact
matches of a set of patterns in a very large text (database)

Solutions

• naive solution with repeated Z-Algorithm or Boyer-Moore takes
time O(n + zm)

• Aho-Corasick algorithm (1975) builds a keyword tree for P
preprocessing: O(n), search: O(m + k)

• sufix trees: build suffix tree for T then search each Pi individually
preprocessing: O(m), search: O(n + k)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.3

Exact Set Matching Problem

Find all k occurrences of any pattern in a set P = {P1,P2, . . . ,Pz} of
patterns with total length n as substring in text T of length m.

Example 1

BLAST

• approximate similarity search program for protein sequences

• most highly cited paper published in the 1990s

• as a subtask and heuristik speedup BLAST needs to find exact
matches of a set of patterns in a very large text (database)

Solutions

• naive solution with repeated Z-Algorithm or Boyer-Moore takes
time O(n + zm)

• Aho-Corasick algorithm (1975) builds a keyword tree for P
preprocessing: O(n), search: O(m + k)

• sufix trees: build suffix tree for T then search each Pi individually
preprocessing: O(m), search: O(n + k)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.3

Exact Set Matching Problem

Find all k occurrences of any pattern in a set P = {P1,P2, . . . ,Pz} of
patterns with total length n as substring in text T of length m.

Example 1

BLAST

• approximate similarity search program for protein sequences

• most highly cited paper published in the 1990s

• as a subtask and heuristik speedup BLAST needs to find exact
matches of a set of patterns in a very large text (database)

Solutions

• naive solution with repeated Z-Algorithm or Boyer-Moore takes
time

O(n + zm)

• Aho-Corasick algorithm (1975) builds a keyword tree for P
preprocessing: O(n), search: O(m + k)

• sufix trees: build suffix tree for T then search each Pi individually
preprocessing: O(m), search: O(n + k)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.3

Exact Set Matching Problem

Find all k occurrences of any pattern in a set P = {P1,P2, . . . ,Pz} of
patterns with total length n as substring in text T of length m.

Example 1

BLAST

• approximate similarity search program for protein sequences

• most highly cited paper published in the 1990s

• as a subtask and heuristik speedup BLAST needs to find exact
matches of a set of patterns in a very large text (database)

Solutions

• naive solution with repeated Z-Algorithm or Boyer-Moore takes
time

O(n + zm)

• Aho-Corasick algorithm (1975) builds a keyword tree for P
preprocessing: O(n), search: O(m + k)

• sufix trees: build suffix tree for T then search each Pi individually
preprocessing: O(m), search: O(n + k)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.3

Exact Set Matching Problem

Find all k occurrences of any pattern in a set P = {P1,P2, . . . ,Pz} of
patterns with total length n as substring in text T of length m.

Example 1

BLAST

• approximate similarity search program for protein sequences

• most highly cited paper published in the 1990s

• as a subtask and heuristik speedup BLAST needs to find exact
matches of a set of patterns in a very large text (database)

Solutions

• naive solution with repeated Z-Algorithm or Boyer-Moore takes
time O(n + zm)

• Aho-Corasick algorithm (1975) builds a keyword tree for P
preprocessing: O(n), search: O(m + k)

• sufix trees: build suffix tree for T then search each Pi individually
preprocessing: O(m), search: O(n + k)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.3

Exact Set Matching Problem

Find all k occurrences of any pattern in a set P = {P1,P2, . . . ,Pz} of
patterns with total length n as substring in text T of length m.

Example 1

BLAST

• approximate similarity search program for protein sequences

• most highly cited paper published in the 1990s

• as a subtask and heuristik speedup BLAST needs to find exact
matches of a set of patterns in a very large text (database)

Solutions

• naive solution with repeated Z-Algorithm or Boyer-Moore takes
time O(n + zm)

• Aho-Corasick algorithm (1975) builds a keyword tree for P
preprocessing: O(n), search: O(m + k)

• sufix trees: build suffix tree for T then search each Pi individually
preprocessing: O(m), search: O(n + k)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.4

Substring Problem for a Database of Strings

Substring Problem for a Database of Strings

One searches occurrences of a pattern P as substring in a set
S = {S1,S2, . . . ,Sz} of strings (database). This task repeatedly
occurs for the same database and different patterns P.

