
Bioinformatics
(Matching and Alignment)

Marc Hellmuth

Aim:

Compare strings to score/evaluate the (dis)similarity between

them.

Sequence alignment arises in many fields:

• Molecular biology

• Inexact text matching (e.g. spell checkers; web page search)

• Speech recognition

Biology:

In biomolecular sequences (DNA,RNA,Proteins) high sequence

similarity implies significant functional or structural similarity.

Important:

similar function 6⇒ similar structure 6⇒ similar sequences

Sketch: Pattern Matching

Problem: Given text T and pattern P

Aim: Find all occurrences of P in T .

Brute-Force:

For i = 1 to |T |− |P|+1

/*cmp Ti . . .Ti+|P|−1 with P1 . . .P|P| */

For j=1 to |P|

If Pj 6= Ti+j−1 then GoTo mismatch

EndFor

write i

mismatch

EndFor

Sketch: Improved Pattern Matching

Idea: For string S generate Datastructure Zi(S)

Zi(S) for i = 2, . . . , |S| is length of longest substring of S, that starts

on position i and is a prefix of S.

If Zi(S)> 0 the interval [i, i +Zi(S)−1] is called Z-box

Assume we could efficiently compute the Zi(S) - Does this help

us?

Sketch: Improved Pattern Matching

Given text T and pattern P.

Let $ be a character neither included in T nor in P.

Let S = P$T

Compute Zi = Zi(S) for i = 2, . . . , |S|.
(This can be done in O(|S|) time→ "Datenstrukturen und

effiziente Algorithmen")

For i = 1 to |T |− |P|+1

If Zi+|P|−1 = |P| then write i

EndFor

(This can be done in O(|T |) time.

⇒ "approximate" pattern matching⇒ alignment

Edit Distance

Edit Operations:

• Insertion of character

• Deletion of character

• Replacement of one character by some other one

Edit Distance = Min. Nr. of Edit Operations to transform string u to

string v (equivalent transform string v to string u)

D M M R M M I

w r i t e r -

- r i d e r s

(M = Match)

Edit Script = string over alphabet {I,D,R,M} that describes

transformation from u to v .

Edit Distance Problem: For two strings compute edit distance and

optimal edit script.

Example

u =TGCATAT v =ATCCGAT

u = TGCATAT
del. last T
−−−−−→ TGCATA

del. last A
−−−−−→ TGCAT

add A 1.pos
−−−−−−→

ATGCAT
repl. G by C 3.pos
−−−−−−−−−−→ ATCCAT

insert G 5.pos
−−−−−−−→ ATCCGAT= v

Edit Distance ≤ 5

u = TGCATAT
ins. A 1.pos
−−−−−−→ ATGCATAT

del. T 6.pos
−−−−−−→

ATGCATAT
repl. A by G 5.pos
−−−−−−−−−−→ ATGCGTAT

repl. G by C 3.pos
−−−−−−−−−−→ ATCCGAT= v

Edit Distance ≤ 4 (OPTIMAL?)

(global pairwise) Alignment

Alternative way to edit script: Alignment

For two strings u = u1 . . .um and v = v1 . . .vn an alignment A is a

matrix with two rows and entries A [i, j] that are characters from

Alphabet Σ (e.g.Σ= {A,C,G,T}) or a gap “-” s.t.

• 1st row = u after deleting all gaps

• 2st row = v after deleting all gaps

• in no column are two gaps

w r i t e r -

- r i d e r s

- T G C A T A T

A T C C G - A T

Cost-Function δ : Σ∪{−}×Σ∪{−}→ R≥0

Unit-Cost-Function δ (a,b) = 1 if a 6= b

δ (a,b) = 0 if a = b

Alignment Costs w(A) = ∑i=1 δ (ai ,bi)

(global pairwise) Alignment

Alternative way to edit script: Alignment

For two strings u = u1 . . .um and v = v1 . . .vn an alignment A is a

matrix with two rows and entries A [i, j] that are characters from

Alphabet Σ (e.g.Σ= {A,C,G,T}) or a gap “-” s.t.

• 1st row = u after deleting all gaps

• 2st row = v after deleting all gaps

• in no column are two gaps

w r i t e r -

- r i d e r s

- T G C A T A T

A T C C G - A T

Cost-Function δ : Σ∪{−}×Σ∪{−}→ R≥0

Unit-Cost-Function δ (a,b) = 1 if a 6= b

δ (a,b) = 0 if a = b

Alignment Costs w(A) = ∑i=1 δ (ai ,bi)

Lemma
Edit Distance of two strings u,v equals the min. alignments costs

w(A) between u and v with unit-cost function.

How to compute Edit Distance? Dynamic Programming!

