Universität Greifswald
Institute für Mathematik and Informatik
Lecturer: Marc Hellmuth Tutor: Nikolai Nøjgaard

10. Exercise "Bioinformatics", SS 17

Aufgabe 1: (5 Credits)
Determine whether the triple sets $R_{1}=\{a b|g, a c| g, d e|g, e f| g, d f \mid g\}$ and $R_{2}=$ $\{a b|g, a c| g, d e|g, e f| g, d f|g, c d| g, e c|d, c f| d, f d \mid e\}$ are consistent. To this end, apply the BUILD-algorithm and give the resulting tree obtained with BUILD, if there is one. In addition, determine a tree with a minimum number of interior vertex for the consistent set(s) R_{i}.

Aufgabe 2: (7.5 Credits)
A metric $D: X \times X \rightarrow \mathbb{R}$ is an ultrametric if for all $x, y, z \in X$ we have

$$
D(x, y) \leq \max \{D(y, z), D(x, z)\}
$$

Prove the 3 -point condition:
D is an ultrametric if and only if for all $x, y, z \in X$ the two largest elements in $\{D(x, y), D(y, z), D(x, z)\}$ are equal.

Aufgabe 3: (7.5 Credits)
Let R be a consistent triple set and assume that $R^{\prime}=R \cup\{a b \mid c\}$ is not consistent. Let $\mathcal{L}=\cup_{x y \mid z \in R^{\prime}}\{x, y, z\}$.
Show, there is a subset $L \subseteq \mathcal{L}$ with $|L| \geq 3$ such that the Ahograph $[R, L]$ has exactly two connected components, one containing a and the other b.

