Bioinformatics (Matching and Alignment)

Marc Hellmuth

Aim:

Compare strings to score/evaluate the (dis)similarity between them.

Sequence alignment arises in many fields:

- Molecular biology
- · Inexact text matching (e.g. spell checkers; web page search)
- Speech recognition

Biology:

In biomolecular sequences (DNA,RNA,Proteins) high sequence similarity implies significant functional or structural similarity.

Important:

similar function eq similar structure eq similar sequences

Sketch: Pattern Matching

Problem: Given text *T* and pattern *P* **Aim:** Find all occurrences of *P* in *T*.

```
Brute-Force:

For i = 1 to |T| - |P| + 1

/*cmp T_i \dots T_{i+|P|-1} with P_1 \dots P_{|P|} */

For j=1 to |P|

If P_j \neq T_{i+j-1} then GoTo mismatch

EndFor

write i

mismatch

EndFor
```

Sketch: Improved Pattern Matching

Idea: For string *S* generate Datastructure $Z_i(S)$

 $Z_i(S)$ for i = 2, ..., |S| is length of longest substring of *S*, that starts on position *i* and is a prefix of *S*.

If $Z_i(S) > 0$ the interval $[i, i + Z_i(S) - 1]$ is called *Z*-box

Assume we could efficiently compute the $Z_i(S)$ - Does this help us?

Sketch: Improved Pattern Matching

Given text *T* and pattern *P*.

Let \$ be a character neither included in T nor in P.

Let S = P T Compute $Z_i = Z_i(S)$ for i = 2, ..., |S|. (This can be done in O(|S|) time \rightarrow "Datenstrukturen und effiziente Algorithmen")

For
$$i = 1$$
 to $|T| - |P| + 1$
If $Z_{i+|P|-1} = |P|$ then write i
EndFor
(This can be done in $O(|T|)$ time

(This can be done in O(|T|) time.

 \Rightarrow "approximate" pattern matching \Rightarrow alignment

Edit Distance

Edit Operations:

- Insertion of character
- Deletion of character
- · Replacement of one character by some other one

Edit Distance = Min. Nr. of Edit Operations to transform string u to string v (equivalent transform string v to string u)

	I	М	М	R	М	М	D
(M = Match)	-	r	е	t	i	r	W
	S	r	е	d	i	r	_

Edit Script = string over alphabet $\{I, D, R, M\}$ that describes transformation from *u* to *v*.

Edit Distance Problem: For two strings compute edit distance and optimal edit script.

Example

$\begin{array}{l} u = \texttt{TGCATAT} \ v = \texttt{ATCCGAT} \\ u = \texttt{TGCATAT} & \xrightarrow{\texttt{del. last T}} \texttt{TGCATA} \xrightarrow{\texttt{del. last A}} \texttt{TGCAT} \xrightarrow{\texttt{add A 1.pos}} \\ \texttt{ATGCAT} \xrightarrow{\texttt{repl. G by C 3.pos}} \texttt{ATCCAT} \xrightarrow{\texttt{insert G 5.pos}} \texttt{ATCCGAT} = v \end{array}$

Edit Distance \leq 5

 $\begin{array}{l} u = \texttt{TGCATAT} \xrightarrow{\mathsf{ins. A 1.pos}} \texttt{ATGCATAT} \xrightarrow{\mathsf{del. T 6.pos}} \\ \texttt{ATGCATAT} \xrightarrow{\mathsf{repl. A by G 5.pos}} \texttt{ATGCGTAT} \xrightarrow{\mathsf{repl. G by C 3.pos}} \texttt{ATCCGAT} = v \\ \texttt{Edit Distance} \leq 4 \; (\mathsf{OPTIMAL?}) \end{array}$

(global pairwise) Alignment

Alternative way to edit script: Alignment

For two strings $u = u_1 \dots u_m$ and $v = v_1 \dots v_n$ an *alignment* \mathscr{A} is a matrix with two rows and entries $\mathscr{A}[i,j]$ that are characters from Alphabet Σ (e.g. $\Sigma = \{A, C, G, T\}$) or a *gap* "-" s.t.

