6. EXERCISE "BIOINFORMATICS", SS 17

Aufgabe 1: (2+2+2+2+2=10 Credits)Let G = (V, E) be an undirected graph.

- (a) Show that G has an even number of vertices with odd degree.
- (b) Let $|V| \ge 2$. Show that G has two vertices of the same degree.
- (c) Two edges $e = (a, b) \in E$ and $f = (x, y) \in E$ are in Relation Θ , in symbols $e\Theta f$, if and only if

 $d(a, x) + d(b, y) \neq d(a, y) + d(b, x).$

Show that no two distinct edges on a shortest path in G are in relation Θ .

- (d) Show that if G is a forest, then G has |V| |E| connected components.
- (e) Assume now that $V = \{0, 1, 2, 3\}$ and $E = \{(0, 1), (1, 2), (1, 3)\}$. Show that $H \simeq G$ for $H = (\{a, b, c, d\}, \{(d, b), (a, d), (c, d)\})$. How many isomorphism are there?

Aufgabe 2: (1+1+1.5+1.5=5 Credits)

Let G = (V, E) be an undirected graph, $\chi(G)$ denote the chromatic number and $\Delta(G)$ the maximum degree of G. The complement of G = (V, E) is the graph $\overline{G} = (V, \overline{E})$ with $\overline{E} = \{\{u, v\} \mid \{u, v\} \notin E, u, v \in V, u \neq v\}$. Prove or disprove

- (a) If G is bipartite then \overline{G} is bipartite.
- (b) There are graphs with $\chi(G) = \chi(\overline{G})$.
- (c) If $\chi(G) = |V|$ then $\chi(G) = \Delta(G) + 1$.
- (d) If $\chi(G) = \Delta(G) + 1$ then $\chi(G) = |V|$.

Aufgabe 3: (5 Credits)

A hypercube $Q_n = (V, E)$ is an undirected graph that consists of 2^n vertices such that each vertex $v \in V$ has a unique label

 $\ell(v) \in \{\text{binary number representing } k \mid 0 \le k < 2^n\}.$

The edge set E contains all edges $\{u, v\}$ for which the Hamming distance between $\ell(v)$ and $\ell(u)$ is exactly 1. Show that Q_n is bipartite.

Deadline: Tuesday - May 16, 2017