Example 2 (MIA: identifying dead soldiers)

• mitochondrial DNA of the remains of a dead soldier (P) is
searched against a database of mitochondrial DNA
regions S

• in constructing S a certain highly variable region is
chosen, so individuals can be distinguished

• P is allowed to be a substring (condition of DNA sample)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.4

Substring Problem for a Database of Strings

Substring Problem for a Database of Strings

One searches occurrences of a pattern P as substring in a set
S = {S1,S2, . . . ,Sz} of strings (database). This task repeatedly
occurs for the same database and different patterns P.

Example 2 (MIA: identifying dead soldiers)

• mitochondrial DNA of the remains of a dead soldier (P) is
searched against a database of mitochondrial DNA
regions S

• in constructing S a certain highly variable region is
chosen, so individuals can be distinguished

• P is allowed to be a substring (condition of DNA sample)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.5

Substring Problem for a Database of Strings

Solution

• with suffix trees
1 build generalized suffix tree T for S
2 starting from the root, search path labeled P in T
3 if no such path is found, then P does not occur in any string

in S
4 if such a path is found then, then visit all leaves below the

end of the path. For each leaf with label (i, j) report an
occurence of P in Si starting at position j

• preprocessing: O(m), search O(n + k), where k is the
number of occurrences

• cannot achieve the same efficiency with Z-Algorithm,
Boyer-Moore or Aho-Corasick

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.6

Longest Common Substring

Longest Common Substring Problem for Two Strings

Find a longest common substring of two given strings S1 and
S2.

Example 3

S1 = hopfenstange
S2 = kippfenster
P = pfenst is a longest common substring of S1 and S2.

Remark

Don Knuth conjectured 1970 that a linear-time algorithm for
this problem is impossible.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.6

Longest Common Substring

Longest Common Substring Problem for Two Strings

Find a longest common substring of two given strings S1 and
S2.

Example 3

S1 = hopfenstange
S2 = kippfenster
P = pfenst is a longest common substring of S1 and S2.

Remark

Don Knuth conjectured 1970 that a linear-time algorithm for
this problem is impossible.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.7

Longest Common Substring

Solution

1 build a generalized suffix tree for {S1,S2}
2 mark each internal node v with a 1 (2) if there is a leaf in

the subtree rooted at v that is representing a suffix of S1
(S2)

3 find a node v marked 1 and 2 with highest string-depth
4 the label of v is a longest substring of S1 and S2

Running time

• step 1 takes linear time as shown before
• steps 2 and 3 are easily done in linear time with standard

tree traversal methods
• overall running time O(|S1|+ |S2|)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.8

Longest Common Substring

Example 4 (S1= hopfenstange, S2 = kippfenster)

e r

pfenster

1,3

2,42,3

p f e n s t a n g e

Ziv-Lempel Data Compression

Ziv-Lempel

• family of algorithms for data compression (gzip, winzip, winrar) based
on an idea of Ziv and Lempel in 1977

• we here consider one of the variants on an abstract level
• idea: compress a string S (a file) by saving space by storing repeated

copies of substrings implicitly rather than explicitly

Definition 5

For any position i in a string S of length m, define the substring pi to be the
longest prefix of S[i ..m] that also occurs as a substring in S[1..i − 1].
Let `i := |pi | and, if `i > 0 define si to be the starting point of the left-most
copy of pi in S.

Example 6

S = “blaukraut bleibt blaukraut und brautkleid bleibt brautkleid”

p18 = “blaukraut ”, `18 = 10, si = 1

Ziv-Lempel Data Compression

Ziv-Lempel

• family of algorithms for data compression (gzip, winzip, winrar) based
on an idea of Ziv and Lempel in 1977

• we here consider one of the variants on an abstract level
• idea: compress a string S (a file) by saving space by storing repeated

copies of substrings implicitly rather than explicitly

Definition 5

For any position i in a string S of length m, define the substring pi to be the
longest prefix of S[i ..m] that also occurs as a substring in S[1..i − 1].
Let `i := |pi | and, if `i > 0 define si to be the starting point of the left-most
copy of pi in S.

