Universität Greifswald Institute für Mathematik and Informatik Marc Hellmuth

2. ÜBUNG "BIOINFORMATIK", SS 16

Aufgabe 1: (10 Credits)

Prove Lemma 2 stated in the lecture:

Given a set of strings $P = \{S_1, \ldots, S_r\}$ that is substring-free and a permutation $\Pi = \sigma_1 \ldots \sigma_r$ of the integers $1, \ldots, r$ that implies the ordered set $\{S_{\sigma_1}, \ldots S_{\sigma_r}\}$. Let

$$S(\Pi) = \operatorname{pref}(S_{\sigma_1}, S_{\sigma_2}) \operatorname{pref}(S_{\sigma_2}, S_{\sigma_3}) \dots \operatorname{pref}(S_{\sigma_{r-1}}, S_{\sigma_r}) S_{\sigma_r}$$

Show that $S(\Pi)$ is a superstring S(P).

Aufgabe 2: (20 Credits)

Implement an algorithm in C++ that determines the shortest common supersequence (SCS) of n user-defined strings.

Give the computed results and the intermediate steps of your algorithm on the strings $S_1 = \text{CCTT}$, $S_2 = \text{ACCCT}$, $S_3 = \text{TTC}$.

Determine the runtime of your algorithm depending on the number of the strings and their length.

Send the source-code via email to the tutor Stefanie König.

Aufgabe 3: (10 Credits)

Let X, Y, Z and Z' be distinct strings s.t. the set $\{X, Y, Z, Z'\}$ is substring-free. Prove the following statement:

If $\operatorname{ov}(X,Y) \ge \max\{\operatorname{ov}(X,Z),\operatorname{ov}(Z',Y)\}$, then $\operatorname{ov}(X,Y) + \operatorname{ov}(Z,Z') \ge \operatorname{ov}(X,Z) + \operatorname{ov}(Z',Y)$.

Deadline: Monday - April 18, 2016 - 2pm