Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching
Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring
Ziv-Lempel

Datenstrukturen und Effiziente
Algorithmen

Vorlesung Datenstrukturen und Effiziente Algorithmen im WS
18/19

Marc Hellmuth
Institut fir Mathematik und Informatik
Universitat Greifswald

Datenstrukturen und

efiiziente Algorithimen EXACY String Matching

Marc Hellmuth

Exact String Matching Problem
Suffix Trees - Some
Applications

Given pattern P of length n and text T of length m > nfind all
Sz L (k) occurences of Pin T as substring.

Substring Problem for a
Database of Strings

Longest Common Substring
Ziv-Lempel

Solutions

* build suffix tree T for T, search path labeled P in T, then
all leaves below end of path
preprocessing of T: O(m), searching O(n + k)

+ Boyer-Moore preprocessing of P: O(n), searching O(m)

- will later see: suffix trees allow preprocessing of P, too,
then same time bounds as Boyer-Moore or the Z-Algorithm

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications

Exact String Matching

Substring Problem for a
Database of Strings

Longest Common Substring
Ziv-Lempel

Exact Set Matching Problem

Find all k occurrences of any pattern in a set P = {P, P, ..
patterns with total length n as substring in text T of length m.

., P} of

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Substring Problem for a
Database of Strings

Longest Common Substring
Ziv-Lempel

Exact Set Matching Problem

Find all k occurrences of any patternin a set P = {Py, P>, ..., P,} of
patterns with total length n as substring in text T of length m.

Example 1

BLAST
 approximate similarity search program for protein sequences
* most highly cited paper published in the 1990s

* as a subtask and heuristik speedup BLAST needs to find exact
matches of a set of patterns in a very large text (database)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Substring Problem for a
Database of Strings

Longest Common Substring
Ziv-Lempel

Exact Set Matching Problem

Find all k occurrences of any patternin a set P = {Py, P>, ..., P,} of
patterns with total length n as substring in text T of length m.

Example 1

BLAST
* approximate similarity search program for protein sequences
* most highly cited paper published in the 1990s

* as a subtask and heuristik speedup BLAST needs to find exact
matches of a set of patterns in a very large text (database)

Solutions

* naive solution with repeated Z-Algorithm or Boyer-Moore takes
time

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Substring Problem for a
Database of Strings

Longest Common Substring
Ziv-Lempel

Exact Set Matching Problem

Find all k occurrences of any patternin a set P = {Py, P>, ..., P,} of
patterns with total length n as substring in text T of length m.

Example 1

BLAST
* approximate similarity search program for protein sequences
* most highly cited paper published in the 1990s

* as a subtask and heuristik speedup BLAST needs to find exact
matches of a set of patterns in a very large text (database)

Solutions

* naive solution with repeated Z-Algorithm or Boyer-Moore takes
time

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Substring Problem for a
Database of Strings

Longest Common Substring
Ziv-Lempel

Exact Set Matching Problem

Find all k occurrences of any patternin a set P = {Py, P>, ..., P,} of
patterns with total length n as substring in text T of length m.

Example 1

BLAST
* approximate similarity search program for protein sequences
* most highly cited paper published in the 1990s

* as a subtask and heuristik speedup BLAST needs to find exact
matches of a set of patterns in a very large text (database)

Solutions
* naive solution with repeated Z-Algorithm or Boyer-Moore takes
time O(n + zm)

* Aho-Corasick algorithm (1975) builds a keyword tree for P
preprocessing: O(n), search: O(m + k)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching

Substring Problem for a
Database of Strings

Longest Common Substring
Ziv-Lempel

Exact Set Matching Problem

Find all k occurrences of any patternin a set P = {Py, P>, ..., P,} of
patterns with total length n as substring in text T of length m.

Example 1

BLAST
* approximate similarity search program for protein sequences
* most highly cited paper published in the 1990s

* as a subtask and heuristik speedup BLAST needs to find exact
matches of a set of patterns in a very large text (database)

Solutions
* naive solution with repeated Z-Algorithm or Boyer-Moore takes
time O(n + zm)

* Aho-Corasick algorithm (1975) builds a keyword tree for P
preprocessing: O(n), search: O(m + k)

* sufix trees: build suffix tree for T then search each P; individually
preprocessing: O(m), search: O(n + k)

et SUbstring Problem for a Database of Strings

Marc Hellmuth

Substring Problem for a Database of Strings
Suffix Trees - Some

Applcations One searches occurrences of a pattern P as substring in a set

Exact String Matching

O S§={S51,5,...,S,} of strings (database). This task repeatedly
occurs for the same database and different patterns P.

