Cartesian product

Bioinformatics (Graph Products)

Marc Hellmuth

There are four standart products:

- Cartesian product □
- direct product \times
- strong product ⊠
- lexicographic product or

٠

The vertex set $V(G_1 \star G_2), \star \in \{\Box, \times, \boxtimes, \circ\}$

As numbers, one can multiply graphs.

The vertex set V(G) of the products $\star \in \{\Box, \times, \boxtimes, \circ\}$ is defined as follows:

$$V(G_1 \star G_2) = \{(v_1, v_2) \mid v_1 \in V(G_1), v_2 \in V(G_2)\}$$

The Cartesian product $G = G_1 \square G_2$

As numbers, one can multiply graphs.

Two vertices (x_1, x_2) , (y_1, y_2) in *G* are linked by an edge if:

1.
$$[x_1, y_1] \in E(G_1)$$
 and $x_2 = y_2$ or if

2. $[x_2, y_2] \in E(G_2)$ and $x_1 = y_1$.

The direct product $G = G_1 \times G_2$

As numbers, one can multiply graphs.

Two vertices (x_1, x_2) , (y_1, y_2) in *G* are linked by an edge if:

1. $[x_1, y_1] \in E(G_1)$ and $[x_2, y_2] \in E(G_2)$.

The strong product $G = G_1 \boxtimes G_2$

As numbers, one can multiply graphs.

Two vertices (x_1, x_2) , (y_1, y_2) in *G* are linked by an edge if:

1. $[x_1, y_1] \in E(G_1)$ and $x_2 = y_2$ or if

2.
$$[x_2, y_2] \in E(G_2)$$
 and $x_1 = y_1$ or if

3. $[x_1, y_1] \in E(G_1)$ and $[x_2, y_2] \in E(G_2)$.

The lexicographic product $G = G_1 \circ G_2$

As numbers, one can multiply graphs.

Two vertices (x_1, x_2) , (y_1, y_2) in *G* are linked by an edge if:

1.
$$[x_1, y_1] \in E(G_1)$$
 or if

2.
$$[x_2, y_2] \in E(G_2)$$
 and $x_1 = y_1$.

Cartesian product

Cartesian Product: properties

- commutative
- associative
- distributive w.r.t. disjoint union +
- unit element K_1 , i.e, for all G holds $G \Box K_1 \simeq K_1 \Box G \simeq G$.

Cartesian Product: properties

- fiber, layer
- projections (are weak homomorphisms)

Theorem Let $G = \Box_{i=1}^n G_i$ and $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in V(G)$. It holds:

$$d_G(x,y) = \sum_{i=1}^n d_{G_i}(x_i,y_i).$$

Theorem

 $G = \Box_{i=1}^{n} G_i$ is connected if and only if G_i is connected for all i = 1, ..., n.

Cartesian Product: properties

Lemma (Square Property)

Let $G = \Box_{i=1}^{n} G_i$ be a Cartesian product graph and $e, f \in E(G)$ be two incident edges that are in different fibers. Then there is exactly one diagonalfree square in G containing both e and f.

Prime Factor Decomposition (PFD) w.r.t.

G is prime, if for all G_1, G_2 with

$$G = G_1 \square G_2 \quad \Rightarrow \quad G_1 \simeq K_1 \text{ or } G_2 \simeq K_1$$

Theorem

Every connected graph G = (V, E) has a unique representation as a Cartesian product of prime factors (up to isomorphism and the order of the factors).

The number of prime factors is at most $\log_2(|V|)$.

PFD is not unique in the class of disconnected graphs.

Prime Factor Decomposition (PFD) w.r.t.

Aim: Find PFD of given graphs G.

Definition (Product Relation σ)

Let $G = \Box_{i=1}^{n} G_i$ be a Cartesian product graph. Two edges e, f are in relation σ , $(e\sigma f)$, if the endpoints of e, resp. f, differ exactly in the same coordinate *i*.

Thus, for *e* and *f* with $e\sigma f$ holds: they are edges of fibers of factor G_i . The edges *e* and *f* can than be colored with color *i*.

Aim: Compute "finest" σ .

Djokovic-Winkler-Relation ⊖

Two edges e = (x, y), f = (a, b) are in Relation Θ , $(e \Theta f)$, iff

$$d(x,a) + d(y,b) \neq d(x,b) + d(y,a)$$

Lemma

Let G be a graph. It holds:

- For two incident edges e, f holds e⊖f if and only if e and f belong to a common triangle.
- Let P be a shortest path in G then no two edges of P are in Relation ⊖.
- Let C be an isometric cycle of G. If e, f ∈ E(C) are "antipodal" edges then e⊖f.

 Θ is symmetric, reflexiv, not transitiv.

Djokovic-Winkler-Relation ⊖

Two edges e = (x, y), f = (a, b) are in Relation Θ , $(e \Theta f)$, iff

 $d(x,a) + d(y,b) \neq d(x,b) + d(y,a)$

Lemma

Let e and f be edges of a Cartesian product graph G with $e \Theta f$ then the endvertices of e and f differ in the same coordinate.

Thus, we can conlcude that

$$\Theta \subseteq \sigma$$
.

Problem: even transitive closure Θ^* is not a product relation. Thus we consider the Relation $\tau.$

Relation τ

Let *G* be a graph. Two edges e = (u, v), f = (u, w) are in Relation τ , $(e\tau f)$, iff e = f or $(v, w) \notin E(G)$ and *u* is the only common neighbor of *v* and *w*.

Theorem

The relation $(\Theta \cup \tau)^*$ is the finest product relation σ and thus corresponds to the PFD w.r.t. \Box of a given graph. $(...)^*$ denotes the transitive closure

PFD w.r.t.

- 1: **INPUT:** Adjacency-list of a graph G = (V, E)
- 2: Compute eqivalences F_1, \ldots, F_n of $(\Theta \cup \tau)^*$
- 3: for i = 1, ..., n do
- 4: Compute an arbitrary connected component G_i of G induced by F_i
- 5: Save *G_i* as prime factor
- 6: **end for**
- 7: **OUTPUT:** The prime factors G_1, \ldots, G_n of G

Lemma

The PFD of G = (V, E) w.r.t. the Cartesian product can be computed in O(|V||E|) time.