6. ExERCISE "Bioinformatics", SS 17

Aufgabe 1: $\quad(2+2+2+2+2=10$ Credits)
Let $G=(V, E)$ be an undirected graph.
(a) Show that G has an even number of vertices with odd degree.
(b) Let $|V| \geq 2$. Show that G has two vertices of the same degree.
(c) Two edges $e=(a, b) \in E$ and $f=(x, y) \in E$ are in Relation Θ, in symbols $e \Theta f$, if and only if

$$
d(a, x)+d(b, y) \neq d(a, y)+d(b, x) .
$$

Show that no two distinct edges on a shortest path in G are in relation Θ.
(d) Show that if G is a forest, then G has $|V|-|E|$ connected components.
(e) Assume now that $V=\{0,1,2,3\}$ and $E=\{(0,1),(1,2),(1,3)\}$. Show that $H \simeq G$ for $H=(\{a, b, c, d\},\{(d, b),(a, d),(c, d)\})$. How many isomorphism are there?

Aufgabe 2: $\quad(1+1+1.5+1.5=5$ Credits)
Let $G=(V, E)$ be an undirected graph, $\chi(G)$ denote the chromatic number and $\Delta(G)$ the maximum degree of G. The complement of $G=(V, E)$ is the graph $\bar{G}=(V, \bar{E})$ with $\bar{E}=\{\{u, v\} \mid\{u, v\} \notin E, u, v \in V, u \neq v\}$. Prove or disprove
(a) If G is bipartite then \bar{G} is bipartite.
(b) There are graphs with $\chi(G)=\chi(\bar{G})$.
(c) If $\chi(G)=|V|$ then $\chi(G)=\Delta(G)+1$.
(d) If $\chi(G)=\Delta(G)+1$ then $\chi(G)=|V|$.

Aufgabe 3: (5 Credits)
A hypercube $Q_{n}=(V, E)$ is an undirected graph that consists of 2^{n} vertices such that each vertex $v \in V$ has a unique label

$$
\ell(v) \in\left\{\text { binary number representing } k \mid 0 \leq k<2^{n}\right\} .
$$

The edge set E contains all edges $\{u, v\}$ for which the the Hamming distance between $\ell(v)$ and $\ell(u)$ is exactly 1 . Show that Q_{n} is bipartite.