Recurrence Function D (Needleman-Wunsch Algorithm)

Given the strings u = u1 . . .um and v = v1 . . .vn

Assume D[i, j] are the costs for an optimal alignment of substrings

u1 . . .ui and v1 . . .vj , 1≤ i ≤m, 1≤ j ≤ n

i = 0: alignment empty string ε and v1 . . .vj

j = 0: alignment u1 . . .ui and empty string ε

Init: D[i,0] = i ; D[0, j] = j , i, j ≥ 0;

Compute

D[i, j] = min







D[i−1, j] + δ (ui ,−)
D[i−1, j−1] + δ (ui ,vj)
D[i, j−1] + δ (−,vj)

(δ = unit-cost-function)

Lemma
D[m,n]=cost of optimal alignment between u and v.

Backtracing

Given the strings u = u1 . . .um and v = v1 . . .vn

Tracematrix is an m×n matrix with T [i, j]⊆ {←,տ,↑}.

Init: T [0,0] = /0, T [i,0] =↑, T [0, j] =← for 1≤ i ≤m, 1≤ j ≤ n

Set:

↑ ∈ T [i, j] if D[i−1, j]+δ (ui ,−)
տ∈ T [i, j] if D[i−1, j−1]+δ (ui ,vj)
←∈ T [i, j] if D[i, j−1]+δ (−,vj)

Runtime: O(mn)

Alignment with variable Gap-Costs

ACCGTCTGCT ACCGTCTGCT w(A) = 5

A-C--C-G-T ACCGT-----

This contradicts “biological intuition”:

Insertion of gap of length k is “evolutionary simpler to realize” then

insertion of k gaps of length 1.

gap penalty function g : N→ R

g(k) is penalty for inserting a gap of length k .

we need:

g(k + l)≤ g(k)+g(l),

as otherwise it might be better to insert 2 gaps of length k and l

then one gap of length k + l .

Alignment with variable Gap-Costs

(Smith-Waterman-Alg.)

Init: D[0,0] = 0; D[0,k] = D[k ,0] = g(k), k ≥ 1;

D[i, j] = min







D[i−1, j−1] + δ (ui ,vj)
min1≤k≤i D[i−k , j] + g(k)
min1≤k≤j D[i, j−k] + g(k)

Tracematrix is an m×n matrix with T [i, j]⊆ {←k ,տ,↑k ,k ∈ N}

Example Multiple Alignment

First 90 positions of a protein multiple sequence alignment of

instances of the acidic ribosomal protein P0 (L10E) from several

organisms. (wikipedia)

Distance VS Scoring Function

Note: Instead of using a distance matrix D we can use a

Similarity/Scoring Matrix S and maximize.

Init: S[i,0] =−i ∗gap−cost ; S[0, j] =−j ∗gap−cost ; for i, j ≥ 0;

Compute

S[i, j] = max







S[i−1, j] + δ (ui ,−)
S[i−1, j−1] + δ (ui ,vj)
S[i, j−1] + δ (−,vj)

with e.g.

δ (a,b) =







1 if a = b

−1 if a 6= b and a,b 6=−
−3 else (gap-costs)

Local vs Global Alignment

Needleman-Wunsch computes a global optimal Alignment

NW reasonable if sequences have almost same length

If sequences have quite different length, then the sequences are

“shredded”:

R--------LCPMNLCGCSQ-----------------------KY

RCGEQGSNMECPNNLC-CSQYGYCGMGGDYCGKGCQNGACWTSKR

Reason: gaps are penalized equally on each position

Reasonable: less penalization of gaps at end and beginning

Local Alignment: find best alignment of two substrings of two

sequences (Smith-Waterman-Algorithm)

Smith-Waterman-Algorithm

Need scoring function that penalizes insertion/deletions with a

negative value

Compute

S[i, j] = max















0

S[i−1, j] + δ (ui ,−)
S[i−1, j−1] + δ (ui ,vj)
S[i, j−1] + δ (−,vj)

with init: S[i,0] = S[0, j] = 0; for i, j ≥ 0;

First row states: we can start on each point a new alignment, if the

score of the alignment computed so-far has a negative weight.

here maximize score. either minimize distance or maximize score

Standart Tool BLAST

BLAST = Basic Local Alignment Search Tool

• quick heuristic alignment algorithm

• divides query sequences into short strings and initially only

looks for (exact) matches of those strings in database strings.

This is afterwards extended to get the entire alignment.

• much faster, but no optimality guarantee

Databases e.g. for nucleotide sequences (Genbank of NCBI,

EMBL, . . .) or protein databases (SwissProt, RefSeq, Pfam, . . .).

BLAST homepage: blast.ncbi.nlm.nih.gov/

Tutorial: digitalworldbiology.com/BLAST

BLAST“Types”

type query target

blastn nucleotide nucleotide

blastp protein protein

blastx nucleotide (transl) protein

tblastn protein nucleotide (transl)

tblastx nucleotide (transl) nucleotide (transl)