- 1st row = u after deleting all gaps
- 2st row = v after deleting all gaps
- in no column are two gaps

W	r	i	t	е	r	-	-	Т	G	С	А	Т	А	Т
_	r	i	d	е	r	S	А	Т	С	С	G	_	А	Т

Cost-Function Unit-Cost-Function

Alignment Costs

 $\delta: \Sigma \cup \{-\} \times \Sigma \cup \{-\} \to \mathbb{R}_{\geq 0}$ $\delta(a, b) = 1 \text{ if } a \neq b$ $\delta(a, b) = 0 \text{ if } a = b$ $w(\mathscr{A}) = \sum_{i=1} \delta(a_i, b_i)$

(global pairwise) Alignment

Alternative way to edit script: Alignment

For two strings $u = u_1 \dots u_m$ and $v = v_1 \dots v_n$ an *alignment* \mathscr{A} is a matrix with two rows and entries $\mathscr{A}[i,j]$ that are characters from Alphabet Σ (e.g. $\Sigma = \{A, C, G, T\}$) or a *gap* "-" s.t.

- 1st row = u after deleting all gaps
- 2st row = v after deleting all gaps
- in no column are two gaps

writer- - TGCATAT - riders ATCCG-AT

Cost-Function Unit-Cost-Function

Alignment Costs

$$\delta: \Sigma \cup \{-\} \times \Sigma \cup \{-\} \to \mathbb{R}_{\geq 0}$$

$$\delta(a, b) = 1 \text{ if } a \neq b$$

$$\delta(a, b) = 0 \text{ if } a = b$$

$$w(\mathscr{A}) = \sum_{i=1} \delta(a_i, b_i)$$

Lemma

Edit Distance of two strings u, v equals the min. alignments costs $w(\mathscr{A})$ between u and v with unit-cost function.

How to compute Edit Distance? Dynamic Programming!

Recurrence Function D (Needleman-Wunsch Algorithm) Given the strings $u = u_1 \dots u_m$ and $v = v_1 \dots v_n$

Assume D[i, j] are the costs for an optimal alignment of substrings $u_1 \dots u_j$ and $v_1 \dots v_j$, $1 \le i \le m$, $1 \le j \le n$

i = 0: alignment empty string ε and $v_1 \dots v_j$ j = 0: alignment $u_1 \dots u_j$ and empty string ε

Init:
$$D[i, 0] = i$$
; $D[0, j] = j$, $i, j \ge 0$;
Compute

$$D[i,j] = \min \begin{cases} D[i-1,j] + \delta(u_i,-) \\ D[i-1,j-1] + \delta(u_i,v_j) \\ D[i,j-1] + \delta(-,v_j) \end{cases}$$

 $(\delta = unit-cost-function)$

Lemma

D[m,n]=cost of optimal alignment between u and v.

Backtracing

Given the strings $u = u_1 \dots u_m$ and $v = v_1 \dots v_n$

Tracematrix is an $m \times n$ matrix with $T[i,j] \subseteq \{\leftarrow, \nwarrow, \uparrow\}$.

Init:
$$T[0,0] = \emptyset$$
, $T[i,0] = \uparrow$, $T[0,j] = \leftarrow$ for $1 \le i \le m$, $1 \le j \le n$
 $\uparrow \in T[i,j]$ if $D[i-1,j] + \delta(u_i, -)$
Set: $\nwarrow \in T[i,j]$ if $D[i-1,j-1] + \delta(u_i, v_j)$
 $\leftarrow \in T[i,j]$ if $D[i,j-1] + \delta(-, v_j)$

Runtime: O(mn)

Alignment with variable Gap-Costs

ACCGTCTGCT ACCGTCTGCT $w(\mathscr{A}) = 5$ A-C--C-G-T ACCGT-----

This contradicts "biological intuition":

Insertion of gap of length k is "evolutionary simpler to realize" then insertion of k gaps of length 1.

gap penalty function $g : \mathbb{N} \to \mathbb{R}$ g(k) is penalty for inserting a gap of length k. we need:

 $g(k+l) \leq g(k) + g(l),$

as otherwise it might be better to insert 2 gaps of length k and l then one gap of length k + l.

