Universität Greifswald
Institute für Mathematik and Informatik
Marc Hellmuth

6. Übung "Bioinformatik", SS 16

Aufgabe 1: $\quad(5+1+2+2(+10)=10(+10)$ Credits $)$
Given the strings $u=$ GTTTAAG $v=$ GAAGA and the scoring matrix S with entries

$$
S[i, j]=\max \begin{cases}S[i-1, j] & +\delta\left(u_{i},-\right) \\ S[i-1, j-1] & +\delta\left(u_{i}, v_{j}\right) \\ S[i, j-1] & +\delta\left(-, v_{j}\right)\end{cases}
$$

where

$$
\delta(a, b)=\left\{\begin{aligned}
1 & \text { if } a=b \\
-1 & \text { if } a \neq b \text { and } a, b \neq- \\
-3 & \text { else }
\end{aligned}\right.
$$

(a) Compute S for the strings u and v.
(b) What is the optimal alignment score?
(c) Give one possible optimal alignment for u and v.
(d) How many optimal alignments are there for u and v - Explain shortly your results.
(e) Optional Exercise: Implement the Alignment Algorithm with Trace Back in C++ based on the given scoring matrix S and δ. Sent the source files via email to Nikolai Nøjgaard (nnoej10[at]student.sdu.dk).

Aufgabe 2: $\quad(5+5=10$ Credits)
Get familiar with BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi), see e.g. http://digitalworldbiology.com/dwb/BLAST for a short tutorial.

Assume you have sequenced the string " $>$ Sequence_Xy" in the file seq.txt (see extra material on teaching homepage) where $\mathrm{Xy}=$ the first two letters of your first name. Use the first best hit of BLAST program nucleotide blast with database option Others / nucleotide collection and optimization option discontiguous megablast to determine the organism the sequence is taken from.
(a) Which organism was your sequence from?
(b) Prepare a short presentation ($\leq 5 \mathrm{~min}$) about the organism you have sequenced - to be held next tutorial.

Aufgabe 3: $\quad(2+2+2+2+2=10$ Credits)
Let $G=(V, E)$ be an undirected graph.
(a) Show that G has an even number of vertices with odd degree.
(b) Let $|V| \geq 2$. Show that G has two vertices of the same degree.
(c) Two edges $e=(a, b) \in E$ and $f=(x, y) \in E$ are in Relation Θ, in symbols $e \Theta f$, if and only if

$$
d(a, x)+d(b, y) \neq d(a, y)+d(b, x) .
$$

Show that no two distinct edges on a shortest path in G are in relation Θ.
(d) Show that if G is a forest, then G has $|V|-|E|$ connected components.
(e) Assume now that $V=\{0,1,2,3\}$ and $E=\{(0,1),(1,2),(1,3)\}$. Show that $H \simeq G$ for $H=(\{a, b, c, d\},\{(d, b),(a, d),(c, d)\})$. How many isomorphism are there?

Aufgabe 4: $\quad(2+2+2+2+2=10$ Credits)
Let χ denote the chromatic number and Δ the maximum degree. The complement of a graph $G=(V, E)$ is the graph $\bar{G}=(V, \bar{E})$ with $\bar{E}=\{(u, v) \mid(u, v) \notin E, u, v \in V, u \neq v\}$. Prove or disprove
(a) If G is bipartite then \bar{G} is bipartite.
(b) There are graphs with $\chi(G)=\chi(\bar{G})$.
(c) If $\chi(G)=|V|$ then $\chi(G)=\Delta(G)+1$.
(d) If $\chi(G)=\Delta(G)+1$ then $\chi(G)=|V|$.

