11. Exercise "Bioinformatics", SS 17

Aufgabe 4: (5 Credits)

Let T be a binary rooted tree with leaf set L. Let R(T) be the set of all rooted triples that are displayed by T. Proof that $R(T) \cup \{r\}$ is not consistent for all $r \notin R$. Explain whether the latter property is also true for non-binary trees in general.

Aufgabe 1: (5 Credits)

Show that the two definitions for cographs are indeed equivalent:

Def 1:

- K_1 is a cograph.
- The disjoint union of two cographs is a cograph.
- The complement of a cograph is a cograph.

Def 2:

- K_1 is a cograph.
- The disjoint union of two cographs is a cograph.
- The join of two cographs is a cograph.

Aufgabe 2: (5+5=10 Credits)

Let A, B, C, D be four different species from which we extracted some genetic material. In particular, we observed two independent gene families (sets of homologous genes) G^1 and G^2 consisting of the respective subsets G_X^1 and G_X^2 for each species $X \in \{A, B, C, D\}$.

Assume for the first family that $G_A^1 = \{a_1, a_2\}, G_B^1 = \{b_1, b_2, b_3\}, G_C^1 = \{c_1\}, G_D^1 = \{d_1\},$ and the second family that $G_A^2 = \{a'_1, a'_2\}, G_B^1 = \emptyset, G_C^1 = \{c'_1, c'_2\}, G_D^1 = \{d'_1, d'_2\}.$

Using multiple sequence alignments we obtained the following (symmetric) genetic distance scores for the genes in G^1 and G^2 :

G^1	b_1	b_2	b_3	c_1	d_1	G^2	c'_1	c'_2	d'_1	d'_2
a_1	1	1	2	2	3	 a'_1	2	3	4	4
a_2	2	2	1	2	3	a'_2	3	2	4	4
b_1				2	2	c'_1			2	2
b_2				2	2	c'_2			2	2
b_3				2	2					
c_1					1					

For simplicity, no two genes from different gene families will be estimated as orthologs or paralogs.

(a) Based on the similarity scores determine the estimated orthology relation \widehat{R}^1_{\bullet} and \widehat{R}^2_{\bullet} (for both gene families G^1 and G^2 independently).

Show that both estimated orthology relation are "valid" orthology relations.

(b) Determine the two gene trees together with its event-label that you can derive from \widehat{R}^1_{\bullet} and \widehat{R}^2_{\bullet} .

Deadline: Tuesday - June 27, 2017