Longest Common Substring
Ziv-Lempel

Datenstrukturen und

eiziente Algorithmen OUDString Problem for a Database of Strings

Marc Hellmuth

Substring Problem for a Database of Strings

Suffix Trees - Some

Applcations One searches occurrences of a pattern P as substring in a set
S S={S51,S,,...,S;} of strings (database). This task repeatedly
occurs for the same database and different patterns P.

Longest Common Substring
Ziv-Lempel

Example 2 (MIA: identifying dead soldiers)

+ mitochondrial DNA of the remains of a dead soldier (P) is
searched against a database of mitochondrial DNA
regions S

* in constructing S a certain highly variable region is
chosen, so individuals can be distinguished

+ Pis allowed to be a substring (condition of DNA sample)

Datenstrukturen und

eiziente Algorithmen OUDString Problem for a Database of Strings

Marc Hellmuth

Solution
Suffig Trges - Some . .
Ao + with suffix trees
Exact String Matching) . .
Evact Se Mcting @ build generalized suffix tree T for S
@® starting from the root, search path labeled P in 7
e S @ if no such path is found, then P does not occur in any string
inS

@ if such a path is found then, then visit all leaves below the
end of the path. For each leaf with label (/, j) report an
occurence of P in S; starting at position j

« preprocessing: O(m), search O(n+ k), where k is the
number of occurrences

+ cannot achieve the same efficiency with Z-Algorithm,
Boyer-Moore or Aho-Corasick

Datenstrukturen und

Etiziente Algorithimen LONGESt Common Substring

Marc Hellmuth

Longest Common Substring Problem for Two Strings

Suffix Trees - Some

Applicati i i [i
e gnd a longest common substring of two given strings S; and
Exact Set Matching 2.

Substring Problem for a
Database of Strings

Ziv-Lempel Example 3
Si = hopfenstange
S; = kippfenster
P = pfenst is a longest common substring of S; and So.

Datenstrukturen und

Etiziente Algorithimen LONGESt Common Substring

Marc Hellmuth

Longest Common Substring Problem for Two Strings

Suffix Trees - Some

Applicati H i i i

D cing Find a longest common substring of two given strings Sy and
Exact Set Matching 82 .

Substring Problem for a

Database of Strings

Ziv-Lempel Example 3

Si = hopfenstange
S; = kippfenster
P = pfenst is a longest common substring of S; and So.

Remark

Don Knuth conjectured 1970 that a linear-time algorithm for
this problem is impossible.

Datenstrukturen und
Effiziente Algorithmen

Longest Common Substring

Marc Hellmuth

Solution
S Troes - Some © build a generalized suffix tree for {Sy, So}
o cing ® mark each internal node v with a 1 (2) if there is a leaf in
e e the subtree rooted at v that is representing a suffix of S;
Database of Strings S)
oo s (S2

Ziv-Lempel

® find a node v marked 1 and 2 with highest string-depth
@ the label of v is a longest substring of S; and S

Running time

« step 1 takes linear time as shown before

+ steps 2 and 3 are easily done in linear time with standard
tree traversal methods

« overall running time O(|S;| + |Sz|)

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications

Exact String Matching
Exact Set Matching

Substring Problem for a
Database of Strings

Ziv-Lempel

Longest Common Substring

Example 4 (Si= hopfenstange, S; = kippfenster)

Ziv-Lempel Data Compression

Ziv-Lempel

« family of algorithms for data compression (gzip, winzip, winrar) based
on an idea of Ziv and Lempel in 1977

* we here consider one of the variants on an abstract level

+ idea: compress a string S (a file) by saving space by storing repeated
copies of substrings implicitly rather than explicitly

Ziv-Lempel Data Compression

Ziv-Lempel

« family of algorithms for data compression (gzip, winzip, winrar) based
on an idea of Ziv and Lempel in 1977

* we here consider one of the variants on an abstract level

+ idea: compress a string S (a file) by saving space by storing repeated
copies of substrings implicitly rather than explicitly

Definition 5

For any position / in a string S of length m, define the substring p; to be the
longest prefix of S[i..m] that also occurs as a substring in S[1..i — 1].