Alignment with variable Gap-Costs (Smith-Waterman-Alg.)

Init: D[0,0] = 0; D[0,k] = D[k,0] = g(k), $k \ge 1$;

$$D[i,j] = \min \begin{cases} D[i-1,j-1] + \delta(u_i, v_j) \\ \min_{1 \le k \le j} D[i-k,j] + g(k) \\ \min_{1 \le k \le j} D[i,j-k] + g(k) \end{cases}$$

Tracematrix is an $m \times n$ matrix with $T[i,j] \subseteq \{\leftarrow_k, \nwarrow, \uparrow_k, k \in \mathbb{N}\}$

Example Multiple Alignment

	· ·			
Q5E940 BOVIN	MPREDRATWKSNYFLK	IQLLDD YPKCFIVGADNVGS	KQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76
RLA0 HUMAN	MPREDRATWKSNYFLK]	IQLLDD YPKCFIVGADNVGS	K <mark>QMQ</mark> QIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76
RLA0_MOUSE	MPREDRATWKSNYFLKI	IQLLDD <mark>YP</mark> KCFIV <mark>G</mark> ADNVGS	K <mark>Q</mark> MQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76
RLA0_RAT	MPREDRATWKSNYFLKI	IQLLDD <mark>YP</mark> KCFIV <mark>G</mark> ADNVGS	K <mark>Q</mark> MQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76
RLA0 CHICK	MPREDRATWKSNYFMK	IQLLDD <mark>YP</mark> KCFVV <mark>G</mark> ADNVGS	K <mark>QMQ</mark> QIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76
RLA0 RANSY	MPREDRATWKSNYFLK]	I <mark>QLLDDYP</mark> KCFIV <mark>GAD</mark> NVGS	K <mark>QMQ</mark> QIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNSALE	76
Q7ZUG3 BRARE	MPREDRATWKSNYFLKJ	I <mark>QLLDDYP</mark> KCFIV <mark>GAD</mark> NVGS	K <mark>QMQTIRLSLRGK-AVVLMGKNTMMRKAIRGHLE</mark> NNPALE	76
RLA0 ICTPU	MPREDRATWKSNYFLK	IQLLNDYPKCFIYGADNYGS	K <mark>Q</mark> MQTIRLSLRGK-AIVLM <mark>GKNT</mark> MMRKAIRGHLENNPALE	76
RLA0 DROME	MVRENKAAWKAQYFIKV	VELFDEFPKCFIVGADNVGS	K <mark>QMQ</mark> NIRTSLRGL-AVVLMGKNTMMRKAIRGHLENNPQLE	76
RLA0 DICDI	MSGAG-SKRKKLFIEK	TKLFTTYDKMIVAEADFVGS	SQLQKIRKSIRGI-GAVLMGKKTMIRKVIRDLADSKPELD	75
Q54LP0 DICDI	MSGAG-SKRKNVFIEK	TKLFTT YDKMIVAEADFVGS	SQLQKIRKSIRGI-GAVLMGKKTMIRKVIRDLADSKPELD	75
RLA0 PLAF8	MAKLSKQQKKQMYIEKI	SSLIQQ <mark>Y</mark> SKILIVHV <mark>D</mark> NV <mark>GS</mark>	NQMASVRKSLRGK-ATILMGKNTRIRTALKKNLQAVPQIE	76
RLA0 SULAC	MIGLAVTTTKKIAKWKVDEVAEI	T <mark>E</mark> KLKTHKTIIIAN I <mark>EG</mark> FPA	DKLHEIRKKLRGK-ADIKVTKNNLFNIALKNAGYDTK	79
RLA0 SULTO	MRIMAVITQERKIAKWKIEEVKEI	E <mark>Q</mark> KLRE <mark>Y</mark> HTIIIANI <mark>EG</mark> FPA	DKLHDIRKKMRGM-AEIKVTKNTLFGIAAKNAGLDVS	80
RLA0 SULSO	<mark>MKRL</mark> ALALKQRK VASWK LEE V KEI	TELIKNSNT ILIGNLEGFPA	DKLHEIRKKLRGK-ATIKVTKNTLFKIAAKNAGIDIE	80
RLA0 AERPE	MSVVSLVGQMYKREKPIPEWKTLMLREI	E <mark>ELF</mark> SKHRVVLFADLT <mark>GTPT</mark>	FVVQRVRKKLWKK-YPMMVAKKRIILRAMKAAGLELDDN	86
