Bioinformatics

(Graph Products)

Marc Hellmuth

There are four standart products:

- Cartesian product \square
- direct product \times
- strong product \boxtimes
- lexicographic product o

The vertex set $V\left(G_{1} \star G_{2}\right), \star \in\{\square, \times, \boxtimes, \circ\}$

As numbers, one can multiply graphs.
The vertex set $V(G)$ of the products $\star \in\{\square, \times, \boxtimes, \circ\}$ is defined as follows:

$$
V\left(G_{1} \star G_{2}\right)=\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \in V\left(G_{1}\right), v_{2} \in V\left(G_{2}\right)\right\}
$$

The Cartesian product $G=G_{1} \square G_{2}$

As numbers, one can multiply graphs.
Two vertices $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$ in G are linked by an edge if:

1. $\left[x_{1}, y_{1}\right] \in E\left(G_{1}\right)$ and $x_{2}=y_{2}$ or if
2. $\left[x_{2}, y_{2}\right] \in E\left(G_{2}\right)$ and $x_{1}=y_{1}$.

G_{1}

The direct product $G=G_{1} \times G_{2}$

As numbers, one can multiply graphs.
Two vertices $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$ in G are linked by an edge if:

1. $\left[x_{1}, y_{1}\right] \in E\left(G_{1}\right)$ and $\left[x_{2}, y_{2}\right] \in E\left(G_{2}\right)$.

G_{1}

The strong product $G=G_{1} \boxtimes G_{2}$

As numbers, one can multiply graphs.
Two vertices $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$ in G are linked by an edge if:

1. $\left[x_{1}, y_{1}\right] \in E\left(G_{1}\right)$ and $x_{2}=y_{2}$ or if
2. $\left[x_{2}, y_{2}\right] \in E\left(G_{2}\right)$ and $x_{1}=y_{1}$ or if
3. $\left[x_{1}, y_{1}\right] \in E\left(G_{1}\right)$ and $\left[x_{2}, y_{2}\right] \in E\left(G_{2}\right)$.

G_{1}

The lexicographic product $G=G_{1} \circ G_{2}$

As numbers, one can multiply graphs.
Two vertices $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$ in G are linked by an edge if:

1. $\left[x_{1}, y_{1}\right] \in E\left(G_{1}\right)$ or if
2. $\left[x_{2}, y_{2}\right] \in E\left(G_{2}\right)$ and $x_{1}=y_{1}$.

Cartesian Product: properties

- commutative
- associative
- distributive w.r.t. disjoint union +
- unit element K_{1}, i.e, for all G holds $G \square K_{1} \simeq K_{1} \square G \simeq G$.

Cartesian Product: properties

- fiber, layer
- projections (are weak homomorphisms)

Theorem

Let $G=\square_{i=1}^{n} G_{i}$ and $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in V(G)$. It holds:

$$
d_{G}(x, y)=\sum_{i=1}^{n} d_{G_{i}}\left(x_{i}, y_{i}\right)
$$

Theorem
$G=\square_{i=1}^{n} G_{i}$ is connected if and only if G_{i} is connected for all $i=1, \ldots, n$.

Cartesian Product: properties

Lemma (Square Property)

Let $G=\square_{i=1}^{n} G_{i}$ be a Cartesian product graph and e,f $\in E(G)$ be two incident edges that are in different fibers. Then there is exactly one diagonalfree square in G containing both e and f.

Prime Factor Decomposition (PFD) w.r.t. \square

G is prime, if for all G_{1}, G_{2} with

$$
G=G_{1} \square G_{2} \quad \Rightarrow \quad G_{1} \simeq K_{1} \text { or } G_{2} \simeq K_{1}
$$

Theorem
Every connected graph $G=(V, E)$ has a unique representation as a Cartesian product of prime factors (up to isomorphism and the order of the factors).
The number of prime factors is at most $\log _{2}(|V|)$.
PFD is not unique in the class of disconnected graphs.

Prime Factor Decomposition (PFD) w.r.t. \square

Aim: Find PFD of given graphs G.

Definition (Product Relation σ)
Let $G=\square_{i=1}^{n} G_{i}$ be a Cartesian product graph. Two edges e, f are in relation σ, (eof), if the endpoints of e, resp. f, differ exactly in the same coordinate i.
Thus, for e and f with eof holds: they are edges of fibers of factor G_{j}.
The edges e and f can than be colored with color i.
Aim: Compute "finest" σ.

Djokovic-Winkler-Relation Θ

Two edges $e=(x, y), f=(a, b)$ are in Relation Θ, (eЄf), iff

$$
d(x, a)+d(y, b) \neq d(x, b)+d(y, a)
$$

Lemma
Let G be a graph. It holds:

- For two incident edges e,f holds e Θf if and only if e and f belong to a common triangle.
- Let P be a shortest path in G then no two edges of P are in Relation Θ.
- Let C be an isometric cycle of G. If $e, f \in E(C)$ are "antipodal" edges then e Θf.
Θ is symmetric, reflexiv, not transitiv.

Djokovic-Winkler-Relation Θ

Two edges $e=(x, y), f=(a, b)$ are in Relation $\Theta,(e \Theta f)$, iff

$$
d(x, a)+d(y, b) \neq d(x, b)+d(y, a)
$$

Lemma

Let e and f be edges of a Cartesian product graph G with e Θf then the endvertices of e and f differ in the same coordinate.
Thus, we can conlcude that

$$
\Theta \subseteq \sigma
$$

Problem: even transitive closure Θ^{*} is not a product relation. Thus we consider the Relation τ.

Relation τ

Let G be a graph. Two edges $e=(u, v), f=(u, w)$ are in Relation τ, (e $e f)$, iff $e=f$ or $(v, w) \notin E(G)$ and u is the only common neighbor of v and w.
Theorem
The relation $(\Theta \cup \tau)^{*}$ is the finest product relation σ and thus corresponds to the PFD w.r.t. \square of a given graph.
(...)* denotes the transitive closure

PFD w.r.t. \square

1: INPUT: Adjacency-list of a graph $G=(V, E)$
2: Compute eqivalences F_{1}, \ldots, F_{n} of $(\Theta \cup \tau)^{*}$
3: for $i=1, \ldots, n$ do
4: Compute an arbitrary connected component G_{i} of G induced by F_{i}
5: \quad Save G_{i} as prime factor
6: end for
7: OUTPUT: The prime factors G_{1}, \ldots, G_{n} of G
Lemma
The PFD of $G=(V, E)$ w.r.t. the Cartesian product can be computed in $O(|V||E|)$ time.

