Universität Greifswald
Institute für Mathematik and Informatik
Marc Hellmuth

## 2. Übung "Bioinformatik", SS 16

Aufgabe 1: (10 Credits)
Prove Lemma 2 stated in the lecture:
Given a set of strings $P=\left\{S_{1}, \ldots, S_{r}\right\}$ that is substring-free and a permutation $\Pi=$ $\sigma_{1} \ldots \sigma_{r}$ of the integers $1, \ldots, r$ that implies the ordered set $\left\{S_{\sigma_{1}}, \ldots S_{\sigma_{r}}\right\}$. Let

$$
S(\Pi)=\operatorname{pref}\left(S_{\sigma_{1}}, S_{\sigma_{2}}\right) \operatorname{pref}\left(S_{\sigma_{2}}, S_{\sigma_{3}}\right) \ldots \operatorname{pref}\left(S_{\sigma_{r-1}}, S_{\sigma_{r}}\right) S_{\sigma_{r}}
$$

Show that $S(\Pi)$ is a superstring $S(P)$.

Aufgabe 2: (20 Credits)
Implement an algorithm in C++ that determines the shortest common supersequence (SCS) of $n$ user-defined strings.
Give the computed results and the intermediate steps of your algorithm on the strings $S_{1}=\mathrm{CCTT}, S_{2}=\mathrm{ACCCT}, S_{3}=\mathrm{TTC}$.
Determine the runtime of your algorithm depending on the number of the strings and their length.
Send the source-code via email to the tutor Stefanie König.

Aufgabe 3: (10 Credits)
Let $X, Y, Z$ and $Z^{\prime}$ be distinct strings s.t. the set $\left\{X, Y, Z, Z^{\prime}\right\}$ is substring-free.
Prove the following statement:
If $\operatorname{ov}(X, Y) \geq \max \left\{\operatorname{ov}(X, Z), \operatorname{ov}\left(Z^{\prime}, Y\right)\right\}$, then $\operatorname{ov}(X, Y)+\mathrm{ov}\left(Z, Z^{\prime}\right) \geq \operatorname{ov}(X, Z)+\mathrm{ov}\left(Z^{\prime}, Y\right)$.