Let ¢; := |p;| and, if £; > 0 define s; to be the starting point of the left-most
copy of p;in S.

Ziv-Lempel Data Compression

Ziv-Lempel

« family of algorithms for data compression (gzip, winzip, winrar) based
on an idea of Ziv and Lempel in 1977

* we here consider one of the variants on an abstract level

+ idea: compress a string S (a file) by saving space by storing repeated
copies of substrings implicitly rather than explicitly

Definition 5

For any position / in a string S of length m, define the substring p; to be the
longest prefix of S[i..m] that also occurs as a substring in S[1..i — 1].

Let ¢; := |p;| and, if £; > 0 define s; to be the starting point of the left-most
copy of p;in S.

Example 6

= ‘blaukraut bleibt blaukraut und brautkleid bleibt brautkleid”
p1s = “blaukraut ”, l1g =10, =1

Datenstrukturen und
Effiziente Algorithmen

Marc Hellmuth

Suffix Trees - Some
Applications
Exact String Matching
Exact Set Matching

Substring Problem for a
Database of Strings

Longest Common Substring

Ziv-Lempel Data Compression

Compression Algorithm

» when /; is large, then storing (s;, ¢;) instead of
Sli..i + ¢; — 1] takes less space

* when S[1..i — 1] is known then S[1..i + ¢; — 1] can be
reconstructed with (s;, ¢;) (decompressed’)

+ compression and decompression goes left-to-right

Datenstrukturen und

eiiziente Algorithmen Z1IV-Lempel Data Compression

Marc Hellmuth

Compression Algorithm

_ » when /; is large, then storing (s;, ¢;) instead of
Aoplicaions Sli..i + ¢; — 1] takes less space

Exact String Matching

Exact S Mateing * when S[1..i — 1] is known then S[1..i + ¢; — 1] can be

Substring Problem for a

e reconstructed with (s;, ¢;) (decompressed’)
. ; + compression and decompression goes left-to-right
i+ 1
repeat
compute ¢; and s;
if /; > 0 then
output (s;, ¢;)
i< i+Y
else
output S[i]
[i+1
until / > n

OIFPP RPN =

—_

Ziv-Lempel Data Compression

Example 7

S = “plaukraut bleibt blaukraut und brautkleid bleibt brautkleid”
| | I | |

becomes

blaukr(3,2)t (1,2)ei(1,1) (8,4) (3,8) (4,1)nd

(10,2) (6,4) (5,1) (12,3) (30,3) (12,7) (33,9)

Ziv-Lempel Data Compression

Example 7

S = “plaukraut bleibt blaukraut und brautkleid bleibt brautkleid”
| | I | |

becomes

blaukr(3,2)t (1,2)ei(1,1) (8,4) (3,8) (4,1)nd

(10,2) (6,4) (5,1) (12,3) (30,3) (12,7) (33,9)

Remark
For real compression algorithms there should be a threshold for ¢; and

implicit storage should only be chosen when it uses less space. This
depends on the actual encoding to bits and bytes.

Datenstrukturen und
Effiziente Algorithmen

Ziv-Lempel Data Compression

Marc Hellmuth

Implementation of compression with suffix trees

Suffix Trees - Some @ compute a suffix tree T for S

Applications) .

Exact Sting Matching ® mark each node v with the smallest suffix number of a leaf
Exact Set Matching

TS . at or below v: ¢,

Database of Strings

Longest Common Substring

¢y is the position of the first occurence of the path label of
vin S

© to compute s; and ¢; start matching SJi..m] from the root of
T. Let p be a traversed point in 7. If p is not itself a node,

then let ¢, be ¢, where v is the nearest node below p. The
traversal ends at the deepest point p, such that

+ the path label of p is a prefix of S[i..m] and
+ |path-label of p| + ¢, < i

(the first occurence is contained in S[1..i — 1])
O (; « |path-label of p|, s; « ¢,

The running time to compress S with above algorithm is O(m).

	Suffix Trees - Some Applications
	Exact String Matching
	Exact Set Matching
	Substring Problem for a Database of Strings
	Longest Common Substring
	Ziv-Lempel