RLA0 PYRAE	-MMLAIGKRRYVRTRQYPARKVKIVSE7	TELLQKYPYVFLFDLHGLSS	RILHE <mark>YR</mark> YRLRRY- <mark>GVIKIIKPT</mark> LFKIAFTK <mark>VYGG</mark> <mark>IP</mark> AE	85
RLA0 METAC	MAEERHHTEH IPQWKKDE IEN I	K <mark>eliqsh</mark> kyfgmygi <mark>eg</mark> ila	IKMQKIRRDLKDV-AVLKVSRNTLTERALNQLGETIP	78
RLA0 METMA	MAEERHHTEHIPQWKKDEIENI	K <mark>ELIQSH</mark> KYF <mark>GMYRIEGI</mark> LA	FKIQKIRRDLKDV-AVLKVSRNTLTERALNQLGESIP	78
RLA0 ARCFU	MAAVRGSPPEYKVRAVEEJ	KRMISSK <mark>PVVAIV</mark> SFRNV <mark>P</mark> A	GQMQKIRREFRGK-AEIKVVKNTLLERALDALGGDYL	75
RLA0 METKA	MAVKAKGQPPSGYEPKVAEWKRREVKEI	KELMDE YEN VGL VDLEG I PA	PQLQEIRAKLRERDTIIRMSRNTLMRIALEEKLDERPELE	88
RLA0 METTH	WAHVAEWKKEVQEI	HDLIKGYEVVGIANLADIPA	RQLQKMRQTLRDS-ALIRMSKKTLISLALEKAGRELENVD	74
RLA0_METTL	<mark>M</mark> ITAESEHK <mark>IAPWK</mark> IEE <mark>V</mark> NKI	K <mark>ELL</mark> KN <mark>G</mark> QI VALV DMMEV <mark>P</mark> A	R <mark>QLQEIR</mark> DKIR-GTMTLKMSRNTLIERAIKEVAEETGNPEFA	82
RLA0 METVA	<mark>M</mark> IDAKSEHK <mark>IAPWK</mark> IEE <mark>V</mark> NAI	KELLKSANVIALIDMMEVPA	VQLQEIRDKIR-DQMTLKMSRNTLIKRAVEEVAEETGNPEFA	82
RLA0_METJA	METKVKAH <mark>VAPWK</mark> IEE <mark>V</mark> KTI	K <mark>GLI</mark> KSK <mark>P</mark> VVAIVDMMDVPA	PQLQEIRDKIR-DKVKLRMSRNTLIIRALKEAAEELNNPKLA	81
RLA0 PYRAB	WAHVAEWKKEVEEI	ANLIKS <mark>YP</mark> VIAL V D V S SM <mark>P</mark> A	Y <mark>PLSQMRRLIRENGGLLRVSRNTLIELAIKKAAQ</mark> ELGK <mark>P</mark> ELE	77
RLA0_PYRHO	WAHVAEWKKEVEEI	AKLIKS <mark>YP</mark> VIALVDVSSM <mark>P</mark> A	Y <mark>PLSQMRRLIRENGGLLRVSRNTLI</mark> ELAIKKAAKELGK <mark>PELE</mark>	77
RLA0_PYRFU	WAHVAEWKKEVEEI	AN <mark>LIKSYPVVALV</mark> DVSSM <mark>P</mark> A	Y <mark>PLSQMRRLIRENNGLLRVSRNTLIELAIKKVAQ</mark> ELGK <mark>PELE</mark>	77
RLA0_PYRKO	WAHVAEWKKEVEEI	ANIIKS <mark>YP</mark> VIAL VDVA <mark>G</mark> VPA	Y <mark>PLSKMRDKLR-GKALLRVSRNT</mark> LIELAIKRAAQELGQ <mark>P</mark> ELE	76
RLA0_HALMA	MSAESERKTET IPEWKQEEVDAJ	VEMIES YESVGVVNIAGIPS	RQLQDMRRDLHGT-AELRVSRNTLLERALDDVDDGLE	79
RLA0_HALVO	MSESEVRQTEVIPQWKREEVDEI	VDFIESYESVGVVGVAGIPS	R <mark>QLQ</mark> SMRRELHGS-AAVRMSRNTLVNRALDEVNDGFE	79
RLA0_HALSA	MSAEEQRTTEEVPEWKRQEVAEI	VDLLET YDS VG V VN VT GIPS	KQLQDMRRGLHGQ-AALRMSRNTLLVRALEEAGDGLD	79
RLA0_THEAC	MKE V SQQKKELVNE	T <mark>Q</mark> RIKASRSVAIVD <mark>T</mark> AGIRT	R <mark>QIQ</mark> DIRGKNRGK-INLKVIKKTLLFKALENLGDEKLS	72
RLA0_THE VO	MRK INPKKKE IVSEI	AQDITKSKAVAIVDIKGVR <mark>I</mark>	RQMQDIRAKNRDK-VKIKVVKKTLLFKALDSINDEKLT	72
RLA0_PICTO	PACEPAOWKIDFVKNI	ENE INSRKVAAIVSIKGLRN	NEFOKIENSIEDK-ARIEVSEARLLRLAIENTGKNNIV	72
ruler	1	30	5080	