Example 6

S = “blaukraut bleibt blaukraut und brautkleid bleibt brautkleid”

p18 = “blaukraut ”, `18 = 10, si = 1

Ziv-Lempel Data Compression

Ziv-Lempel

• family of algorithms for data compression (gzip, winzip, winrar) based
on an idea of Ziv and Lempel in 1977

• we here consider one of the variants on an abstract level
• idea: compress a string S (a file) by saving space by storing repeated

copies of substrings implicitly rather than explicitly

Definition 5

For any position i in a string S of length m, define the substring pi to be the
longest prefix of S[i ..m] that also occurs as a substring in S[1..i − 1].
Let `i := |pi | and, if `i > 0 define si to be the starting point of the left-most
copy of pi in S.

Example 6

S = “blaukraut bleibt blaukraut und brautkleid bleibt brautkleid”

p18 = “blaukraut ”, `18 = 10, si = 1

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.10

Ziv-Lempel Data Compression

Compression Algorithm

• when `i is large, then storing (si , `i) instead of
S[i ..i + `i − 1] takes less space

• when S[1..i − 1] is known then S[1..i + `i − 1] can be
reconstructed with (si , `i) (’decompressed’)

• compression and decompression goes left-to-right

1: i ← 1
2: repeat
3: compute `i and si
4: if `i > 0 then
5: output (si , `i)
6: i ← i + `i
7: else
8: output S[i]
9: i ← i + 1

10: until i > n

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.10

Ziv-Lempel Data Compression

Compression Algorithm

• when `i is large, then storing (si , `i) instead of
S[i ..i + `i − 1] takes less space

• when S[1..i − 1] is known then S[1..i + `i − 1] can be
reconstructed with (si , `i) (’decompressed’)

• compression and decompression goes left-to-right

1: i ← 1
2: repeat
3: compute `i and si
4: if `i > 0 then
5: output (si , `i)
6: i ← i + `i
7: else
8: output S[i]
9: i ← i + 1

10: until i > n

Ziv-Lempel Data Compression

Example 7
S = “blaukraut bleibt blaukraut und brautkleid bleibt brautkleid”

| | | | |

becomes
blaukr(3,2)t (1,2)ei(1,1)(8,4)(3,8)(4,1)nd

(10,2)(6,4)(5,1)(12,3)(30,3)(12,7)(33,9)

Remark

For real compression algorithms there should be a threshold for `i and
implicit storage should only be chosen when it uses less space. This
depends on the actual encoding to bits and bytes.

Ziv-Lempel Data Compression

Example 7
S = “blaukraut bleibt blaukraut und brautkleid bleibt brautkleid”

| | | | |

becomes
blaukr(3,2)t (1,2)ei(1,1)(8,4)(3,8)(4,1)nd

(10,2)(6,4)(5,1)(12,3)(30,3)(12,7)(33,9)

Remark

For real compression algorithms there should be a threshold for `i and
implicit storage should only be chosen when it uses less space. This
depends on the actual encoding to bits and bytes.

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel

1.12

Ziv-Lempel Data Compression

Implementation of compression with suffix trees

1 compute a suffix tree T for S
2 mark each node v with the smallest suffix number of a leaf

at or below v : cv
cv is the position of the first occurence of the path label of
v in S

3 to compute si and `i start matching S[i ..m] from the root of
T . Let p be a traversed point in T . If p is not itself a node,
then let cp be cv where v is the nearest node below p. The
traversal ends at the deepest point p, such that

• the path label of p is a prefix of S[i..m] and
• |path-label of p|+ cp ≤ i

(the first occurence is contained in S[1..i − 1])

4 `i ← |path-label of p|, si ← cp

The running time to compress S with above algorithm is O(m).

	Suffix Trees - Some Applications
	Exact String Matching
	Exact Set Matching
	Substring Problem for a Database of Strings
	Longest Common Substring
	Ziv-Lempel