First 90 positions of a protein multiple sequence alignment of instances of the acidic ribosomal protein P0 (L10E) from several organisms. (wikipedia)

Distance VS Scoring Function

Note: Instead of using a distance matrix *D* we can use a Similarity/Scoring Matrix *S* and maximize.

Init: S[i,0] = -i * gap - cost; S[0,j] = -j * gap - cost; for $i, j \ge 0$; Compute

$$S[i,j] = \max \begin{cases} S[i-1,j] + \delta(u_i,-) \\ S[i-1,j-1] + \delta(u_i,v_j) \\ S[i,j-1] + \delta(-,v_j) \end{cases}$$

with e.g.

$$\delta(a,b) = \left\{ egin{array}{ccc} 1 & ext{if } a = b \ -1 & ext{if } a
eq b ext{ and } a, b
eq -1 \ -3 & ext{else (gap-costs)} \end{array}
ight.$$

Local vs Global Alignment

Needleman-Wunsch computes a global optimal Alignment

NW reasonable if sequences have almost same length

If sequences have quite different length, then the sequences are "shredded":

R-----KY RCGEQGSNMECPNNLC-CSQYGYCGMGGDYCGKGCQNGACWTSKR

Reason: gaps are penalized equally on each position Reasonable: less penalization of gaps at end and beginning

Local Alignment: find best alignment of two substrings of two sequences (Smith-Waterman-Algorithm)

Smith-Waterman-Algorithm

Need scoring function that penalizes insertion/deletions with a negative value

Compute

$$S[i,j] = \max \begin{cases} 0 \\ S[i-1,j] + \delta(u_i,-) \\ S[i-1,j-1] + \delta(u_i,v_j) \\ S[i,j-1] + \delta(-,v_j) \end{cases}$$

with init: S[i, 0] = S[0, j] = 0; for $i, j \ge 0$;

First row states: we can start on each point a new alignment, if the score of the alignment computed so-far has a negative weight.

here maximize score. either minimize distance or maximize score

Standart Tool BLAST

BLAST = Basic Local Alignment Search Tool

- quick heuristic alignment algorithm
- divides query sequences into short strings and initially only looks for (exact) matches of those strings in database strings. This is afterwards extended to get the entire alignment.
- much faster, but no optimality guarantee

Databases e.g. for nucleotide sequences (Genbank of NCBI, EMBL, ...) or protein databases (SwissProt, RefSeq, Pfam, ...).

BLAST homepage: blast.ncbi.nlm.nih.gov/ Tutorial: digitalworldbiology.com/BLAST

BLAST"Types"

type	query	target
blastn	nucleotide	nucleotide
blastp	protein	protein
blastx	nucleotide (transl)	protein
tblastn	protein	nucleotide (transl)
tblastx	nucleotide (transl)	nucleotide (transl)